Contact-based model for epidemic spreading on temporal networks

Show simple item record

dc.contributor.author Koher, Andreas
dc.contributor.author Lentz, Hartmut H.  K
dc.contributor.author Gleeson, James P.
dc.contributor.author Hövel, Philipp
dc.date.accessioned 2019-12-05T09:35:44Z
dc.date.available 2019-12-05T09:35:44Z
dc.date.issued 2019-08-02
dc.identifier.citation Koher, A., Lentz, H. H. K., Gleeson, J. P. and Hövel, P. (2019) 'Contact-Based Model for Epidemic Spreading on Temporal Networks', Physical Review X, 9(3), 031017. (20pp.) doi: 10.1103/PhysRevX.9.031017 en
dc.identifier.volume 9 en
dc.identifier.issued 3 en
dc.identifier.startpage 1 en
dc.identifier.endpage 20 en
dc.identifier.uri http://hdl.handle.net/10468/9330
dc.identifier.doi 10.1103/PhysRevX.9.031017 en
dc.description.abstract We present a contact-based model to study the spreading of epidemics by means of extending the dynamic message-passing approach to temporal networks. The shift in perspective from node- to edge-centric quantities enables accurate modeling of Markovian susceptible-infected-recovered outbreaks on time-varying trees, i.e., temporal networks with a loop-free underlying topology. On arbitrary graphs, the proposed contact-based model incorporates potential structural and temporal heterogeneities of the contact network and improves analytic estimations with respect to the individual-based (node-centric) approach at a low computational and conceptual cost. Within this new framework, we derive an analytical expression for the epidemic threshold on temporal networks and demonstrate the feasibility of this method on empirical data. en
dc.description.sponsorship Science Foundation Ireland (Grants No. 16/IA/4470 and No. 16/RC/3918) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher American Physical Society en
dc.rights © The Author(s) 2019. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. en
dc.rights.uri https://creativecommons.org/licenses/by/4.0/ en
dc.subject Bifurcations en
dc.subject Epidemic en
dc.subject Evolving Networks en
dc.subject Real world networks en
dc.subject SIR model en
dc.subject Networks en
dc.subject Nonlinear dynamics en
dc.subject Complex systems en
dc.subject Interdisciplinary Physics en
dc.title Contact-based model for epidemic spreading on temporal networks en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Philipp Hövel, School of Mathematics, University College Cork, Cork, Ireland. +353-21-490-3000 Email: philipp.hoevel@ucc.ie en
dc.internal.availability Full text available en
dc.description.version Published Version en
dc.internal.rssid 499774820
dc.contributor.funder Deutsche Forschungsgemeinschaft en
dc.contributor.funder Deutscher Akademischer Austauschdienst en
dc.contributor.funder Science Foundation Ireland en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Physical Review X en
dc.internal.IRISemailaddress philipp.hoevel@ucc.ie en
dc.identifier.articleid 031017 en
dc.identifier.eissn 2160-3308


Files in this item

This item appears in the following Collection(s)

Show simple item record

© The Author(s) 2019. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Except where otherwise noted, this item's license is described as © The Author(s) 2019. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement