Architected porous metals in electrochemical energy storage

Loading...
Thumbnail Image
Files
1-s2.0-S2451910320300363-main.pdf(1.29 MB)
Published version
Date
2020-02-21
Authors
Egorov, Vladimir
O'Dwyer, Colm
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Research Projects
Organizational Units
Journal Issue
Abstract
Porous metallic structures are regularly used in electrochemical energy storage (EES) devices as supports, current collectors, or active electrode materials. Bulk metal porosification, dealloying, welding, or chemical synthesis routes involving crystal growth or self-assembly, for example, can sometimes provide limited control of porous length scale, ordering, periodicity, reproducibility, porosity, and surface area. Additive manufacturing has shown the potential to revolutionize the fabrication of architected metals, allowing complex geometries not usually possible by traditional methods, by enabling complete design freedom of a porous metal based on the required physical or chemical property to be exploited. We discuss properties of porous metal structures in EES devices and provide some opinions on how architected metals may alleviate issues with electrochemically active porous metal current collectors, and provide opportunities for optimum design based on electrochemical characteristics required by batteries, supercapacitors or other electrochemical devices.
Description
Keywords
Porous metals , Current collector , Additive manufacturing (AM) , Metal foams , Electrochemical energy storage (EES) , Batteries , Supercapacitors , Metallic lattice , 3D printing
Citation
Egorov, V., and O'Dwyer, C. (2020) 'Architected porous metals in electrochemical energy storage'. Current Opinion in Electrochemistry, 21, pp. 201-208. doi: 10.1016/j.coelec.2020.02.011