Full text restriction information:Access to this article is restricted until 12 months after publication by request of the publisher.
Restriction lift date:2020-08-19
Citation:Taddei, M., Schukraft, G. M., Warwick, M. E. A., Tiana, D., McPherson, M. J., Jones, D. R. and Petit, C. (2019) 'Band gap modulation in zirconium-based metal-organic frameworks by defect engineering', Journal of Materials Chemistry A, 7(41), pp. 23781-23786. doi: 10.1039/C9TA05216J
We report a defect-engineering approach to modulate the band gap of zirconium-based metal–organic framework UiO-66, enabled by grafting of a range of amino-functionalised benzoic acids at defective sites. Defect engineered MOFs were obtained by both post-synthetic exchange and modulated synthesis, featuring band gap in the 4.1–3.3 eV range. First principle calculations suggest that shrinking of the band gap is likely due to an upward shift of the valence band energy, as a result of the presence of light-absorbing monocarboxylates. The photocatalytic properties of defect-engineered MOFs towards CO2 reduction to CO in the gas phase and degradation of Rhodamine B in water were tested, observing improved activity in both cases, in comparison to a defective UiO-66 bearing formic acid as the defect-compensating species.
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement