Cu-Doped TiO2: Visible light assisted photocatalytic antimicrobial activity

Show simple item record

dc.contributor.author Mathew, Snehamol
dc.contributor.author Ganguly, Priyanka
dc.contributor.author Rhatigan, Stephen
dc.contributor.author Kumaravel, Vignesh
dc.contributor.author Byrne, Ciara
dc.contributor.author Hinder, Steven J.
dc.contributor.author Bartlett, John
dc.contributor.author Nolan, Michael
dc.contributor.author Pillai, Suresh C.
dc.date.accessioned 2019-09-02T14:36:13Z
dc.date.available 2019-09-02T14:36:13Z
dc.date.issued 2018-10-26
dc.identifier.citation Mathew, S., Ganguly, P., Rhatigan, S., Kumaravel, V., Byrne, C., Hinder, S., Bartlett, J., Nolan, M. and Pillai, S., 2018. Cu-doped TiO2: visible light assisted photocatalytic antimicrobial activity. Applied Sciences, 8(11), (2067). DOI:10.3390/app8112067 en
dc.identifier.volume 8 en
dc.identifier.issued 11 en
dc.identifier.startpage 1 en
dc.identifier.endpage 20 en
dc.identifier.issn 2076-3417
dc.identifier.uri http://hdl.handle.net/10468/8433
dc.identifier.doi 10.3390/app8112067 en
dc.description.abstract Surface contamination by microbes is a major public health concern. A damp environment is one of potential sources for microbe proliferation. Smart photocatalytic coatings on building surfaces using semiconductors like titania (TiO2) can effectively curb this growing threat. Metal-doped titania in anatase phase has been proven as a promising candidate for energy and environmental applications. In this present work, the antimicrobial efficacy of copper (Cu)-doped TiO2 (Cu-TiO2) was evaluated against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) under visible light irradiation. Doping of a minute fraction of Cu (0.5 mol %) in TiO2 was carried out via sol-gel technique. Cu-TiO2 further calcined at various temperatures (in the range of 500–700 °C) to evaluate the thermal stability of TiO2 anatase phase. The physico-chemical properties of the samples were characterized through X-ray diffraction (XRD), Raman spectroscopy, X-ray photo-electron spectroscopy (XPS) and UV–visible spectroscopy techniques. XRD results revealed that the anatase phase of TiO2 was maintained well, up to 650 °C, by the Cu dopant. UV–vis results suggested that the visible light absorption property of Cu-TiO2 was enhanced and the band gap is reduced to 2.8 eV. Density functional theory (DFT) studies emphasize the introduction of Cu+ and Cu2+ ions by replacing Ti4+ ions in the TiO2 lattice, creating oxygen vacancies. These further promoted the photocatalytic efficiency. A significantly high bacterial inactivation (99.9999%) was attained in 30 min of visible light irradiation by Cu-TiO2. en
dc.description.sponsorship IVA5033; PPRES052; PPRES032; SFI/US/14/e2915; SFI/16/M-ERA/3418 en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher MDPI AG en
dc.relation.uri https://www.mdpi.com/2076-3417/8/11/2067
dc.rights © 2018 by the authors. Licensee MDPI, Basel, Switzerland en
dc.rights.uri https://creativecommons.org/licenses/by/4.0/ en
dc.subject Cu-doped TiO2 en
dc.subject Doping en
dc.subject Phase transition en
dc.subject Escherichia coli en
dc.subject Staphylococcus aureus en
dc.subject Photocatalysis en
dc.subject Antibacterial coatings en
dc.title Cu-Doped TiO2: Visible light assisted photocatalytic antimicrobial activity en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Michael Nolan, Tyndall National Institute, University College Cork, Cork, Ireland. +353-21-490-3000 Email: michael.nolan@tyndall.ie en
dc.internal.availability Full text available en
dc.description.version Published Version en
dc.contributor.funder European Union INTERREG VA en
dc.contributor.funder Department of Jobs, Enterprise and Innovation en
dc.contributor.funder Department for the Economy (DfE) en
dc.contributor.funder Institute of Technology Sligo en
dc.contributor.funder Science Foundation Ireland en
dc.contributor.funder Horizon 2020 en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Applied Sciences (Switzerland) en
dc.internal.IRISemailaddress michael.nolan@tyndall.ie en
dc.identifier.articleid 2067 en
dc.relation.project info:eu-repo/grantAgreement/EC/H2020::ERA-NET-Cofund/685451/EU/ERA-NET for materials research and innovation/M-ERA.NET 2 en


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2018 by the authors. Licensee MDPI, Basel, Switzerland Except where otherwise noted, this item's license is described as © 2018 by the authors. Licensee MDPI, Basel, Switzerland
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement