Size dependent thermal properties of embedded crystalline germanium nanowires

Show simple item record

dc.contributor.author Audoit, Guillaume
dc.contributor.author Kulkarni, Jaideep S.
dc.contributor.author Morris, Michael A.
dc.contributor.author Holmes, Justin D.
dc.date.accessioned 2019-07-11T11:57:06Z
dc.date.available 2019-07-11T11:57:06Z
dc.date.issued 2007-01-31
dc.identifier.citation Audoit, G., Kulkarni, J. S., Morris, M. A. and Holmes, J. D. (2007) 'Size dependent thermal properties of embedded crystalline germanium nanowires', Journal of Materials Chemistry, 17(16), pp. 1608-1613. doi: 10.1039/B616216A en
dc.identifier.volume 17 en
dc.identifier.issued 16 en
dc.identifier.startpage 1608 en
dc.identifier.endpage 1613 en
dc.identifier.issn 0959-9428
dc.identifier.uri http://hdl.handle.net/10468/8141
dc.identifier.doi 10.1039/B616216A en
dc.description.abstract Here we report the size-dependent melting points of crystalline germanium nanowires confined within the pores of hexagonal mesoporous silica templates. A supercritical fluid deposition technique was used to form the nanowire–template composite materials and differential thermal analysis, coupled to thermal gravimetric analysis, was used to determine the melting points of the embedded Ge nanowires with mean diameters ranging from 22 to 85 Å. The melting points of the Ge nanowires within the templates were found to be higher than the melting point of bulk germanium (937 °C), typically by 60 °C, and with a broad melting range (∼80 °C). Extended X-ray absorption fine structure (EXAFS) analysis of the Ge K-edge from the nanocomposite materials revealed a linear increase in the Ge–Ge nearest neighbour distance with decreasing nanowire diameter over the size range investigated. In all cases the Ge–Ge first shell distance in the nanowires was greater than in the bulk. This observed lattice expansion can be attributed to crystallographic deformation resulting from the strain imposed on the nanowires by the template. EXAFS studies also revealed an increase in the average number of oxygen atoms at the Ge/silica interface with decreasing diameter due to the increasing surface area. Interfacial effects and interactions at the nanowires/matrix interface are believed to delay the melting point of these systems. en
dc.description.sponsorship Irish Research Council for Science, Engineering and Technology (IRCSET Project SC/02/4) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Royal Society of Chemistry (RSC) en
dc.relation.uri https://pubs.rsc.org/en/content/articlepdf/2007/jm/b616216a
dc.rights © The Royal Society of Chemistry 2007 en
dc.subject Nanowires en
dc.subject Crystalline materials en
dc.subject Germanium en
dc.subject Melting point en
dc.subject Size determination en
dc.subject Supercritical fluids en
dc.subject Thermodynamic properties en
dc.subject Thermogravimetric analysis en
dc.subject Crystalline germanium nanowires en
dc.subject Mesoporous silica templates en
dc.subject Size dependent thermal properties en
dc.title Size dependent thermal properties of embedded crystalline germanium nanowires en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Justin D. Holmes, Chemistry, University College Cork, Cork, Ireland. +353-21-490-3000 Email: j.holmes@ucc.ie en
dc.internal.availability Full text available en
dc.date.updated 2019-06-28T16:25:46Z
dc.description.version Accepted Version en
dc.internal.rssid 16860739
dc.contributor.funder Irish Research Council for Science, Engineering and Technology en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Journal of Materials Chemistry en
dc.internal.copyrightchecked No
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress j.holmes@ucc.ie en


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement