dc.contributor.author |
Bourke, Patrick D. |
|
dc.date.accessioned |
2020-03-16T14:52:39Z |
|
dc.date.available |
2020-03-16T14:52:39Z |
|
dc.date.issued |
2019-12-19 |
|
dc.identifier.citation |
Bourke, P. D. (2020) 'Detecting a downward shift in a proportion using a geometric CUSUM chart, Quality Engineering, 32:1, pp. 75-90, doi: 10.1080/08982112.2019.1664750 |
en |
dc.identifier.volume |
32 |
en |
dc.identifier.issued |
1 |
en |
dc.identifier.startpage |
75 |
en |
dc.identifier.endpage |
90 |
en |
dc.identifier.issn |
0898-2112 |
|
dc.identifier.uri |
http://hdl.handle.net/10468/9765 |
|
dc.identifier.doi |
10.1080/08982112.2019.1664750 |
en |
dc.description.abstract |
In monitoring an ordered stream of discrete items from a repetitive process, the geometric CUSUM chart may be used to detect sudden shifts from an acceptable level for a process-proportion (p) such as fraction nonconforming. Much of the investigative effort for this CUSUM scheme has been concentrated on the detection of upward shifts, and a recent paper has provided guidance to quality engineers in choosing the parameters (k, h) of such a scheme. In this article, the corresponding task of aiding the choice of parameters for detecting a downward shift is addressed. It is shown, using extensive numerical investigations, that the use of a value for the parameter k based on the Sequential Probability Ratio is not optimal when one is using steady-state evaluation of the detection performance of the CUSUM scheme. Tables are presented listing recommended values of parameters for detection of five sizes of downward shift, for each of 27 in-control levels for p in the range 0.20 to 0.001. Interpolation and extrapolation to find parameter values for other in-control levels of p are also considered, and a range of examples presented. There is an equivalence between a geometric CUSUM scheme and a Bernoulli CUSUM scheme, so that the results of this investigation may also be used in choosing parameter values for a Bernoulli CUSUM chart. |
en |
dc.format.mimetype |
application/pdf |
en |
dc.language.iso |
en |
en |
dc.publisher |
Taylor & Francis |
en |
dc.relation.uri |
https://www.tandfonline.com/doi/citedby/10.1080/08982112.2019.1664750 |
|
dc.rights |
© 2018 Informa UK Limited. This is an Accepted Manuscript of an article published by Taylor & Francis in Quality Engineering on 19 December 2019, available online: http://www.tandfonline.com/ 10.1080/08982112.2019.1664750 |
en |
dc.subject |
Bernoulli CUSUM |
en |
dc.subject |
Cumulative sum scheme |
en |
dc.subject |
Curtailed CUSUM |
en |
dc.subject |
Exponential CUSUM |
en |
dc.subject |
Process monitoring |
en |
dc.subject |
Statistical process control |
en |
dc.title |
Detecting a downward shift in a proportion using a geometric CUSUM chart |
en |
dc.type |
Article (peer-reviewed) |
en |
dc.internal.authorcontactother |
Patrick D. Bourke, Statistics, Mathematical Sciences, University College Cork, Cork, Ireland. +353-21-490-3000 Email: p.bourke@ucc.ie |
en |
dc.internal.availability |
Full text available |
en |
dc.check.info |
Access to this article is restricted until 12 months after publication by request of the publisher. |
en |
dc.check.date |
2020-12-19 |
|
dc.description.version |
Accepted Version |
en |
dc.description.status |
Peer reviewed |
en |
dc.identifier.journaltitle |
Quality Engineering |
en |
dc.internal.IRISemailaddress |
p.bourke@ucc.ie |
en |
dc.identifier.eissn |
1532-4222 |
|