Citation:Petkov, N., Platschek, B., Morris, M. A., Holmes, J. D. and Bein, T. (2007) 'Oriented Growth of Metal and Semiconductor Nanostructures within Aligned Mesoporous Channels', Chemistry of Materials, 19(6), pp. 1376-1381. doi: 10.1021/cm0627239
In the present work, we show how different types of inclusion chemistry can be used to generate oriented, high-aspect-ratio metal and semiconductor nanowires in insulating silica host structures prepared within anodic alumina membranes (AAMs). The structural features of the Pluronic123-templated silica filaments in the AAMs with their intriguing columnar and circular arrangement of mesopores allow for the inclusion of a variety of aligned 1D nanostructures ranging from metallic (Pt, Au, and Pd) and semiconductor (Ge) to carbon nanotubes and filaments. The synthetic techniques include wet chemical impregnation and reduction in precalcined mesopores, impregnation of surfactant-containing mesopore systems, and mass transport via supercritical fluid deposition in surfactant-containing mesopores. Important issues such as the crystallinity and continuity of the encapsulated wires as a function of material and deposition technique have been discussed.
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement