Comparison of first principles and semi-empirical models of the structural and electronic properties of Ge1−xSnx alloys

Show simple item record

dc.contributor.author O'Halloran, Edmond J.
dc.contributor.author Broderick, Christopher A.
dc.contributor.author Tanner, Daniel S. P.
dc.contributor.author Schulz, Stefan
dc.contributor.author O'Reilly, Eoin P.
dc.date.accessioned 2019-11-18T10:08:33Z
dc.date.available 2019-11-18T10:08:33Z
dc.date.issued 2019-09-14
dc.identifier.citation O'Halloran, E. J., Broderick, C. A., Tanner, D. S. P., Schulz, S. and O'Reilly, E. P. (2019) 'Comparison of first principles and semi-empirical models of the structural and electronic properties of Ge1−xSnx alloys', Optical and Quantum Electronics, 51(9), 314 (23pp). doi: 10.1007/s11082-019-1992-8 en
dc.identifier.volume 51 en
dc.identifier.issued 9 en
dc.identifier.startpage 1 en
dc.identifier.endpage 23 en
dc.identifier.issn 0306-8919
dc.identifier.uri http://hdl.handle.net/10468/9020
dc.identifier.doi 10.1007/s11082-019-1992-8 en
dc.description.abstract We present and compare three distinct atomistic models—based on first principles and semi-empirical approaches—of the structural and electronic properties of Ge1−xSnx alloys. Density functional theory calculations incorporating Heyd–Scuseria–Ernzerhof (HSE), local density approximation (LDA) and modified Becke–Johnson (mBJ) exchange-correlation functionals are used to perform structural relaxation and electronic structure calculations for a series of Ge1−xSnx alloy supercells. Based on HSE calculations, a semi-empirical valence force field (VFF) potential and sp3s∗ tight-binding (TB) Hamiltonian are parametrised. Comparing the HSE, LDA+mBJ and VFF+TB models, and using the HSE results as a benchmark, we demonstrate that: (1) LDA+mBJ calculations provide an accurate first principles description of the electronic structure at reduced computational cost, (2) the VFF potential is sufficiently accurate to circumvent the requirement to perform first principles structural relaxation, and (3) VFF+TB calculations provide a good quantitative description of the alloy electronic structure in the vicinity of the band edges. Our results also emphasise the importance of Sn-induced band mixing in determining the nature of the conduction band structure of Ge1−xSnx alloys. The theoretical models and benchmark calculations we present inform and enable predictive, computationally efficient and scalable atomistic calculations for disordered alloys and nanostructures. This provides a suitable platform to underpin further theoretical investigations of the properties of this emerging semiconductor alloy. en
dc.description.sponsorship National University of Ireland (Post-Doctoral Fellowship in the Sciences) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Springer Nature Switzerland AG en
dc.relation.uri https://link.springer.com/journal/11082/topicalCollection/AC_9b884ebf2958f06cb3bcc6ef01bec32a
dc.rights © 2019, Springer Science+Business Media, LLC, part of Springer Nature. This is a post-peer-review, pre-copyedit version of an article published in Optical and Quantum Electronics. The final authenticated version is available online at: https://doi.org/10.1007/s11082-019-1992-8 en
dc.subject Group-IV semiconductors en
dc.subject Electronic structure en
dc.subject Density functional theory en
dc.subject GeSn alloys en
dc.subject Tight binding en
dc.title Comparison of first principles and semi-empirical models of the structural and electronic properties of Ge1−xSnx alloys en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Christopher Broderick, Tyndall Photonics, University College Cork, Cork, Ireland. +353-21-490-3000 Email: chris.broderick@tyndall.ie en
dc.internal.availability Full text available en
dc.check.info Access to this article is restricted until 12 months after publication by request of the publisher. en
dc.check.date 2020-09-14
dc.date.updated 2019-11-18T09:46:23Z
dc.description.version Accepted Version en
dc.internal.rssid 499913952
dc.contributor.funder Science Foundation Ireland en
dc.contributor.funder National University of Ireland en
dc.contributor.funder Higher Education Authority en
dc.contributor.funder Department of Education and Skills en
dc.contributor.funder Department of Jobs, Enterprise and Innovation en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Optical and Quantum Electronics en
dc.internal.copyrightchecked Yes
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress chris.broderick@tyndall.ie en
dc.identifier.articleid 314 en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Investigator Programme/15/IA/3082/IE/Multiscale Simulation and Analysis of emerging Group IV and III-V Semiconductor Materials and Devices/ en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Investigator Programme/14/IA/2513/IE/Silicon Compatible, Direct Band-Gap Nanowire Materials For Beyond-CMOS Devices/ en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Starting Investigator Research Grant (SIRG)/13/SIRG/2210/IE/Shaping the electronic and optical properties of non- and semi-polar nitride-based semiconductor nanostructures/ en
dc.identifier.eissn 1572-817X


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement