Strain induced large enhancement of thermoelectric figure-of-merit (ZT ∼ 2) in transition metal dichalcogenide monolayers ZrX2 (X = S, Se, Te)

Show simple item record

dc.contributor.author D'Souza, Ransell
dc.contributor.author Mukherjee, Sugata
dc.contributor.author Ahmad, Sohail
dc.date.accessioned 2019-12-20T10:34:55Z
dc.date.available 2019-12-20T10:34:55Z
dc.date.issued 2019-12-03
dc.identifier.citation D'Souza, R., Mukherjee, S. and Ahmad, S. (2019) 'Strain induced large enhancement of thermoelectric figure-of-merit (ZT ∼ 2) in transition metal dichalcogenide monolayers ZrX2 (X = S, Se, Te)', Journal of Applied Physics, 126(21), 214302 (10pp). doi: 10.1063/1.5125191 en
dc.identifier.volume 126 en
dc.identifier.issued 21 en
dc.identifier.startpage 1 en
dc.identifier.endpage 10 en
dc.identifier.issn 0021-8979
dc.identifier.uri http://hdl.handle.net/10468/9441
dc.identifier.doi 10.1063/1.5125191 en
dc.description.abstract Two-dimensional group IV transition-metal dichalcogenides have encouraging thermoelectric applications since their electronic and lattice properties can be manipulated with strain. In this paper, we report the thermoelectric parameters such as electrical conductivities, Seebeck coefficients, electrical relaxation times, and the mode dependent contributions to the lattice thermal conductivity of ZrX2 (X=S,Se,Te) from first-principles methods. Our calculations indicate that due to tensile strain, the power factor increases while simultaneously decreasing the lattice thermal conductivity, thus enhancing the thermoelectric figure of merit. Tensile strain widens the bandgap, which corresponds to a higher power factor. The lattice thermal conductivity decreases due to the stiffening of the out-of-plane phonon modes, thus reducing the anharmonic scattering lifetimes and increasing the thermoelectric figure-of-merit. en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher AIP Publishing en
dc.relation.uri https://aip.scitation.org/doi/abs/10.1063/1.5125191
dc.rights © 2019, the Authors. Published under license by AIP Publishing. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared as: D'Souza, R., Mukherjee, S. and Ahmad, S. (2019) 'Strain induced large enhancement of thermoelectric figure-of-merit (ZT ∼ 2) in transition metal dichalcogenide monolayers ZrX2 (X = S, Se, Te)', Journal of Applied Physics, 126(21), 214302 (10pp), doi: 10.1063/1.5125191, and may be found at https://doi.org/10.1063/1.5125191 en
dc.subject Two-dimensional group IV transition-metal dichalcogenides en
dc.subject Thermoelectric application en
dc.subject Strain en
dc.subject Electrical conductivity en
dc.subject Seebeck coefficient en
dc.subject Electrical relaxation time en
dc.subject Mode dependent contribution en
dc.subject Lattice thermal conductivity of ZrX2 (X=S,Se,Te) en
dc.title Strain induced large enhancement of thermoelectric figure-of-merit (ZT ∼ 2) in transition metal dichalcogenide monolayers ZrX2 (X = S, Se, Te) en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Ransell D'Souza, Tyndall Micronano Electronics, University College Cork, Cork, Ireland. +353-21-490-3000 Email: ransell.dsouza@tyndall.ie en
dc.internal.availability Full text available en
dc.check.info Access to this article is restricted until 12 months after publication by request of the publisher. en
dc.check.date 2020-12-03
dc.date.updated 2019-12-20T10:26:20Z
dc.description.version Published Version en
dc.internal.rssid 500171252
dc.description.status Peer reviewed en
dc.identifier.journaltitle Journal of Applied Physics en
dc.internal.copyrightchecked Yes
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress ransell.dsouza@tyndall.ie en
dc.identifier.articleid 214302 en
dc.identifier.eissn 1089-7550


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement