Design, theoretical, and experimental investigation of tensile-strained germanium quantum-well laser structure

dc.contributor.authorHudait, Mantu K.en
dc.contributor.authorMurphy-Armando, Felipeen
dc.contributor.authorSaladukha, Dzianisen
dc.contributor.authorClavel, Michael B.en
dc.contributor.authorGoley, Patrick S.en
dc.contributor.authorMaurya, Deepamen
dc.contributor.authorBhattacharya, Shuvodipen
dc.contributor.authorOchalski, Tomasz J.en
dc.contributor.funderNational Science Foundationen
dc.contributor.funderScience Foundation Irelanden
dc.date.accessioned2023-04-18T14:01:34Z
dc.date.available2023-04-18T14:01:34Z
dc.date.issued2021-10-14en
dc.description.abstractStrain and band gap engineered epitaxial germanium (ε-Ge) quantum-well (QW) laser structures were investigated on GaAs substrates theoretically and experimentally for the first time. In this design, we exploit the ability of an InGaAs layer to simultaneously provide tensile strain in Ge (0.7–1.96%) and sufficient optical and carrier confinement. The direct band-to-band gain, threshold current density (Jth), and loss mechanisms that dominate in the ε-Ge QW laser structure were calculated using first-principles-based 30-band k·p electronic structure theory, at injected carrier concentrations from 3 × 1018 to 9 × 1019 cm–3. The higher strain in the ε-Ge QW increases the gain at higher wavelengths; however, a decreasing thickness is required by higher strain due to critical layer thickness for avoiding strain relaxation. In addition, we predict that a Jth of 300 A/cm2 can be reduced to <10 A/cm2 by increasing strain from 0.2% to 1.96% in ε-Ge lasing media. The measured room-temperature photoluminescence spectroscopy demonstrated direct band gap optical emission, from the conduction band at the Γ-valley to heavy-hole (0.6609 eV) from 1.6% tensile-strained Ge/In0.24Ga0.76As heterostructure grown by molecular beam epitaxy, is in agreement with the value calculated using 30-band k·p theory. The detailed plan-view transmission electron microscopic (TEM) analysis of 0.7% and 1.2% tensile-strained ε-Ge/InGaAs structures exhibited well-controlled dislocations within each ε-Ge layer. The measured dislocation density is below 4 × 106 cm–2 for the 1.2% ε-Ge layer, which is an upper bound, suggesting the superior ε-Ge material quality. Structural analysis of the experimentally realistic 1.95% biaxially strained In0.28Ga0.72As/13 nm ε-Ge/In0.28Ga0.72As QW structure demonstrated a strained Ge/In0.28Ga0.72As heterointerface with minimal relaxation using X-ray and cross-sectional TEM analysis. Therefore, our monolithic integration of a strained Ge QW laser structure on GaAs and ultimately the transfer of the process to the Si substrate via an InGa(Al)As/III–V buffer architecture would provide a significant step toward photonic technology based on strained Ge on a Si platform.en
dc.description.sponsorshipNational Science Foundation (Grant numbers: ECCS-1507950; ECCS-2042079)en
dc.description.statusPeer revieweden
dc.description.versionAccepted Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationHudait, M. K., Murphy-Armando, F., Saladukha, D., Clavel, M. B., Goley, P. S., Maurya, D., Bhattacharya, S. and Ochalski, T. J. (2021) ‘Design, theoretical, and experimental investigation of tensile-strained germanium quantum-well laser structure’, ACS Applied Electronic Materials, 3(10), pp.4535-4547. doi: 10.1021/acsaelm.1c00660en
dc.identifier.doi10.1021/acsaelm.1c00660en
dc.identifier.eissn2637-6113en
dc.identifier.endpage4547en
dc.identifier.issued10en
dc.identifier.journaltitleACS Applied Electronic Materialsen
dc.identifier.startpage4535en
dc.identifier.urihttps://hdl.handle.net/10468/14388
dc.identifier.volume3en
dc.language.isoenen
dc.publisherACS Publicationsen
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI US Ireland R&D Partnership/14/US/I3057/IE/Si-compatible, Strain Engineered Staggered Gap Ge(Sn)/InxGa1-xAs Nanoscale Tunnel Field Effect Transistors/en
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/EU Joint Programming Initiative::ERA-Net Cofund for Quantum Technologies (QuantERA)/17/QERA/3473/IE/CUSPIDOR - CMOS Compatible Single Photon Sources based on SiGe Quantum Dots/en
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Frontiers for the Future::Project/19/FFP/6953/IE/Orbitron: Spin, charge and light polarisation control and characterisation of CMOS compatible light sources - Leaner Future Networks/en
dc.rights© 2021, American Chemical Society. This document is the Accepted Manuscript version of a Published Work that appeared in final form ACS Applied Electronic Materials, 3(10), pp.4535-4547, after technical editing by the publisher. To access the final edited and published work see: https://doi.org/10.1021/acsaelm.1c00660en
dc.subjectGermaniumen
dc.subjectEpitaxyen
dc.subjectMolecular beam epitaxyen
dc.subjectHeterostructureen
dc.subjectLaseren
dc.titleDesign, theoretical, and experimental investigation of tensile-strained germanium quantum-well laser structureen
dc.typeArticle (peer-reviewed)en
oaire.citation.issue10en
oaire.citation.volume3en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
el-2021-00660c.R2_Proof_hi.pdf
Size:
4.43 MB
Format:
Adobe Portable Document Format
Description:
Accepted Version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: