Modification of 1D TiO2 nanowires with GaOxNy by atomic layer deposition for TiO2@GaOxNy core-shell nanowires with enhanced photoelectrochemical performance

Show simple item record

dc.contributor.author Tao, Jiajia
dc.contributor.author Ma, Hong-Ping
dc.contributor.author Yuan, Kaiping
dc.contributor.author Gu, Yang
dc.contributor.author Lian, Jianwei
dc.contributor.author Li, Xiao-Xi
dc.contributor.author Huang, Wei
dc.contributor.author Nolan, Michael
dc.contributor.author Lu, Hong-Liang
dc.contributor.author Zhang, David Wei
dc.date.accessioned 2020-02-27T12:50:09Z
dc.date.available 2020-02-27T12:50:09Z
dc.date.issued 2020-02-24
dc.identifier.citation Tao, J., Ma, H.-P., Yuan, K., Gu, Y., Lian, J., Li, X.-X., Huang, W., Nolan, M., Lu, H.-L. and Zhang, D. W. (2020) 'Modification of 1D TiO2 nanowires with GaOxNy by atomic layer deposition for TiO2@GaOxNy core-shell nanowires with enhanced photoelectrochemical performance', Nanoscale, doi: 10.1039/C9NR10908K en
dc.identifier.startpage 1 en
dc.identifier.endpage 52 en
dc.identifier.issn 2040-3364
dc.identifier.uri http://hdl.handle.net/10468/9707
dc.identifier.doi 10.1039/C9NR10908K en
dc.description.abstract As a well-known semiconductor that can catalyse the oxygen evolution reaction, TiO2 has been extensively investigated for its solar photoelectrochemical water properties. Unmodified TiO2 shows some issues, particularly with respect to its photoelectrochemical performance. In this paper, we present a strategy for the controlled deposition of controlled amounts of GaOxNy cocatalysts on TiO2 1D nanowires (TiO2@GaOxNy core-shell) using atomic layer deposition. We show that this modification significantly enhances the photoelectrochemical performance compared to pure TiO2 NW photoanodes. For our most active TiO2@GaOxNy core-shell nanowires with a GaOxNy thickness of 20 nm, a photocurrent density up to 1.10 mA cm-2 (at 1.23 V vs RHE) under AM 1.5 G irradiation (100 mW cm-2) has been achieved, which is 14 times higher than that of unmodified TiO2 NWs. Furthermore, the band gap matching with TiO2 enhances absorption of visible light over unmodified TiO2 and the facile oxygen vacancy formation after deposition of GaOxNy also provides active sites for water activation. Density functional theory studies of model systems of GaOxNy-modified TiO2 confirm the band gap reduction, high reducibility and ability to activate water. The highly efficient and stable systems of TiO2@GaOxNy core-shell nanowires with ALD deposited GaOxNy demonstrates a good strategy for fabrication of core-shell structures that enhances the photoelectrochemical performance of readily available photoanodes. en
dc.description.sponsorship National Natural Science Foundation of China ((No. U1632121, 11804055, 51861135105 and 61874034); National Key R&D Program of China (No.2016YFE0110700)); National Natural Science Foundation of China Natural Science Foundation of Shanghai (No. 18ZR1405000); China Postdoctoral Science Foundation (No. 2018M631997); Fudan University (Fudan University Exchange Program Scholarship for Doctoral Students); (Tyndall Institute is supported Science Foundation Ireland ( SFI-NSF China Partnership Program, Grant Number SFI 17/NSFC/5279 NITRALD); Science Foundation Ireland, Higher Education Authority, Department of Education and Skillls (resources at Tyndall supported by SFI and access to the SFI/DES/HEA funded Irish Center for High End Computing) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Royal Society of Chemistry en
dc.relation.uri https://pubs.rsc.org/en/content/articlelanding/2020/nr/c9nr10908k#!divAbstract
dc.rights © Royal Society of Chemistry 2020 en
dc.subject TiO2@GaOxNy nanowires en
dc.subject Core-shell nanoarchitecture en
dc.subject Photoelectrochemical performance en
dc.subject Atomic layer deposition en
dc.subject Nanowires en
dc.subject TiO2 en
dc.title Modification of 1D TiO2 nanowires with GaOxNy by atomic layer deposition for TiO2@GaOxNy core-shell nanowires with enhanced photoelectrochemical performance en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Michael Nolan, Tyndall Theory Modelling & Design Centre, University College Cork, Cork, Ireland. +353-21-490-3000 Email: michael.nolan@tyndall.ie en
dc.internal.availability Full text available en
dc.check.info Access to this article is restricted until 12 months after publication by request of the publisher. en
dc.check.date 2021-02-24
dc.date.updated 2020-02-27T12:36:13Z
dc.description.version Accepted Version en
dc.internal.rssid 504237573
dc.contributor.funder National Natural Science Foundation of China en
dc.contributor.funder Natural Science Foundation of Shanghai en
dc.contributor.funder China Postdoctoral Science Foundation en
dc.contributor.funder Fudan University en
dc.contributor.funder Science Foundation Ireland en
dc.contributor.funder Higher Education Authority en
dc.contributor.funder Department of Education and Skills en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Nanoscale en
dc.internal.copyrightchecked Yes
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress michael.nolan@tyndall.ie en
dc.internal.bibliocheck In press. Check vol / issue / page range. Update citation, rights statement en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement