Supercritical fluid growth of porous carbon nanocages

Show simple item record

dc.contributor.author Li, Zhonglai
dc.contributor.author Jaroniec, Mietek
dc.contributor.author Papakonstantinou, Pagona
dc.contributor.author Tobin, Joseph M.
dc.contributor.author Vohrer, Uwe
dc.contributor.author Kumar, Shailesh
dc.contributor.author Attard, Gary
dc.contributor.author Holmes, Justin D.
dc.date.accessioned 2019-07-11T15:26:24Z
dc.date.available 2019-07-11T15:26:24Z
dc.date.issued 2007-05-24
dc.identifier.citation Li, Z., Jaroniec, M., Papakonstantinou, P., Tobin, J. M., Vohrer, U., Kumar, S., Attard, G. and Holmes, J. D. (2007) 'Supercritical Fluid Growth of Porous Carbon Nanocages', Chemistry of Materials, 19(13), pp. 3349-3354. doi: 10.1021/cm070767r en
dc.identifier.volume 19 en
dc.identifier.issued 13 en
dc.identifier.startpage 3349 en
dc.identifier.endpage 3354 en
dc.identifier.issn 0897-4756
dc.identifier.uri http://hdl.handle.net/10468/8146
dc.identifier.doi 10.1021/cm070767r en
dc.description.abstract Carbon nanocages, with remarkably large mesoporous volumes, have been synthesized by the deposition of p-xylene over a Co/Mo catalyst in supercritical carbon dioxide. Nanocages with diameters ranging between 10 and 60 nm were synthesized at temperatures between 650 and 750 °C. The surface area and pore volume of the nanocages produced was found to depend on the reaction temperature and pressure employed. In particular, carbon nanocages with a pore volume of up to 5.8 cm3 g-1 and a BET surface area of 1240 m2 g-1 were readily synthesized at a temperature of 650 °C and a pressure of 10.34 MPa. The high pore volume and surface area of the carbon nanocages synthesized makes them ideal materials for use as inert adsorbents and catalytic supports. en
dc.description.sponsorship European Commission (European Union under the DESYGN-IT project (STREP Project No. 505626-1)); Enterprise Ireland (Project No. IP/2004/0183); Intel Corporation (Intel Ireland) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher American Chemical Society, ACS en
dc.relation.uri https://pubs.acs.org/doi/abs/10.1021/cm070767r
dc.rights © 2007 American Chemical Society. This document is the Accepted Manuscript version of a Published Work that appeared in final form in Chemistry of Materials, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/abs/10.1021/cm070767r en
dc.subject Porous materials en
dc.subject Adsorbents en
dc.subject Carbon en
dc.subject Carbon dioxide en
dc.subject Pressure effects en
dc.subject Supercritical fluids en
dc.subject Synthesis (chemical) en
dc.subject Xylene en
dc.subject Carbon nanocages en
dc.subject Catalytic supports en
dc.subject Co/Mo catalyst en
dc.subject P-xylene en
dc.subject Pore volume en
dc.title Supercritical fluid growth of porous carbon nanocages en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Justin D. Holmes, Chemistry, University College Cork, Cork, Ireland. +353-21-490-3000 Email: j.holmes@ucc.ie en
dc.internal.availability Full text available en
dc.date.updated 2019-06-28T16:12:10Z
dc.description.version Accepted Version en
dc.internal.rssid 16860787
dc.contributor.funder Sixth Framework Programme en
dc.contributor.funder Enterprise Ireland en
dc.contributor.funder Intel Corporation en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Chemistry of Materials en
dc.internal.copyrightchecked No
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress j.holmes@ucc.ie en


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement