

Title	Can acid pre-treatment enhance biohydrogen and biomethane production from grass silage in single-stage and two-stage fermentation processes?
Authors	Deng, Chen;Lin, Richen;Cheng, Jun;Murphy, Jerry D.
Publication date	2019-05-23
Original Citation	Deng, C., Lin, R., Cheng, J. and Murphy, J. D. (2019) 'Can acid pre-treatment enhance biohydrogen and biomethane production from grass silage in single-stage and two-stage fermentation processes?', Energy Conversion and Management, 195, pp. 738-747. doi: 10.1016/j.enconman.2019.05.044
Type of publication	Article (peer-reviewed)
Link to publisher's version	http://www.sciencedirect.com/science/article/pii/ S0196890419305990 - 10.1016/j.enconman.2019.05.044
Rights	© 2019, Elsevier Ltd. All rights reserved. This manuscript version is made available under the CC BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/
Download date	2023-10-01 01:53:21
Item downloaded from	https://hdl.handle.net/10468/8025

Can acid pre-treatment enhance biohydrogen and biomethane production from grass silage in single-stage and two-stage fermentation processes?

Chen Deng a, b, Richen Lin a, b*, Jun Cheng c, Jerry D Murphy a, b

The supporting information contains 3 figures as referred to in the main manuscript:

Fig. S1. Scanning electron microscope (SEM) graphs of grass silage before and after pre-treatment:

(a) untreated silage $\times 1k$; (b) untreated silage $\times 10k$; (c) silage pre-treated with 2% H₂SO₄ at 135 °C for 15 min $\times 1k$; (d) silage pre-treated with 2% H₂SO₄ at 135 °C for 15 min $\times 10$ k.

Fig. S2. Fourier transform infrared (FTIR) spectra of the silage residue before and after pre-treatment.

Fig. S3. X-ray diffraction (XRD) spectra of the silage residue before and after pre-treatment.

^a MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland

^b School of Engineering, University College Cork, Cork, Ireland

^c State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China

^{*} Corresponding author: Dr. Richen Lin, MaREI Centre, Environmental Research Institute, University College Cork, Ireland. Tel.: +353 (0)21 490 1948. Email: richen.lin@ucc.ie

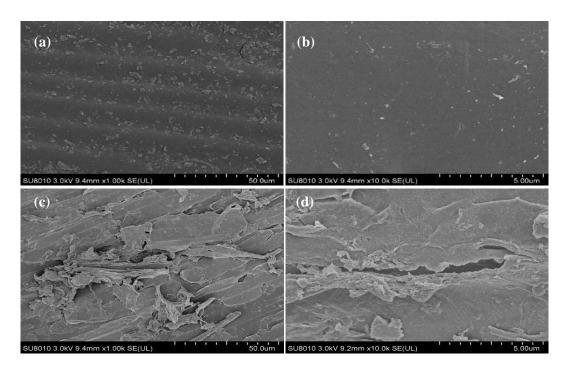


Fig. S1. Scanning electron microscope (SEM) graphs of grass silage before and after pre-treatment: (a) untreated silage $\times 1k$; (b) untreated silage $\times 10k$; (c) silage pre-treated with 2% H_2SO_4 at 135 °C for 15 min $\times 1k$; (d) silage pre-treated with 2% H_2SO_4 at 135 °C for 15 min $\times 10$ k.

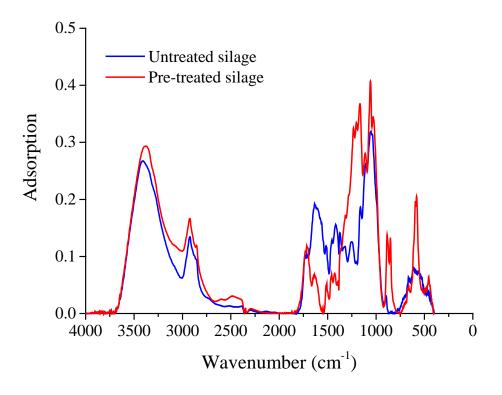


Fig. S2. Fourier transform infrared (FTIR) spectra of the silage residue before and after pre-treatment.

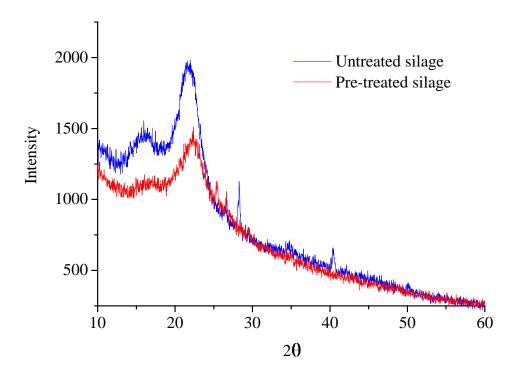


Fig. S3. X-ray diffraction (XRD) spectra of the silage residue before and after pre-treatment.