Magnetic-field-induced ferroelectric domain dynamics and in-plane polarization in odd and mixed layered Aurivillius structures

Show simple item record

dc.contributor.author Faraz, Ahmad
dc.contributor.author Arif, Suneela
dc.date.accessioned 2019-09-11T08:39:10Z
dc.date.available 2019-09-11T08:39:10Z
dc.date.issued 2019-08-27
dc.identifier.citation Faraz, A. and Arif, S. (2019) ‘Magnetic-field-induced ferroelectric domain dynamics and in-plane polarization in odd and mixed layered Aurivillius structures’, Journal of Applied Physics, 126(8), 084104 (11pp). doi: 10.1063/1.5096569 en
dc.identifier.volume 126 en
dc.identifier.issued 8 en
dc.identifier.startpage 1 en
dc.identifier.endpage 11 en
dc.identifier.issn 0021-8979
dc.identifier.uri http://hdl.handle.net/10468/8512
dc.identifier.doi 10.1063/1.5096569 en
dc.description.abstract Herein, we conclusively discovered the role of “2D” odd/mixed, layered Aurivillius structures in generating coupled order parameters by directly visualizing magnetic-field-induced ferroelectric switching. We developed a novel sequence liquid injection-chemical vapor deposition process to fabricate atomistically controlled layer-by-layer genuine multiferroic Bi6Ti2.9Fe1.5Mn0.6O18 and Bi6Ti2.7Fe1.5Mn0.8O18 thin films. Ferromagnetic signature (MS = 13.79 emu/cc, HC = 9 mT at 300 K, and MR = 8 emu/cc) was generated for Bi6Ti2.9Fe1.5Mn0.6O18 thin films; however, no response was observed for mixed m = 5/6 intergrowths in Bi6Ti2.7Fe1.5Mn0.8O18 films. In-plane PR with magnetic (Fe/Ti)/conducting (Au/Ti) for Bi6Ti2.9Fe1.5Mn0.6O18 thin films is less (±23.66–24.69 μC/cm2) than the mixed m = 5/6 Bi6Ti2.7Fe1.5Mn0.8O18 layer structure (±57.42–67.94 μC/cm2). High leakage current for Fe/Ti interdigital capacitors (IDCs) compared to Au/Ti IDCs samples confirms Au/Ti IDCs’ suitability for ferroelectric industry. High ferro-paraelectric transition (Tc = 850 K), excellent in-plane polarization with negligible fatigue (9% after 1010 switching cycles), and coupled magnetoelectric (ME) (10% in-plane and 13% out-of-plane) orders provide an important contribution in a high-temperature fatigue free nonvolatile in-plane FeRAM, 4-state logics, and ME sensors. en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher AIP Publishing en
dc.relation.uri https://aip.scitation.org/doi/10.1063/1.5096569
dc.rights © 2019, the Authors. Published under license by AIP Publishing. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared as Faraz, A. and Arif, S. (2019) ‘Magnetic-field-induced ferroelectric domain dynamics and in-plane polarization in odd and mixed layered Aurivillius structures’, Journal of Applied Physics, 126(8), 084104 (11pp). doi: 10.1063/1.5096569 and may be found at https://doi.org/10.1063/1.5096569 en
dc.subject Layered Aurivillius structures en
dc.subject Coupled order parameters en
dc.subject Magnetic-field-induced ferroelectric switching en
dc.title Magnetic-field-induced ferroelectric domain dynamics and in-plane polarization in odd and mixed layered Aurivillius structures en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Ahmad Faraz, Tyndall National Institute, University College Cork, Ireland. T: +353-21-490-3000 en
dc.internal.availability Full text available en
dc.check.info Access to this article is restricted until 12 months after publication by request of the publisher. en
dc.check.date 2020-08-27
dc.description.version Published Version en
dc.contributor.funder Seventh Framework Programme en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Journal of Applied Physics en
dc.identifier.articleid 084104 en
dc.relation.project info:eu-repo/grantAgreement/EC/FP7::SP3::PEOPLE/290158/EU/NANOELECTROMECHANICAL MOTION IN FUNCTIONAL MATERIALS/NANOMOTION en
dc.identifier.eissn 1089-7550


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement