Detection of inhibitory effects in the generation of breakdown spots in HfO2-based MIM devices

Show simple item record

dc.contributor.author Muñoz-Gorriz, J.
dc.contributor.author Monaghan, Scott
dc.contributor.author Cherkaoui, Karim
dc.contributor.author Suñé, J.
dc.contributor.author Hurley, Paul K.
dc.contributor.author Miranda, Enrique
dc.date.accessioned 2019-06-18T15:20:32Z
dc.date.available 2019-06-18T15:20:32Z
dc.date.issued 2019-05-29
dc.identifier.citation Muñoz-Gorriz, J., Monaghan, S., Cherkaoui, K., Suñé, J., Hurley, P. K. and Miranda, E. (2019) 'Detection of inhibitory effects in the generation of breakdown spots in HfO2-based MIM devices', Microelectronic Engineering, 215, 111023 (6 pp). doi: 10.1016/j.mee.2019.111023 en
dc.identifier.volume 215 en
dc.identifier.startpage 1 en
dc.identifier.endpage 6 en
dc.identifier.issn 0167-9317
dc.identifier.uri http://hdl.handle.net/10468/8067
dc.identifier.doi 10.1016/j.mee.2019.111023 en
dc.description.abstract In this work, the connection between the generation of catastrophic breakdown (BD) spots in metal-insulator-metal capacitors with a high-permittivity dielectric film (HfO2) and their spatial distribution was investigated. To gain insight into this issue, large area devices (104 μm2) were constant voltage stressed at high electric fields (3.5 MV/cm) with the aim of generating a large number of spots in a single device. The set of BD spots was analysed as a point pattern with attributes (their sizes) using the methods of spatial statistics. Our study reveals that beyond the visible damage on the top metal electrode, the spots exhibit soft inhibitory regions around them where the creation of new spots is less likely. The origin of these inhibitory regions is ascribed to structural modifications of the dielectric layer in the vicinity of the spots caused by the huge thermal effects occurring at the very moment of the BD event. en
dc.description.sponsorship Ministerio de Economía, Industria y Competitividad, Gobierno de España (project TEC2017-84321-C4-4-R) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Elsevier en
dc.relation.uri http://www.sciencedirect.com/science/article/pii/S0167931719301741
dc.rights © 2019 Elsevier B.V. All rights reserved. This manuscript version is made available under the CC-BY-NC-ND 4.0 license en
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0/ en
dc.subject Oxide breakdown en
dc.subject Reliability en
dc.subject MIM en
dc.subject Spatial statistics en
dc.title Detection of inhibitory effects in the generation of breakdown spots in HfO2-based MIM devices en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Scott Monaghan, Tyndall Micronano Electronics, University College Cork, Cork, Ireland. +353-21-490-3000 Email: scott.monaghan@tyndall.ie en
dc.internal.availability Full text available en
dc.check.info Access to this article is restricted until 24 months after publication by request of the publisher en
dc.check.date 2021-05-29
dc.date.updated 2019-06-18T15:15:24Z
dc.description.version Accepted Version en
dc.internal.rssid 489473915
dc.contributor.funder Ministerio de Economía, Industria y Competitividad, Gobierno de España en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Microelectronic Engineering en
dc.internal.copyrightchecked No !!CORA!!
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress scott.monaghan@tyndall.ie en
dc.identifier.articleid 111023 en


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2019 Elsevier B.V. All rights reserved. This manuscript version is made available under the CC-BY-NC-ND 4.0 license Except where otherwise noted, this item's license is described as © 2019 Elsevier B.V. All rights reserved. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement