Architected porous metals in electrochemical energy storage

Show simple item record Egorov, Vladimir O'Dwyer, Colm 2020-03-30T11:09:32Z 2020-03-30T11:09:32Z 2020-02-21
dc.identifier.citation Egorov, V., and O'Dwyer, C. (2020) 'Architected porous metals in electrochemical energy storage'. Current Opinion in Electrochemistry, 21, pp. 201-208. doi: 10.1016/j.coelec.2020.02.011 en
dc.identifier.volume 21 en
dc.identifier.startpage 201 en
dc.identifier.endpage 208 en
dc.identifier.issn 2451-9103
dc.identifier.doi 10.1016/j.coelec.2020.02.011 en
dc.description.abstract Porous metallic structures are regularly used in electrochemical energy storage (EES) devices as supports, current collectors, or active electrode materials. Bulk metal porosification, dealloying, welding, or chemical synthesis routes involving crystal growth or self-assembly, for example, can sometimes provide limited control of porous length scale, ordering, periodicity, reproducibility, porosity, and surface area. Additive manufacturing has shown the potential to revolutionize the fabrication of architected metals, allowing complex geometries not usually possible by traditional methods, by enabling complete design freedom of a porous metal based on the required physical or chemical property to be exploited. We discuss properties of porous metal structures in EES devices and provide some opinions on how architected metals may alleviate issues with electrochemically active porous metal current collectors, and provide opportunities for optimum design based on electrochemical characteristics required by batteries, supercapacitors or other electrochemical devices. en
dc.description.sponsorship Enterprise Ireland Commercialisation Fund as part of the European Regional Development Fund (under contract no. CF2018-0839-P); Irish Research Council (Advanced Laureate Award under grant no. IRCLA/2019/118) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Elsevier en
dc.rights © 2020 Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( en
dc.rights.uri en
dc.subject Porous metals en
dc.subject Current collector en
dc.subject Additive manufacturing (AM) en
dc.subject Metal foams en
dc.subject Electrochemical energy storage (EES) en
dc.subject Batteries en
dc.subject Supercapacitors en
dc.subject Metallic lattice en
dc.subject 3D printing en
dc.title Architected porous metals in electrochemical energy storage en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Colm O'Dwyer, Chemistry, University College Cork, Cork, Ireland. +353-21-490-3000 Email: en
dc.internal.availability Full text available en 2020-03-27T18:25:48Z
dc.description.version Published Version en
dc.internal.rssid 508028913
dc.contributor.funder Enterprise Ireland en
dc.contributor.funder European Regional Development Fund en
dc.contributor.funder Science Foundation Ireland en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Current Opinion in Electrochemistry en
dc.internal.copyrightchecked Yes
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress en
dc.relation.project info:eu-repo/grantAgreement/EC/H2020::RIA/825114/EU/Smart Autonomous Multi Modal Sensors for Vital Signs Monitoring/SmartVista en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Investigator Programme/14/IA/2581/IE/Diffractive optics and photonic probes for efficient mouldable 3D printed battery skin materials for portable electronic devices/ en

Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2020 Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( Except where otherwise noted, this item's license is described as © 2020 Elsevier B.V. This is an open access article under the CC BY-NC-ND license (
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement