The mechanism of phosphonium ylide alcoholysis and hydrolysis: concerted addition of the O-H bond across the P=C bond

Show simple item record

dc.contributor.author Byrne, Peter A.
dc.contributor.author Gilheany, Declan G.
dc.date.accessioned 2019-04-04T11:03:56Z
dc.date.available 2019-04-04T11:03:56Z
dc.date.issued 2016-06-06
dc.identifier.citation Byrne, P. A. and Gilheany, D. G. (2016) 'The Mechanism of Phosphonium Ylide Alcoholysis and Hydrolysis: Concerted Addition of the O−H Bond Across the P=C Bond', Chemistry – A European Journal, 22(27), pp. 9140-9154. doi: 10.1002/chem.201600530 en
dc.identifier.volume 22 en
dc.identifier.startpage 9140 en
dc.identifier.endpage 9154 en
dc.identifier.issn 0947-6539
dc.identifier.uri http://hdl.handle.net/10468/7706
dc.identifier.doi 10.1002/chem.201600530 en
dc.description.abstract The previous work on the hydrolysis and alcoholysis reactions of phosphonium ylides is summarized and reviewed in the context of their currently accepted mechanisms. Several experimental facts relating to ylide hydrolysis and to salt and ylide alcoholysis are shown to conflict with those mechanisms. In particular, we demonstrate that the pK(a) values of water and alcohols are too high in organic media to bring about protonation of ylide. Therefore, we propose concerted addition of the water or alcohol O-H bond across the ylide P=C bond. In support of this, we provide NMR spectroscopic evidence for equilibrium between ylide and aclohol that does not require the involvement of phosphonium hydroxide. We report the first P-alkoxyphosphorane to be characterised by NMR spectroscopy that does not undergo exchange on an NMR timescale. Two-dimensional NMR spectroscopic techniques have been applied to the characterisation to P-alkoxyphosphoranes for the first time. en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Wiley en
dc.relation.uri https://onlinelibrary.wiley.com/doi/full/10.1002/chem.201600530
dc.rights © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. This is the peer reviewed version of the following article: P. A. Byrne, D. G. Gilheany, Chem. Eur. J. 2016, 22, 9140., which has been published in final form at https://doi.org/10.1002/chem.201600530 This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. en
dc.subject Catalytic Wittig reaction en
dc.subject Nuclear-magnetic-resonance en
dc.subject Nuclear magnetic resonance en
dc.subject Tertiary phosphine oxides en
dc.subject Alkaline hydrolysis en
dc.subject Thermal decomposition en
dc.subject Equilibrium acidities en
dc.subject Heteroarylphosphorus compounds en
dc.subject Nucleophilic displacement en
dc.subject Alkoxyphosphonium halides en
dc.subject Substitution reactions en
dc.subject Alkoxyphosphorane en
dc.subject Concerted additions en
dc.subject Hypervalent compounds en
dc.subject Reaction intermediates en
dc.subject Ylides en
dc.title The mechanism of phosphonium ylide alcoholysis and hydrolysis: concerted addition of the O-H bond across the P=C bond en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Peter Byrne, Chemistry, University College Cork, Cork, Ireland. +353-21-490-3000 Email: peter.byrne@ucc.ie en
dc.internal.availability Full text available en
dc.date.updated 2019-03-26T17:41:56Z
dc.description.version Accepted Version en
dc.internal.rssid 383418240
dc.internal.wokid WOS:000380271100020
dc.contributor.funder Science Foundation Ireland en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Chemistry - A European Journal en
dc.internal.copyrightchecked No
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress peter.byrne@ucc.ie en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Research Centres/12/RC/2275/IE/Synthesis and Solid State Pharmaceutical Centre (SSPC)/ en
dc.identifier.eissn 1521-3765


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement