Plasmonic Schottky photodetector with metal stripe embedded into semiconductor and with a CMOS-compatible titanium nitride

Show simple item record

dc.contributor.author Gosciniak, Jacek
dc.contributor.author Atar, Fatih B.
dc.contributor.author Corbett, Brian
dc.contributor.author Rasras, Mahmoud
dc.date.accessioned 2019-11-19T12:05:44Z
dc.date.available 2019-11-19T12:05:44Z
dc.date.issued 2019-04-15
dc.identifier.citation Gosciniak, J., Atar, F.B., Corbett, B. and Rasras, M., 2019. Plasmonic Schottky photodetector with metal stripe embedded into semiconductor and with a CMOS-compatible titanium nitride. Scientific reports, 9(1), (6048). DOI:10.1038/s41598-019-42663-3 en
dc.identifier.volume 9 en
dc.identifier.issued 1 en
dc.identifier.startpage 1 en
dc.identifier.endpage 12 en
dc.identifier.uri http://hdl.handle.net/10468/9079
dc.identifier.doi 10.1038/s41598-019-42663-3 en
dc.description.abstract Here we propose an original waveguide-integrated plasmonic Schottky photodetector that takes full advantage of a thin metal stripe embedded entirely into a semiconductor. The photodetector is based on the long-range dielectric-loaded surface plasmon polariton waveguide with a metal stripe deposited on top of a semiconductor rib and covered by another semiconductor. As the metal stripe is entirely surrounded by semiconductor, all hot electrons with appropriate k-vectors can participate in transitions that highly enhances the electron transfer, and consequently the internal quantum efficiency. In addition, a high coupling efficiency from the photonic waveguide to the photodetector is simulated exceeding 90 % which enhances the external quantum efficiency. Calculations show that a responsivity exceeding 0.5 A/W can be achieved at telecom wavelength of 1550 nm and the bandwidth can exceed 100 GHz. Furthermore, it is shown that titanium nitride is a perfect material for the photodetector as it provides a low Fermi energy and long electron mean free path that enhance the hot electron transfer to the semiconductor. In addition, it shows reasonable metallic behavior and CMOS compatibility. Measurements showed that the Schottky barrier height between titanium nitride and p-doped silicon reaches 0.69–0.70 eV that matches the optimum signal-to-noise ratio operation calculated at 0.697 eV. en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Springer Nature en
dc.relation.uri https://www.nature.com/articles/s41598-019-42663-3
dc.rights © The Author(s) 2019 en
dc.rights.uri https://creativecommons.org/licenses/by/4.0/ en
dc.subject Plasmonic Schottky photodetector en
dc.subject Semiconductor en
dc.subject CMOS-compatible titanium nitride en
dc.title Plasmonic Schottky photodetector with metal stripe embedded into semiconductor and with a CMOS-compatible titanium nitride en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Fatih Atar, Tyndall National Institute, University College Cork, Cork, Ireland. +353-21-490-3000 Email: fatih.atar@tyndall.ie en
dc.internal.availability Full text available en
dc.description.version Published Version en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Scientific Reports en
dc.internal.IRISemailaddress fatih.atar@tyndall.ie en
dc.identifier.articleid 6048 en
dc.identifier.eissn 2045-2322


Files in this item

This item appears in the following Collection(s)

Show simple item record

© The Author(s) 2019 Except where otherwise noted, this item's license is described as © The Author(s) 2019
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement