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Metatron’s Cube (MC). The red lines form an orthographic projection of the five
Platonic solids. The Tetrahedron (4 faces), Hexahedron (Cube, 6 faces), Octahedron (8
faces), Dodecahedron (12 faces) and the Icosahedron (20 faces). The first three platonic
solids are perfectly blueprinted in MC. The last two platonic solids are imperfectly
blueprinted in MC, but are perfectly blueprinted in the transcendental form of MC, i.e.

to first order, a single MC bordered by 6 MCs. Image: Charles Gilchrist.

“I regard consciousness as fundamental. I regard matter as derivative from conscious-

ness. We cannot get behind consciousness. Everything that we talk about, everything

that we regard as existing, postulates consciousness. ... All matter originates and exists

only by virtue of a force which brings the particle of an atom to vibration and holds this

most minute solar system of the atom together. We must assume behind this force the

existence of a conscious and intelligent mind. This mind is the matrix of all matter.”1

1Max Planck; The Observer (1931) and a speech in Florence, Italy (1944) respectively.

http://www.charlesgilchrist.com


The Heist

“and they comin’ over here

takin’ all our jobs and all our women”

- Contemporary Irish folk saying

They arrived in the middle of the night

in a Hi Ace van, untaxed, uninsured,

and broke in without a sound.

They took Mary from the warmth of her bed

and bungled her into the van’s hold

right in between the minimum wage gig

at Freddie’s Fresh Fish and Chips

and the local meat processor’s

twelve-hour a day cleaning job.

Imelda was perched

on top of the under-the-table,

part-time, no love, all abuse, glass washer

cum sick mopper stint at Barry’s Bar.

They exchanged worried looks, Mary

and Imelda. More worrying

however, was the aura of content

around the younger lad, John.

He was sat beneath

the Barista’s job at Coco’s Café

where you’d be lucky to get paid

the correct wage, let alone on time.

He had enjoyed being at the mercy

of the Pole’s and Nigerian’s grip,

because ever since he was shoveled

into the middle of a hurling pitch

by the spade of his father’s hand

he has always felt like

a stranger in a strange land.

Cal Doyle
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by Brian O’Sullivan

In this thesis we relate the formal description of various cold atomic systems in the

energy eigenbasis, to the observable spatial mode dynamics. Herein the ‘spatial mode

dynamics’ refers to the direction of photon emission following the spontaneous emission

of an excited fermion in the presence of a same species and spin ideal anisotropic Fermi

sea in its internal ground state. Due to the Pauli principle, the presence of the ground

state Fermi sea renders the phase space, anisotropic and only partially accessible, thereby

affecting the direction of photon emission following spontaneous emission.

The spatial and energetic mode dynamics also refers to the quantum ‘tunneling’ inter-

action between localised spatial modes, synonymous with double well type potentials.

Here we relate the dynamics of the wavefunction in both the energetic and spatial rep-

resentations. Using this approach we approximate the relationship between the spatial

and energetic representations of a wavefunction spanning three spatial and energetic

modes. This is extended to a process known as Spatial Adiabatic Passage, which is a

technique to transport matter waves between localised spatial modes. This approach

allows us to interpret the transport of matter waves as a signature of a geometric phase

acquired by the one of the internal energy eigenstates of the system during the cyclical

evolution. We further show that this geometric phase may be used to create spatial

mode qubit and qutrit states.
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Chapter 1

Introduction

With the dawn of the 20th century rose two new physical theories, relativity and quan-

tum mechanics (QM), which have irreversibly changed our perception of the natural

world. The former professes that space and time are not the absolute concepts they

were previously believed to be, but are in fact relative concepts. The latter, which is the

focus of this thesis, infers that specific physical processes cannot be known deterministi-

cally, but only probabilistically. The strength of both theories has been the unequivocal

agreement of their predictions with experiment. These schools of thought have left such

an indelible mark on modern physics that theories, deviating from the principles of rel-

ativity and quantum mechanics, are now specified by the titles ‘non-relativistic’ and

‘classical’ physics respectively.

Whilst both theories call into question ‘old truths’ that have been axioms of physics for

centuries, none is more paradigm shattering than the quantum formalism. Max Plank’s

discovery that monochromatic light is a stable stream of discrete packets of energy, called

photons, stimulated a progressive departure from the ‘continuous process’ viewpoint of

classical physics. Similarly, it emerged that observables such as angular momentum,

electric charge, and spin can only assume certain allowed values. The transition between

two values being a discrete quantum jump. For instance, the electron (classically thought

of as a particle) orbiting the nucleus of an atom, is described by QM as a standing wave;

i.e. it has a frequency and wave nature associated with it. The transition energy

between two standing wave orbitals is carried by an absorbed or emitted photon (a light

particle). From here quantum mechanics begins to establish a world view to contrast

classical notions. We have not only learned that states are discrete, but also that light

and matter exhibit the characteristics of both waves and particles.

The predictions of quantum theory are so contrary to common experience that it is

often perceived as a secondary description of reality, out of which the classical world

1
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emerges. Built upon the mathematics of linear algebra, QM makes use of wavefunctions

to describe physical processes. The favoured interpretation of the wavefunction is the

probabilistic interpretation; “Quantum mechanics gives only the probability of an exper-

imental result.”1 “The wave function does not in any way describe a state which could

be that of a single system; it relates rather to many systems, to an ‘ensemble of systems’

in the sense of statistical mechanics.”2 In this manner QM departs dramatically from

the classical view as we are forced to relinquish any hope of knowing a quantum object’s

state with certainty. The wavefunction is assumed to be composed of a weighted distri-

bution of possible states until measurement is taken, at which point the wavefunction

‘collapses’ into the classical ‘reality’. This is the so-called ‘Copenhagen Interpretation.’

Not only is QM confined to predicting the results of experimental measurements, but

there lies a deeper and more fundamental bound to the knowledge that can be extracted

from a given system. Accurate knowledge of one measured component of a pair of com-

plimentary observables (such as position and momentum), implies a broad uncertainty

of the other. The act of measuring is commonly referred to as observation, which is

performed by an observer. However, the observer itself is loosely defined; There is no

clear relationship between the measuring apparatus, and the operator. In the absence

of knowing, how does one determine whether a measurement occurred? “Are you and

I observers? Is a cow an observer? What about a stone?”3 In any case, observation of

an observable requires an exchange of energy which results in the observed ‘data’, but

also perturbs the state of the quantum object. Thus the system is affected by the ob-

servation. For the complimentary observables of position and momentum, both cannot

be known with certainty, and are bounded by Heisenberg’s uncertainty relation. “We

must give up the idea of complete localization of the particle in a theoretical model. This

seems to me the permanent upshot of Heisenberg’s principle of uncertainty.”4

The dual particle-wave nature of both matter and light is elegantly captured in Young’s

double slit experiment. Therein, a continuous stream of electrons bombard a double

slit, whose separation is of the order of the de Broglie wavelength of the particles, to

produce an interference pattern indicative of the wave nature of the electron. Measuring

the slits to determine which one the electron passes through, destroys its wave nature.

The pattern on the screen then exhibits the characteristics of a particle. In a literal

sense we can say that the observer creates the particle, but rather than prematurely

lend ourselves to flights of fancy, it is appropriate to first recall, “what we observe is not

1David Bohm; With the exception of 3, the quotes in this text were selected from a resource of quotes
found at www.spaceandmotion.com.

2Albert Einstein.
3Michael A. Vandyck. Co-author of ‘Geometry Spinors and Applications’, and ‘Topics in Differential

Geometry’.
4Albert Einstein.

http://www.spaceandmotion.com
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nature itself, but nature exposed to our method of questioning ... Light and matter are

both single entities, and the apparent duality arises in the limitations of our language.”5

Furthermore, movement in QM “is discontinuous, not causally determinate and not well

defined ... Heisenberg’s uncertainty principle made a detailed ordering of space and time

impossible.”6 The results of the double slit experiment are both intriguing and shocking,

and in effect point to either a void in our interpretation or to a conceptual limitation of

the quantum theory. “The more success the quantum physics has, the sillier it looks. ...

I think that a ’particle’ must have a separate reality independent of the measurements.

That is an electron has spin, location and so forth even when it is not being measured.

I like to think that the moon is there even if I am not looking at it.”7

QM continues to challenge the classical world view, as the theory states that under cer-

tain conditions there is an apparent immediate connection of distant particles; coined

‘Entanglement’. When particles interact and are separated, the states of the particles

are interdependent. The quantum object is assumed to occupy a superposition until a

measurement is performed, at which point, the state of the measured particle exactly

determines the partner particle’s state. This ‘non local’ connection between the par-

ticles is a purely quantum mechanical effect. It has been thought that “the statistical

theories hide a completely determined and ascertainable reality behind variables which

elude our experimental techniques,”8 but this point is contested by QM. The signature

of the entangled quantum object’s ‘non-classicality’, for lack of a better word, is found in

the violation of the Bell inequalities, which uphold that no local hidden variable theory

can reproduce the predictions of QM. The quantum theory infers that quantum objects

are not independent or separable in the classical sense, but rather they maintain a spa-

tially unbounded, and non local connection of varying degrees. “That the guiding wave,

in the general case, propagates not in ordinary three-space but in a multi-dimensional

configuration space is the origin of the notorious ‘non-locality’ of quantum mechanics.”9

If we accept that the quantum mechanical model of reality is adequate, it follows that

the classical world view is itself inadequate. Such a profound statement does not come

without friction, and, throughout the development of QM many conflicting views have

arisen. Whilst QM professes that nature is both an indeterminate, and non-locally

interconnected whole, a general feeling of discontent and uneasiness with the theory

remains. “Quantum mechanics is very impressive. But an inner voice tells me that it

is not yet the real thing. The theory produces a good deal but hardly brings us closer to

5Werner Heisenberg.
6David Bohm.
7Albert Einstein.
8Louis DeBroglie
9John Steward Bell. “... It is a merit of the de Broglie-Bohm version to bring this out so explicitly

that it cannot be ignored.”
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the secret of the Old One. I am at all events convinced that [God] does not play dice.”10

With QM certainly comes frustration, as we are left with a philosophy from which one

cannot ascertain where QM leaves off, and our classical ‘reality’ begins. For some, this

is a satisfactory state of affairs; “It is wrong to think that the task of physics is to find

out how Nature is. Physics concerns what we say about Nature.”11 But for others, the

partial view of reality offered by QM is unacceptable; “Let me say at the outset, that in

this discourse, I am opposing not a few special statements of quantum physics held today

(1950s), I am opposing as it were the whole of it, I am opposing its basic views that have

been shaped 25 years ago, when Max Born put forward his probability interpretation,

which was accepted by almost everybody ... I don’t like it, and I’m sorry I ever had

anything to do with it.”12

There persists a hope that QM points to a more tangible physical theory, remaining

to be uncovered. It has been argued that QM cannot be embedded in a locally causal

physical theory, but this is based on the assumption that the chosen experimental pa-

rameters are free variables. However, “it might be that this apparent freedom is illusory.

Perhaps experimental parameters and experimental results are both consequences, or par-

tially so, of some common hidden mechanism. Then the apparent non-locality could be

simulated.”13 On the other hand it may arise that QM, as it stands, will prove inad-

equate as a natural philosophy. QM may resist precise formulation, in the sense that

when precise formulation “is attempted, we find an unmovable finger obstinately pointing

outside the subject, to the mind of the observer, to the Hindu scriptures, to God, or even

only Gravitation.”14 In any event, what cannot be contested, is that QM has endured

the trials of the 20th century, and today it remains one of the best available natural

theories. With the above in mind, we continue making our way through the dark cave

of QM, until a means of shedding further light on the quantum realm becomes obvious.

“It is my task to convince you not to turn away because you don’t understand it. You

see my physics students don’t understand it. ... That is because I don’t understand it.

Nobody does.”15

“This statistical interpretation is now universally accepted as the best possible interpre-

tation for quantum mechanics, even though many people are unhappy with it. People

had got used to the determinism of the last century, where the present determines the

future completely, and they now have to get used to a different situation in which the

present only gives one information of a statistical nature about the future. A good many

10Albert Einstein.
11Neils Bohr.
12Erwin Schrödinger.
13John Steward Bell.
14John Steward Bell.
15Richard Feynman.
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people find this unpleasant; Einstein has always objected to it. The way he expressed it

was: ‘The good God does not play with dice.’ Schrödinger also did not like the statistical

interpretation and tried for many years to find an interpretation involving determinism

for his waves. But it was not successful as a general method. I must say that I also do

not like indeterminism. I have to accept it because it is certainly the best that we can do

with our present knowledge. One can always hope that there will be future developments

which will lead to a drastically different theory from the present quantum mechanics and

for which there may be a partial return of determinism. However, so long as one keeps

to the present formalism, one has to have this indeterminism.”16

The success of QM cannot be ignored, and as the field progressively advances, QM

demands attention to its underlying world view. QM has reversed the usual classical

notion that the independent elementary parts of the world are the fundamental reality,

and that various systems are merely particular contingent forms and arrangements of

these parts. Rather, we say that inseparable quantum interconnectedness of the whole

universe is the fundamental reality, and that relatively independent behaving parts are

merely particular and contingent forms within this whole. Each of the aspects of quan-

tum theory combine to suggest that the universe is an indivisible whole, rather than

being composed of individual elements which interact as if separately existent. In quan-

tum mechanics the whole is objective and the parts are the result of analysis. Areas of

quantum mechanics whereby the whole behaves (to some extent) like independent parts

are limiting cases which allow to recover a classical analysis.17

The difficulty that arises in coming to grips with QM is that there remains a conflict

between the quantum mechanical description of reality, and our feeling of “what real-

ity ought to be.”18 In discussing the inherent non-locality of nature, revealed by the

quantum theory, John Bell offers the following words; “The discomfort that I feel is

associated with the fact that the observed perfect quantum correlations seem to demand

something like the ‘genetic’ hypothesis. For me, it is so reasonable to assume that the

photons in those experiments carry with them programs, which have been correlated in

advance, telling them how to behave. This is so rational that I think that when Einstein

saw that, and the others refused to see it, he was the rational man. The other people,

although history has justified them, were burying their heads in the sand ... So for me,

it is a pity that Einstein’s idea doesn’t work. The reasonable thing just doesn’t work.”19

16Paul Dirac.
17Adapted from various statements made by David Bohm in his interviews and books.
18Richard Feynman.
19John Stewart Bell.
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Crescendo

The sophistication of modern experimental apparatus and techniques has facilitated un-

precedented access to the quantum realm. Quantum mechanical systems are fundamen-

tally very hard to observe; they are highly sensitive to perturbations and decoherence

from the external environment, which destroy the system’s quantum nature. In relative

terms, the lifetime of quantum systems is very short, but the high degree of precision

and control offered by state of the art technologies maintains their lifetime well beyond

that necessary for experimental purposes.

The complimentary theoretical and experimental development of quantum mechanics

has seen the emergence of quantum technologies, which exploit properties unique to

quantum mechanical systems. At the core of many quantum technologies is the concept

that information is the fundamental building block of reality. Quantum information is

then the physical information encoded in quantum objects, the smallest unit of which

is the qubit. As the Hilbert space dimension of a many particle quantum system grows

exponentially large with particle number, the number of possible quantum states, and

information encoded within the system, grows exponentially. A quantum computer takes

advantage of quantum mechanical properties to perform operations on a registrar of

qubits; offering the possibility to simulate complex quantum systems, which is presently

well beyond the capability of classical computers.

Quantum computing and quantum information processing has grown to become a central

topic in QM, but many other subdisciplines and related fields have emerged. The experi-

mental and theoretical study of the transfer of quantum information between two parties

has given rise to disciplines such as quantum information theory, quantum communi-

cation, quantum cryptography, quantum error correction and quantum teleportation.

Whilst the sensitivity of such quantum systems to noise from the external environment

remains a formidable challenge, these quantum systems offer potentialities that are un-

achievable in classical systems. The exception being quantum teleportation, which refers

to the transfer of a quantum state between two quantum objects, rather than the classi-

cal ‘star trek’ teleportation, which is waaaaay cooler. In a general sense, the potential for

quantum technologies to far surpass the precision offered by classical approaches is a key

motivation for the study and experimental realisation of quantum technologies in fields

such as quantum imaging (high resolution imaging), quantum metrology (high precision

measurements) and quantum clocks (unparalleled accuracy of time measurements). The

correlation between experimental and theoretical development of quantum mechanical

phenomena, such as quantum tunneling, has produced (to name a few) extremely sen-

sitive magnetometers, quantum tunnel diodes, and the scanning tunneling microscope

which has facilitated the imaging of individual atoms on the surface of a metal.
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Reminiscent of the rapid development of classical computing technology; the progressive

maturity of experimental technology has reached the point where single and composite

quantum objects, can be confined to stable environments. Ultracold quantum gases are

one class of quantum objects that are central to both the experimental and theoretical

study of QM. The many formidable experimental challenges of reaching the quantum

degenerate regime have, to a large extent, been overcome. Today the production of

ultracold quantum gases is commonplace. A dilute gas of identical integer-spin parti-

cles (bosons), cooled close to absolute zero, occupy the lowest available energetic mode

(ground state) forming a state of matter known as a Bose-Einstein condensate. Con-

versely a gas of identical half integer-spin particles (fermions), cooled close to absolute

zero, ‘stack up’ to occupy all available energetic modes, from the ground state to the so-

called Fermi level, forming what is known as a Fermi sea. Cutting edge technologies such

as Feshbach resonances, allow for precise control over, and study of, the inter-atomic

interactions in ultracold quantum gases. Furthermore, the geometry of the trapping en-

vironments can be dynamically fashioned using available technologies such as the atom

chip, optical dipole traps, and optical lattices to name a few. Advances in lasing tech-

nologies has made single spatial site addressing possible. The technical detailing of these

and other techniques has been so refined that they are applicable to not only ultracold

quantum gases, but also to single and small number quantum particle systems.

Although the challenge of developing technological applications is appealing from both

a practical and theoretical point of view, in this thesis we explore a select number of

quantum mechanical systems from a fundamental point of view, that have only recently

come within reach of experimental realisation. This thesis is dedicated to establishing

an understanding as to the relationship between the observable spatial mode dynamics

of ultracold atomic systems, and their formal descriptions in the energy eigenbasis. The

context of the spatial mode dynamics studied herein specifically refers to the spatial

direction of photon emission, following the decay of an excited atom, and the tunneling

interaction between spatial modes, exhibited by single and composite bosonic systems.

The stimulation and inhibition of spontaneous emission in optical cavities is currently

well understood. Here we study an alternative means of not only inhibiting, but also

directing the spontaneous emission of an excited atom, without the use of an optical cav-

ity. It has been shown that processes involving the transport of matterwaves between

localised spatial modes, and the transfer of electrons between atomic orbitals, display a

complimentary relationship. Whilst quantum state transport in optical settings is well

established, from both theoretical and experimental perspectives, the same cannot be

said for matterwave transport. Here we propose two novel schemes that show promise

of demonstrating the transport of matterwaves between localised spatial modes. A fun-

damental aspect of matterwave transport processes, is the so-called quantum tunneling
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interaction. As this phenomenon is of interest to a wide range of communities in quan-

tum mechanics, we detail the relationship between the evolution of a quantum state in

the energy eigenbasis and the spatial mode basis, thereby providing a mapping between

the Hamiltonian operators in each basis, and subsequently a closed form solution for the

tunneling interaction matrix elements. We then apply this knowledge to the transport

of matterwaves, to relate the formal description of the quantum state transport in the

spatial and energetic mode settings. This approach provides an intuitive understanding

as to the mechanisms of matterwave transport and the creation of spatial qubit and

qutrit states.

Outline Of Thesis

The thesis consists of three different sections, which are connected through presenting

new ideas for quantum engineering, and detailing the relationship between the observable

spatial mode dynamics of quantum systems, and their formal description in the energy

eigenbasis. To begin we draw a parallel between, the probable direction of photon

emission and the geometry of the underlying phase space, which may be modified using

ultracold Fermi gases. Thereafter we propose two experimentally accessible schemes

that show promise of demonstrating matterwave transport between localised spatial

regions. The remainder of the thesis is then dedicated to studying the time evolution of

matterwaves in the spatial and energetic representations. We first pronounce the spatial-

energetic relationship for a wavefunction occupying two spatial and energetic modes.

We show that the Hamiltonians in both bases are related by a rotation, which allows

the recovery of the correct phase and amplitude dynamics of the wavefunction in the

assigned spatial regions. We compliment this study, by applying the knowledge gained,

to a pioneering work on the transport of matterwaves. We find that this approach derives

a robust picture of the underlying mechanisms of matterwave transport. Thereafter, we

examine a four spatial mode system in a two dimensional setting, and demonstrate the

possibility for the creation of spatial qubit and qutrit states. The content of each chapter

is as follows;

Chapter 2: Inhibition of Spontaneous Emission In Anisotropic Fermi Seas.

We examine the process of spontaneous emission in cold fermionic samples and show

how a directional photon source can be constructed without an optical cavity. The in-

hibition and stimulation of spontaneous emission is an intriguing area of study from

technological (lasers etc.) and conceptual (fundamental principles) points of view. In

this chapter we study the following model; an idealised spin polarised Fermi Sea (FS) at
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zero temperature, in its internal ground state, confined to a harmonic trapping poten-

tial. A same species and spin fermion occupies the ground state energetic mode of the

harmonic potential and is in an internally excited state. We investigate in detail how the

presence of the FS effects the spontaneous emission rate (also called decay rate) of the

excited fermion. We find that there are three essential contributing factors that effect

the decay rate; these are the Fermi energy of the FS, the Lamb-Dicke parameter (the

ratio of the recoil and trap energy), and finally the geometry of the trapping potential,

whether this be isotropic, cigar or pancake shaped.

To begin, we first review Fermi’s golden rule, which tells us the transition rate between

two energy eigenmodes. As the degeneracies of the energy levels for anisotropic trapping

geometries are fundamental to this work, we derive the closed form relations for the

energy level degeneracy (and the sum of states) for the cigar and pancake shaped traps,

as a function of the aspect ratio. Thereafter we present the theoretical and mathematical

model of our system, and establish the expression for the angular decay rate of our

excited fermion, as a function of the Fermi energy, the Lamb-Dicke parameter, and

the aspect ratio. This relation predicts spatially anisotropic decay rates for anisotropic

settings. We progressively explain the source of the emission pattern’s fine structure,

and show that in the one dimensional limit (cigar trap), spontaneous emission is tightly

confined along the soft axis; which is of potential interest and use as a directional photon

source. The journal reference for this work is; Physical Review A 79, 033602 (2009).

Chapter 3: Spatial Adiabatic Passage. We propose two novel schemes for the exper-

imental realisation of matterwave transport between localised spatial regions. Quantum

state transfer in quantum optical systems is a topic that has experienced an explosion

of growth over the past number of years. The matterwave counterpart, dubbed spatial

adiabatic passage (SAP), is the transfer of matterwaves between localised spatial modes.

Whilst many theoretical studies have been developed, this subject remains experimen-

tally challenging. To help bridge the gap, we outline in this chapter two experimental

proposals that offer the potential to observe the transport of matterwaves, via the SAP

technique.

The chapter is organised as follows; as SAP is a subject that has its origins in optics,

we first provide the theoretical description of the light matter interaction for a two level

system. We extend this analysis to a three level time dependent optical scheme, under

the rotating wave approximation, to arrive at the usual 3 × 3 interaction Hamiltonian.

We discuss the procedure for adiabatic quantum state transfer, and then outline the

relationship between state transfer in optics and the matterwave setting. Thereafter we

make our two experimental proposals; the first of which is the transfer of a neutral atom

between the outer waveguides of a three waveguide system. The waveguide geometry
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is created using a technological marvel known as the ‘atom chip’. We sketch the back-

ground of the cooling process and detail the interaction between the atom and magnetic

field which makes the trapping possible. Subsequently we provide numerical results of

our approach which demonstrate the feasibility of our proposal. The journal reference

for this work is; Physica Scripta T140, 014029 (2010).

Our second experimental proposal applies multi-mode radio frequency dressed poten-

tials to an inhomogeneous magnetic field, thereby creating a three site time dependent

trapping geometry, suitable for the SAP protocol. We derive the related Landau-Zener

Hamiltonian and extend this model to the multi-mode radio frequency case. For the

remainder of the chapter, we focus on the numerical analysis of the adiabatic trap mo-

tions that facilitate the transport of the quantum state. We demonstrate that in the

case of a single atom/non-interacting BEC, the state is transferred with high fidelity.

For a weakly interacting BEC, the fidelity of the transport is inhibited. We show that

suitably adjusting the trapping frequencies of the outer traps increases the transport

fidelity. The journal reference for this work is; Physical Review A 83, 053620 (2011).

Chapter 4: Spatial Mode Dynamics. We deduce the relationship of the wavefunc-

tion in the energy eigenbasis and the left-right or spatial mode basis, synonymous with

the double well potential. Quantum tunneling was originally used to statistically de-

scribe nuclear decay, as an alpha particle’s probability to emerge from the nucleus by

penetrating an energetic barrier. Today quantum tunneling is a fundamental component

of quantum physics, with a broad range of applications. An open question that arises

with respect to SAP processes, is on the relationship between the numerical integration

of Schrödinger’s equation, and the ‘spatial mode’ Hamiltonian matrix. This operator

describes the local energy of, and the tunneling interaction between, the spatial modes.

Here we derive a mapping between both pictures for the two spatial-energetic mode case.

We consider a potential divided into two spatial regions or ‘spatial modes’ which can

have an arbitrary size but collectively span the whole Hilbert space. We compare the

density dynamics of a wavefunction occupying two energetic modes, according to the

Schrödinger picture, and the spatial mode (or Rabi) picture. Equating both representa-

tions results in two sets of closed form solutions, for each matrix element of the spatial

mode Hamiltonian. We apply the mapping to a quantum state in a one dimensional

harmonic oscillator, and provide an interpretation of the results.

To conclude, we propose three reasonable criteria one may expect from a definition of

the spatial mode kets, and consequently show that a proper definition of these kets is

not obvious. We present a trial solution, and discuss why it fails.
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Chapter 5: Three Level Atom Optics Via The Tunneling Interaction - Re-

visited. We apply our knowledge, gained from chapter 4, to an original work on mat-

terwave transport, with an aim to establish the relationship between the time evolution

of the proposed system in both the energy eigenbasis, and the spatial mode basis. We

apply our spatial mode mapping (suitably adapted) to a well known SAP scheme. We

outline a technique to approximate the three level spatial mode Hamiltonian matrix. To

achieve this, we first derive the energy eigenfunctions of the piecewise triple-well har-

monic oscillator potential. A basis for the spatial modes can be defined via the energy

eigenfunctions, which we use to rotate between the Schrödinger and spatial mode rep-

resentations. In this approach, the local energy and tunneling interaction terms exhibit

the expected behaviour, and a significant coupling between the outer traps appears to-

ward the midpoint of the process. The transport of a quantum state between spatial

modes is (as expected) observed.

To conclude, we analyse the system in the energy eigenmode basis, which offers an

easy and accessible explanation for the counter-intuitive trap motions. This approach is

developed to provide an alternative interpretation as to why the intuitive trap motions

does not facilitate state transport. Adhering to the SAP protocol, we compare the initial

and final states in the energy eigenbasis showing that the cyclical process has imprinted

a π phase on the so-called ‘dark state’ energy eigenfunction. As the acquired phase

is independent of the total time taken for the process, matterwave transport in SAP

protocols may be interpreted as the signature of a geometric phase, acquired by the

system from the cyclical evolution.

Chapter 6: SAP In Four Mode Systems - Qubit and Qutrit States. We

extend our tools developed in chapter 5 to a four mode system, and show the potentiality

of creating qubit and qutrit states between localised spatial modes. Geometric phases in

four (and multi) level optical systems allow for a much richer phenomenology, in the fact

that they afford the creation of qubit and qutrit spatial mode states. Here we make use of

four harmonic traps in a Y-shaped arrangement on a two-dimensional plane. We provide

an outline of the numerical methods used to recover the energy eigenfunctions of this

potential. The usual ‘counter-intuitive’ trap motions creates an even superposition state

between the target traps. Thereafter this state can be transported back to the initial

trap by reversing the protocol. Here we show that applying a phase difference between

the spatial modes of the even superposition state, inhibits the transfer to the initial trap.

This effect permits the creation of a qutrit state between the outer spatial modes, and we

account for this effect. Thereafter we show that by breaking the symmetry of the trap

motions, qutrit states may also be created but are subject to dynamical contributions

that detract from the predictability of the final state. We demonstrate this effect, discuss

and conclude.



Chapter 2

Spontaneous Emission in

Anisotropic Fermi Seas

An observable facet of atomic matter is the finite lifetime of “excited” atomic states.

Whilst an atom may absorb a quanta of energy, and thus assume an “excited” state, its

ability to retain this energy is limited. In free space, vacuum fluctuations drive every

excited atom to its ground state, resulting in the emission of a photon with an energy

equal to the energy difference of these two states. This form of interaction between the

atom and the vacuum is known as spontaneous emission.

The vacuum plays a key role in spontaneous emission and without it this phenomenon

would not occur. As the available vacuum modes can be altered with an optical cavity,

the lifetime of an excited atom confined to such a cavity, is also altered. Like a guitar

string, the frequency of the modes of a cavity are integer multiples of its fundamental

frequency fc. It was observed by Purcell [1] that the lifetime of an atom’s ‘excited state’

is reduced when the atom is embedded in a cavity tuned to its transition frequency

ft. This is the stimulation of spontaneous emission. Conversely the lifetime of the

atom is increased when the cavity is mistuned. It was later shown by Kleppner [2]

that for an ideal (or high quality factor) cavity, spontaneous emission is inhibited when

the fundamental frequency of the cavity is greater than the excited atom’s transition

frequency fc > ft. In the ideal case, the atom and vacuum are decoupled, and this is

known as the inhibition of spontaneous emission.

Inhibited spontaneous emission is not limited to cavity settings. Of particular interest

is the effect of ultracold fermionic gases [3] on the decay rate of a same-species (and

spin) excited fermion. The inhibition of spontaneous emission in the presence of a

ground state Fermi sea is another fundamental prediction which results directly from

the Pauli principle [4, 5]. A degenerate spin polarised Fermi sea occupies the available

12
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Hilbert space for a single, excited atom of the same species and spin. Due to the Pauli

principle, the Fermi sea effectively blocks out a large amount of the phase space that

would otherwise be available to the excited atom after a de-excitation transition. This

leads to a modification of the emission properties of the excited atom, characterised

by the size of the Fermi sea, the temperature of the system, and the anisotropy of

the trapping potential [5]. The influence on the lifetime of the excited atom has been

recently investigated [5, 6] and the effect was shown to be an atom-optical analogue of

well known effects in cavity quantum electrodynamics [1].

In this work we investigate the influence of this Pauli-blocking effect on the spatial decay

rate of a single excited fermion, in the presence of an anisotropic (ground state) FS. The

fact that the emission spectrum becomes anisotropic was first shown in [5, 6] and a

simple explanation for this effect was given. Here we investigate and account for the

pattern formation in detail. In particular we consider highly anisotropic traps, which

can be experimentally produced today using atom chips, or optical lattices [7–9].

2.1 Fermi’s Golden Rule

The fingerprint of each atomic element is found in its own unique emission spectrum. As

the energy of the electron is quantised, each spectral line of the emission line spectrum

is an allowed transition between atomic orbitals. However these spectral lines differ in

intensity, which is physically related to the transition probability (per unit time) from

an occupied energy eigenstate, into a continuum of final states. Fermi’s Golden Rule is

an equation that allows for the calculation of transition rates, by considering the decay

of the excited atom as a time dependent perturbation.

2.1.1 Time Dependent Perturbations

In this section we review the general formalism of Fermi’s Golden rule. The following

derivation largely follows the procedure outlined in J.J. Sakurai’s ‘Modern Quantum

Mechanics’ [10]. We consider a system, whereby a time dependent perturbation V(t)

is imparted to the system at t = 0. This perturbation is constant in time, and acts

to provide the required energy to facilitate a transition between the basis states of the

Hilbert space:

V(t) = k · r Θ(t− t0), (2.1)

where k is the wavevector of the photon released due to the perturbation and r =

(x̂, ŷ, ẑ). Θ(x) is the Heaviside step function, with Θ(t− t0) = 0 for t < t0 and Θ(t) = 1

for t ≥ t0.
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The perturbation V(t) is assumed to not deform the basis states |ψν〉 of the Hilbert

space and as such they remain time independent. It follows that the Hamiltonian of

the system H(t) may be decomposed into a sum of the Hamiltonian of the unperturbed

system H0 and the time dependent perturbation V(t).

H(t) = H0 + V(t). (2.2)

The Hilbert space of H0 is spanned by an infinite set of orthogonal eigenfunctions |ψν〉,
for ν = 0, 1, 2, . . . ,∞. The “unperturbed” Hamiltonian operates on the basis states as,

H0|ψν〉 = Eν |ψν〉, where Eν is the eigenenergy of |ψν〉. These basis states constitute the

accessible energetic modes of the Hilbert space.

2.1.2 The Interaction Picture

At t = 0, the state of the system is given by,

|Ψ(0)〉S =
∑
ν

cν(0) |ψν〉. (2.3)

We wish to find cν(t) for t > 0 such that,

|Ψ(t)〉S =
∑
ν

cν(t) e−ıEνt/~ |ψν〉. (2.4)

The effect of the time dependent perturbation V(t) is to incur a transition between

the basis states, therefore the coefficients cν(t) are time dependent. This interaction

makes the phase evolution of the basis states coefficients difficult to evaluate. In order

to resolve for the time dependence of the coefficients cν(t), we ‘wash out’ the usual

dynamical evolution to consider only the interaction induced by the perturbation term.

This is commonly referred to as the interaction picture, and is given by,

|Ψ(t)〉I = eıH0t/~ |Ψ(t)〉S , (2.5a)

|Ψ(t)〉I =
∑
ν

cν(t) |ψν〉, (2.5b)

At t = 0 the state ket in the interaction picture |Ψ(t)〉I coincides with the state ket in

the Schrödinger picture |Ψ(t)〉S , which can be seen easily by comparing (2.4) and (2.5b).
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2.1.3 Time Evolution Operator in the Interaction Picture

In the interaction picture, the state |Ψ(t)〉I can be related to the initial state |Ψ(t0)〉I ,
through the time evolution operator UI(t, t0),

|Ψ(t)〉I = UI(t, t0)|Ψ(t0)〉I . (2.6)

The Schrödinger picture is related to the interaction picture through the unitary operator

U0(t) as,

|Ψ(t)〉S = U0(t) |Ψ(t)〉I , (2.7)

U0(t) = e−ıH0t/~. (2.8)

We consider the evolution of the wavefunction according to Schrödinger’s equation,

ı~
d

dt
|Ψ(t)〉S = (H0 + V(t)) |Ψ(t)〉S . (2.9)

From (2.7) we have,

ı~
dU0(t)

dt
|Ψ(t)〉I + ı~ U0(t)

d

dt
|Ψ(t)〉I = (H0 + V(t)) U0(t) |Ψ(t)〉I . (2.10)

We note that dU0(t)/dt = (1/ı~) H0U0(t), and introduce the definition,

VI(t) ≡ U†0(t) V(t) U0(t). (2.11)

Projecting on the left hand side of (2.10) with U†0(t) and making use of (2.11) we find,

d

dt
|Ψ(t)〉I =

1

ı~
VI(t) |Ψ(t)〉I . (2.12)

As (2.6) is true for any initial state the above reduces to,

d

dt
UI(t, t0) =

1

ı~
VI(t) UI(t, t0), (2.13)

with the boundary condition UI(t0, t0) = 1. The formal solution to the time evolution

operator is thus given by,

UI(t, t0) = 1 +
1

ı~

∫ t

t0

dt1 VI(t1) UI(t1, t0). (2.14)

Similarly we may find a solution for UI(t1, t0) using (2.14),

UI(t, t0) = 1 +
1

ı~

∫ t

t0

dt1 VI(t1)

[
1 +

1

ı~

∫ t1

t0

dt2 VI(t2) UI(t2, t0)

]
, (2.15)
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and so on. This results in an iterative solution for UI(t, t0) known as the Dyson series,

UI(t, t0) =
∞∑
n=0

(
1

ı~

)n ∫ t

t0

dt1

∫ t1

t0

dt2 . . .

∫ tn−1

t0

dtn VI(t1) VI(t2) . . .VI(tn). (2.16)

Time ordering of the above operators is implicitly imposed.

2.1.4 Perturbative Expansion

What remains to be done, is to reconcile the time evolution operator of the interaction

picture UI(t, t0) with the coefficients, cν(t), of (2.5b). The system is prepared in an

initial state |Ψ(t0)〉I = |ψν〉, i.e. cν(t0) = 1. The time evolution of this state (in the

interaction picture) is given by,

|Ψ(t)〉I = UI(t, t0)|ψν〉, (2.17)

|Ψ(t)〉I =
∑
µ

|ψµ〉〈ψµ|UI(t, t0)|ψν〉, (2.18)

The phase evolution of the coefficients of the basis states cµ(t) are given in the interaction

picture by,

cµ(t) = 〈ψµ|UI(t, t0)|ψν〉. (2.19)

The time evolved wavefunction in the interaction picture may be written,

|Ψ(t)〉I =
∑
µ

cµ(t) |ψµ〉. (2.20)

To formulate a solution for the time dependent complex coefficients cµ(t) we consider

the perturbative expansion,

cµ(t) = c(0)
µ (t) + c(1)

µ (t) + c(2)
µ (t) + · · · . (2.21)

We perform an analogous expansion for the time evolution operator in the interaction

picture,

U(t, t0) = U(0)(t, t0) + U(1)(t, t0) + U(2)(t, t0) + · · · . (2.22)

According to the Dyson series (2.16) each of these terms is given by,

U(0)(t, t0) = 1, (2.23a)

U(1)(t, t0) =

(
1

ı~

)∫ t

t0

dt1 VI(t1), (2.23b)

U(2)(t, t0) =

(
1

ı~

)2 ∫ t

t0

dt1 VI(t1)

∫ t1

t0

dt2 VI(t2). (2.23c)
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Plugging the perturbative expansions of (2.21) for cµ(t) and (2.22) for U(t, t0) into

(2.19) and equating the perturbative terms with each other, we find the following formal

solutions for the perturbed components of the complex coefficients,

c(0)
µ (t) = 〈ψµ|1|ψν〉 = δµν , (2.24a)

c(1)
µ (t) =

(
1

ı~

)∫ t

t0

dt1 〈ψµ|VI(t1)|ψν〉, (2.24b)

c(2)
µ (t) =

(
1

ı~

)2∑
m

∫ t

t0

dt1 〈ψµ|VI(t1)|ψm〉× (2.24c)

×
∫ t1

t0

dt2 〈ψm|VI(t2)|ψν〉. (2.24d)

The above matrix elements are expanded using (2.8) and (2.11) as,

〈ψµ|VI(t)|ψν〉 = 〈ψµ| U†0(t) V(t) U0(t) |ψν〉,

= 〈ψµ| U†0(t) V(t) U0(t) |ψν〉,

= 〈ψµ| exp
[ ı
~

H0t
]
V(t) exp

[
− ı
~

H0t
]
|ψν〉,

= 〈ψµ| exp
[ ı
~

H0t
]
V(t) exp

[
− ı
~

H0t
]
|ψν〉,

= 〈ψµ|V(t)|ψν〉 exp

[
ı
Eµ − Eν

~
t

]
.

(2.25)

Using the following abbreviations,

ωµν ≡
Eµ − Eν

~
, (2.26a)

Vµν(t) ≡ 〈ψµ|V(t)|ψν〉, (2.26b)

allows to express (2.25) in the compact form,

〈ψµ|VI(t)|ψν〉 = Vµν(t) eıωµνt. (2.27)

Thereby, (2.24) is condensed to,

c(0)
µ (t) = 〈ψµ|1|ψν〉 = δµν , (2.28a)

c(1)
µ (t) =

(
1

ı~

)∫ t

t0

dt1 Vµν(t1) eıωµνt1 , (2.28b)

c(2)
µ (t) =

(
1

ı~

)2∑
m

∫ t

t0

dt1 Vµm(t1) eıωµmt1
∫ t1

t0

dt2 Vmν(t2) eıωmνt2 . (2.28c)

The transition matrix element Vµν(t) will be discussed in detail in section 2.4.1.
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2.1.5 Formal Solution

According to the perturbation theory of sections 2.1.3 and 2.1.4, the probability of

effecting a transition from the state |ψν〉 to |ψµ〉 for µ 6= ν is given by,

Pν→µ(t) = |cµ(t)|2 = |c(0)
µ (t) + c(1)

µ (t) + c(2)
µ (t) + · · · |2. (2.29)

Taken to first order,

Pν→µ(t) ≈ |c(1)
µ (t)|2, (2.30)

since µ 6= ν.

The initial time is taken to be t0 = 0, thus Vµν(t) assumes the form,

Vµν(t) = 〈ψµ|eık·r Θ(t)|ψν〉, (2.31)

where Θ(t) is the Heaviside step function and k is the wavevector of the photon released

due to the perturbation. When t < 0, Θ(t) = 0 and (2.31) is given by the Kronecker

delta function δµν . For t ≥ 0 we have Θ(t) = 1 and the operator is eık·r. Even though

(2.31) is written as a function of time, it is treated as a constant in the evaluation

of the integral (2.28b). As we are only interested in the regime t ≥ 0, we abbreviate

Vµν(t) ≡ Vµν , to find,

c(1)
µ (t) =

(
1

ı~

)∫ t

0
dt1 Vµν e

ıωµνt1 ,

=
Vµν
ı~

(
eıωµνt − 1

ıωµν

)
,

(2.32)

Consequently,

|c(1)
µ (t)|2 =

|Vµν |2

~2

sin2(ωµν/2)t

(ωµν/2)2
. (2.33)

Setting α = ωµν/2, the probability takes the form sin2αt/α2, with a maximum at α = 0.

The maximum value is t2 and its width is of order 1/t. Therefore, as t → ∞ the

functional form of the above equation tends toward a δ-function centered at t = 0. The

probability of transition is proportional to the time elapsed.

Of principle interest is the rate of transition, which is given by the probability of tran-

sition divided by the time. To evaluate the transition rate we make use of the identity,

lim
t→∞

1

t

sin2αt

α2
= π δ(α) = 2π δ(2α). (2.34)

The transition rate is subsequently given by,

Rν→µ = lim
t→∞

Pν→µ
t

=
2π

~2
|Vµν |2 δ(ωµν). (2.35)
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This expression is known as Fermi’s Golden Rule.

2.2 The Anisotropic Harmonic Oscillator

The harmonic oscillator potential holds a unique importance in quantum mechanics.

As it is one of the few problems that can be solved in closed form, it is in general a

useful solution. It provides an invaluable tool through which arbitrary potentials can be

approximated in the vicinity of a stable equilibrium point. A very good description of

the system dynamics may then often be recovered using the harmonic oscillator model.

The quantum states of the simple harmonic oscillator have been studied since the earliest

days of quantum mechanics. The harmonic oscillator being among the first applications

of the matrix mechanics of Heisenberg and the wave mechanics of Schrödinger, which

were both developed as mathematical tools used to explain electron orbits. These two

competing approaches were later shown to be equivalent by Schrödinger [11].

The harmonic oscillator is the foundation for the understanding of complex modes of

vibration in diatomic and larger molecules, the motion of atoms in a solid lattice, the

theory of heat capacity, and many others. In addition, physical systems, such as vi-

brating molecules, mechanical resonators, or modes of electromagnetic fields, can be

modeled as harmonic oscillators [12–15], so that the theoretical results can be compared

to experiments.

Here we use the quantum harmonic oscillator model to describe the confining potential

of an ultra cold Fermi gas. We present situations where we vary the strength of the

Fermi gas’s trapping potential, in the different spatial directions, to study spontaneous

emission in the resulting anisotropic Fermi seas. The most prominent results of these

modulations are the change of the energy spectrum and degeneracy of the different

energy levels. Developing a deterministic formalism to characterise these regimes is the

focus of this section.

In contrast to Bose-Einstein Condensation (BEC) [16, 17] whereby an ultracold gas of

bosons collectively occupy the lowest available energy eigenstate thus forming a mat-

terwave, an ultracold Fermi gas becomes ‘stacked’ due to the Pauli exclusion principle,

whereby all available energy eigenstates are occupied up to the Fermi energy, forming

what is known as a Fermi Sea. This is, of course, in the ideal and zero temperature case.

Whilst BECs are becoming a standard in laboratories around the world, the production

of highly degenerate ultracold Fermi seas remains a challenge, yet they have nonetheless

been achieved [9, 18, 19].
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A signature of the ultracold Fermi sea confined in a harmonic oscillator potential is its

shell structure [20, 21]. This shell structure is a result of higher energy levels of the

Fermi sea having a greater degeneracy, thereby a greater number of fermionic atoms

can occupy them. In 1999, the first realization of quantum degeneracy using two spin

components of 40K was achieved [22]. Degeneracy is an important property of Fermi

gases which modifies the scattering properties of atoms, leading to a reduced efficiency

of evaporative cooling [23, 24]. Quantum degeneracy also plays a role in the narrowing

of the linewidth of light propagating through the gas [25, 26], and the suppression of

off-resonant light scattering [27–29].

In this chapter we show that quantum degeneracy plays a dominant role in modifying

the lifetime of an excited fermion confined in a ground state Fermi sea. The degener-

acy of any level can be changed when the shape of the trapping potential is changed.

As the degeneracy of energy levels change, the lifetime (or decay rate) of the excited

fermion in the different spatial directions also changes. In the limit of highly anisotropic

cigar shaped trapping potentials, the degeneracies can be eliminated and only one non-

degenerate quantum state is available, which produces a tightly focused direction of

emission. To quantify the directional dependence of spontaneous emission as a function

of the trap shape, it is necessary to describe the energy level degeneracy as a function

of the anisotropy parameter λ. In this section we derive a set of equations that give the

degeneracy of any energy level of the anisotropic harmonic oscillator as a function of λ

for both the cigar and pancake shaped traps.

The harmonic traps we consider are of three forms: isotropic, cigar and pancake shaped.

To maintain a clear relationship between the three, we choose the value of the anisotropy

parameter (whose exact definition we discuss momentarily) so that it forms either the

cigar or pancake shape, relative to the isotropic case. To date, it has been noted that

the relationship between Fermi energy and particle number in the anisotropic potential

is not as straightforward as in the well-known isotropic case [21]. This is the point from

which we now move forward. We shall omit to derive the well known results for the

isotropic case, which can be recovered by simply setting the anisotropy parameter, or as

we shall refer to it from now on, the aspect ratio λ = 1.

2.2.1 Eigenenergies of the Pancake and Cigar Trap Shapes

The trapping frequencies of the anisotropic harmonic oscillator in the different spatial

directions are not necessarily equal, i.e. ωx 6= ωy 6= ωz. To coherently move from the

isotropic to the anisotropic regimes, it is useful to define the different trapping frequencies
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in the different spatial directions in terms of a gereralised trapping frequency ω. In this

manner ωi = λiω, for i = x, y, z.

The anisotropic harmonic-oscillator oscillator is defined in the following standard form,

V(x) =
mω2

2
(λ·x)2 =

mω2

2

(
λ2
xx

2 + λ2
yy

2 + λ2
zz

2
)
, (2.36)

where m is the mass of the particle and the values of λx,y,z determine the degree of

anisotropy in the different directions. Using the above definition, we are at liberty to

set the coefficient of the smallest trapping frequency equal to 1, eg. ωx = ω and λx = 1.

The remaining coefficients, λy,z, are therefore greater than or equal to 1.

The potentials used in experiments are often either partially or completely asymmetric.

Therefore, it is of interest to derive a completely general solution for energy level degen-

eracies of an arbitrary potential. For integer values of the aspect ratios λi, the confining

potential of the Fermi gas maintains the shell structure [21] and Fermi degeneracy [9].

If we were to consider the use of non-integer aspect ratios, λi, this in turn would mean

that the energy levels can no longer be represented as integer numbers. Furthermore,

the evaluation of the degeneracies of non-integer energy levels is quite difficult and, for

the purposes of this work, unnecessary. We will show in the following that it is possible

to derive general relations to describe the degeneracies and the density of states for the

cigar and pancake harmonic potentials when the aspect ratios are chosen to be integer

numbers. To the best of our knowledge, this is the first time these relations have been

derived. An extension of the analysis presented here to include all possible trap shapes,

whilst certainly possible, is quite involved.

From this point on we choose the axis of symmetry to be the z-axis, (this is more

important in the following sections when we make use of spherical polar co-ordinates,

but to keep the theme consistent, we will do the same here) and we define the aspect

ratios of the cigar and pancake traps as (λ ≥ 1),

λx = λy = 1, and λz = λ, pancake shape, (2.37a)

λx = λy = λ, and λz = 1, cigar shape. (2.37b)

It follows that the eigenenergies of the harmonic potential in (2.36) are given by,

Enp =

(
np +

(
λ

2
+ 1

))
~ω, pancake shape, (2.38a)

Enc =

(
nc +

(
λ+

1

2

))
~ω, cigar shape. (2.38b)
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To allow for easy identifications between the trap shapes we use the subscript ‘p’ to

denote the energy level n of the pancake trap, np. Similarly we use the subscript ‘c’ to

denote the energy level n of the cigar trap, nc.

The “shell quantum numbers” of the pancake and cigar shaped harmonic traps are

defined as,

np = nx + ny + λnz, (2.39a)

nc = λnx + λny + nz. (2.39b)

As usual, nx, ny and nz refer to the integer quantum numbers of the harmonic oscillator

potentials in the respective directions.

As the anisotropy of a trapping potential is increased, the resulting energy levels typically

have a reduced degeneracy relative to the isotropic case [30]. For the purposes of this

work, and without loss of generality, from this point on we will consider only integer

values of λ, allowing us in turn to restrict ourselves to integer values for np,c.

The degeneracies of the energy levels for the pancake and cigar potentials are found

in section 2.2.2. Thereafter, in section 2.2.4 we derive a closed form expression for the

sum of states up to and including the Fermi level. The Fermi level refers to the highest

occupied shell by a Fermi gas at zero temperature.

2.2.2 Energy Level Degeneracy

The degree of degeneracy gp,c(λ, np,c) of any energy level Enc,p is given by the number

of different sets {nx, ny, nz} which satisfy the conditions of (2.39). Whilst these are well

known for the isotropic case [30], the same cannot be said for the pancake and cigar

traps. In the following we will derive gp,c(λ, np,c), firstly for pancake traps (sec. 2.2.2.1),

and afterwards for cigar shaped traps (sec. 2.2.2.2).

The following well known identities will be used throughout the remainder of this section.

We present them all together at this point for the convenience of the reader,

n∑
k=0

1 = n+ 1, (2.40a)

n∑
k=0

k =
1

2
n(n+ 1), (2.40b)

n∑
k=0

k2 =
n(n+ 1)(2n+ 1)

6
. (2.40c)
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2.2.2.1 Energy Level Degeneracy for the Pancake Trap

A close examination of (2.39a) allows us to see that for a given energy level np, nz may

only take a value in the range, nz = b0/λc, b1/λc, b2/λc, . . . , bnp/λc. where bxc is the

floor function which takes the largest integer less than or equal to x. Since we will make

frequent use of the floor functions throughout this chapter it is convenient to define the

following abbreviation,

x̃ =
⌊x
λ

⌋
, (2.41)

for any variable x, and λ being an integer.

For a fixed value of nz, we can see from (2.40a) that there are np−λnz+1 combinations of

nx+ny. The degeneracy of a particular level np is subsequently given by the summation

over the possible values of nz as,

gp(λ, np) =

ñp∑
nz=0

(np + 1− λnz) . (2.42)

From (2.40) this relation simplifies to,

gp(λ, np) =
1

2
(ñp + 1) (2np − λñp + 2) . (2.43)

2.2.2.2 Energy Level Degeneracy for the Cigar Trap

To recover the degeneracies of the energy levels nc for the cigar trap we rewrite (2.39b)

as,

nc = λN + nz, (2.44)

where N = nx +ny. We can see that for a particular value of nz, N may take any value

in the range N = b0/λc, b1/λc, . . . , b(nc − nz)/λc. However, we must be very careful

here; we cannot simply sum over nz, as is possible for the pancake case. Since nz must

satisfy (2.44), if we choose to sum over nz we would end up counting states that violate

this equation.

There are in fact only ñc + 1 choices of nz. This is most easily seen by looking at an

example. For instance, if we take λ = 5 and nc = 22, the possibilities of N and nz

are (N,nz) = (0, 22), (1, 17), (2, 12), (3, 7), (4, 2). For nz = 2, there are ñc + 1 choices

of N , i.e. (nx, ny) = (4, 0), (3, 1), (2, 2), (1, 3), (0, 4). Similarly, for nz = 7, there are

ñc choices of N , and so on. Therefore, if we continue along these lines we can count

the degeneracies of N for the different “excitations” of nz. For this particular example,

nz = 2 is the zeroth “excitation”, nz = 7 is the first, etc.
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The above example clarifies that we may find the degeneracy of an energy level nc by

summing over the degeneracy of N relative to the nz “excitation” as,

gc(λ, nc) =

ñc∑
nz=0

(ñc + 1− nz) . (2.45)

From (2.40) this relation simplifies to,

gc(λ, nc) =
1

2
(ñc + 1) (ñc + 2) . (2.46)

2.2.3 Three Further Identities

As we will be dealing with an ideal Fermi sea, we are interested in the total number of

quantum states with an energy equal to and smaller than EnF given by (2.38), where

nF is the highest occupied energy level of the Fermi sea. This is called the Fermi level

or Fermi shell. Consequently, the number of states up to and including the Fermi level

is given by,

Si(λ, nF) =

nF∑
ni=0

gi(λ, ni). (2.47)

where i = p, c refers to the pancake and cigar traps respectively.

From (2.43) and (2.46) we can see that in evaluating (2.47) above we encounter the

following terms,
nF∑
ni=0

ñi,

nF∑
ni=0

ñ2
i ,

nF∑
ni=0

ñi ni. (2.48)

In this subsection we evaluate a closed form expression for each of the above terms. We

refer to these identities as the first, second and third identity respectively.

2.2.3.1 First Identity

For the first summation,
nF∑
ni=0

ñi, (2.49)

we note that ñi has a constant value for groups of size λ, i.e. for λ = 2, ñi =

0, 0, 1, 1, 2, 2, . . . . However the maximum value of the series, ñF, belongs to a group

of numbers which may not be of length λ. Therefore, we can assert that the first of

these expressions may be written,

nF∑
ni=0

ñi = λ

ñF∑
ni=0

ni −∆, (2.50)



2 Spontaneous Emission in Anisotropic Fermi Seas. 25

where ∆ is the term which we now proceed to define. On the left hand side of (2.50) the

maximum value of ñi is ñF. The sum of the terms in the series with this value is given

by ñF(1+mod(nF, λ)), where mod(nF, λ) = nF−λñF, is the modulus of nF/λ. However,

the first term on the right hand side of (2.50) sums the maximum value term as λñF,

therefore we find that ∆ is the difference between the two, λñF − ñF(1 + mod(nF, λ)).

Simplifying we have,

∆ = λñF(ñF + 1)− ñF(nF + 1). (2.51)

Plugging this relation into (2.50) and using (2.40b), we obtain the closed form of the

first identity,
nF∑
ni=0

ñi = ñF(nF + 1)− λ

2
ñF(ñF + 1). (2.52)

2.2.3.2 Second Identity

We may find a closed form of
nF∑
ni=0

ñ2
i , (2.53)

by applying the same logic used in section 2.2.3.1. The summation is rewritten in the

form,
nF∑
ni=0

ñ2
i = λ

ñF∑
ni=0

n2
i −∆′. (2.54)

where ∆′ is the term which we now proceed to define. On the left hand side of (2.54) the

maximum value of ñ2
i is ñ2

F. The sum of the terms in the series with this value is given

by ñ2
F(1 + mod(nF, λ))2. However, the first term on the right hand side of (2.54) sums

the maximum value term as λñ2
F. As before, we find that ∆′ is the difference between

the two, λñ2
F − ñ2

F(1 +mod(nF, λ))2.

∆′ = λñ2
F(ñF + 1)− ñ2

F(nF + 1). (2.55)

Plugging this relation into (2.54) and using (2.40b), we obtain the closed form of the

second identity,
nF∑
ni=0

ñ2
i = ñ2

F(ñF + 1)− λ

6
ñF(ñF + 1)(4ñF − 1). (2.56)



2 Spontaneous Emission in Anisotropic Fermi Seas. 26

2.2.3.3 Third Identity

Finally, we move our attention to finding the value of,

nF∑
ni=0

ñi ni. (2.57)

Again, we would like to change the sum from ni = 0→ nF, to m = 0→ ñF. It becomes

necessary to change variable here (ni → m) because we need to use a nested sum. We

have,
nF∑
ni=0

ñini =

ñF∑
m=0

m

λ(m+1)−1∑
n=λm

n

−∆′′, (2.58)

where ∆′′ is to be determined. The nested sum over the range, n = λm→ λ(m+ 1)− 1,

allows us to count all the product terms ñini over the range of length λ. However

in doing so, we end up counting extra terms which are removed by ∆′′. These arise

when m = ñF. The nested sum of (2.58) counts extra product terms for n ≥ λñF + 1.

Subsequently we find,

∆′′ = ñF

λ(nF+1)−1∑
n=nF+1

n. (2.59)

Plugging this relation into (2.58) and using (2.40b) we find the closed form for the third

summation as,

nF∑
ni=0

ñi ni = ñF
nF

2
(nF + 1)− λñF

12
(ñF + 1)(2λñF + λ− 3). (2.60)

In summary, the three identities are given by,

nF∑
ni=0

ñi = ñF(nF + 1)− λ

2
ñF(ñF + 1), (2.61a)

nF∑
ni=0

ñ2
i = ñ2

F(ñF + 1)− λ

6
ñF(ñF + 1)(4ñF − 1), (2.61b)

nF∑
ni=0

ñi ni = ñF
nF

2
(nF + 1)− λñF

12
(ñF + 1)(2λñF + λ− 3). (2.61c)

These relations are equivalent to (2.40) when λ = 1.
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2.2.4 Sum of States up to the Fermi Level for the Pancake and Cigar

Traps

The sum of states up to and including the Fermi level nF for the pancake and cigar

trapping geometries are given respectively as,

Sp(λ, nF) =
1

2

nF∑
np=0

(ñp + 1) (2np − λñp + 2) , (2.62a)

Sc(λ, nF) =
1

2

nF∑
nc=0

(ñc + 1) (ñc + 2) . (2.62b)

Using the identities given by (2.40) and those of the last section (2.61), we may evaluate

the above summation to arrive at a compact expression for the number of states up to

and including the Fermi shell for both anisotropic settings. After some simplification, we

find that the sum of states for each trapping geometry may be reduced to the following

compact forms;

Sp(λ, nF) =
1

6
(ñF + 1)(2nF − λñF + 2)(
3

2
nF −

3

4
λñF +

λ2ñF(2 + ñF)

8 + 8nF − 4λñF
+ 3

)
, (2.63a)

Sc(λ, nF) =
1

6
(ñF + 1)(ñF + 2)(3nF − 2ñFλ+ 3). (2.63b)

It can easily be confirmed that these relations, along with (2.43) and (2.46), reduce to

the isotropic case for λ = 1.

An interesting consequence of these equations ((2.43), (2.46) and (2.63)) is that for

any given value of λ they form an integer sequence. These integer sequences have

been included in Sloane’s ’Online Encyclopedia of Integer Sequences’ under the refer-

ences: A002620, A001840, A001972, A008732, A002623, A014125, A122046, A122047,

A006918, A144677, A144678, and A144679. The last three of which are new integer

series.

In our model we assume a spin polarised gas in which each oscillator state is filled with

one fermion only. Equations (2.63) therefore determine the number of particles confined

for a given Fermi energy EF = nF~ω +EG, where EG is the ground state energy of the

potential. We assume that all states up to and including the Fermi level nF are occupied

with probability 1 (T=0).
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2.3 Model

We consider an ideal gas of spin polarised fermions trapped in a harmonic potential.

All atoms are assumed to be in their internal ground state, |g〉, so that the gas becomes

quantum degenerate at low enough temperatures and forms a perfect Fermi sea at ab-

solute zero. In the following, we restrict our calculations to the zero temperature limit.

In this regime the effects we describe are most pronounced, and the extension to finite

temperatures, while computationally challenging, is conceptually straightforward.

In addition to the Fermi sea, we assume the presence of a single extra fermion, which is

distinguished from the others by being in an internally excited state, |e〉. As above, and

with the same implications for higher temperatures, we assume this particle to be in the

motional ground state, and furthermore that it feels, to a good approximation, the same

potential as the ground state Fermi sea. After some time, this atom will spontaneously

emit a photon, make a transition into the ground state and become part of the Fermi

sea. As all atoms are assumed to be spin polarised, the Pauli principle demands that

the new ground state atom has to join the Fermi sea with an energy larger than the

Fermi energy. Energetically this is a very unfavourable process, and the presence of the

Fermi sea leads to an inhibition of the spontaneous emission rate, with respect to the

case of a lone particle [4, 5].

When the confining potential is isotropic, the decay rate of the excited fermion is equal

in all spatial directions. One interesting aspect to this study is to show how the decay

rate deviates from the isotropic case when the harmonic trap, and subsequently the

ground state Fermi sea, becomes anisotropic. When we move into the cigar and pancake

regimes, we find the radial magnitude of the decay rate is no longer isotropic. The goal of

this work is to investigate how the observed emission patterns arise. In doing so, we will

neglect the effects of reabsorption of the emitted photon. In fact, reabsorption can be

seen as the same situation where a single atom in the ground state is excited by a weak

laser pulse, treated in [5], for which it was shown that emission happens overwhelmingly

in the forward direction, thereby not fundamentally affecting the results of this work.

In the following, we denote the spontaneous emission rate of photons along the direction

Ω and into the solid angle dΩ in the presence of N ground-state fermions by Γ(Ω) dΩ,

and compare it to the free case (N = 0), denoted by Γ0(Ω)dΩ. We use Fermi’s golden

rule (2.35) to determine the spontaneous emission rate. The initial state of the excited

fermion is denoted |ψi〉 = |m〉 and the final state |ψf 〉 = |n〉, where |m〉, |n〉 are the

energy eigenstates of the harmonic oscillator. The bold font is used here to indicate that

the energy levels are themselves degenerate. The emission of a photon in the direction
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Ω as it makes a transition from |m〉 → |n〉 is described by the perturbation operator,

V(t) = e−ık(Ω)·r Θ(t).

As the single excited fermion is in an orthogonal internally excited state with respect to

the ground state Fermi sea, it is free to occupy any energy eigenstate of the harmonic

trap. At any temperature, the probability distribution of the occupation of a state

|m〉 of the harmonic trap is described by the Boltzmann distribution function, Pm =

P0e
−(~ω/kBT )λ·m, where (ωx, ωy, ωz) = ω(λx, λy, λz) ≡ ωλ.

Once decay occurs and a photon is emitted, the excited fermion returns to its internal

ground state. By the Pauli exclusion principle, the particle may only make a transition

to an unoccupied center of mass mode |n〉. The probability distribution of the occupied

modes of the Fermi sea is described by the Fermi-Dirac distribution function Fn =

(e(~ω/kBT )(λ·n) + 1)−1. Available and unoccupied energy levels |n〉 are therefore given

by the distribution 1− Fn.

Considering all the above, we may consolidate the ratio of the decay rates in the presence

of a ground state Fermi sea with respect to the free case using Fermi’s golden rule (2.35)

as,

Γ(Ω)

Γ0(Ω)
=

∞∑
n,m=0

Pm(1− Fn)
∣∣〈n| e−ik(Ω)·r |m〉

∣∣2 , (2.64)

Since we restrict ourselves to the zero temperature regime, the Fermi-Dirac distribution

function becomes a step function. Hence only the states with an energy greater than the

Fermi energy have a finite value, for 1− Fn. Similarly, the excited fermion will occupy

the ground state of the harmonic trap, |m〉 = |0〉, and (2.64) simplifies immediately to

Mf (Ω) =
Γ(Ω)

Γ0(Ω)
=

∞∑
n=nF+1

∣∣〈n| e−ik(Ω)·r |0〉
∣∣2 , (2.65)

where nF represents the (degenerate) Fermi shell. The most well known result originating

from (2.64) is the inhibition of spontaneous emission from the excited atom [5]. However,

the spatial emission probability is also known to become anisotropic [5, 6] and in the

following, we present a thorough and detailed investigation into this effect. This is of

interest with regards to the new parameter ranges that have become experimentally

available in recent years. These include lower and lower temperature Fermi gases and,

in particular, highly anisotropic traps.
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2.4 The Transition Matrix

The goal of this section is to arrive at a closed form expression for the transition matrix

element,

|〈n|e−ik(Ω)·r|0〉|2. (2.66)

To begin, we consider the generalised (or free) transition matrix element,

|〈n|e−ik(Ω)·r|m〉|2, (2.67)

and thereafter, we recover the closed form of (2.66).

Coherent states are an appropriate basis for many optical fields. The coherent state of

the harmonic oscillator, |α〉, is an eigenstate of the annihilation operator, â|α〉 = α|α〉.
The notation |α〉 refers to a poissonian distribution over the available states with a mean

photon number of unity, and α represents its location in phase space. These states are

most easily generated using the unitary translation operator,

T (α) = e−α
∗â+αâ† . (2.68)

The translation operator permits us to define the coherent state as the operation of the

translation operator on the vacuum mode |0〉 as,

|α〉 = T (α)|0〉. (2.69)

Given that the harmonic oscillator modes |m〉 are linear sums of the excitations in the

different spatial directions as |m〉 = |mx〉|my〉|mz〉, we may separate the transitions

between the modes |m〉 and |n〉 of the harmonic oscillator in the different spatial direc-

tions.

In the following we map the translation operator to the transition operator as, T (α) =

e−ik(Ω)·r and resolve for α. To do so we wish to first evaluate,

|〈n|T (α)|m〉|2, (2.70)

where m and n are the excitations of the harmonic oscillator in a particular spatial

direction (x, y, or z). We have dropped the bold font notation as these states are no

longer degenerate.

By appropriate mapping of the translation operator T (α) to the operator e−ik(Ω)·r, we

may subsequently find a closed form expression for (2.66).
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2.4.1 Free Transition Matrix Element

The exponent of (2.68) contains a linear sum of two operators â and â†. Using the

operator theorem, we may separate an exponential sum of two operators, A and B as,

exp(A + B) = exp (A) exp (B) exp

(
− [A,B]

2

)
, (2.71)

when,

[A, [A,B]] = [B, [A,B]] = 0. (2.72)

Applying relation (2.71) to the translation operator we find A = −α∗ â and B = α â†,

which we use to evaluate the commutator [A,B]. We find that this may be expressed

as [A,B] = −|α|2[â†, â] = |α|2, and (2.72) is satisfied. The translation operator is thus

given by,

T (α) = e|α|
2/2e −α

∗ âeα â
†
, (2.73)

and using the identity (XY)† = Y†X†,

T †(α) = e|α|
2/2eα

∗ âe −α â
†
. (2.74)

The goal of this section is to find the general form of,

|〈n|T (α)|m〉|2 = 〈n|T (α)|m〉〈m|T †(α)|n〉. (2.75)

For the purposes of clarity, we evaluate both 〈n|T (α)|m〉 and 〈m|T †(α)|n〉 separately,

and refer to them as the first and second matrix element respectively.

2.4.1.1 Evaluation of the Matrix Element

From (2.73) we have,

〈n|T (α)|m〉 = e|α|
2/2〈n|e −α∗ âeα â† |m〉. (2.76)

The ladder operators respectively obey,

â|n〉 =
√
n|n− 1〉, (â)m |n〉 =

√
n!

(n−m)!
|n−m〉, (2.77a)

â†|n〉 =
√
n+ 1|n+ 1〉,

(
â†
)m
|n〉 =

√
(n+m)!

n!
|n+m〉. (2.77b)
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Expanding the exponential on the right hand side of (2.76) and using the identities

(2.77) we find,

eα â
† |m〉 =

∞∑
p=0

αp

p!
(â†)p|m〉,

=
∞∑
p=0

αp

p!

√
(m+ p)!

m!
|m+ p〉.

(2.78)

Similarly we consider the operation of e −α
∗ â on the state ket |m+ p〉 by expanding the

exponential and using the identities (2.77),

e −α
∗ â|m+ p〉 =

∞∑
q=0

(−α∗)q

q!
âq|m+ p〉,

=

m+p∑
q=0

(−α∗)q

q!

√
(m+ p)!

(m+ p− q)!
|m+ p− q〉.

(2.79)

Plugging both these relations into (2.76), we find the right hand side reduces to,

e|α|
2/2

∞∑
p=0

αp

p!

√
(m+ p)!

m!

m+p∑
q=0

(−α∗)q

q!

√
(m+ p)!

(m+ p− q)!
〈n|m+ p− q〉. (2.80)

Since 〈n|m+ p− q〉 = δn,m+p−q, we obtain the condition q = m+ p− n, and that the

outer sum must begin at p = n. Therefore (2.76) is given by,

〈n|T (α)|m〉 = e|α|
2/2 (−α∗)m−n√

m!n!

∞∑
p=n

(
−|α|2

)p
p!

(m+ p)!

(m+ p− n)!
. (2.81)

Similarly (see Appendix A.1) we find,

〈m|T †(α)|n〉 = e|α|
2/2 (α∗)m−n√

m!n!

∞∑
p=m

(
−|α|2

)p
p!

(n+ p)!

(n+ p−m)!
. (2.82)

2.4.1.2 Formal Solution

The generalised transition matrix element,

|〈n|T (α)|m〉|2 = 〈m|T †(α)|n〉〈n|T (α)|m〉, (2.83)

is given from (2.81) and (2.82) to be,

e|α|
2
(−1)m−n

[ ∞∑
µ=m

(−|α|2)µ

µ!

(n+ ν)!

m!(n+ µ−m)!

][ ∞∑
ν=n

(−|α|2)ν

ν!

(m+ ν)!

n!(m+ ν − n)!

]
. (2.84)
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The binomial coefficient, (
r

s

)
=

r!

s!(r − s)!
, (2.85)

allows for a compact representation of (2.83),

|〈n|T (α)|m〉|2 = e|α|
2
(−1)m−n

[ ∞∑
µ=m

(−|α|2)µ

µ!

(
n+ µ

m

)][ ∞∑
ν=n

(−|α|2)ν

ν!

(
m+ ν

n

)]
.

(2.86)

2.4.1.3 Zero Temperature Transition

When the initial state is given by, |m〉 = |0〉, (2.86) may be expressed as,

|〈n|T (α)|0〉|2 = e|α|
2 (−1)−n

n!

 ∞∑
µ=0

(−|α|2)µ

µ!

[ ∞∑
ν=n

(−|α|2)ν

(ν − n)!

]
,

=
(−1)−n

n!

[ ∞∑
ν=n

(−|α|2)ν

(ν − n)!

]
,

(2.87)

To continue to simplify this relation, we use a change of variable, l = ν − n.

|〈n|T (α)|0〉|2 =
(−1)−n

n!

[ ∞∑
l=0

(−|α|2)l+n

l!

]
,

=
(−1)−n

n!

(
−|α|2

)n [ ∞∑
l=0

(−|α|2)l

l!

]
,

(2.88)

which gives,

|〈n|T (α)|0〉|2 = e−|α|
2 |α|2n

n!
. (2.89)

2.4.2 Angular Emission

In equation (2.39), we defined the ‘shell quantum numbers’ of the pancake and cigar

traps np and nc to be symmetric about the ẑ-axis. As a result, both trap shapes are

symmetric through a 2π rotation around the ẑ-axis. Similarly, the spontaneous emission

rate is symmetric through a 2π rotation around the ẑ-axis.

In this section, we take advantage of the ẑ-axis symmetry by making use of spherical

polar co-ordinates; Thereby, we find that the angular emission may be expressed on a

two dimensional plane. Furthermore, the transition matrix may be expressed in terms

of incomplete gamma functions which are advantageous for numerical work as they are

computationally inexpensive.
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To begin, we rewrite k · r in spherical polar co-ordinates,

k(Ω) · r = sin θ cos ϑ k · x̂+ sin θ sin ϑ k · ŷ + cos θ k · ẑ, (2.90)

The position and momentum operators r and p are defined in terms of the ladder

operators as,

r =

√
~

2mωj

(
â + â†

)
ĵ, (2.91a)

p = ı

√
m~ωj

2

(
−â + â†

)
ĵ, (2.91b)

where ωj is the trapping frequency in the ĵ spatial direction. Thereby we find that k · x̂,

k · ŷ and k · ẑ are respectively given by,

k · ĵ = k0

√
~

2mωj

(
â + â†

)
ĵ ≡ ηj

(
â + â†

)
, (2.92)

for ĵ = x̂, ŷ and ẑ. The Lamb-Dicke parameter ηj is a key term that allows us to interpret

the rate of spontaneous emission as being proportional to the square root of the ratio

between the recoil energy of the atom and the trapping frequency (in a given spatial

direction), ηj = k0

√
~/2mωj =

√
(~2k2

0/2m)(1/~ωj). Explicitly this may be expressed,

η2
j =

ER
~ωj

, (2.93)

where ER = ~2k2
0/2m is the recoil energy of the atom.

Plugging (2.92) into (2.90), we find,

k(Ω) · r =
(
ηx sin θ cos ϑ+ ηy sin θ sin ϑ+ ηz cos θ

)(
â+ â†

)
, (2.94)

By inserting (2.94) into (2.65) the transition matrix becomes separable in the three

orthogonal spatial directions. Therefore we may evaluate each direction individually.

2.4.2.1 Application of the Translation Matrix Element

For the purposes of abbreviation, we let η′j represent ηj times its coefficient, i.e. η′x =

ηx sin θ cos ϑ, etc. This allows us to separate the transition matrix into the three

orthogonal spatial directions as,

|〈n|eık(Ω)·r|0〉|2 = |〈nx|eıη
′
x(â+â†)|0〉|2|〈ny|eıη

′
y(â+â†)|0〉|2|〈nz|eıη

′
z(â+â†)|0〉|2. (2.95)
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In section 2.4.1.3 we showed that,

|〈n|e−α∗â+αâ† |0〉|2 = e−|α|
2 |α|2n

n!
. (2.96)

We let α = ıη′j , to find

|〈nj |eıη
′
j(â+â†)|0〉|2 = e−(η′j)

2

(
η′j
)2nj
nj !

. (2.97)

Plugging the above into (2.95) and removing the abbreviated notation we recover,

|〈n|eık(Ω)·r|0〉|2 = e−η
2
xsin2θcos2ϑ−η2ysin2θsin2ϑ−η2zcos2θ

(
η2nx
x

) (
η

2ny
y

) (
η2nz
z

)
nx! ny! nz!

× (sin θ cos ϑ)2nx (sin θ sin ϑ)2ny (cos θ)2nz

(2.98)

As in section 2.2, we will consider both the cigar and pancake regimes simultaneously,

and from these, the isotropic case may be recovered by setting λ = 1.

The Lamb-Dicke parameter ηj is the dominant term that separates spontaneous emission

of an excited atom in the pancake and cigar trapping geometries. The two cases are,

η2
x = η2

y = η2, and η2
z =

η2

λ
, pancake shape, (2.99a)

η2
x = η2

y =
η2

λ
, and η2

z = η2, cigar shape. (2.99b)

The axis of symmetry for both cases is the ẑ-axis. For the pancake trap, there is one

tight axis, the ẑ-axis, and two soft axes, the x̂ and ŷ axes. For the cigar trap the inverse

is true. The tight axes are the x̂ and ŷ axes, whereas, the soft axis is the ẑ-axis. Using

these conventions, we can resolve the transition matrix for both anisotropies quite easily.

2.4.2.2 Preliminary Reduction - Pancake Case

A consequence of being in the zero temperature regime |Ψ(t = 0)〉 = |ψ0〉 = |0〉, and of

the Pauli exclusion principle, is that we may only sum over the unoccupied modes as

these are the only ones available to the recoiling atom. In the derivation that follows,

we first sum over all modes, and thereafter in section 2.4.2.3, we subtract the modes

occupied by the Fermi Sea.
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We apply the Lamb-Dicke Parameter for the pancake trap as given by (2.99) to simplify

(2.98) as,

∞∑
n=0

|〈n|eık(Ω)·r|0〉|2 =
∞∑

(nx,ny ,nz)=0

e−η
2(sin2θcos2ϑ+sin2θsin2ϑ)− η

2

λ
cos2θ

(
η2
)nx+ny

(
η2

λ

)nz
nx! ny! nz!

×
(
sin2θ

)nx+ny (
cos2ϑ

)nx (
sin2ϑ

)ny
(cos2θ)nz

(2.100)

To further reduce this expression, we make a change of variables, N = nx + ny, which

allows us to rearrange the sums
∑∞

nx=0

∑∞
ny=0 →

∑∞
N=0

∑N
nx=0,

∞∑
n=0

|〈n|eık(Ω)·r|0〉|2 =
∞∑
N=0

N∑
nx=0

∞∑
nz=0

e−η
2sin2θ− η

2

λ
cos2θ η

2(N+nz)

N !nz!λnz
(sin2θ)N (cos2θ)nz

×

(
N∑

nx=0

N !

nx!(N − nx!)

(
sin2ϑ

)N−nx (
cos2ϑ

)nx)
.

(2.101)

Using the identity,

N∑
nx=0

N !

nx!(N − nx)!

(
sin2ϑ

)N−nx (
cos2ϑ

)nx
=
(
1 + cot2ϑ

)N (
sin2ϑ

)N
= 1. (2.102)

we reduce (2.100) to the following compact form,

∞∑
n=0

|〈n|eık(Ω)·r|0〉|2 = e−η
2sin2θ− η

2

λ
cos2θ

∞∑
N=0

∞∑
nz=0

(
η2sin2θ

)N
N !

(
η2

λ cos2θ
)nz

nz!
. (2.103)

Similarly, for the cigar case (see Appendix A.2), we find

∞∑
n=0

|〈n|eık(Ω)·r|0〉|2 = e−
η2

λ
sin2θ−η2cos2θ

∞∑
N=0

∞∑
nz=0

(
η2

λ sin2θ
)N

N !

(
η2cos2θ

)nz
nz!

. (2.104)

Defining the following relations allows us to move quite easily between both trapping

geometries,

α(θ) = η2 cos2 θ, β(θ) = η2 sin2 θ pancake shape, (2.105a)

α(θ) = η2 sin2 θ, β(θ) = η2 cos2 θ cigar shape, (2.105b)
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Therefore (2.103) and (2.104), for the pancake and cigar trap shapes, may be respectively

written as,

∞∑
n=0

|〈n|eık(Ω)·r|0〉|2 = e−β(θ)−α(θ)
λ

∞∑
N=0

∞∑
nz=0

(β(θ))N

N !

(
α(θ)
λ

)nz
nz!

, (2.106a)

∞∑
n=0

|〈n|eık(Ω)·r|0〉|2 = e−β(θ)−α(θ)
λ

∞∑
N=0

∞∑
nz=0

(β(θ))nz

nz!

(
α(θ)
λ

)N
N !

. (2.106b)

The only major remaining difference between the two is the summations over N and

nz are interchanged. In the next section, we find the general solution for the angular

probability of spontaneous emission in the presence of a perfect Fermi sea, with Fermi

shell |nF〉.

2.4.2.3 General Solution

Close examination shows that equations (2.106) are equal to 1. This is to be expected

as the probability for an excited fermion to recoil into any of the available states |n〉
is 1. In this work, we assume the presence of a perfect ground state spin polarised

Fermi sea, wherein all modes of the anisotropic harmonic oscillator are occupied up to

and including the degenerate Fermi shell |nF〉. Due to the Pauli principle, the available

modes |n〉 for the excited Fermion to recoil into are those unoccupied by the ground

state Fermi sea, where |n〉 ≥ |nF + 1〉. We may sum over the available states as,

∞∑
n=nF+1

|〈n|eık(Ω)·r|0〉|2 =

∞∑
n=0

|〈n|eık(Ω)·r|0〉|2 −
nF∑
n=0

|〈n|eık(Ω)·r|0〉|2,

= 1 −
nF∑
n=0

|〈n|eık(Ω)·r|0〉|2.
(2.107)

Herein, we consider the solution for the pancake trap. We recall from (2.39a) that for

any energy level of the pancake trap, np = N + λnz. For the range of modes np which

are part of the Fermi sea 0 ≤ np ≤ nF, N may take any of the values in the range

N = 0, 1, 2, . . . , np, whereas, the values that nz may assume depend on N . These are

nz = 0, 1, 2, . . . , b(nF − N)/λc. The sum over the modes occupied by the Fermi sea is

thus given by,

nF∑
n=0

|〈n|eık(Ω)·r|0〉|2 = e−β(θ)
nF∑
N=0

(β(θ))N

N !

e−α(θ)λ bnF−N
λ
c∑

nz=0

(
α(θ)
λ

)nz
nz!

 , (2.108)
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To simplify (2.107), we use the well known incomplete gamma functions [31], which

satisfy

Γ(n+ 1) =

∫ t

0
tne−tdt = n!, (2.109a)

γ(n+ 1, a) =

∫ a

0
tne−tdt, Γ(n+ 1, a) =

∫ ∞
a

tne−tdt, (2.109b)

Γ(n+ 1, a)

Γ (n+ 1)
= e−a

n∑
k=0

ak

k!
, (2.109c)

Γ(n+ 1) = Γ(n+ 1, a) + γ(n+ 1, a), (2.109d)

where Γ(n+ 1, a) is known as the upper incomplete gamma function and γ(n+ 1, a) is

the lower incomplete gamma function.

From (2.109) we may simplify (2.108) as,

nF∑
n=0

|〈n|eık(Ω)·r|0〉|2 = e−β(θ)
nF∑
N=0

(β(θ))N

N !

(
1−

γ(bnF−N
λ c+ 1, α(θ)

λ )

Γ(bnF−N
λ c+ 1)

)
, (2.110)

Plugging the above into (2.107),

∞∑
n=nF+1

|〈n|eık(Ω)·r|0〉|2 = 1 −
(

1− γ(nF + 1, β(θ))

Γ(nF + 1)

)

+ e−β(θ)
nF∑
N=0

(β(θ))N

N !

γ(bnF−N
λ c+ 1, α(θ)

λ )

Γ(bnF−N
λ c+ 1)

,

(2.111)

which finally leads us to a closed form solution for (2.65) in terms of the lower incomplete

gamma functions for both trap shapes.

Mf (θ) =
γ(nF + 1, β(θ))

Γ(nF + 1)
+ e−β(θ)

nF∑
N=0

(β(θ))N

N !

γ(bnF−N
λ c+ 1, α(θ)

λ )

Γ(bnF−N
λ c+ 1)

. (2.112)

With this choice of notation, nF = 0 represents a trap in which solely the ground state

is occupied. Therefore, the absence of any Fermi sea can be treated by setting nF = −1

in (2.112).
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2.5 Emission Patterns in Anisotropic Traps

In order to grasp the mechanics behind the spatially anisotropic decay rates, it is neces-

sary to firstly look at the emission probabilities into the different energy levels or energy

shells. For the isotropic case, this probability distribution is poissonian in character,

and has a maximum value centered on particular energy level, given by the square of

the Lamb-Dicke parameter η2 = ER/~ω. This variable determines the range of acces-

sible states and is given by the ratio between the recoil energy, ER = ~2k2
0/2m, and

the trapping strength, ~ωx,y,z, in the different directions. Here k0 is the wave vector

corresponding to the transition |e〉 → |g〉.

In the presence of an anisotropic Fermi sea the rate of spontaneous emission along a

specific direction is determined by three parameters: (1) the number of ground state

atoms (in the zero temperature case nF), (2) the degeneracy of the available states,

gp,c(λ, np,c), and (3) the Lamb-Dicke parameter η =
√
ER/~ω.

As we will show in this section, introducing anisotropy to the trapping potential has a

distinct effect on the accessibility of the various energy levels. Moving to this regime

incurs discontinuities in the previously smooth distribution of accessible states (isotropic

regime). These discontinuities arise as the degeneracy of the individual energy levels

change and the energy excitations of the respective quantum states change. These

changes cause ‘kinks’ in the distribution. Since we are dealing with integer aspect ratios

λ the discontinuities appear every integer multiple of λ, i.e. between every n = m(λ−1)

and n = mλ energy level (n is the energy level and m = 0, 1, 2, . . . ). However, the

distribution remains smooth over a range of length λ inbetween these discontinuities.

The cause of these anomalies is the focus of this section.

2.5.1 Emission Probabilities

Let us first focus on the influence of the degeneracies by examining the matrix elements

for individual transitions from the ground cm-state (center of mass state) of the excited

atom to a single final state, |np,c〉. We have,1

Pe(np,c) = |〈np,c|eik·r|0〉|2 . (2.113)

To evaluate this equation we rewrite (2.39a) as np = N + λnz, where N = nx + ny.

Since nz may take any of the values nz = b0/λc, b1/λc, . . . , bnp/λc, we can sum over all

the modes of a particular shell knowing that N = np − λnz. To determine the decay

1Here and in the following (see the top rows of figures 2.1 and 2.2) we are evaluating the coherent
states of the anisotropic harmonic oscillator.
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Figure 2.1: Top row: emission probability, Pe, into individual shells in a pancake
shaped trap for η2 = 36 and λ = 10, 23, 46. The arrow indicates the n = 20 energy
level of the harmonic trap, which is referred to in the text. Bottom row: decay rate of

the excited particle, Mf , for the same parameters as above.

rate into a particular mode, we need to integrate the decay rate over all possible spatial

directions. Firstly, we note that the volume integral in spherical polar co-ordinates is

written, ∫
dV =

∫ ∞
0

dr

∫ 2π

0
dϑ

∫ π

0
sinθ dθ. (2.114)

Hence, the probability for an atom to emit into any angle in space is given by the integral

over all the available angles as,∫
dΩ =

1

4π

∫ 2π

0
dϑ

∫ π

0
sinθ dθ, (2.115)

where we normalise using (4π)−1. Therefore, we can construct the shell emission as the

integral over all angles Ω using (2.101) as,

Pe(np) =
1

2

∫ π

0
dθ sinθ e−η

2sin2θ− η
2

λ
cos2θ

bnp/λc∑
nz=0

(
η2sin2θ

)np−λnz

(np − λnz)!

(
η2

λ cos2θ
)nz

nz!
. (2.116)

For the cigar trap, we rewrite (2.39b) as nc = λN +nz. With N only able to take values

in the range, N = b0/λc, b1/λc, . . . , bnc/λc, leading to,

Pe(nc) =
1

2

∫ π

0
dθ sinθ e−

η2

λ
sin2θ−η2cos2θ

bnc/λc∑
N=0

(
η2

λ sin2θ
)N

N !

(
η2cos2θ

)nc−λN

(nc − λN)!
, (2.117)
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Figure 2.2: Top row: emission probability, Pe, into individual shells in a cigar shaped
trap for η2 = 36 and λ = 10, 23, 46. The arrow indicates the n = 20 energy level of the
harmonic trap, which is referred to in the text. Bottom row: decay rate of the excited

particle, Mf , for the same parameters as above.

For an isotropic trap, this a continuous distribution of finite width which is centered

around the energy level n = η2. The effects introduced by an anisotropy are significant

and can be clearly seen in the graphs in the upper rows of figures 2.1 and 2.2, where

we show Pe(np) for the pancake trap and Pe(nc) for the cigar shaped trap, respectively,

for increasing values of the anisotropy, λ = 10, 23 and 46. The most obvious feature

in both situations is the appearance of a λ-dependent discontinuity in the distribution,

which is more pronounced in the cigar shaped setting.

To explain this behaviour, let us first intuitively argue its existence. When an internally

excited atom which is trapped in the ground state of an empty isotropic harmonic trap

decays, the probability of the photon being emitted is the same in all directions. This

is rather easy to understand as, in this situation, the density of states is identical in all

directions. However, for the anisotropic trap the situation is different. As the aspect

ratio is increased, the degeneracy of any energy level will either decrease or remain the

same. Therefore up to a specific shell, the number of quantum states, as given by (2.63a)

and (2.63b) is reduced, and as a result, the density of states in the different directions

changes.

As the recoil of the de-excited fermion to a certain quantum state and the direction

of the emitted photon are directly related, it seems rather surprising that for the free

case spontaneous emission remains isotropic, irrespective of the diminishing number of

quantum states. However, it is exactly the modified distribution shown in the upper
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Figure 2.3: (a) Emission probability into individual states within the shell n = 5
in an isotropic trap. The triplets represent (nx, ny, nz) and all permutations of each
triplet have the same probability. The Lamb-Dicke factor is η = 5, however changing
this value only scales all values. (b) Emission probability into individual states within
the shell n = 5 in a pancake trap with λ = 5. The values for the three states on the

left are not visible on this scale.

rows in figures 2.1 and 2.2 that preserves the isotropic decay rate of a lone atom in an

anisotropic Hilbert space.

To gain more insight into the source of the discontinuities, let us consider the emission

probability into specific states within a degenerate shell n of an isotropic and a pancake

shaped (λ = 5) trap. Figure 2.3 shows Pe(nx, ny, nz) for a fixed shell, in which all

combinations of the triplet (in both (a) and (b)) of quantum numbers adds up to np = 5.

It can be seen that, in general, states which include ground state excitations have a higher

probability for occupation, relative to ones which do not. This is due to the fact that

the excited atom is initially in its center-of-mass ground state.

When we move from the isotropic to the anisotropic setting, it is therefore clear that

whenever the value of an energy shell, n, reaches an integer multiple of the anisotropy

parameter, the shell contains a state with two ground state excitations. For example,

with the pancake trap, when np = mλ, where m = 0, 1, 2, . . . , there exists the state
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(nx, ny, nz) = (0, 0,m), in the shell np. For the cigar trap we have the doubly degenerate

state (nx, ny, nz) = (m, 0, 0) and (0,m, 0), for the energy state nc = mλ.

As these states have a higher probability of occupation (see figure 2.3(b)), the overall

emission probability into this energy shell is increased, leading to the observed discon-

tinuous jump. As an example, let us consider a pancake shaped trap with an aspect

ratio of λ = 10. For the shell np = 19, the degenerate states are (nx + ny, nz) = (19, 0)

and (9, 1), whereas for the np = 20 energy level (indicated by the arrow in figure 2.1) the

states are (nx+ny, nz) = (20, 0), (10, 1) and (0, 2). The extra (0, 2) state is the dominant

contributor to the shell occupation probability, and its appearance is responsible for the

discontinuous increase in emission probability. For the cigar trap, this effect is even

more pronounced as there are two tight directions, and in the example above, the states

(nx, ny, nz) = (2, 0, 0) and (0, 2, 0) both become available. Closer examination shows

that the state (1, 1, 0) also gives a large (but smaller) contribution to emission into the

nc = 20 shell, followed by the (1, 0, 10) state, whereas the (0, 0, 20) state’s occupation

probability is negligible.

Transitions into states which have a ground state excitation, possess a larger overlap

with the initial state, and are therefore more likely. In this respect, a transition into a

state with two ground state excitations combined with a small change in the principle

quantum number contributes to the high probability of the state’s occupation. The

smallest change in principle quantum number is in the tight direction, therefore making

transition into states with low tight excitations (numbering > 0) and low soft excitations

(≈ 0) more likely. This is in contrast to states with high soft excitations and ground

state tight excitations. The probability of transition into these states is smaller, making

them unlikely candidates for occupation.

For completeness, we show the total emission probability for increasing particle number

(i.e. increasing Fermi energy or Fermi level) and different anisotropies in the bottom

rows of figures 2.1 and 2.2. This equality is given by

M c,p
f (nF) =

∞∑
nc,p=nF+1

Pe(nc,p). (2.118)

Fermi inhibition is absent for the empty trap (Mf = 1), shown for nF = −1, and slowly

increases for nF ≥ 0 and accelerates for nF ∼ η2. The discontinuity in the variable

Pe(nc,p) translates into non-smooth kinks in this distribution. Furthermore, it is clear

that the decay rate of the excited fermion in the presence of an ideal Fermi sea, with

Fermi level nF, is different for the different trap shapes. In other words the trap shape,

and consequently the shape of the Fermi Sea, plays a role which affects the total lifetime
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Figure 2.4: (Color online) Mf along the tight axis at T = 0. η2 = 49, nF = 60. Note
that we use a continuous distribution of λ for this graph.

of the excited fermion with respect to the free case. This is in conjunction with the

Lamb-Dicke parameter η, the squeezing parameter λ and the Fermi level nF.

2.5.2 Tight and Soft Axes Emission

The fact that the presence of an anisotropic Fermi sea will lead to anisotropic emission

patterns was already noted in [5, 6], and in the following, we develop a detailed un-

derstanding of the directional features. Since for the pancake, as well as for the cigar

shaped trap, the angular decay rate is rotationally equivalent in the plane through the

respective symmetry axis, (0, π), we can treat both geometries in a quasi 2D picture. It

is then immediately clear that the results for the angular decay rate in this plane for

both settings will be related by a simple π/2 rotation (due to our definition of λ ≥ 1).

Let us first look at the emission along the principal axes of the anisotropic trap only

in the tight and the soft direction. Choosing the tight direction in the pancake (cigar)

shaped trap along θ = 0 (θ = π/2), the modification factor in (2.112) simplifies to

Mf =
γ(ñF + 1, η

2

λ )

Γ(ñF + 1)
. (2.119)
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This equation is easily found from (2.101) (or the equivalent version for the cigar trap)

by setting θ = 0 (θ = π/2) and following the same procedure outlined in section 2.4.2.

The behaviour of (2.119) with increasing anisotropy is shown in figure 2.4 for a system

with nF = 60. The most obvious feature of the plot is a series of sawtooth-like discon-

tinuities. Careful examination shows that nF of these exist and they appear whenever

the value of the aspect ratio, λ, increases beyond the values of nF
m , (m = 1, 2, . . . , nF).

The increase in emission probability for values just after these points is due to the

availability of an extra free state with a lower tight excitation just outside the Fermi

edge. For example, in the pancake trap, when one moves from λ = 30 to λ > 30 the

state (nx + ny, nz) = (0, 2) emerges from the Fermi sea for nF = 60. As discussed in

Section 2.5.1, this state has a high probability to be emitted into as it contains ground

state excitations in the soft direction, hence the large increase in the decay rate. By

increasing λ further this state moves away from the Fermi edge and the emission prob-

ability decreases until the next state with a lower tight excitation emerges from the

Fermi sea. For values of λ > nF no more discontinuities appear since the Fermi sea only

occupies energy states with ground state excitations in the tight direction. Emission

along the soft direction can be calculated from (2.119) by taking λ = 1. The decay rate

along this direction is determined exclusively by the Fermi shell nF and the value of the

Lamb-Dicke parameter η.

Considering a fixed value of the aspect ratio λ in either anisotropic trapping potential and

changing nF one notices a degeneracy in the emission probability in the tight direction,

shown in figure 2.5(a). This behaviour was already mentioned in [5] and we can see

from (2.119) that it stems from the fact that ñF only changes its value in steps of λ.

An increase in the value of ñF coincides with the Fermi sea occupying a state with

a higher tight excitation (and ground state soft excitations), leading to a decrease in

the decay rate along the tight direction. For example, when moving from nF = 35 to

nF = 36, the state (nx + ny, nz) = (0, 9) becomes occupied by the Fermi sea, producing

the discontinuous reduction of the decay rate (see figure 2.5(a)).

2.5.3 Fine Structure

The emission spectrum between the principal axes is characterised by the appearance of

a fine structure (see figure 2.5(b)), which exists for a wide range of parameters. The first

hint to understanding the origins of the visible extrema comes from noticing that the

number of maxima between the soft and tight axes is related to the number of excitations

in the tight direction that are occupied by the Fermi sea, ñF. To show this relation let
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Figure 2.5: (Color online) (a) Mf (θ) in a pancake shaped trap at T = 0. η2 = 25,
λ = 4 with nF = 31 (outermost) to nF = 36 (innermost). (b) Mf (θ) in a pancake

shaped trap with λ = 11, η2 = 25 and nF = 23.

us consider the emission probability into all shells with a fixed value for nz in a pancake

shaped trap.

Let us reconstruct (2.107) for a fixed nz. The first term in this equation is written

as, e−α(θ)/λ (α(θ)/λ)nz /nz!. The second term, which removes the occupied modes of

the Fermi sea, has a condition attached to it which we need to incorporate into the

expression. The condition is that we may only remove the mode if it is within the Fermi

sea. Therefore, for each nz, the soft excitations may only take values between 0 and

nF − λnz. With these considerations the second term of (2.107) is written as,

e−β−
α(θ)
λ

nF∑
N=0

bnF−N
λ
c∑

nz=0

(β(θ))N

N !

(
α(θ)
λ

)nz
nz!

, (2.120)

we fix the value of nz in the Fermi Sea,(
α(θ)
λ

)nz
nz!

e−β(θ)−α(θ)
λ

nF−λnz∑
N=0

(β(θ))N

N !
. (2.121)

This allows us to write,

Mf (θ, nz) = e−
α(θ)
λ

(
α(θ)
λ

)nz
nz!

(
1− Γ(nF − λnz + 1, β(θ))

Γ(nF − λnz + 1)

)
. (2.122)

However the argument of Γ (nF − λnz + 1, β(θ)) must be zero for nF−λnz + 1 ≤ 0, and

we rewrite it as max(0, nF−λnz + 1) to find the decay rate as a function of available nz
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Figure 2.6: (Color online) Mf (θ, nz) for a pancake shaped trap with, λ = 11 η2 = 25
and nF = 23. In the four graphs the decay is only allowed into quantum states of the

harmonic trap with nz = 0, 1, 2, and nz ≥ 3, respectively.

modes as,

Mf (θ, nz) = e−
α(θ)
λ

(
α(θ)
λ

)nz
nz!

γ(max(0, nF − λnz + 1), β(θ))

Γ(max(0, nF − λnz + 1))
(2.123)

with the definition of α(θ) and β(θ) given in (2.105). As a specific example we show in

figure 2.5(b) a gas with nF = 23, η2 = 25 and λ = 11. In this case we find ñF = 2 maxima

in any π/2 arc between the tight to the soft axis. Comparing this emission pattern to

the results from (2.123), one can see (figure 2.6) that each isolated contribution from

a transition into a state with a fixed value of nz is responsible for one of the maxima.

For values of nz > ñF the emission is predominantly into the tight direction, therefore

originating from transitions into states for which both ground state excitations in the
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soft direction are available. This is the angular form of the phenomenon analysed in

section 2.5.1.

When restricting the recoiling atom to occupying states with a ground state excitation in

the tight direction, nz = 0, the emission is mainly focused around small angles about the

soft axis. The intermediate excitations, nz = 1, 2, make up the two intermediate ripples

between the principle axes and summing up the contributions to the photon emission of

all four plots in figure 2.6 gives the emission plot shown in figure 2.5(b). In contrast, if

we calculate (2.123) for an isotropic trap for different values of nz, each individual term

would show a similar behaviour of having a single maximum at a finite angle between

the principle axes. However, the sum of those will give the isotropic emission pattern

which corresponds to the decay rate being the same in all directions.

It is now obvious that for the limit λ > nF the fine structure disappears and the extrema

of emission will be located around the directions of the principal axes (see figure 2.7(a)).

As λ→∞, emission into the tight direction is reduced, whereas the emission in the soft

direction ((0, π)-axis for the cigar trap) remains constant, figure 2.7(b). In this regime

the Fermi sea is completely confined to states with ground state excitations in the tight

direction. Therefore, it becomes easier for the recoiling atom to access states in the soft

direction due to the diminishing density of states in the tight direction. In the limit of

λ→∞ the emission probability can be written as

Mf (θ;λ→∞) =
γ(nF + 1, β(θ))

Γ(nF + 1)
. (2.124)

For both trapping geometries, the emission probability in the tight direction has com-

pletely vanished. This is shown for the cigar trap in the inner plot of figure 2.7(a). As we

have discussed, the spontaneous emission rate plots are rotationally symmetric around

the (0, π) axis.

Shown in (b) is a 3-D illustration of an excited atom’s angular lifetime in a cigar trap

(λ→∞) relative to the free case. For the cigar trap, the emission is symmetric through

a 2π rotation about the (0, π) axis. Note that for a pancake shaped trap this effect would

correspond to emission into a well defined plane perpendicular to the tight principal axis.

i.e. a 2π rotation about the (π/2, 3π/2) axis.

It is possible to make use of this behaviour and create a system where photon emission

becomes highly directional. While directional photon emission is usually achieved by

using optical cavities, and therefore engineering the Hilbert space of the photon, this

example is complementary in that it uses a confining geometry of an anisotropic harmonic

trap to modify the energetic modes available to the Fermi Sea. This means of engineering
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Figure 2.7: (Color online) (a) Mf (θ) in a cigar shaped trap at T = 0 with nF = 45
and η2 = 49. λ = 46 (outermost), λ = 96 (center plot) and λ = ∞ (innermost). The
plot is symmetric through a 2π rotation about the (0, π) axis. (b) A three-dimensional
illustration of the excited particles decay rate in a cigar trap in the large anisotropy

limit.

the available Hilbert space of the particles, in conjunction with an ultracold Fermi Sea,

is analogous to the modification achieved by the use of an optical cavity.

Let us stress that it is not primarily the size of the Fermi sea that is responsible for the

inhibition of spontaneous emission, merely the presence of the Fermi sea. The strength

of the effect is therefore independent of the strength of the inhibition effect uncovered

earlier and the emission probability of the photon in the presence of a Fermi sea can still

be close to the emission probability in free space whilst η2 & nF. (see figure 2.7(a)).

2.6 Conclusions and Outlook

In this chapter we have given a detailed investigation into the directional properties of

spontaneous emission of a single atom in the presence of an anisotropic, ideal and spin

polarised ultracold Fermi gas. The demand to obey the Pauli principle leads to the

formation of a non-trivial, anisotropic emission pattern for the photon, which can be

explained by carefully examining the allowed transitions the recoiling atom can make.

We first calculated the relation between the Fermi energy and particle number and

then investigated the single particle transition matrix element, for both geometries of

anisotropic traps. The change in the density of states into the different spatial directions

was found to be accompanied by the appearance of discontinuities in the distribution of

the emission probability spectrum for different shells. While in an isotropic trap these
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two effects cancel and produce an isotropic emission spectrum, in an anisotropic trap

they lead to an intricate fine-structure in the presence of a Fermi sea.

In a next step we have managed to explain this fine-structure by attributing the extrema

to the emissions which come from the transitions of the recoiling atom into well defined

states in the tight direction. If the aspect ratio exceeds the Fermi energy, the fine-

structure vanishes and the emission spectrum becomes smooth, though not isotropic,

again.

Finally, we have pointed out that this system can be used to create a highly directional

photon source. The effect uncovered is complementary to the common use of optical

cavities to influence a photons direction after emission and makes use of the ability to

influence the atom’s phase space. The experimental observation of directional photon

emission in anisotropic, cold, fermionic gases would therefore be a sign of a fundamental

consequence of the asymmetric nature of the wavefunction for of fermionic particles.



Chapter 3

Spatial Adiabatic Passage

Coherence is a phenomenon central to the study of cold atomic physics. The term

‘coherence’ may be found in many disciplines, for instance in literature, a piece is said

to be coherent if there is a quality of harmony to the written text. Coherence is a

unifying element in good writing whereby all parts of the text are clearly connected.

In physics, coherence refers to the relationship between constituent elements of a physical

system. Electromagnetic waves are said to be coherent when there is a fixed relationship

between the phase of the waves at different locations or different times. If this relation-

ship is random the light is incoherent, such as light from the sun or a light bulb. A

laser (which is an acronym for light amplification by stimulated emission of radiation)

is a source of coherent light. Ideal laser light exhibits both spatial coherence, which is a

fixed phase relationship between the electric fields at different locations across the beam

profile and temporal coherence, a fixed phase relationship between the electric fields at

one location but different times.

Atoms have a wave nature, typically modeled as de Broglie waves, and therefore share

many characteristics of light. The onset of experimentally realisable ultra-low temper-

ature physics has provided a platform to probe analogous experiments for matter and

light [32]. A state of matter that has received notable attention, especially over the

past two decades, is the Bose-Einstein Condensate (BEC) [16, 33]. Predicted by Albert

Einstein using a description of the quantum statistics for photons introduced by Nathan

Bose, a bosonic gas of atoms cooled below a critical temperature, condenses to occupy

the lowest available quantum state. In the non-interacting limit, this many particle state

exhibits the properties of a single atom. Moreover the BEC exhibits long-range spatial

phase coherence. Since its first observation in low density gases in 1995 [34, 35], the

study of BEC has become a field in its own right. Whilst the theory of coherence in

51
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matter waves is rapidly developing, it is not yet as well understood as its optical counter-

part. A traveling BEC, displaying both spatial and temporal coherence, is propagated

by what is known as an atom laser [36, 37]. An output beam of atoms with (ideally) a

well defined direction, phase and intensity, is produced by extraction from a previously

realised BEC. The relationship between light and matter is not restricted to the fact

that they are both different forms of energy, but extends far beyond. Coherence is a

property that is demonstrable in both light and matter.

Whilst coherence in light and atoms may be regarded as separate (but related) entities

in their own right, one can also talk about coherence between atoms and light. Atom-

light coherence can be achieved by coupling of internal electronic states of (usually an

ensemble of) atoms to an applied coherent electromagnetic field. If a coherent narrow

bandwidth laser interacts with a two level atom, whose ground state is |g〉 and excited

state |e〉, it will continuously absorb and re-emit photons via stimulated emission. When

the laser is tuned in resonance with the energy difference (or transition frequency) be-

tween the two states the probability to find an atom in either state exhibits complete

oscillations between |g〉 and |e〉. If the laser is detuned with respect to the transition

frequency, incomplete oscillations are observed. This cycle is known as the Rabi cycle.

By virtue of the interaction between the two level atom and coherent light field, the

atom is said to be in a state of atomic coherence between |g〉 and |e〉. This is atom-light

coherence.

Due to spontaneous emission, the atom will, at some statistically random time, emit a

photon and return to its ground state thus interrupting the Rabi cycle. For an ensemble

of atoms exhibiting coherent oscillations between |g〉 and |e〉, spontaneous emission in any

one atom has the effect of changing the phase of that atom with respect to the ensemble.

Over time spontaneous emission occurs in many atoms (at statistically random times)

and as a result fewer atoms will be in phase with each other leading to the decoherence

of the ensemble. Photons are lost from the cavity in the spontaneous emission process

and decoherence sets in as the light field the atoms interact with decays. If the laser

light continuously irradiates the sample, coherence is maintained. However some optical

processes require a dynamic pulsing of laser light and decoherence is of paramount

importance.

From the perspective of quantum engineering, quantum control, and most notably quan-

tum information processing/computing, cold atomic systems that permit high fidelity

state transfer are particularly desirable from both experimental and theoretical points of

view. The high fidelity transfer of occupation density, for an ensemble of atoms initially

prepared in their internal ground state |g〉, to a target state |e〉, is a challenging prospect
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as a consequence of Rabi oscillations [38], i.e. the exchange of probability density be-

tween |g〉 and |e〉 (also referred to as Rabi flopping). However, controlled population

transfer between internal states of atoms may be achieved using a technique known as

Stimulated Raman Adiabatic Passage (STIRAP). This technique not only circumvents

the decoherence problems associated with spontaneous emission, but also the fidelity of

the transfer process is robust against the temporal dynamics of Rabi oscillations.

STIRAP relies on coupling three states, an initial |0〉, intermediate |1〉 and target state

|2〉 using two laser fields. The initial and target states being long lived metastable states,

whereas as the intermediate state may be short lived and subject to spontaneous decay

into either of the available states. One laser field couples the initial and intermediate

states whereas the other couples the intermediate and target state. An appropriate

sequence of laser pulses facilitates high fidelity population transfer from the initial to

the target state |0〉 → |2〉.

To begin we outline in this chapter the basics of the atom photon interaction and detail

its mathematical formalism in section 3.1. We extend this analysis to a three level

atom in section 3.2. Therein we arrive at the Hamiltonian in the interaction picture for

STIRAP processes and outline the constraints for coherent population transfer. Finally

we conclude the first section by discussing the matter wave counterpart of STIRAP,

known as spatial adiabatic passage (SAP) [39–44] in section 3.2.6. The theoretical

development and experimental realisation of STIRAP in matter wave settings is the

focus of the remainder of this chapter. We propose two novel experimentally realistic

scenarios for the implementation of SAP. The first is SAP on an atom chip waveguide,

section 3.3, and thereafter SAP using multimode radio frequency dressed potentials in

section 3.4.

3.1 The Dressed Atom

In this section we outline the basic theory of the atom-photon interaction. The theory

found in this section largely follows the direction contained in Atom-Photon Interactions

by Cohen-Tannoudji [13].

The model used herein is as follows; We consider a two level atom, whose lower and

upper levels are denoted by |g〉 and |e〉. These eigenstates of the atom have energies

~ωg and ~ωe respectively, where ~ωg < ~ωe. The atom is confined in a lossless cavity

of volume V , which is sufficiently large that such there is no inhibition of spontaneous

emission [1, 2], and detuned sufficiently such that there is no stimulated emission [45].

This allows us to avoid to deal with the effects of cavity quantum electrodynamics.
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Figure 3.1: A laser pulse of energy ~ωl couples the ground |g〉 and excited |e〉 states
of a two level atom with energies ~ωg and ~ωe respectively. The laser is detuned with

respect to the atomic transition by ~∆l = ~ωe − ~ωg − ~ωl.

A single mode laser field of frequency ωl, containing N photons, exists in the cavity.

The average number of photons 〈N〉 is assumed to be large. The energy density in the

cavity is given by the ratio of the average number of photons to the volume of the cavity,

〈N〉/V .

During the fluorescence cycle, an absorption followed by stimulated emission, the average

number of photons in the cavity 〈N〉 is reduced. We assume that the width ∆N of the

distribution of the number of photons is very large, but also very small compared to the

average number of photons 〈N〉, i.e. 〈N〉 � ∆N � 1. Therefore over a large time scales

the atom is subjected to the same laser intensity, and the process is assumed coherent.

The Hamiltonians of the individual subsystems are; the atomic Hamiltonian HA and

the laser mode Hamiltonian Hl, where

HA = ~ωg|g〉〈g|+ ~ωe|e〉〈e|, (3.1a)

Hl = ~ωl
(
â†l âl +

1

2

)
. (3.1b)

â†l , âl are the creation and annihilation operators which create a photon in the cavity

energetic mode |l〉.

The global Hamiltonian is a sum of the subsystem Hamiltonians and the interaction

Hamiltonian between the atom and the applied electric field.

H(t) = HA + Hl + V(t). (3.2)

In the electric dipole approximation, the interaction Hamiltonian between the atom and

the laser mode is written

V(t) = −d ·E(x, t),
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where d is the atomic dipole and E(x) is the field operator, evaluated at the position x

of the atom, and is given by

E(x) = εl

√
~ωl

2ε0V

(
âl + â†l

)
, (3.3)

where εl is the polarization of the laser mode at x. We assume that the laser mode

is in the coherent state |αle−ıωlt〉. Here we expand the coherent state via the unitary

displacement operator as, |αle−ıωlt〉 = D(αe−ıωlt)|0l〉, with

D(αe−ıωlt) = eαle
−ıωltâ†l−α

∗
l e
ıωltâl = e−|αl|

2/2eαle
−ıωltâ†l e−α

∗
l e
ıωltâl . (3.4)

Similarly D†(αe−ıωlt) = e−|αl|
2/2e−αle

−ıωltâ†l eα
∗
l e
ıωltâl . Therefore the coherent states are

defined by,

|αle−ıωlt〉 = e−|αl|
2/2eαle

−ıωltâ†l e−α
∗
l e
ıωltâl |0l〉 = e−|αl|

2/2eαle
−ıωltâ†l |0l〉,

〈αle−ıωlt| = e−|αl|
2/2〈0l| eαle

−ıωltâ†l e−α
∗
l e
ıωltâl = e−|αl|

2/2〈0l| e−α
∗
l e
ıωltâl ,

(3.5)

The notation |αl〉 refers to |α|2 photons in the energetic mode l. The projection of the

laser field on its coherent state, from (3.3) and (3.5), is

〈αle−ıωlt|E(x)|αle−ıωlt〉 = εl

√
~ωl

2ε0V
〈αle−ıωlt|

(
âl + â†l

)
|αle−ıωlt〉, (3.6)

This projection is explicitly evaluated in appendix A.3. Therein we recognise the photon

number α, in the energetic mode l, is real valued (i.e. αl = α∗l ), so that the average

photon number is given by 〈N〉 = α2
l . The above is shown to be given by,

〈αle−ıωlt|E(x)|αle−ıωlt〉 = ξl cos(ωlt), (3.7)

where,

ξl ≡ 2

√
~ωl
2ε0

√
〈N〉
V

εl. (3.8)

The electric dipole moment of the atom is dge = 〈g|d|e〉 = d∗eg. Typically the dipole

matrix elements are 〈g|d|g〉 = 〈e|d|e〉 = 0, and the operator assumes the form,

d = d∗ge |e〉〈g|+ dge |g〉〈e|. (3.9)

Combining (3.7) and (3.9) the interaction term is

V(t) = −
(

d∗ge |e〉〈g|+ dge |g〉〈e|
)
·
(
ξl e

ıωlt + ξl e
−ıωlt

)
. (3.10)
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For the purposes of brevity we define,

~Ω ≡ −dge · ξl, (3.11)

and the light-matter interaction is expressed,

V(t) =
(
~Ω∗eıωlt + ~Ω∗e−ıωlt

)
|e〉〈g|+

(
~Ωeıωlt + ~Ωe−ıωlt

)
|g〉〈e|. (3.12)

The coupling amplitude ~Ω is a measure of the coherence strength between |g〉 ↔ |e〉. In

the absence of any coupling (~Ω = 0) the atom laser system exhibits no Rabi oscillations.

As ~Ω is increased the rate of Rabi oscillations increases. From (3.7), the coupling term

is explicitly written

~Ω = −2

√
~ωl
2ε0

√
〈N〉
V

deg · εl. (3.13)

This term is dependent on both the energy of the applied laser field and the value of

the average photon number 〈N〉 with respect to the size of the cavity volume V . For

experimental purposes, the frequency of the applied field is typically a constant and the

coupling frequency Ω (the Rabi frequency) is changed by adjusting the intensity 〈N〉/V ,

thereby changing the rate of the Rabi oscillations.

3.2 Stimulated Raman by Adiabatic Passage

The two level atom light system of section 3.1 can be easily extended to multi-level sys-

tems. Of primary interest for this thesis is quantum state transfer between two chosen

levels in a three level system. Stimulated Raman adiabatic passage (STIRAP) [46] is a

method that facilitates population transfer between two suitable states of an atom or

molecule. A sample of atoms (or molecules) is prepared in its internal ground state |0〉.
Known as a two photon Raman process, a pump pulse ~Ωp(t)e

−ıωpt couples the |0〉 and

|1〉 states, and a Stokes pulse ~Ωs(t)e
−ıωst couples the |1〉 and |2〉 states, as found in

figure 3.2. The initial |0〉 and target |2〉 states are typically long lived metastable states

whereas the |1〉 state may undergo spontaneous emission into |0〉 or |2〉, or more impor-

tantly, into a different state not considered in our level scheme. Alternatively |0〉 may

be a rotational level in the vibrational ground state of a molecule and |2〉 may be some

highly excited vibrational state. The objective of this process is to successfully trans-

fer population from |0〉 → |2〉 without losing any population from |1〉 by spontaneous

emission.

Complete population transfer is achieved in STIRAP processes by what is known as

a ‘counter-intuitive’ application of the time dependent pump and Stokes pulses. By
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Figure 3.2: Three level Λ structure. The pump pulse Ωp couples levels |0〉 and |1〉
with a detuning ∆p. The Stokes pulse Ωs coupling levels |1〉 and |2〉 with detuning ∆s.

applying these pulses in this manner no population is transferred to the |1〉 throughout

the process. Therefore this technique is robust against spontaneous decay from |1〉. As

spontaneous emission plays no significant role, we omit to include a description of it in

the system’s Hamiltonian.

In this section we extend the analysis of the two level atom from section 3.1 to a three

level atom, and arrive at the Hamiltonian in section 3.2.1. This is extended to the time

dependent case in section 3.2.2. The Hamiltonian eigensystem and the transfer process

are found in sections 3.2.3 and 3.2.5.

3.2.1 Three Level Atom

The electronic structure in three level atoms are typically Λ, V and ladder-type arrange-

ments. The Λ-type structure is illustrated in figure 3.2. The V structure is an inverted

Λ configuration, whilst the ladder structure has three energy levels |0〉, |1〉 and |2〉, with

energies ~ω0 < ~ω1 < ~ω2. The intermediate state |1〉 is coupled to state |0〉 by means of

a Pump laser pulse of energy ~ωp and a coupling strength ~Ωp. Similarly |1〉 is coupled

to state |2〉 by means of a Stokes laser pulse of energy ~ωs and a coupling strength ~Ωs,

as found in figure 3.2.

For STIRAP processes we are interested in the dynamics in the atom due to the inter-

action with the laser. As the backaction onto the laser field is here unimportant, we

neglect to include the Hamiltonian of the laser field Hl. The Hamiltonian of the system

is given by,

H(t) = HA + V(t), (3.14)
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where,

HA = ~ω0|0〉〈0| + ~ω1|1〉〈1| + ~ω2|2〉〈2|, (3.15a)

V(t) =
(
~Ω∗pe

ıωpt + ~Ω∗pe
−ıωpt)|1〉〈0|+ (~Ωpe

ıωpt + ~Ωpe
−ıωpt)|0〉〈1| +

+
(
~Ωse

ıωst + ~Ωse
−ıωst)|1〉〈2|+ (~Ω∗se

ıωst + ~Ω∗se
−ıωst)|2〉〈1|. (3.15b)

In the Schrödinger picture we have,

ı~
d

dt
|Ψ(t)〉S = H(t) |Ψ(t)〉S. (3.16)

Parameterizing the correct evolution of the wavefunction is difficult due to the time

dependence of the operator H(t). It helps to move to a rotated basis, i.e. the interaction

picture, via the unitary transformation U(t), where |Ψ(t)〉S = U(t)|Ψ(t)〉I. From (3.16)

the time evolution of the state vector in the interaction picture is,

ı~
d

dt
|Ψ(t)〉I =

(
−ı~U†(t)U̇(t) + U†(t) (HA + V(t)) U(t)

)
|Ψ(t)〉I. (3.17)

We are free to choose any form of the unitary transformation. For our purposes, a

particular form of U(t) that is very useful is,

U(t) ≡ exp
[
− ı
(
ω0|0〉〈0|+ (ω0 + ωp)|1〉〈1|+ (ω0 + ωp − ωs)|2〉〈2|

)
t
]
. (3.18)

We proceed to simplify the right hand side of (3.17) using the above unitary transfor-

mation. The first term becomes,

− ı~U†(t)U̇(t) = −~ω0|0〉〈0| − (~ω0 + ~ωp)|1〉〈1| − (~ω0 + ~ωp − ~ωs)|2〉〈2|. (3.19)

Since U(t) commutes with H(t), the second term is given by,

U†(t)HAU(t) = ~ω0|0〉〈0| + ~ω1|1〉〈1| + ~ω2|2〉〈2|. (3.20)

We define ~∆p ≡ ~ω1 − ~ω0 − ~ωp and ~∆s ≡ ~ω1 − ~ω2 − ~ωs and combine (3.19) and

(3.20) as,

− ı~U†(t)U̇(t) + U†(t)HAU(t) = ~∆p|1〉〈1|+ ~(∆p −∆s)|2〉〈2|. (3.21)

When we evaluate the last term, U†(t)V(t)U(t) of (3.17), we encounter four components,

U†(t)|1〉〈0|U(t), U†(t)|0〉〈1|U(t), U†(t)|1〉〈2|U(t) and U†(t)|2〉〈1|U(t). By expanding

the exponential in the usual way these terms simplify to |1〉〈0|~Ω∗eıωpt, |0〉〈1|~Ωe−ıωpt,
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|1〉〈2|~Ωeıωst and |2〉〈1|~Ω∗e−ıωst respectively. Thereby we find,

U†(t)V(t)U(t) =
(
~Ω∗pe

2ıωpt + ~Ω∗p
)
|1〉〈0| +

(
~Ωp + ~Ωpe

−2ıωpt
)
|0〉〈1|

+
(
~Ωse

2ıωst + ~Ωs

)
|1〉〈2| +

(
~Ω∗s + ~Ω∗se

−2ıωst
)
|2〉〈1|.

(3.22)

When the electric field is near resonance (∆p � ωp+ω1−ω0 and ∆s � ωs+ω1−ω2) the

dipole approximation is valid. In this regime, the e±2ıωpt and e±2ıωst terms are rapidly

oscillating and over significantly long time scales they average to zero. We make the

rotating wave approximation by assuming theses terms are negligible,

U†(t)V(t)U(t) = ~Ω∗p|1〉〈0| + ~Ωp|0〉〈1| + ~Ωs|1〉〈2| + ~Ω∗s|2〉〈1|. (3.23)

Combining (3.21) and (3.23), the Hamiltonian in the interaction picture, under the

rotating wave approximation is defined,

HI = −ı~U†(t)U̇(t) + U†(t)HAU(t) + U†(t)VU(t),

HI = ~


0 Ωp 0

Ω∗p ∆p Ωs

0 Ω∗s ∆p −∆s

 .
(3.24)

3.2.2 System Hamiltonian

The time dependence of the pump and Stoke pulses is imposed when the intensity of the

applied laser pulses is changed. The ‘counter-intuitive’ application of the laser pulses is

achieved by smoothly increasing (and then decreasing) the intensity of the Stokes pulse

first and then the pump pulse after an appropriate delay. As we have seen in section 3.1,

the coupling terms assume the form,

~Ωp(t)|0〉〈1| = −d01 · ξp(t)|0〉〈1| = −2

√
~ωp
2ε0

√
〈N(t)〉
V
|0〉〈0|d01 · εp|1〉〈1|, (3.25a)

~Ωs(t)|2〉〈1| = −d12 · ξs(t)|2〉〈1| = −2

√
~ωs
2ε0

√
〈N(t)〉
V
|2〉〈2|d12 · εs|1〉〈1|. (3.25b)

Here ξp(t) (ξs(t)) is the envelope of the pump (Stokes) laser electric field amplitude at

the location of the atom or molecule, and d01 (d12) is the component of the transition

dipole along the electric field. The pump ~Ωp(t) and Stokes ~Ωs(t) pulses assume a

time dependence as the average photon number 〈N〉 is changed with respect to the

(constant) spatial volume V . It is important to note here that the frequency of the

applied laser pulses does not change in time, only the intensity. Careful examination

of (3.25) shows that there may exist a phase difference between the Rabi frequencies

of the pump and Stokes pulses, should there be a phase difference between d01 · εp and
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d12 · εs. The STIRAP process works for any phase difference between the fields. As this

phase difference is incorporated by adiabatically following the dark state, and does not

contribute to the dynamics of the system, it is convenient to neglect any phase difference

between the pump and Stokes pulses. Therefore we may assume the pulses to be real

valued, ~Ωp(t) = ~Ω∗p(t), ~Ωs(t) = ~Ω∗s(t). The Hamiltonian (3.24) under the RWA in

the interaction picture takes the form,

HI(t) = ~


0 Ωp(t) 0

Ωp(t) ∆p Ωs(t)

0 Ωs(t) ∆p −∆s

 . (3.26)

The magnitude of the off diagonal coupling terms Ωp(t) and Ωs(t) controls the rate of

population transfer between the respective energy levels, whilst their frequency remains

constant, and therefore the detunings ∆p and ∆s remain time independent. The time

dependence of the pump and Stokes pulses controls the rate of the Rabi oscillations

between |0〉 ↔ |1〉 and |1〉 ↔ |2〉 respectively.

Coupling between energy levels is strongest when the laser pulses are in resonance with

their respective transition frequencies, ∆p = ∆s = 0, which is single photon resonance.

However, for the purposes of population transfer, we may use the single photon detunings

∆p,∆s 6= 0 as long as the combination of the pump and Stokes frequencies be resonant

with the two photon Raman transition, ∆p −∆s = 0. Two photon resonance ∆p = ∆s

is a necessary condition for population transfer.

3.2.3 Eigensystem of the Hamiltonian

The generalised eigenvalues and eigenstates of (3.26) are found in [47]. As we have no

practical use in this thesis for the case when ∆s − ∆p 6= 0 we concern ourselves only

with the two photon resonance regime ∆s −∆p = 0,

HI(t) = ~


0 Ωp(t) 0

Ωp(t) ∆p Ωs(t)

0 Ωs(t) 0

 . (3.27)

The eigenvalues of this operator are,

~λ0(t) =
~
2

(
∆p −

√
∆2
p + 4Ω2

p(t) + 4Ω2
s(t)
)
, (3.28a)

~λ1(t) = 0, (3.28b)

~λ2(t) =
~
2

(
∆p +

√
∆2
p + 4Ω2

p(t) + 4Ω2
s(t)
)
. (3.28c)
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We define the following mixing angles,

tan ϑ(t) =
Ωp(t)

Ωs(t)
; tan ϕ±(t) =

2
√

Ω2
p(t) + Ω2

s(t)

∆p ±
√

∆2
p + 4Ω2

p(t) + 4Ω2
s(t)

, (3.29)

to write the eigenvectors of (3.27) as,

|φ0(t)〉 = sin ϑ(t) sin ϕ−(t)|0〉+ cos ϕ−(t)|1〉+ cos ϑ(t) sin ϕ−(t)|2〉, (3.30a)

|φ1(t)〉 = cos ϑ(t)|0〉 − sin ϑ(t)|2〉, (3.30b)

|φ2(t)〉 = sin ϑ(t) sin ϕ+(t)|0〉+ cos ϕ+(t)|1〉+ cos ϑ(t) sin ϕ+(t)|2〉. (3.30c)

When considered with respect to the mean photon numbers of the applied laser fields (as

in (3.7)) these eigenstates are considered the ‘dressed states’ of the matter-field system.

For a quantum state prepared in the |φ1(t)〉 dressed state it never sends out florescence

due to spontaneous emission from the intermediate excited state |1〉, subsequently it is

known as the ‘dark state’. The remaining |φ0(t)〉 and |φ2(t)〉 eigenvectors have contribu-

tions from the intermediate excited state |1〉 and may be exhibit spontaneous emission,

and are therefore referred to as ‘bright states’.

The kets are written in vector form as,

|0〉 =


1

0

0

 , |1〉 =


0

1

0

 , |2〉 =


0

0

1

 . (3.31)

At any time t equations (3.27), (3.28) and (3.30) satisfy HI(t)|φν(t)〉 = λν(t)|φν(t)〉.

3.2.4 Adiabaticity Constraints

Adiabaticity and adiabatic process are fundamental concepts of the quantum theory.

At the core of adiabaticity is the quantum adiabatic theorem (QAT) which is widely

known and used in both theory and experiment. The general statement of the QAT is

as follows; given a time dependent non-degenerate Hamiltonian H(t), a quantum state

may be prepared in an eigenstate |ψµ(0)〉 (with energy ~ωµ(0)) of the initial Hamiltonian

H(0). If H(t) evolves slowly enough, the system will be remain in |ψµ(t)〉 at all times

t up to a multiplicative phase factor. What determines slow enough is captured by the

quantitative condition (QC),

|〈ψν(t)|Ḣ(t)|ψµ(t)〉|
|~ων(t)− ~ωµ(t)|2

� 1, or

∣∣∣∣ 〈ψν(t)|ψ̇µ(t)〉
~ων(t)− ~ωµ(t)

∣∣∣∣� 1, ν 6= µ. (3.32)
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Adiabatic processes remains a lively area of study and research and to some extent,

it is quite a controversial topic. Initially sparked by a paper from by Marzlin and

Sanders [48], the authors showed using counterexamples that the QC is insufficient to

guarantee the validity of the QAT. It was later shown that the QC is applicable for

only a special class of systems in quantum mechanics [49]. Thereafter it was pointed

out that the violations of the QAT arise from resonant transitions between energy levels

[50]. However, some authors remain unconvinced and show the QC to be necessary but

insufficient to guarantee the validity of the adiabatic approximation [51]. Violating the

QC invalidates the QAT, whereas satisfying it may not guarantee the QAT, but does in

most cases.

Since the initial concerns raised by Marzlin and Sanders, the area has been a source

of rigorous debate. Rather than attempt to tackle the finer points of the adiabatic

constraints, we simply present the widely acknowledged conditions of adiabatic following

for STIRAP systems. The derivation of which is largely deduced from that provided in

Messiah (1999) [52].

Non-adiabatic coupling between the bright and dark states remains small when the

matrix element 〈φ0,2(t)|φ̇1(t)〉 is small with respect to the differences in the eigenvalues

λ0,2(t) − λ1(t). From (3.30) we see that 〈φ0,2(t)|φ̇1(t)〉 = ϑ̇(t)sin ϕ∓(t). Since the

maximum value of sin ϕ∓(t) = 1, the criterion for adiabatic following is given by,∣∣∣∣∣ Ω̇p(t)Ωs(t)− Ωp(t)Ω̇s(t)

Ω2
p(t) + Ω2

s(t)

∣∣∣∣∣� |λ0,2(t)− λ1(t)|. (3.33)

If the system is evolved slowly enough Ω̇p(t) ≈ Ω̇s(t) ≈ 0 and the above condition

is satisfied. As long as this constraint is satisfied throughout the STIRAP processes,

non-adiabatic coupling between the bright and dark states remains small.

3.2.5 Population Transfer

Intuitively one may consider that in order to transfer population from |0〉 → |2〉 the

pump laser Ωp(t) should be applied first, thereby coupling the |0〉 ↔ |1〉 states. There-

after it follows that the application of the Stokes laser Ωs(t) to couple |1〉 ↔ |2〉 should

transfer population to |2〉. To combat Rabi oscillations and achieve 100% transport fi-

delity, only an absolutely accurate timing of ‘intuitively’ ordered pump and Stokes pulses

would transfer population first from |0〉 → |1〉 and then |1〉 → |2〉. Such high precision

timing and control of laser pulse sequencing is experimentally challenging and not ro-

bust. Additionally, spontaneous emission from |1〉 is an extra complication preventing

attainment of high fidelity population transfer using this method.
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Figure 3.3: (a) The coupling amplitudes of the Stokes ~Ωs(t) and pump ~Ωp(t) laser
pulses during the transfer process. (b) The eigenvalues λν(t) of (3.28) (divided by ~).
(c) The probability densities of the |0〉 state |b0(t)|2 and the |2〉 state |b2(t)|2, showing

complete population transfer. Resonant tunings assumed ∆p = 0.

The ‘counter-intuitive’ pulse ordering employed in STIRAP processes facilitates com-

plete population transfer whilst avoiding any contribution from the radiatively decaying

|1〉 state. The system first interacts with the Stokes laser and then the pump laser. The

Stokes laser first couples the unoccupied |1〉 and |2〉 states. When the pump pulse is em-

ployed, one of the three eigenstates of the system Hamiltonian is the dark state (3.30b)

which has no contribution from |1〉. An adiabatic progression of the system parameters

ensures that for the duration of the STIRAP process only the dark state is occupied,

and there is not enough energy supplied to excite the system to occupy the bright states.

Consequently there is no possibility of decoherence due to spontaneous emission.

The time evolution of the STIRAP process is encapsulated in the following rate equation,
b0(t)

b1(t)

b2(t)

 = exp

−ı∫ t

0
dt′


0 Ωp(t

′) 0

Ωp(t
′) ∆p Ωs(t

′)

0 Ωs(t
′) 0




b0(0)

b1(0)

b2(0)

 . (3.34)

Initially all population is |0〉 and the state vector (b0(0), b1(0), b2(0))T = (1, 0, 0)T.

In figure 3.3 we have plotted the time dependent Rabi frequencies Ωs(t) and Ωp(t) in

(a), the eigenvalues λν(t) in (b) and the probability densities |bν(t)|2 of the |0〉, |1〉 and

|2〉 states in (c); we note |b1(t)|2 = 0. The eigenvalues at the beginning of the process are

degenerate λν(t) = 0, (ν = 0, 1, 2) found in figure 3.3(b). The time dependent pulsing

of the pump and Stokes laser pulses induces a splitting of the eigenvalues of the bright

states λ0(t) and λ2(t) throughout the process, whilst the eigenvalue of the system dark

state λ1(t) remains 0.

The STIRAP process proceeds as follows; initially all population is found in the |0〉 state,

and the Rabi frequencies of the pump and Stokes pulses Ωs(t) = Ωp(t) = 0. Initially the

system is in some linear superposition of the dressed states (3.30). If the process as a

whole is adiabatic the system remains in the designated dressed states. Increasing Ωs(t),

while Ωp(t) ≈ 0 changes the mixing angle ϑ(t) from π/4 → 0, therefore cos ϑ(t) = 1.
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Experimentally tuning the mixing angle in this way adiabatically moves the system into

the ‘dark state’ |φ1(t)〉, where it remains until the end of the process.

The pump pulse succeeds the Stokes pulse as in figure 3.3(a) thereby tuning the mixing

angle ϑ(t) from 0 → π/2. In this way the coefficient of the |2〉 state, sin ϑ(t), changes

from 0→ 1, whilst the opposite happens for the |0〉 coefficient. Accordingly population

has been transferred from |0〉 → |2〉 as found in figure 3.3(c). Finally the Rabi frequencies

of both lasers reach 0 and the system again relaxes into some superposition of the dressed

states (3.30). This method of counter-intuitive laser pulsing facilitates a high fidelity

population transfer from |0〉 → |2〉.

The delay between the Stokes and pump pulses is an essential component of STIRAP

processes, and must be short enough so that the splitting between the eigenvalues in (b)

remains large at the midpoint of the evolution. If this is satisfied non-adiabatic coupling

between the bright and dark states remains negligible (see section 3.2.4). However,

should the delay between the Stokes and pump pulses be too large, the bright state

eigenvalues approach that of the dark state at the midpoint of the process, and leakage

into |1〉 is observed.

3.2.6 Rabi Oscillations in Optical and Matter Wave Settings

Since the first observation of magnetically trapped neutral atoms [53] in 1985, the ability

to study the quantum nature of matter has become possible through the many advances

in laser cooling and trapping techniques [38]. Techniques to isolate and manipulate indi-

vidual atoms [54] offer exciting possibilities to explore matter-wave systems with locally

addressable potentials. An interesting area of study that is shared by coherent optical

and matter wave systems is the property known as Rabi oscillations. Any coherent two

state system can display Rabi oscillations; in optical systems Rabi oscillations can be

observed between coupled internal electronic states (as outlined above), and in matter

wave settings they can appear as the density oscillations between coupled spatial modes.

An atom, molecule or weakly interacting BEC trapped in one spatial region may exhibit

Rabi oscillations between its region and a neighbouring one in a manner quite similar

to that found in optical systems (of section 3.1). Systems of study that display these

properties are usually referred to as atom-optical systems.

Given that Rabi oscillations exists for two level systems it may naturally be extended to

multilevel atom-optical systems to provide a platform for the experimental and theoreti-

cal exploration of the matter wave analogue of many well studied phenomena in quantum

optics, such as Stimulated Raman Adiabatic Passage [46] and Electromagnetically In-

duced Transparency [55]. The study of these optical systems from the matter-wave (also
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Figure 3.4: Three trap potential. dLM (dMR) is the separation between the left and
middle (middle and right) traps. In the limit of large separation |n〉L, |n〉M and |n〉R
are the n-th vibrational energy eigenstates corresponding to the single trap potentials.

referred to as the ‘atom-optical’) viewpoint offers a fresh approach to these areas with

the possibility of uncovering a new and deeper understanding of these phenomena and

moreover the quantum nature of matter itself.

3.2.7 From STIRAP to SAP

In 2004, the relationship between STIRAP and the transport of a matter wave via the

tunneling interaction was clarified [56, 57]. Eckert et al. showed that neutral atoms

can be transferred between an alignment of optical dipole traps [56] and Greentree et al.

demonstrated the feasibility of electron transfer in quantum dots [57] using an analogous

technique.

In this section we briefly review a paper by Eckert et al. [56] which illustrates the

(almost) one-to-one relationship between atom optical system and optical systems. They

pointed out that whilst the STIRAP technique allows for population transfer by means

of the electric dipole interaction between a three level atom and two laser fields, a similar

technique exists for atoms trapped in dipole traps made by focusing light through an

array of microlenses [58]. The distances between different sites may be adiabatically

varied in a manner that increases the rate of Rabi oscillations between neighbouring

sites. In the matter wave setting, the frequency of the Rabi oscillations is more commonly

referred to as the Rabi ‘tunneling’ frequency. The term ‘tunneling’ refers to a matter

wave transversing a potential barrier separating neighbouring spatial regions. By varying

the tunneling frequency in a manner that parallels that in the optical case, an atom may

be transported from an initial (spatial) site to a target site with a high fidelity.

Three inline dipole traps may be modeled by a linear one dimensional arrangement of

three piecewise harmonic traps as found in figure 3.4. An atom is assumed to be cooled

to a temperature low enough such that it occupies the vibrational ground state of the

left most trap |0〉L. Each trap is assumed to have the same trapping frequency ω and as
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Figure 3.5: Schematic of the SAP process for an atom in the left trap. Reducing the
distances between the traps leads to an increase in the tunneling strengths.

such all vibrational states, of each trap |n〉L,M,R, are in resonance. The Rabi tunneling

interaction between any two neighbouring traps may be increased by reducing the dis-

tance d between the trap centers. In [56] a good approximation for the Rabi tunneling

frequency between the lowest vibrational ground state of neighbouring resonant traps is

provided. As a function of d and in harmonic oscillator units (
√

~/mω = 1),

Ω(d)

ω
=
−1 + ed

2
[1 + d(1− erf(d))]

√
π(e2d2 − 1)/2d

, (3.35)

where erf() is the error function [31].

For an adiabatic change of the distances between the trap centers, the atom remains

at all times in the lowest vibrational state of the system’s traps and the Hamiltonian

describing the evolution of this time dependent system is,

H(t) = ~


0 ΩLM (t) 0

ΩLM (t) 0 ΩMR(t)

0 ΩMR(t) 0

 , (3.36)

where ΩLM (t) and ΩMR(t) are the tunneling frequencies between |0〉L ↔ |0〉M and

|0〉M ↔ |0〉R respectively. Since the outer traps are separated a large distance, the

tunneling interaction between them is negligible at all times during the process. Given

that the three inline harmonic potentials all have the same trapping frequency, we can

renormalise the diagonal elements of H(t) to 0.

For the purposes of population transfer the eigenvector of H(t) that plays the crucial

role is (again) the so-called ‘dark state’,

|φ1(t)〉 = cos ϑ(t)|0〉L − sin ϑ(t)|0〉R,

tan ϑ(t) =
ΩLM (t)

ΩMR(t)
.

(3.37)
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This state has a non-degenerate eigenvalue λ1(t) = 0.

The (optical) STIRAP process is mimicked here as the tunneling rate between the middle

and right traps ΩMR(t) is first increased followed in sequence by increasing ΩLM (t), see

figure 3.5. Adhering to the appropriate ‘counter-intuitive’ motion of the trap centers

throughout the evolution, the system will remain in the dark state and adiabatically

transport its population from |0〉L → |0〉R as ϑ(t) is tuned from 0→ π/2.

3.2.8 Further Remarks

Techniques to allow for coherent population transfer between internal states of an atom

or molecule were originally developed for nuclear magnetic resonance and applications

in optics. A thorough review of which is found in [59]. STIRAP has been experimentally

demonstrated in the metastable states of neon (Ne∗) [46]. The extension of such schemes

to matter wave settings is paving the way for the convergence of quantum optics [60] and

condensed matter [61], which has already been explored in [62]. Further studies along

this avenue include electron transport in solid state devices [39, 57, 63–66], of which

many consider electron transport in quantum dots [40, 67–69].

Since the pioneering works of [56, 57], SAP has become a field of study in its own right,

and numerous studies and proposals to actualise SAP, have arisen. Such schemes come

under the headings of Coherent Tunneling by Adiabatic Passage (CTAP) [56, 70], Spatial

Adiabatic Passage (SAP) [39, 63–66], transport without transit (TWT) [62], and have

also been referred to as Atomtronics techniques since they hold promise of mimicking the

properties of electronic devices [71–73]. Proposals for implementing SAP in quantum

dot systems [57], optical traps and waveguides [70] were amongst the original concepts

along this avenue. Extensions of SAP processes also hold promise for applications in

quantum computing and quantum information schemes [57, 74], and provide a platform

to allow for properties of quantum systems such as entanglement [75] and interferometry

[40] to be engineered, and to study the mean field dynamics in the transport of a BEC

[62, 76]. SAP has been explored as a means of studying other aspects of quantum

mechanics such as entanglement generation [75, 77], interaction-free measurement [41],

atomtronic devices [71–73], quantum information technologies [43, 74, 78], interferometry

[40, 79], matter wave filtering [42] and Bose-Hubbard dynamics [80]. To date the only

experimental demonstration has remained the transfer of a classical light source in a

triple waveguide structure [81, 82]. Motivated by the apparent difficulties that thus far

exist in experimentally actualising SAP we propose, in the following two sections, two

schemes to experimentally demonstrate SAP with single atoms or weakly interacting

BECs using currently available technologies.
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3.2.9 Numerical Methods

Although the model Hamiltonian (3.36) serves well to explain the underlying physics of

the system, for numerical work, typically the time dependent Schrödinger’s equation is

numerically integrated using the split operator method. The details of this approach are

found in appendix B.

In the following two sections (3.3 and 3.4) we present two proposals for the experimental

realisation of SAP. The temporal dynamics of each system is time evolved numerically

using the split operator method, which serves well for our purposes. In order to probe

the relationship between the full numerical integration of Schrödinger’s equation and the

model Hamiltonian (3.36) it is necessary to examine the time evolution of the wavefunc-

tion in the energetic mode basis. The energetic eigenfunctions are recovered easily using

the finite difference method (also detailed in Appendix B). The relationship between the

evolution of the quantum state in the energetic mode basis and the spatial basis (for

two spatial and energetic modes) is deduced in chapter 4. This approach is extended in

chapter 5 for SAP, where the phase evolution of the three mode system in described in

both the energetic and spatial bases.



3 Spatial Adiabatic Passage 69

3.3 SAP in Waveguide Settings

Over the past three decades the trapping and controlling of atomic matter waves has

become a dominant theme in ultracold physics [83–86]. The landmark achievement of

the production and confinement of ultracold quantum gases (UCQG), has paved the way

for deeper experimental and theoretical development of ultracold atomic physics. Three

Nobel prizes have been awarded to acknowledge the rapid progression of this discipline.

The first in 1997 (to Steven Chu, Claude Cohen-Tannoudji and William D. Phillips)

“for development of methods to cool and trap atoms with laser light” and the second in

2001 (to Eric A. Cornell, Wolfgang Ketterle and Carl E. Wieman) “for the achievement

of Bose-Einstein condensation ...”. In particular, the realisation of the Bose Einstein

condensation (BEC) has opened a branch of physics devoted to the study of coherent

matter waves. The third Nobel Prize was awarded this year (2012) to Serge Haroche and

David J. Wineland, “for ground-breaking experimental methods that enable measuring

and manipulation of individual quantum systems.”

Potential future development in experimental cold atomic physics, looks as promising

as the rapid development of the computer, i.e. the equipment becoming progressively

smaller and the output (production of UCQGs) becoming more efficient. These are

components of a general trend, which Nobel laureate Theodor Hänsch refers to as, the

movement ‘towards a quantum laboratory on a chip.’ The miniaturization and fabri-

cation of quantum potentials, whose size are of the order of the de Broglie wavelength

of atoms, have become known as ‘Atom Chips’. The Atom Chip utilizes the mature

technology of the semi-conductor industry to provide a versatile environment for the

coherent manipulation of atomic matter waves in the magnetic fields above microfabri-

cated current carrying wires. Since the introduction of the Atom Chip [87–90] in 1999

the scientific community has seen the realisation of the first BEC on a chip [91, 92] in

2001 and sympathetic cooling to Fermi degeneracy demonstrated on an atom chip [9] in

2006.

Subsequent technological developments have aided the creation of experiments that an-

swer fundamental questions in quantum mechanics [93, 94] and hold great promise for

the realisation of quantum information processing [95–97]. Advances in the technol-

ogy of optical lattices and micro-traps have allowed for substantial progress in this area

[58, 98–101]. Whilst techniques for controlling and preparing the internal states of atoms

using appropriate electromagnetic fields are well developed, only a few concepts exist for

achieving the same control over the spatial part of the wavefunction [56, 70, 96, 102, 103].

Such control would complement currently existing techniques and allow for the complete

engineering of a particle’s quantum state. SAP is a technique that allows for coherent

control over the spatial part of the wavefunction, in particular the controlled transport of
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atoms between different regions in space. In optical lattices this corresponds to moving

between discrete regions in space, and in waveguide settings this allows for the transfer

from one guide to another, originally explored in [70].

Here we focus on atom-chip systems and investigate their suitability as a platform for the

experimental realisation of SAP. These micro-fabricated chips contain surface mounted

current carrying wires which provide guiding potentials for matter waves. The wire

geometry and therefore the waveguide geometry, which is created at the micrometer and

nanometer scale, can be chosen almost at will [90], and may be loaded with ultracold

atomic gases at low densities [104, 105].

To begin we briefly present the basic protocol (section 3.3.1) and theoretical framework

involved in experimentally cooling and trapping neutral atoms (section 3.3.2). Therein

we sketch the theory concerned with magnetic trapping of neutral atoms with current

carrying wires. The model waveguide potential we use is outlined in section 3.3.6 where

we provide a theoretical analysis of SAP on an atom chip waveguide structure. Whilst

the initial state can be prepared with a large degree of localisation, one of the prob-

lems following the subsequent evolution inside the waveguide is that the wavefunction

disperses along the guide. This makes it hard to exactly measure the final state of the

system and put a quantitative number on the efficiency of the adiabatic process. In

section 3.3.6 we introduce a simple harmonic potential along the longitudinal direction

of the trap, allowing for the recombination of the wavefunction at the end of the process.

This permits a perfect measure of SAP fidelity on waveguide structures. In section 3.3.7

we describe a realistic situation by examining three waveguides mounted on an atom

chip. We show that whilst the resonance condition is not satisfied at all times, a counter-

intuitive approach and departure sequence will lead to high fidelity transport and can

be clearly distinguished from a direct tunneling approach.

3.3.1 Summary of Experimental Cooling and Trapping Processes

Achieving quantum degeneracy of ultracold neutral atoms is a multistep process. Mod-

ern experiments may use a combination of a number of cooling techniques developed over

the past several decades [106] to reach quantum degeneracy. Here we give an overview of

the process involved in creating a BEC mounted on an atom chip waveguide. The details

of the cooling are not important for this work, but are presented here briefly for com-

pleteness sake. Whilst the theoretical analysis contained in the remainder of the section

is concerned with the transport via SAP of a single atom in a triple waveguide structure,

the physics of the single atom is analogus to that of a BEC in the non-interacting limit.
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A magneto-optical trap (MOT) cools and traps atoms from a (room temperature) vapor

gas [38, 107]. The MOT consists of a vacuum chamber wherein the vapor gas is injected

and makes use of magnetic and optical components to create the desired trapping ge-

ometry to confine and produce an ultracold gas of neutral atoms. The magnetic field is

generated by a Helmholtz pair, which is two circular magnetic coils that can generate a

near uniform magnetic field through the vacuum chamber. When they are arranged in

what is called an anti Helmholtz configuration, they produce a quadrupole magnetic field

and the magnitude of the magnetic field |B| increases linearly in all directions from a

central point in the vacuum chamber, where |B| = 0. Three pairs of counter-propagating

red-detuned laser beams, which have the same polarizations relative to the photon mo-

mentum, are focused on the point of the zero magnetic field inside the vacuum chamber.

The lasers work to confine atoms to this point through the mechanism of stimulated ab-

sorption and emission which redirects the atom’s momentum toward the central point.

Laser cooling makes use of the Doppler effect, as the probability of an atom to scatter

a photon becomes velocity dependent. For an atom moving away from the zero point

of the magnetic field, the laser light is closer in resonance with the atom due to the

Doppler effect. This increases the rate of stimulated absorption and as a result the laser

imparts momentum to the atom (by the absorption of a photon), slowing it down. The

emitted fluorescent light by spontaneous and/or stimulated emission also changes the

momentum of an atom, but due to spatial symmetry the net momentum change is zero.

The combination of the magnetic and optical fields creates a restoring force that directs

the atoms toward the |B| = 0 center.

For the purposes of Atom chip experiments a more useful configuration than the above

is what is known as a mirror MOT [108]. Here the two anti-Helmholtz coils are replaced

with a U-shaped wire in combination with an external bias field to create the same

quadrupole field. Instead of using three pairs of counter-propagating laser beams only

two pairs need to be used. The Atom chip surface acts as a mirror with each laser beam

angled at ±45o to the Atom Chip surface. Configurations such as this are most desirable

in experiments involving Atom Chips as the loading procedure is most straight forward.

More developed modern techniques also allow for the transport of a BEC by making use

of what are known as optical tweezers [104].

3.3.2 Magnetic Guiding and Trapping

Experimental control of neutral atoms is governed by their interaction with magnetic,

electric and optical fields [38, 107]. Magnetic trapping relies on the interaction of the

magnetic moment of an atom µ with an external magnetic field B. The field exerts
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a torque on the magnetic moment which in general aligns µ with B. Thus when µ is

parallel to the field the energy is a minimum [38, 107].

The coupling between µ of the atom and the external field B is known as the Zeeman

effect. This effect is responsible for the splitting of a spectral line in the presence of

an applied magnetic field. It is the magnetic counterpart of the Stark effect, whereby a

spectral line splits into several components in the presence of an applied electric field.

The interaction between a static magnetic field, B, and the magnetic moment of the

atom, µ, lifts the energetic degeneracy of the state, resulting in the splitting of a single

emission spectral line into several lines. The interaction assumes the form,

VI = −µ ·B. (3.38)

The alkali metals are the elements in the first column of the periodic table. Their

electronic configuration consists of closed shells and a single outer valence electron. As

a result the total orbital angular momentum L and spin angular momentum S of the

atom are determined by this valence electron [13]. It follows that the magnetic moment

of an atom µ is a sum of the contributions from the orbital L and spin S magnetic

moments of the electron and the magnetic moment of the nucleus I, each multiplied by

their appropriate gyromagnetic ratio.

µ = −µB
~

(glL + gsS)− µN
~
giI, (3.39)

where,

µB =
e~

2me
, µN =

e~
2mp

, (3.40)

are Bohr magneton and nuclear magneton respectively, e is the electric charge, me and

mp are the electron and proton mass. The electron orbital g-factor gl = 1. Paul Dirac’s

relativistically invariant Schrödinger equation predicted the electron spin, g-factor gs =

2. A correction to this value of less than 0.1% arises when quantum electrodynamical

effects are taken into account [109, 110].

The magnetic moment of the nucleus I is also a sum of the orbital L and spin S magnetic

moments of the protons and neutrons in the nucleus [13]. As the treatment of the orbital

and spin magnetic moments of the nucleus is analogus to the treatment of those same

components for the electron, for the purposes of brevity and to avoid repetition we omit

to detail their contributions here.

In the presence of a weak magnetic field the orbital L and spin S magnetic moments

are considered coupled. For strong magnetic fields the spin-orbit coupling is broken and

we have what is referred to as the Paschen-Bach effect, i.e. the splitting of spectral
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lines with a strong magnetic field [111]. Here we confine ourselves to the regime of weak

magnetic fields, where the total electric magnetic moment J = L+S, is considered to be a

good quantum number. In this manner the spin and orbital angular momentum vectors

precess about the total orbital angular momentum vector J, and the corresponding

quantum number is in the range |L − S| ≤ J ≤ |L + S|. Of interest are the time

averaged spin and angular momentum vectors, which are given by their projection onto

the direction of J,

〈S〉 =
S · J
J2

J, (3.41a)

〈L〉 =
L · J
J2

J. (3.41b)

The time averaged magnetic moment for the electron is then written,

〈µ〉e = −µB
~

(
gl

L · J
J2

+ gs
S · J
J2

)
J. (3.42)

Given that, S · J = S2 + S · L; L · J = L2 + S · L; J · J = J2 = S2 + L2 + 2S · L; and

S2|s,ms〉 = ~2s(s+ 1)|s,ms〉; L2|l,ml〉 = ~2l(l+ 1)|l,ml〉; J2|j,mj〉 = ~2j(j + 1)|j,mj〉;
we have,

S · J =
1

2

(
J2 + S2 − L2

)
=

~2

2
[j(j + 1) + s(s+ 1)− l(l + 1)] ,

L · J =
1

2

(
J2 − S2 + L2

)
=

~2

2
[j(j + 1)− s(s+ 1) + l(l + 1)] .

(3.43)

Plugging these relations into (3.42) results in a simple expression for the time averaged

magnetic moment for the electron.

〈µ〉e = −µB
~
gj J,

gj ≡ gl
j(j + 1)− s(s+ 1) + l(l + 1)

2j(j + 1)
+ gs

j(j + 1) + s(s+ 1)− l(l + 1)

2j(j + 1)
.

(3.44)

The total magnetic moment of the atom is made up from the contributions of the spin

and orbital angular momentum of the protons, neutrons and electrons. The total angular

momentum is the vector sum of the total nuclear and orbital angular momentum,

F = I + J. (3.45)

The total time averaged magnetic moment is derived using the same approach as that

for the time averaged magnetic moment for the electron (3.44). The total time averaged

magnetic moment for atom is the projection of the components of the nuclear and orbital
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angular momentum onto the direction of F.

〈µ〉 = −µB
~

(
gj

J · F
F 2

+
µN
µB

gi
I · F
F 2

)
F. (3.46)

As before we note that, J ·F = J2 + J · I; I ·F = I2 + J · I; F ·F = F 2 = J2 + I2 + 2J · I.

and J2|j,mj〉 = ~2j(j + 1)|j,mj〉; I2|i,mi〉 = ~2i(i+ 1)|i,mi〉 and F 2|f,mf 〉 = ~2f(f +

1)|f,mf 〉, we have

J · F =
1

2

(
F 2 + J2 − I2

)
=

~2

2
[f(f + 1) + j(j + 1)− i(i+ 1)] ,

I · F =
1

2

(
F 2 − J2 + I2

)
=

~2

2
[f(f + 1)− j(j + 1) + i(i+ 1)] .

(3.47)

Plugging the above into (3.46) we find the total time averaged angular momentum for

the atom is,

〈µ〉 = −µB
~
gf F,

gf ≡ gj
f(f + 1) + j(j + 1)− i(i+ 1)

2f(f + 1)
+
µN
µB

gi
f(f + 1)− j(j + 1) + i(i+ 1)

2f(f + 1)
.

(3.48)

The magnetic field B is aligned along the ẑ direction therefore F ·B = F · ẑB = FzB.

We note that Fz|f,mf 〉 = ~mf |f,mf 〉, where mf = −f, . . . , f . Finally we may write

the time averaged interaction of the atom with the magnetic field as,

〈VI〉 = −〈µ〉 ·B,

〈VI〉 = −µBgfmfB.
(3.49)

Depending on the sign of gfmf , atoms are trapped in either a local minimum or local

maximum. For gfmf < 0 the atoms are in a strong field seeking state and for gfmf > 0

they are weak field seekers. A local maximum in free space is forbidden by the Earnshaw

theorem [92]. Since a three dimensional magnetic maximum cannot be produced - only

weak field seeking states can be magnetically trapped.

The simplest form of a magnetic field that is suitable for the trapping of neutral atoms is

the magnetic field generated by a current carrying wire [112, 113]. The wire’s magnetic

field decays as 1/r with the distance r from the wire. When a homogeneous external

magnetic bias field is applied in a direction perpendicular to the wire, the two fields

cancel at some distance r0 from the wire. This creates a two dimensional quadrupole

field that confines the atoms along a line parallel to the wire at a distance r0. At the

zero point of the magnetic field ‘spin-flip’ transitions may occur between trapped and

untrapped states [114]. The loss of trapped atoms in this manner is known as Majorana

‘spin-flip’ losses, and may be circumvented by using a further magnetic field along a
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Figure 3.6: (a) Polar and Cartesian co-ordinates. (b) Magnetic field due to a current
carrying wire in the presence of a bias field aligned orthogonally to the direction of

current (out of page). See text for details.

direction parallel to the wire, thus creating a non-vanishing magnetic field minimum at

r0. Developing the background theory to the above is the focus of the following sections.

3.3.3 Linear Quadrupole Waveguide

From Ampére’s circuital law (outlined in appendix A.4), the magnetic field (Bw(r)) at a

distance r from an infinitely long current carrying conductor, of negligible cross section

with a current Iw flowing along the +ẑ direction, in cylindrical co-ordinates (r̂, θ̂, ẑ) is,

B(r) = Bw(r) θ̂ =
µ0Iw
2πr

θ̂. (3.50)

The wire’s magnetic field according to eq. (3.50) can be expressed in Cartesian co-

ordinates, illustrated in figure 3.6(a), by

Bw(x, y, z) = − µ0Iw
2π(x2 + y2)

y x̂+
µ0Iw

2π(x2 + y2)
x ŷ. (3.51)

The current Iw in the wire is in the +ẑ direction. An external homogeneous magnetic

bias field, Bbias = Bbiasx̂, is applied along the x̂ direction, as in figure. 3.6(b),

B(x, y, z) =

(
Bbias −

µ0Iw
2π(x2 + y2)

y

)
x̂+

µ0Iw
2π(x2 + y2)

x ŷ. (3.52)
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This applied magnetic field cancels the magnetic field due to the wire along a line parallel

to the wire (with x = 0) at a distance y = r0. Since r =
√
x2 + y2, from (3.52) above,

r0 =
(µ0

2π

) Iw
Bbias

. (3.53)

The magnetic field increases in all directions from this point which is the local minimum,

see figure 3.7. The potential energy of an atom in a weak field seeking state (gfmf > 0)

increases with increasing field strength in all directions along (x̂, ŷ) from r0. Therefore

this quadrupole field confines and guides weak field seeking atoms in the vicinity of the

magnetic field minimum, along a line parallel to the current carrying wire.

B(r, θ) =
µ0Iw
2π

(
1

r0
− cosθ

r

)
x̂+

sinθ

r
ŷ. (3.54)

As long as the bias field is orthogonal to the wire the two fields cancel exactly. At the

zero point of the magnetic field atoms can be lost due to Majorana transitions between

trapped and untrapped spin states. This problem is resolved by adding a small B-

field component Bip = Bipẑ along the wire direction removing the energetic degeneracy

between the trapped and untrapped spin states.

3.3.4 Majorana Losses

An atom of magnetic moment µ confined in a magnetic field B experiences a torque

given by µ×B. This torque causes the magnetic moment of the atom to precess about

the direction of the magnetic field rather than remain aligned with it. This is known as

Larmor precession and the associated frequency of the precession [114],

ωL =
µB
~
|B|, (3.55)

is the Larmor frequency.

The major draw back of the linear quadrupole trap is that due to the orbital motion

of the atoms, losses may occur in the vicinity of the zero field. At r0 the magnetic

field, and therefore the Lamor frequency, both increase with distance from r0. When

the Larmor frequency (3.55) is small with respect to the rate of change of the magnetic

field, ωL � dB/dx, there is a large probability of a diabatic spin flip transition occurring,

from a trapped to an untrapped state. These are Majorana losses and in the vicinity of

the zero field this transition probability and the Majorana loss rate is high, limiting the

lifetime of the trap [38].
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Figure 3.7: A cross section of the magnetic field’s magnitude vs. the distance from
the conductor. In dashed red is the magnetic field in the absence of the bias field Bipẑ.
In solid green, the magnetic field exhibits a parabolic shape, as the additional Bipẑ
component lifts the energetic degeneracy at the distance r0 from the surface of the

wire. Also see figure 3.12.

3.3.5 Bias Field

Adding a small magnetic field component along the direction of the wire, removes the

energetic degeneracy between trapped and untrapped spin states [112]. In the vicinity

of r0 the trapping potential becomes approximately harmonic (figure 3.7), and the rate

of change of the magnetic field is significantly reduced near r0 so that ωL ≈ dB/dx.

Thus increasing the trap lifetime. The magnetic field is,

B(r) =
µ0Iw
2π

(
1

r0
− cosθ

r

)
x̂+

sinθ

r
ŷ +Bip ẑ. (3.56)

The magnitude of the magnetic field is found to be,

|B(r)| =

((
µ0Iw
2π

)2 r2 + r2
0 − 2rr0cosθ

r2r2
0

+ B2
ip

)1/2

. (3.57)

Near the trap minimum r → r0 we find cosθ ≈ 1 and r2r2
0 ≈ r4

0, so that,

|B(r)| =

(
B2

ip +

(
µ0Iw
2π

)2 (r − r0)2

r4
0

)1/2

= Bip

(
1 +

B2
bias(r − r0)2

r2
0B

2
ip

)1/2

,

≈ Bipẑ +
B2

bias

Bip

(r − r0)2

2r2
0

ẑ,

(3.58)

which is aligned along the ẑ direction. From this we get,

〈VI〉 = mfgfµBBip +
mω2

r

2
(r − r0)2. (3.59)
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Figure 3.8: Waveguide structure near the point of closest approach. The points
where the upper and lower waveguides have a minimum distance from the central
waveguide are indicated by the arrows. The wave-packet will originally travel in the

lowest waveguide from left to right.

where m is the atomic mass and the radial harmonic trap frequency is,

ωr =
Bbias

r0

√
mfgfµB
mBip

. (3.60)

The ‘ip’ notation refers to Ioffe-Pritchard, as this is the name given to this type of

potential [87]. Shown in figure 3.7 is the change incurred by adding this Bipẑ component

to the magnetic field lifting the minimum of the magnetic field making it harmonic in

shape near r0. As a result dB/dx ≈ ωL and atom losses due to Majorana spin flips are

significantly reduced.

3.3.6 Waveguide SAP: Model

A schematic of our waveguide model is found in figure 3.8. Our initial state is localised

on the left hand side of the bottom waveguide, which is the |0〉 spatial mode. The

middle waveguide is the |1〉 spatial mode and the top waveguide is the |2〉 spatial mode.

By adiabatically varying the distances between the waveguides we can adjust the Rabi

‘tunneling’ frequency between the spatial modes in a manner that tunes the mixing

angle (3.37) from 0→ π/2. An atom moving in this waveguide structure will experience

the change of the Rabi ‘tunneling’ frequency as a function of traveled distance, and its

population density will subsequently be transferred from |0〉 → |2〉.

The Schrödinger equation for the evolution of a wave-packet in a two-dimensional waveg-

uide structure is given by

ı~
d

dt
〈x|Ψ(t)〉 =

(
− ~2

2m

d2

dx2
+ V(x)

)
〈x|Ψ(t)〉 , (3.61)

where m is the mass of the atom and x = (x, y).
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As we assume a tight confinement in the ẑ direction, the dynamics in this direction can be

considered decoupled. The wavefunction can then be split into a product as Ψ(x, y)Ψ(z),

and we only consider the x, y components. In this section we will first examine the SAP

process using an idealised potential in which the condition of resonance between the

individual waveguides is fulfilled at any point. This will help us to illustrate the basic

process and in particular highlight the influence of the longitudinal dimension [70]. In

Section 3.3.7 we will compare these results to realistic atom chip scenarios in which we

will have to relax the resonance condition.

The assumption we make to guarantee that the ground state energy in all three waveg-

uides is the same everywhere is that we can construct our potential V(x) by stitching

three independent waveguides together. In a realistic situation the potentials creating

each guide would influence each other and lead to non-symmetric situations between

pairs. We assume each guide to have the potential

Vs(x) = A tanh[B(x− f(y))]2, (3.62)

where A determines the height, B the width and f(y) the position of the minimum along

the x-axis. The overall potential is then assumed to be given by the minimum value of

each of the three potentials at any point in space. A schematic view of the area in which

the guides approach most closely is shown in figure 3.8.

The eigenstates of matter waves propagating in two-dimensional waveguides at differ-

ent distances have recently been explored by Jääskeläinen and Stenholm [115]. They

determined the conditions under which the movement of a matter wave can be con-

sidered adiabatic in a curved waveguide and developed a formalism based on localised

and de-localised basis states. Here we will take a more straightforward approach and

present a numerical solution to the process, which will show that despite the existence

of velocity-dependent potentials due to the curvature of the waveguides [115] the SAP

process can be observed with high fidelity.

Our simulations start with a well-localised wave-packet far away from the coupling area.

In time, however, this packet will disperse along the waveguide, making it hard to

quantify the success of the transfer process. To overcome this problem we introduce

an additional harmonic potential of frequency ωl along the y-axis, which will lead to

a refocusing of the wave-packet in the longitudinal direction after a time of ωl/2. The

initial state of our wave-packet is given by the ground state of an isotropic trap of the

transverse frequency of the waveguide and its movement along the guide is induced by

the harmonic potential as well.
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Figure 3.9: Time evolution of the wave-packet in a counter-intuitive arrangement of
the waveguides at three different times for values of A=20 and B=0.5. The shapes
of the waveguides are indicated by the black lines and they are fully separated at the

energy of the wave-packet in the coupling zone (not visible).

Figure 3.10: Time evolution of the wave-packet in an intuitive arrangements of the
waveguides (parameters in figure 3.9). Note the Rabi oscillations visible in the middle

plot.

In figure 3.9 we show the evolution of the wavefunction at different times throughout the

process for a counter-intuitive arrangement of the waveguides. Starting with the wave-

packet located in the lower guide, one can clearly see that a majority of the probability

is transferred into the upper guide. The evolution of the same initial state in an intuitive

arrangement of waveguides (see figure 3.10) shows significantly less transfer.

The amount of transfer varies as a function of several parameters. The first one is the
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Figure 3.11: (Left) Probability transferred into the upper waveguide as a function of
offset between the two outer guides (in scaled units

√
~/mω). The full line shows the

results from the counter-intuitive case and the broken line for the intuitive one. (Right)
Maximum probability transferred as a function of the length of the interaction region.

distance between the two points of closest approach of the outer waveguides to the middle

one, ∆z. We show the amount transferred as a function of this quantity in figure 3.11

on the left hand side. The full line (blue) represents the counter-intuitive case and a

maximum at a finite value of ∆z is visible. The broken line shows the same quantity

for the intuitive setting, clearly indicating that direct tunneling does not lead to high

fidelities.

The second parameter that plays an important role is the degree of adiabaticity of the

process. For a waveguide system this translates into the velocity with which the atom

moves or alternatively the length of the coupling area, i.e. the lower the velocity the

more adiabatic the process. Here we keep the velocity small and effectively constant.

On the right hand side of figure 3.11 we show the transferred population density ver-

sus the overall length of the coupling area. Making the overall structure longer also

corresponds to decreasing the curvature of the waveguides and thereby reducing the

velocity-dependent couplings introduced by it [115], and increasing the adiabaticity. As

expected we find that a more adiabatic process leads to a larger transfer probability.

Our simulations are carried out only for the linear case of a single atom. If one would

like to carry out the same process using, say, a Bose-Einstein condensate, one has to

take care of the non-linearity that arises from the atomic interactions. Therefore our

simulations give a very good approximation for low density condensates or even thermal

clouds of atoms.
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Figure 3.12: Potentials above the three wires on an atom chip when all wires are
separated at equal distance (upper) and at the point where the wire on the left is

closest to the center wire (lower)

3.3.7 Waveguide SAP: Experimental Parameters

While the above results clearly demonstrate the viability of SAP in waveguide structures,

it is currently not clear in which experimental system it will be possible to observe it.

One of the problems is that the asymptotic eigenstates of the system have to be in

resonance at any point in time. This is hard to achieve in many realistic systems as

neighbouring trapping potentials usually strongly influence each other when they are

close enough to allow for significant tunneling rates.

Atom chips are well developed experimental tools these days and consist of an arrange-

ment of current carrying wires mounted on a surface [112]. We simulate the SAP process

by considering three such wires separated by a distance of 9µm initially. The overall

length of the coupling zone is chosen such that in the intuitive case several Rabi oscilla-

tions can be expected and the distance between two wire centers at the point of closest

approach is chosen as 4.5µm. The applied bias field has a magnitude of Bb = 100G and

because of the small curvature of the wires can be regarded as orthogonal at any point.

Since a large ground state is advantageous for tunneling the atomic species we consider

is 6Li. These parameters are chosen as they are close to experimental settings.
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Figure 3.13: Population in the individual waveguides as a function of time for the
counter-intuitive (left) and intuitive (right) waveguide arrangements. The population
in the trap on the left is shown by the blue line, the middle on by the green line and

the one on the right by the red line.

In general the central minimum will be influenced by the fields from the two outer wires

and increasingly so as the wires come closer. This will effect the resonance condition

and ultimately prevent the SAP process from working effectively. In order to minimize

this behaviour we make use of a trick and adjust the current going through the middle

wire to be slightly lower than the ones going through the outer wires. We have found

that Im = 700mA for the middle wire and Il,r = 1000mA for the two outer wires, is a

good choice.

Figure 3.12 shows the potential above the wires for the two different situations of sym-

metric distance between all wires (upper graph) and when the left wire is closer to the

center one than the right wire (lower graph). While an asymmetry in the second case is

clearly visible, its effect on the potentials is moderate.

A full 3D simulation of the SAP process in these potentials is a numerically taxing task

and beyond our current capabilities. We have therefore simulated the process by using

the two-dimensional potentials of the kind displayed in figure 3.12 and changing the

distance between the wires as a function of time. In doing so we neglect the dispersion

of the wavefunction along the longitudinal direction. However, since we have shown

in Section 3.3.6 that the dispersion does not have any significant effect on the transfer

fidelity, our simulations can be seen as a good approximation to the full situation.

In figure 3.13 we show the results of these simulations by displaying the populations in the

individual traps as a function of time for the intuitive (right) and the counter-intuitive

case (left). Initially all population is on the left hand side and it can be clearly seen that

in the counter-intuitive situation there is a smooth transition over to the right hand side.

While in the perfect SAP setup no population should ever appear in the central trap,
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the various imperfections of this realistic example lead to a finite occupation during the

process. However, at the very end no population is left in the middle trap. Contrary

to this, the graph for the intuitive case shows Rabi oscillations between neighbouring

waveguides and a less than full transfer of the wavefunction. The final densities of the

wavefunction in the spatial modes, depends on the overall duration of the process, for

the intuitive case. These are two signs that would allow to distinguish adiabatic transfer

from simple tunneling.

The fact that we achieve higher transfer fidelities in this non-perfect situation compared

to the results presented in Section 3.3.6 is purely due to being able to evolve more

adiabatically in time than in space due to the limitations of our computer hardware.

3.3.8 Concluding Remarks

We have investigated the use of the SAP technique to transfer atomic wave-packets

between neighbouring waveguides. Using an idealised system, we have first shown that

the dispersion along the guide does not significantly affect the transfer probability. This

was done by introducing a harmonic potential along the longitudinal axis, which allowed

to refocus the wave-packet after half an oscillation period. We have then simulated the

SAP process using realistic potentials created above current-carrying wires on atom chips

and shown that by choosing a lower current for the central wire there is a deviation from

the energetic resonance condition throughout the SAP process. We demonstrated that

whilst this deviation is present the SAP process remains robust and high fidelity state

transfer is still achievable. The results of this work clearly show that adiabatic transfer in

the counter-intuitive setup is a viable process using experimentally realistic parameters.

The counter-intuitive waveguide tunneling scheme can be clearly distinguished from

the direct tunneling approach in the intuitive waveguide setup by the absence of Rabi

oscillations.
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3.4 SAP in Radio Frequency Dressed Potentials

Section 3.3 explored the implementation of Spatial Adiabatic Passage (SAP) of a matter

wave on a three wire Atom Chip. A drawback to using microfabricated wires to create

multi-site trapping geometries is that the number of potential minima created is equal

to or less than the number of wires used. Nonetheless multi-wire Atom Chips have been

shown to be potential platforms for the realisation of SAP [116] and quantum gates

[117] for quantum information processing. Designing and producing multi-site trapping

geometries using carefully aligned nano-to-micrometer sized wires on Atom Chips adds

complications and difficulties from an engineering and fabrication perspective. Moreover

should an alternative trapping geometry be needed (if for instance a different atomic

species is used) a new Atom Chip needs to be made. Whilst atom chips are perfectly

feasible for cold atomic experiments, they lack versatility. This desired flexibility is

found by combining oscillating radio-frequency (rf-fields) or microwave near fields with

a static magnetic potential [30, 118, 119].1

The magnetic trapping of neutral atoms is made possible via the Zeeman effect (sec-

tion 3.3.2). The static magnetic field lifts the energetic degeneracy of the magnetic

substates of a hyperfine sublevel and confines weak field seeking atoms in a local poten-

tial minimum. When the energy separation between the magnetic sublevels is sufficiently

large (made possible via the inclusion of an additional magnetic field) the confined state

is metastable with respect to the timescale of the experiment and spin flip losses (Majo-

rana losses) are negligible. Alternatively energetically separated spin states are coupled

with an oscillating resonant rf-field which modifies the local properties of the trapping

potential of the neutral atoms, thereby creating local (and temporal) control over the

trapping potential.

Rf-fields have recently become one of the most versatile tools for trapping cold atoms

[120, 121]. They not only allow to create standard trapping potentials [120], but can

also be used to coherently manipulate matter waves [121, 122] or create complicated,

non-standard trapping geometries [123–125]. Extensions of rf-field schemes to create

numerous potential minima [123] via the use of a multi-mode array of rf-fields in the

presence of a static inhomogeneous magnetic field creates a versatile microscopic grating

potential. Using the technique outlined in [123] a high degree of control over the spatial

shape of the potential grating is achievable, allowing for irregular patterns and grating

spacings with a very small lattice constant to be created. Moreover by adjusting the

frequencies of the multi-mode rf-fields, temporal control over the potential grating is

possible. These aspects of multi-mode rf-dressed potentials collectively indicate that

1The work in this section was done in collaboration with Tadhg Morgan.
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they are an ideal candidate for the coherent transport of single atoms and Bose-Einstein

Condensates (BECs) using the SAP protocol. Additionally, they also have very localised

resonances, therefore changing each local potential has only a very small effect on the

neighbouring one, making it easier to fulfill the resonance condition.

In this section we investigate the feasibility of multi-mode rf-dressed potentials for the

experimental implementation of SAP for single atoms and BECs in the low interaction

regime. We propose a simple experimental setup that fulfills all necessary conditions

to observe SAP for cold atoms. We will also show that our setup offers the possibility

for extending adiabatic techniques to clouds of interacting atoms. The presence of

interactions between atoms introduces non-linearities into the system [126] which have

been shown to inhibit the effectiveness of SAP in transporting atoms [62]. Several

strategies to adjust the process and to allow transport in the presence of these non-linear

interactions have been suggested, for example a fixed detuning between the potential

wells [76]. Here we will show that dynamically controlling the detuning between the

potentials provides a marked improvement in the state transfer efficiency over both

regular and fixed detuning SAP.

In section 3.4.1 we outline the theoretical description of rf-trapping and describe the

system needed for SAP. In section 3.4.4 we demonstrate atomic transport in this system

and show that the process allows high fidelity atomic transport in contrast to the intuitive

method, which fails. In section 3.4.5 we examine the transport of an interacting atomic

cloud and how the presence of non-linear interaction can be compensated for by dynamic

detuning. Finally we conclude.

3.4.1 Atom Trapping Via Radio Frequency Radiation

A static inhomogeneous magnetic field splits the energetic degeneracy of the magnetic

sublevels of the atom (known as the Zeeman effect, section 3.3.2), which allows the

possibility to confine the atom at the magnetic field minimum. Radio frequency radiation

couples the magnetic sublevels of the atom in the presence of an inhomogeneous magnetic

field [120–123, 127], which modifies the local properties of the potential felt by the

atom. The presence of the inhomogeneous magnetic field means that the potential may

be addressed spatially selectively, which is the distinct advantage offered by rf-dressed

potentials.

In the semi-classical approach, the oscillating rf-field is treated as a classical light field

whereas the magnetic sublevels of the atom are quantised. As we will show, only the

magnetic component of the rf-field perpendicular to the static magnetic field contributes

to the resulting atom’s confining potential. The procedure is as follows; the magnetic
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field is split into its static and rf components respectively as,

B(t) = Bs + Brf(t). (3.63)

where Bs is aligned along the ẑ direction, Bs · ẑ = Bs
z ẑ. The magnetic field due to the

oscillating rf-field is split into its contributions in each of the three spatial directions as,

Brf(t) = Brf cos ωrft = Brf
x cos ωrft x̂ + Brf

y cos ωrft ŷ + Brf
z cos ωrft ẑ, (3.64)

where ωrf is the frequency of the rf-field, and Brf
x,y,z is the magnitude of the magnetic

component of the rf-field in the different spatial directions.

From equation (3.48), the total time averaged magnetic moment of the atom is 〈µ〉 =

µBgfF/~, where µB is the Bohr magneton, and gf is the Landé g-factor. The interaction

Hamiltonian, between the atom and the magnetic field, is then given by

VI(t) =
µBgf
~

F ·
[

Bs + Brf(t)
]
. (3.65)

Here F is the total angular momentum of the atom (3.45). This operator may be

decomposed into its components in the different spatial directions as,

Fx = ~


0 1 0

1 0 1

0 1 0

 ; Fy =
~
ı
√

2


0 1 0

−1 0 1

0 −1 0

 ; Fz = ~


1 0 0

0 0 0

0 0 −1

 . (3.66)

The time evolution of a quantum state, according to the Hamiltonian (3.65), is described

in the interaction picture as,

ı~
d

dt
|Ψ(t)〉I = VI(t)|Ψ(t)〉I . (3.67)

The temporal evolution of the quantum state is evaluated by moving to the rotating

frame via the unitary rotation operator,

|Ψ(t)〉R = Uz(t)|Ψ(t)〉I ,

Uz(t) = exp (ıωrftFz/~) .
(3.68)

Making use of the rotated basis (3.68), equation (3.67) becomes,

ı~
d

dt
|Ψ(t)〉R =

[
Uz(t)VI(t)U

†
z(t)− ı~Uz(t)

d

dt
U†z(t)

]
|Ψ(t)〉R. (3.69)

The second term on the right hand side readily simplifies to, −ı~Uz(t)
d
dtU

†
z(t) = −ωrfFz.

The first term, however, requires some development. We expand this term according to
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(3.65) and (3.66).

Uz(t)VI(t)U
†
z(t) =

µBgf
~

Uz(t)
[
FzB

s
z + FxB

rf
x (t) + FyB

rf
y (t) + FzB

rf
z (t)

]
U†z(t). (3.70)

The first component of the above is the energy associated with the splitting of the

magnetic sublevels according to the Zeeman effect (section 3.3.2). The following three

terms describe the coupling between the magnetic sublevels which drives the transitions

between the different states, the last of which may be neglected since, |µBmfgfB
rf
z /~| �

ωrf. This approximation is justified under the assumption that the Larmour frequency,

associated with the rf-field, is much smaller than the frequency of the field itself. It

follows that (3.70) simplifies as,

Uz(t)VI(t)U
†
z(t) '

µBgf
~
[
FzB

s
z + Uz(t)FxU

†
z(t)B

rf
x (t) + Uz(t)FyU

†
z(t)B

rf
y (t)

]
. (3.71)

At this point it is prudent to make use of the Baker-Campbell-Hausdorff (BCH) formula.

For operators A and B, the statement of the BCH formula is as follows,

eıλB A e−ıλB = A+ ıλ[B,A] +
ı2λ2

2!
[B, [B,A]] +

ı3λ3

3!
[B, [B, [B,A]]] + . . . , (3.72)

We recognise that the commutators of (3.66) satisfy,

[Fi, Fj ] = ı~εijkFk, (3.73)

where εijk = 1 for an even permutation, and εijk = −1 for an odd permutation. From

the above it can easily be shown that (see Appendix A.5),

Uz(t)FxU
†
z(t) = Fx cos ωrft− Fy sin ωrft, (3.74a)

Uz(t)FyU
†
z(t) = Fy cos ωrft+ Fx sin ωrft. (3.74b)

The ladder (raising and lowering) operators are defined in terms of the x and y compo-

nents of the total angular momentum operator as,

F± = Fx ± ıFy. (3.75)

We make use of the ladder operators to express (3.74) as,

Uz(t)FxU
†
z(t) =

1

2

(
F+e

ıωrft + F−e
−ıωrft

)
, (3.76a)

Uz(t)FyU
†
z(t) =

ı

2

(
F−e

ıωrft − F+e
−ıωrft

)
. (3.76b)

It is useful to write these terms using the ladder operators since their eigenvalues are

easily determined. We detail this calculation in section 3.4.2. We may now write (3.71)
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in the following form;

Uz(t)VI(t)U
†
z(t) =

µBgf
~

[
FzB

s
z +

Brf
x

4

(
F+e

ıωrft + F−e
−ıωrft

) (
eıωrft + e−ıωrft

)
+
ıBrf

y

4

(
F−e

ıωrft − F+e
−ıωrft

) (
eıωrft + e−ıωrft

) ]
,

=
µBgf
~

[
FzB

s
z +

Brf
x F+

4

(
1 + e2ıωrft

)
+
Brf
x F−
4

(
1 + e−2ıωrft

)
+
ıBrf

y F+

4

(
1 + e2ıωrft

)
+
ıBrf

y F−

4

(
1 + e−2ıωrft

) ]
.

(3.77)

It is usual at this point to employ the rotating wave approximation by neglecting the

contributions from the e±2ıωrft terms. This approximation is justified as over long time

scales the contributions from these terms effectively average out to zero. We define

HR ≡ Uz(t)VI(t)U
†
z(t)− ı~Uz(t)

d
dtU

†
z(t) to write the Hamiltonian in the rotated basis

as,

HR =
µBgf
~

[
Fz

(
Bs
z −

~ωrf

µBgf

)
+
F+

4

(
Brf
x − ıBrf

y

)
+
F−
4

(
Brf
x + ıBrf

y

)]
. (3.78)

3.4.2 Landau-Zener Hamiltonian

The ladder operators (3.75) operate on the quantum state in the uncoupled |f,mf 〉
basis, and satisfy the eigenvalue equation F±|f,mf 〉 = c±f,mf |f,mf ±1〉. The eigenvalues

c±f,mf are known as the Clebsch-Gordan coefficients. Here we evaluate these coefficients

to arrive at the Landau-Zener Hamiltonian. To begin we recognise that F †±F± = F 2
x +

F 2
y + ı[Fx, Fy], and since F · F = F2 = F 2

x + F 2
y + F 2

z , then

F †±F± = F2 − F 2
z ∓ ~Fz. (3.79)

The total angular momentum operator F, and its component in the ẑ direction Fz, satisfy

the eigenvalue equations, F2|f,mf 〉 = f(f + 1)|f,mf 〉 and Fz|f,mf 〉 = ~mf |f,mf 〉,
respectively. The Clebsch-Gordan coefficients are given by the projection of |f,mf 〉 on

both sides of (3.79) as
∣∣c±f,mf ∣∣2 = 〈f,mf |F †±F±|f,mf 〉, with

c±f,mf = ~
√
f(f + 1)−mf (mf ± 1). (3.80)

Consider a hyperfine atomic ground state, with total spin f = 1
2 . In the presence of

the magnetic field the two hyperfine sublevels mf = 1
2 and m′f = −1

2 are split by an

amount µBgfmfBs, where gf is the atomic g-factor of the hyperfine level and µB is the

Bohr magneton. Irradiating such a system with a linearly polarized radio frequency,

Brf cos(ωrft), couples the sublevels |12 ,
1
2〉 ↔ |

1
2 ,−

1
2〉 with spatial resolution due to the
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spatial dependence of the magnetic field. Here we will concentrate on a one dimensional

description of such a process, which is valid when the radio frequency and magnetic

field are orthogonal to each other. Assuming the inhomogeneous magnetic field to be

oriented in the ẑ-direction, Bs
z ≡ Bs(z), the Hamiltonian (known as the Landau-Zener

Hamiltonian) of the coupled system can be written as,

HR(z) =
1

2

(
µBgfBs(z)− ~ωrf ~Λ

~Λ −µBgfBs(z) + ~ωrf

)
. (3.81)

Given that the absolute value of the interaction term alone contributes to the dynamics

of the quantum state, we define (alternatively see [123, 128]),

~Λ =
µBgf

2

∣∣∣∣c+
f,mf

(
Brf
x − ıBrf

y

)
+ c−f,mf

(
Brf
x + ıBrf

y

) ∣∣∣∣. (3.82)

The eigenvalues of this Hamiltonian are,

E±(z) = ±1

2

√
~2Λ2 + [µBgfBs(z)− ~ωrf]2 , (3.83)

≈ ±1

2
[µBgfBs(z)− ~ωrf]±

~2Λ2

4[µBgfBs(z)− ~ωrf]
, (3.84)

where the second expression is valid far from the resonance, ~Λ � [µBgfBs(z) − ~ωrf].

The second term in the expression can be viewed as a Stark shift on the energy levels.

3.4.3 Multimode Radio Frequency Arrays

To create a multi-well potential it is necessary to use several frequencies and the above

analysis will become significantly more complicated. However, if we assume that the

individual frequencies are spaced sufficiently far apart and have low Rabi frequencies

with respect to the detuning, we can approximate the dynamics locally by considering

only the nearest resonance frequency, ωrf(z) = ωrf
n(z) [123]. Formally this means that n is

chosen such that |µBgfBs(z)−~ωrf
n(z)| is minimized at any position z. The effects of the

combined Stark shifts, produced by the off resonant frequencies can then be summed up

as [123],

Ln(z) =
∑
j 6=n

~2Λ2

4[µBgfBs(z)− ~ωrf
j(z)]

, (3.85)

so that the eigenvalues are given by

E±(z) = ±1

2

√
~2Λ2 + [µBgfBs(z)− ~ωrf + 2Ln(z)]2. (3.86)
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Figure 3.14: Trapping potential created by six radio-frequencies ωrf
1 = 1000 kHz and

ωrf
n = 2πn× 10000 kHz, n = 2 : 6. Their resonance-positions are marked by the broken

vertical lines and the range over which they are applied is indicated by the grey and
white zones. The magnetic field gradient has the strength b = 213 Gcm−1 and gf = − 1

2
for the 87Rb ground state 2S 1

2
. The Rabi frequency is chosen to be 2π × 50 kHz. The

traps resemble harmonic oscillator potentials close to each minima.

From this, and considering that the couplings are strong enough to yield Landau-Zener

transition probability close to unity, the resulting adiabatic potential is given by

Vad,±(z) = (−1)n(z)

[
E±(z)∓

~ωrf
n(z)

2

]
∓
n(z)−1∑
k=1

(−1)k~ωrf
k . (3.87)

To produce a radio frequency potential with three minima along the z-direction we

will need six different radio frequencies. In the following we will assume that the 1D

linear magnetic field is given by Bs(z) = bz where b is the magnetic field gradient. For

convenience we choose five of the six radio frequencies to be equally spaced initially,

ωrf
n = 2nπ×10000 kHz (n = 2 : 6), which produces three equidistant minima. The value

of the first radio frequency ωrf
1 can be chosen with some liberty, as its value only controls

the height of the first maximum (see figure 3.14), it can therefore be adjusted without

changing the trap geometry in the area where tunneling takes place. For our potential

we set ωrf
1 = 1000 kHz and in Figure 3.14 we indicate the local frequencies and show the

resulting adiabatic potential in the positive ẑ-direction.
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3.4.4 Multimode Radio Frequency SAP: Experimental Parameters

In this section we will apply the SAP procedure to a single atom trapped in a three well

rf-potential. We will show that the strong decay of the influence of the radio frequencies

away from their respective resonance points allows us to fulfill the resonance condition

between the asymptotic eigenstates at all times during the process. While the Stark shift

from neighbouring resonances cannot be neglected, it is small enough to not destroy the

process.

Movement of the traps is achieved by changing the individual radio frequencies that are

associated with each trap. Traditionally for SAP the middle trap is chosen to be at

rest and the two outer ones are moving in and out (see also figure 3.5). Here we will

choose a slightly different, but of course a completely analogous route, in that we keep

the position of the left trap fixed. This allows us to keep the values of the minima equal

which is essential to satisfy the condition of resonance between all traps.

In order to achieve SAP when moving the traps in this non traditional manner the

approach of the right trap towards the middle must start earlier than that of the approach

of the middle trap to the left. One therefore initially only changes the frequencies ωrf
5

and ωrf
6 , which determine the shape and position of the right hand side trap. After a

delay τ , the two frequencies ωrf
3 and ωrf

4 are changed as well, allowing to move the middle

trap towards the left. Due to the adiabatic nature of the process the exact shape of this

time-dependent frequency adjustment, f(t), does not matter and we can formalise this

process as

ωrf
1 (t) = ωrf

1 (t0), (3.88a)

ωrf
2 (t) = ωrf

2 (t0), (3.88b)

ωrf
3 (t) = ωrf

3 (t0)− 1

2
f(t− τ)Θ(t− τ), (3.88c)

ωrf
4 (t) = ωrf

4 (t0)− f(t− τ)Θ(t− τ), (3.88d)

ωrf
5 (t) = ωrf

5 (t0)− 1

2
f(t)− f(t− τ)Θ(t− τ), (3.88e)

ωrf
6 (t) = ωrf

6 (t0)− f(t)− f(t− τ)Θ(t− τ), (3.88f)

where Θ(t) is the Heaviside step function. In figure 3.15(a) these changes are shown

for the typical system considered here and the resulting movements of the trap min-

ima are displayed in figure 3.15(b). As can been seen, the minimum of the left trap

remains stationary while the other traps are moving towards and away from it. The

resulting movement between neighbouring traps exactly fulfills the requirement of the
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Figure 3.15: (a) Radiofrequencies, ωrf
n , as a function of time to achieve the counter-

intuitive positioning sequence. (b) Positions of the trap minima as a function of time.
The left trap remains stationary while the other two traps move towards it. The delay
in the movement of middle trap in comparison to the right trap (τ = 0.0055 s) is

indicated by the broken line.

SAP process, leading to the desired increase and decrease in the tunneling strength be-

tween initially the middle and right traps before the increase and decrease in tunneling

strength between the left and middle traps.

To demonstrate adiabatic passage for single atoms and for typical experimentally realis-

tic parameters, we will in the following show the results of numerical simulations of the

full Schrödinger equation. We choose a single 87Rb atom to be initially located in the

center-of-mass ground state of the left trap and start the process described in eq. (3.88)

with an initial separation between the radio frequencies of 10000 kHz. The minimum

distance to which the frequencies approach each other is 200 kHz, which ensures that

we are always in the regime of tunneling interaction, as the minimum barrier height

between the individual traps is 5.3× 10−29 J at the point of closest approach, compared

to the ground state energy of 1.4 × 10−29 J. The form of the adjustment function f(t)

is taken to be a cosine and for numerical simplicity we restrict ourselves to one spatial

dimension.
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In figure 3.16 we show the probability density function with respect to time for the

SAP process. The overall time for this process is chosen to be T = 0.11s which is large

compared to the approximate harmonic oscillator frequency of the individual traps of

ω−1
HO ≈ 4× 10−6 s, and we are therefore assured to be at all times in the dark eigenstate

of the system. This can also be seen from the fact that the probability for being in the

middle trap at any time is zero. The process leads to high fidelity population transfer

and an absence of Rabi oscillations.

To compare the above situation to a process in which direct tunneling between two

neighbouring traps plays an important role, we show in figure 3.17 the results of the

same process, this time however using an intuitive trap-movement. The direct tunneling

is clearly manifest in the appearance of Rabi oscillations between the traps and the

process therefore does not deliver the required robust population transfer. In fact, the

final state becomes highly susceptible to variations of the system parameters [129].

We have confirmed that these results are representative for a large range of parameters,

making rf-traps ideal systems to investigate adiabatic processes in all generality.

3.4.5 Non-linear Systems

The extension of adiabatic methods to non-linear systems is of large importance not only

to describe experimental situations, but also for the understanding of the underlying

physical principles [76, 126, 130, 131]. In this section we show how SAP can be used

with time-dependent potentials to coherently transport a cloud of interacting, Bose-

condensed atoms. For this, we treat the adiabatic process as a series of stationary states

which can be described by the time-independent Gross-Pitaevskii equation

µΨ(x) =

(
− ~2

2m
∇2 + V (x) + g1D|Ψ|2

)
Ψ(x) , (3.89)

where V (x) is the external and µ the chemical potential at each respective point in

time. The one-dimensional interaction strength between bosons with a three-dimensional

s-wave scattering length as is given by and g1D = 4N~2as
ma⊥

(a⊥ − Cas)
−1 [132]. The

trap width in the radial direction is given by a⊥ and C ≈ 1.4603. In the three level

approximation the Hamiltonian can therefore be written as

H(t) = ~


~ξL + µL −ΩLM (t) 0

−ΩLM (t) ~ξM −ΩMR(t)

0 −ΩMR(t) ~ξR + µR

 , (3.90)
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Figure 3.16: (a) Probability density for a single atom initially located in the trap on
the left hand side with respect to time for counter-intuitive trap movement. The inset
shows the tunneling area in greater detail. (b) Density of the final state in each of the

three traps.

where µL,R are the chemical potentials associated with the atomic clouds in left or right

trap and ξL,M,R are the harmonic oscillator frequencies associated with the individual

traps. Note that this Hamiltonian has been extensively investigated for constant cou-

plings between the traps [126, 133]. As the particle number in each individual trap is

a function of time, the chemical potentials, µi will change and destroy the resonances

between the traps. To compensate for this we will in the following allow for the trapping



3 Spatial Adiabatic Passage 96

Figure 3.17: (a) Probability density for a single atom initially located in the trap on
the left hand side with respect to time for intuitive trap movement. The inset shows
the tunneling area in greater detail, where Rabi oscillations between neighbouring traps

are clearly visible. (b) Density of the final state in each of the three traps.

frequencies to be functions of time as well. Starting with a cloud of atoms in the left

trap, it is clear that the chemical potential µL will decrease during the process, while µR

will increase. Adjusting the trapping frequencies ξL,R can restore the resonance between

the uncoupled traps by ensuring that ~ξi+µi ≈ constant at all times. However, in order

to be able to make the three state approximation, we need to make sure that µi < ~ξi
for all values of µi and ξi. This means in practice that the process is limited to cold

atomic clouds with small non-linearities.



3 Spatial Adiabatic Passage 97

Figure 3.18: Final population in left (verticle dashed line, blue), middle (horizontal
dashed line, green) and right (solid line, red) traps with increasing interaction strength.
The dotted black line shows the total population not occupying the target (right) trap.
The maximum value of g1D corresponds to µ = 1.4318× 10−29 J which is smaller than

~ξL,M,R at all times.

Using the same radio frequency potential as in the linear case, we place a cloud of

interacting 87Rb atoms in the ground state of the left trap by determining the solution

to the Gross-Pitaevskii equation for an isolated trapping potential. To show the influence

of the non-linear behaviour, we first carry out the same counter-intuitive trap movements

as in the linear section without the time-dependent change in the trapping frequencies.

In figure 3.18 we show the final populations in the individual traps as a function of

increasing values for g1D. It is immediately obvious that even for weak interactions the

non-linear term is disruptive to the process of SAP. In fact, for g1D = 2× 10−37 Jm the

state transfer efficiency is reduced to 84%. Choosing a typical radial trap width of 130

nm, this value of g1D corresponds to N = 2 for 87Rb.

As outlined above, to restore resonance in the presence of a changing chemical potential

we must adjust the trapping frequency so that at any point in time ~ξL(t) + µL(t) =

~ξM = ~ξR(t) + µR(t). However, determining the required adjustments is not a simple

exercise for at least two reasons. First, the density dependence of the chemical potential

will prevent this change from simply being linear in time and, secondly, a conceptual

difficulty in determining the individual chemical potentials arises when the traps are
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Figure 3.19: Final population in left (horizontal dashed blue line), middle (verticle
dashed green line) and right (solid red line) traps for non-linear SAP with increasing
κ and ∆ωrf

0 = 1.5 kHz, and g1D = 2 × 10−37 Jm. The dotted black line shows the
total population not occupying the target (right) trap. The insets show the shape of
∆ωrf

6 (κ; t̃) for different values of κ. An increased value of κ increases the time when the
adjustment begins and decreases the adjustment time.

close together. While one could try to calculate the chemical potential, and therefore

the on-site energies, in all traps at all times to a good approximation, this is certainly

not experimentally possible. In the following, we therefore suggest a simple functional

form for dynamically detuning the outer traps and we show that it allows us to achieve

significantly higher transfer than possible without adjustments. A similar idea, however

without time-dependence, was recently proposed by Graefe et al. [76], who showed that

by detuning the left and the right trap by the same fixed amount throughout the process

an improved transfer of population can be achieved.

The outline of our scheme for dynamic detuning is as follows. Initially the cloud is

trapped in the left trap which we detune such that resonance with the eigenstates of the

other two traps is ensured (since the traps are far apart, it is possible to determine the

chemical potential µL). As we time evolve the system tunneling sets in and we begin to

reduce the detuning on the left trap to zero while increasing the detuning of the right

trap, as atoms enter it. This can be achieved by adjusting the radio frequencies ωrf
2 and

ωrf
6 , associated with the left and right hand side trap, respectively. Here we suggest that
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a good form of function for the adjustment related to the left hand side trap is

∆ωrf
2 (κ; t̃) =

1

2
[1− tanh(κt̃)]∆ωrf

0 , (3.91)

where the initial value for the change in ωrf
2 is given by ωrf

0 . The function runs between

∆ωrf
0 and 0 and the steepness in the crossover region is determined by κ. This gives us

an effective handle on both, the time when the adjustment starts, and the duration of

the adjustment (see inset of figure 3.19). Here t̃ = t − T/2, with T being the overall

duration of the process. At the same time the frequency of the right hand side trap

needs to be adjusted as well and it is easy to see that a mirror symmetric change in ωrf
6

is the best choice.

∆ωrf
6 (κ; t̃) =

1

2
[1 + tanh(κt̃)]∆ωrf

0 , (3.92)

The dynamic adjustments of the radio frequency equations (3.88) then become

ωrf
1 (t) = ωrf

1 (t0), (3.93a)

ωrf
2 (t) = ωrf

2 (t0)−∆ω2(κ, t̃), (3.93b)

ωrf
3 (t) = ωrf

3 (t0)− 1

2
f(t− τ)Θ(t− τ), (3.93c)

ωrf
4 (t) = ωrf

4 (t0)− f(t− τ)Θ(t− τ), (3.93d)

ωrf
5 (t) = ωrf

5 (t0)− 1

2
f(t)− f(t− τ)Θ(t− τ), (3.93e)

ωrf
6 (t) = ωrf

6 (t0)− f(t)− f(t− τ)Θ(t− τ) + ∆ωrf
6 (κ, t̃) . (3.93f)

In figure 3.19 we show the final population transferred to the right trap for increasing

values of κ and for ∆ωrf
0 = 1.5 kHz. We can see that the dynamic adjustment of the

detunings of the outer traps allows us to achieve population transfer of > 99%, up from

84%. This is an improvement over both standard SAP and fixed detuning in the weak

interaction regime and, in fact, returns to the transfer efficiency of single particle SAP.

3.4.6 Concluding Remarks

We have shown that radio frequency traps can be used as microtraps for processes in

which an adjustable tunneling strength is required. Neighbouring trapping potentials

can be overlapped without significantly changing the underlying energy level structure.

This property has allowed us to create a triple well radio frequency potential in which

coherent transport using adiabatic passage can be demonstrated. For a single atom,

it was shown that complete transfer between the left and right traps by utilizing the
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dark state of the system is possible, maintaining the advantages of the absence of Rabi

oscillations and robustness against variation in system parameters.

For a cloud of weakly interacting atoms we have demonstrated a technique that signif-

icantly improves the efficiency of SAP by dynamically detuning the outer traps. Our

suggested setup is close to experimental realities, avoids the large overhead of other

suggestions and can easily be extended to other adiabatic techniques.



Chapter 4

Spatial Mode Dynamics

In chapter 3 we provided the theoretical outline of Stimulated Raman Adiabatic Passage

and its matter wave counterpart Spatial Adiabatic Passage (SAP). Therein we proposed

two novel schemes to experimentally realise SAP. In both, the relationship between the

3 × 3 spatial mode Hamiltonian and the numerical integration of Schrödinger equation

(via the split operator method, appendix B.1) was not explored in detail. Whilst the tun-

neling interaction is built into the numerical integration of Schrödinger’s equation, when

we move to the spatial representation, the tunneling interaction is effectively inserted by

hand to the 3 × 3 spatial mode Hamiltonian. Although the spatial mode Hamiltonian

is a useful model for the conceptual understanding of the underlying physics, a deeper

insight can be gained by establishing the relationship between the operators in both

representations.1

In this chapter we investigate in detail the relationship between the evolution of a quan-

tum state in both the spatial mode, and energetic mode representations. To do so,

we first consider a quantum state occupying two energetic modes of the Hilbert space,

whose evolution is described by the energetic mode Hamiltonian matrix. Thereafter we

move to the spatial representation, wherein the chosen quantum state occupies two spa-

tial modes, and its evolution is described by the spatial mode Hamiltonian matrix. By

equating the temporal density of the quantum state in the two spatial modes according

to both representations, we show how to derive a mapping between the 2× 2 energetic

mode Hamiltonian and the 2× 2 spatial mode Hamiltonian. The work outlined in this

chapter sheds further light on the nature of quantum tunneling.

Quantum tunneling is a quantum mechanical phenomenon wherein a particle may pene-

trate a potential barrier whose potential energy is larger than the energy of the incident

1The work in this chapter was done in collaboration with Nicolino Lo Gullo.
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particle. When one approaches this phenomenon from the classical perspective it ap-

pears impossible. Initially we tend to think of the barrier and the incident particle as

solid objects that we are familiar with on a day to day basis. This leads to a paradox of

sorts whereby the whole event seems quite spooky and an apparent violation of common

sense, yet it is very much a reality. Noble Laureate Ivar Giaever expressed his bemuse-

ment when first introduced to this idea, “I didn’t believe a word of it.” It was relayed

to him that classically, if someone throws a tennis ball at a wall it will always bounce

back, however, quantum mechanically there exists a finite probability that the ball will

appear on the other side of the wall, with no hole in the wall and the ball being exactly

as it had been prior to penetrating the wall.

Quantum tunneling is most commonly studied from a semi-classical perspective [14]. The

semi-classical formalism of quantum tunneling has proven very successful for practical

applications such as for the calculation of tunneling frequencies and the transmission and

reflection coefficients for a particle incident on a potential barrier, and alpha decay. The

major drawback of the semi-classical approach to the quantum tunneling phenomenon is

that it leads to conceptually incorrect interpretations of the underlying physics. For the

quantum double well we have two classically allowed regions separated by a classically

forbidden region (the potential barrier). Over time a particle or wavepacket, localised

in one potential well, ‘penetrates’ the potential barrier to appear in the neighbouring

potential well. Habitually we tend to think of the particle and the potential barrier

as localised physical objects and momentarily forget that in quantum mechanics, mat-

ter is described in terms of wavefunctions that span the entire coordinate space. The

gap between the classical ‘localised’ description of matter and the quantum mechani-

cal ‘wave-like’ description of matter is encapsulated in the measurement problem [134].

In this chapter we detail how the respective Hamiltonians describing, the evolution of

the wavefunction occupying two energetic modes, and the evolution of the wavefunction

occupying two spatial modes, are directly related by a rotation.

In section 4.1 we outline briefly the history of, and highlight some of the literature

related to, quantum tunneling. Here, the main goal is to relate the description of the

wavefunction in the spatial and energetic mode basis. To tackle this problem we first pro-

pose that the spatial and energetic Hamiltonians are related via a rotation. We deduce

(section 4.1) and compare (section 4.2) how the density evolves in each spatial region

to arrive at a mapping between both Hamiltonians. The mappings are subsequently

analysed in section 4.2.1 using the one dimensional harmonic oscillator potential. There

remains some ambiguity as to the definition of the spatial mode kets. We discuss this

issue in section 4.3 and offer a possible avenue toward a solution to this problem. Finally

we discuss and summarise the major results of the chapter and conclude.
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4.1 Quantum Tunneling

Quantum tunneling is a phenomenon central to many aspects of quantum theory [14, 15,

135–137]. First uncovered by Fredrich Hund [138], the concept of quantum tunneling was

established in 1928 when Gamow used a semiclassical approach to describe the nature

of alpha decay [139], and independently by Gurney and Condon [140]. The statistical

nature of alpha decay could then be interpreted as the alpha particle’s probability to

penetrate a classically forbidden region, spanned by a potential barrier, separating two

classically allowed regions. The use of the term tunneling is derived from the fact that

from a classical point of view the particle is unable to traverse the energetic barrier.

Since its inception, quantum tunneling between spatially localised modes has proven

to be a natural choice when describing the dynamics of many quantum mechanical

systems [14, 15, 135–137]. The most common being multi-well potentials, in which

different spatial regions are separated by potential barriers. An instructive and simplified

model to study quantum tunneling is the quantum double well [141–145], a schematic

of which is found in figure 4.1(a). In the early studies of alpha decay, the potential

used was a type of double well with one bound region and a continuum. Today the

applications of the double well model are broad, ranging from the inversion phenomenon

of the ammonia molecule (NH3) and the binding energies and transition times of valence

electrons in molecules [12] to radioactive decay [139, 140], from the motion of the proton

in a hydrogen bond [146] and proton transfer in DNA [147–149], to ion-molecule reactions

[150], and from the theory of modern superconducting quantum interference devices

(SQUIDs) [151] to the quantum dynamics of single ultracold atoms in optical lattices

[152], and electron transfer in quantum dots [153].

The principle difficulty in applying the double well to model the dynamics of complex

systems is in determining the correct shape of the potential. However, in the area of

ultracold atoms the external potentials, can, and have been, engineered to high precision

[38, 124, 125, 154–157]. Such experimental advances have allowed for detailed investi-

gation into Josephson type effects [158–161] and tunneling of Bose-Einstein condensates

in the mean field regime [17, 162, 163], where the inter-atomic interactions can suppress

tunneling and lead to self trapping [130, 164–167].

The so-called ‘tunneling matrix element’, which describes the strength of the tunneling,

can be calculated using a number of known semi-classical approximation techniques,

such as for example the Wentzel-Kramers-Brillouin (WKB) method [14, 15, 135–137].

These results have been extensively used for the symmetric double well, in the limit

where the (left and right) trap centers are far apart [160]. Recently the WKB method

has been extended to resolve for the tunneling matrix element for asymmetric double
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Figure 4.1: Schematic for (a) the double well and (b) the harmonic oscillator. Over-
layed are the lowest lying symmetric 〈x|ψ0〉 and antisymmetric eigenfunctions 〈x|ψ1〉,

and the spatial modes |0〉 and |1〉, with xb = 0.

wells [168]. However, in order to fully describe the wavefunction in the spatial mode (or

left-right) basis we are required to go beyond semi-classical approximation techniques.

In this work we make a first step toward this goal by attending to the mapping between

the (two-mode) spatial mode Hamiltonian, and energetic mode Hamiltonian, in terms

of the overlap of the energy eigenfunctions in each spatial mode and the coefficients of

the initial state.

For the double well, the ‘potential barrier’ is the area of the potential separating two

spatial regions wherein the wavefunctions probability density may acquire local maxi-

mum. Here we use the term ‘barrier’ to define the separation point between two spatial

regions, denoted xb. In two dimensions the barrier is a line and in three dimensions a

surface. Whilst for the double well the maximum value of the potential between its two

minima is a natural choice for the barrier position xb (as shown in figure 4.1(a)), we

note that xb can be chosen arbitrarily. Once the separation point has been chosen then

it is possible to map the system into the usual left-right basis. A proper choice of the

Hamiltonian in the new Hilbert space will give the same evolution of the probability

densities on the left and right of xb. Here we denote |0〉 for the left spatial mode and |1〉
for the right spatial mode.

4.1.1 Statement of the Tunneling Phenomenon

We consider a system where only the first two energetic modes |ψ0〉 and |ψ1〉 are occupied

with energies ~ω0 and ~ω1 respectively, where ω0 < ω1. Our aim is to establish the

relationship between the wavefunction in the energetic mode basis and the spatial mode,

or the left-right |0〉-|1〉, basis that is synonymous with the double well potential. Both

bases are illustrated in figure 4.1. We note that the left-right basis is not restricted to
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the double well but can be applied to any potential; for example the harmonic oscillator

with xb = 0, shown in figure 4.1(b).

The wavefunction is expanded in the two mode energetic and spatial bases respectively

as,

|Ψ(t)〉 = c0(t)|ψ0〉+ c1(t)|ψ1〉, (Energetic Mode Basis) (4.1a)

|Ψ(t)〉R = b0(t)|0〉+ b1(t)|1〉. (Spatial Mode Basis) (4.1b)

where cν(t) and bν(t) are complex numbers which describe the evolution of the en-

ergetic and spatial modes respectively. The evolution of the wavefunction, in either

representation, is determined by Hamiltonian of the considered basis. For the ener-

getic basis we have |Ψ(t)〉 = exp [−(ı/~)Ht] |Ψ(0)〉, and for the spatial basis |Ψ(t)〉R =

exp [−(ı/~)HRt] |Ψ(0)〉R. The subscript ‘R’ is used to denote the ‘rotated’ spatial mode

basis. The energetic and spatial mode Hamiltonians are respectively given by,

H =

(
ω0 0

0 ω1

)
, (Energetic Mode Hamiltonian Matrix) (4.2a)

HR =

(
ξ0 Ω

Ω ξ1

)
. (Spatial Mode Hamiltonian Matrix) (4.2b)

Here we note that any Hamiltonian matrix which is not diagonal can be diagonalised by

rotating it into a dressed state picture and the discussion of this section applies.

The premise of this work is to establish the relationship between the energetic mode

Hamiltonian (4.2a) and the spatial mode Hamiltonian (4.2b). We require to find a

closed form solution for each of the matrix elements of the spatial mode Hamiltonian

in terms of the known counterparts of the wavefunction in the energetic mode basis.

To formally derive the mapping between the energetic and spatial Hamiltonians, it is

first necessary that we determine how the density of the wavefunction evolves in both

representations. We first consider the temporal density in the energetic basis (4.1a) in

section 4.1.2 and then the density in the spatial basis (4.1b) in section 4.1.3.

4.1.2 Density Evolution in the Energetic Mode Basis

In Euler form the initial state is cν(0) = cνe
ıϕν . Without loss of generality we assume

that our initial state is real valued up to a global phase ϕ1−ϕ0 = 0. The time dependence
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of the basis state coefficients are given by,

c(t) = exp
(
− ı
~

Ht
)

c,(
c0(t)

c1(t)

)
= exp

(
−ı

(
ω0 0

0 ω1

)
t

)(
c0

c1

)
.

(4.3)

Any quantum state that is not an eigenstate of the Hamiltonian exhibits a periodic

modulation of its probability density in different spatial regions of the Hilbert space,

which are a generalised form of the well known ‘Rabi oscillations’. The rate of these

Rabi oscillations depends on the difference between eigenfrequencies ω1 − ω0 of the

occupied energetic modes. Their magnitude is dependent on both the size and location

of the respective spatial regions and cµ.

Here we focus on the mapping of the above system into the two-level spatial mode (or

|0〉-|1〉) system. The probability for either of the two levels of the system to be occupied,

is equal to the probability to find the atom on the left or on the right of a point xb.

In other words, at any time t, the probability for the wavefunction to be in the state

|0〉(|1〉) must be equal to the probability to find the atom in the corresponding spatial

region η = 0, 1.

Presently of interest are the densities of the spatial regions as a function of time. We

discretise the Hilbert space into two spatial modes which are allowed to have an arbi-

trary size which remains constant over time. If the volume of the η-th spatial region is

represented by Vη (η = 0, 1), and the sum of the volume elements equal the total space,

we can define the operator that projects on exactly one of these regions as,

Pη =

∫
Vη
dx |x〉〈x| =

∞∑
µ,ν=0

Dηµν |ψµ〉〈ψν |, (4.4)

where Dηµν is a tensor whose elements are given by,

Dηµν ≡
∫
Vη
dx 〈ψµ|x〉〈x|ψν〉. (4.5)

By exploiting the completeness relations of the eigenfunctions {ψµ} and the fact that∑
η Pη = 1, it is easy to prove that Dηµν = Dηνµ and

∑
η D

η
µν = δµν , for all µ, ν. The

temporal density of the quantum state (4.1a) in the spatial regions is given by ρη(t) =

〈Ψ(t)|Pη|Ψ(t)〉 which can be written as:

ρη(t) =

∞∑
µ,ν=0

c∗µ(t)cν(t) Dηµν , ρη(t) = Mη +Nη cos(ω−10t). (4.6)
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For brevity we have defined,

ω±10 ≡ ω1 ± ω0. (4.7)

Since only c0 and c1 have finite values (and cµ = 0 for µ ≥ 2) we have defined,

Mη ≡ c2
0D

η
00 + c2

1D
η
11, Nη ≡ 2 c0c1Dη10. (4.8)

Here we note N0 = −N1.

4.1.3 Density Evolution in the Spatial Mode Basis

As the energetic modes of the wavefunction evolve in time (according to (4.10)), the

phase and amplitude of each spatial mode also evolve in time, which are described

by the spatial mode coefficients bη(t). In the following we wish to map the temporal

evolution of the system in the energy eigenbasis (|ψν〉) to the dynamics of a two level

system (|η〉), the so-called spatial modes. The state of the latter is given by

|Ψ(t)〉R = b0(t)|0〉+ b1(t)|1〉. (4.9)

The spatial mode kets |0〉 and |1〉 are assumed to represent two non overlapping spatial

regions which satisfy 〈η|η′〉 = δηη′ . Presently we are not concerned with a strict definition

of these kets, and we reserve a discussion of these for section 4.3. We are currently

interested in the Hamiltonian HR that describes correctly the phase and amplitude

evolution of the coefficients of the spatial modes bη(t),

b(t) = exp
(
− ı
~

HRt
)

b,(
b0(t)

b1(t)

)
= exp

(
−ı

(
ξ0 Ω

Ω ξ1

)
t

)(
b0

b1

)
.

(4.10)

The premise of this work is to recover a closed form solution for each of the matrix

elements of the spatial mode Hamiltonian HR such that ρη(t) = |bη(t)|2. The frequency

at which the density of the spatial modes oscillate is ω−10. Therefore it is crucial that the

difference between the Hamiltonian’s eigenvalues are the same in both representations.

In this manner the density oscillates with the same frequency in both representations.2

2In this chapter we do not impose that energy is conserved by the rotation to the spatial representa-
tion. However, this can be easily achieved by rescaling the spatial mode Hamiltonian as, H′R = HR−a1,
where a is some constant equal to the energy difference of the wavefunction in both representations. In
most cases, when the wavefunction is rescaled the eigenvalues of the ‘new’ spatial mode Hamiltonian
are less than the eigenvalues of the energetic mode Hamiltonian. However, the difference between the
eigenvalues remains the same, and the density dynamics are also described correctly. As the procedure
is rather straightforward and of no immediate significance, we omit to detail it here.
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This is easily achieved by making use of the Euler rotation matrix,

R =

(
cos( θ2) sin( θ2)

−sin( θ2) cos( θ2)

)
. (4.11)

Subsequently the spatial mode Hamiltonian matrix is given by HR = RHRT. In addi-

tion this preserves the unitarity of the evolution in the spatial basis.

It is easy to show that the elements of the spatial mode Hamiltonian HR are given by,

~ξ0 =
~ω+

10

2
− ~ω−10

2
cos(θ),

~ξ1 =
~ω+

10

2
+

~ω−10

2
cos(θ),

~Ω =
~ω−10

2
sin(θ).

(4.12)

Herein we wish to resolve for those values of θ that recover the correct temporal density

dynamics of the spatial regions, i.e. |bη(t)|2 = ρη(t). From equations (4.10) and (4.12),

the densities of the spatial modes are given by,

|b0(t)|2 =
b20 + (b0 cos(θ)− b1 sin(θ))2

2
+

(b20 − b21)2 sin2(θ) + b0b1 sin(2θ)

2
cos
(
ω−10t

)
,

(4.13a)

|b1(t)|2 =
b20 + (b1 cos(θ) + b0 sin(θ))2

2
− (b20 − b21)2 sin2(θ) + b0b1 sin(2θ)

2
cos
(
ω−10t

)
.

(4.13b)

In the next section we compare the temporal densities of (4.6) and (4.13) to derive the

formal solutions to the matrix elements of the spatial mode Hamiltonian.

4.2 Mapping the Spatial and Energetic Hamiltonians

Equating the temporal density in both pictures (equations (4.6) and (4.13)) at t = 0 we

recover the initial densities of the state, b2η = Mη + Nη. For all other values of t we

recover a relation for the angles of rotation. As an example we compare the densities

at t = π/ω−10, thereby relating |bη(π/ω−10)|2 = ρη(π/ω
−
10). From (4.10) we recover the

following relation,

b0cos(θ) + b1sin(θ) =
√
M0 −N0. (4.14)

As the angle of rotation θ may vary between 0 and 2π we solve the above equation for

cos(θ) and sin(θ) separately. As we are equating densities we recover two independent

solutions. From here we refer to them as Map A and Map B respectively.
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Map A:

cos(θ) = ±
(√
M2

1 −N 2
1 −

√
M2

0 −N 2
0

)
,

sin(θ) = ±
(√

(M0 +N0) (M1 −N1) +
√

(M0 −N0) (M1 +N1)

)
.

(4.15)

Map B:

cos(θ) = ±
(√
M2

1 −N 2
1 +

√
M2

0 −N 2
0

)
,

sin(θ) = ±
(√

(M0 +N0) (M1 −N1)−
√

(M0 −N0) (M1 +N1)

)
.

(4.16)

These solutions for the angles of rotation, combined with the correctly initialised state,

allow to recover the proper density dynamics for each spatial region. It is perhaps

a little disconcerting that there are four solutions for the mapping of energetic and

spatial Hamiltonian matrices. More correctly there are two independent sets of (two

±) solutions. From studying elementary ballistics, one often finds two solutions to a

problem. In certain cases there is only one physical solution and the other may be easily

discarded as it is non-physical. In the following section we analyse both maps in an

attempt to determine whether there are two physical solutions or just one.

4.2.1 Analysis

In what follows we analyse both sets to help to clarify whether it is plausible to discard

one of the maps as non-physical and subsequently arrive at one correct mapping for the

spatial and energetic modes.

From our derived solutions (4.15) and (4.16) it is obvious that there is no constraint that

demands where the barrier is located. As no ‘potential barrier’ is necessary, and we are

free to choose the barrier position ‘xb’, it is convenient to use a potential whose energy

eigenfunctions are known analytically. From this point of view, the one-dimensional

harmonic oscillator is a natural starting point to study the matrix elements of the spatial

mode Hamiltonian. This reduces the analysis as we may avoid to consider degenerate

states and unusual barrier shapes in higher dimensions.

The most general state of the system is a linear superposition of the ground and first

excited energy eigenstates (4.1a) where,

c0 = cos(α), c1 = sin(α). (4.17)
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Figure 4.2: Map A (4.15): The matrix elements (a) ξ0, and (b) Ω, as a function of α
and xb, in the one dimensional harmonic oscillator.

Here we are interested in how the matrix elements of HR change with respect to the

choice of the initial state (4.17) and the barrier position xb. Accordingly we allow xb to

vary between −1 and 1 (in harmonic oscillator units
√

~/mω), and α to vary between 0

and π/2.

Map A

The values characterising the Hamiltonian elements ξ0 and Ω according to Map A (equa-

tion (4.15)) are shown in figure 4.2(a) and (b) respectively, as a function of the angle α

and the barrier position xb.

The one dimensional harmonic potential in figure 4.1(b) is symmetric about the origin. A

reassuring consequence of Map A (positive argument) is that when the barrier is located

at the origin, xb = 0, the local frequencies, ξ0 and ξ1 of the |0〉 and |1〉 spatial modes,

are equal for all initial states (since ξ0 + ξ1 = ω0 + ω1). As xb is moved from −1 → 1

the local frequency ξ0 increases as the ‘volume’ V0 is increased. Careful examination

of (4.15) indicates that the sign of cos(θ) changes from positive to negative with the

barrier position when
√
M2

0 − N 2
0 >

√
M2

1 − N 2
1 . This result is agreeable as it

makes sense that the local frequency should change in accordance with the size of the

spatial mode spanned. However, for an asymmetric potential this is not necessarily true.

Consequently, we may disregard the negative argument of Map A since ξ0 > ξ1 when

xb < 0 for the one dimensional harmonic oscillator.

The spatial mode coupling frequency Ω (or Rabi frequency) is positive for all values of

the initial state and barrier position (figure 4.2(b)) but asymptotically approaches zero

in the limit xb → ±∞. It is worth noting here that the sign of D0
10 does not effect the

sign of the coupling frequency. This infers that when there is a phase difference between
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Figure 4.3: Map B (4.16): The matrix elements (a) ξ0, and (b) Ω, as a function of α
and xb, in the one dimensional harmonic oscillator.

the energetic modes of nπ, with n = 0, 1, 2, . . . , there is no phase difference between the

spatial modes.

Map B

The values characterising the Hamiltonian elements ξ0 and Ω according to Map B (equa-

tion (4.16)) are shown in figure 4.3(a) and (b) respectively, as a function of the angle α

and the barrier position xb.

Whilst both maps recover the correct temporal density of the spatial modes, Map B

exhibits some conflicts with respect to what may be expected from the properties of the

spatial mode Hamiltonian matrix. We recognise that when only one energy eigenstate

|ψµ〉 is occupied, the solution for cos(θ) from (4.16) becomes cos(θ) = M0 +M1 =

1, giving no coupling between the spatial modes. As only one energetic eigenstate is

occupied, the density should not oscillate at all and it is therefore reasonable to expect

that no coupling exists between the spatial modes. However for this to be satisfied, the

matrix elements in this rotated basis assume the same values as that in the energetic

mode basis. In other words, when α = 0, π/2, the coupling terms are zero and we find,

ξ0 = ω0 and ξ1 = ω1, for all values of xb. Intuitively we expect that for the harmonic

oscillator with xb = 0, the two equally sized spatial modes have the same frequency

value (ξ0 = ξ1 as found for Map A) rather than the energetic values of the energetic

modes. For values of α 6= 0, π/2, the spatial modes |0〉 and |1〉 are coupled.

Careful examination of (4.16) shows that when D0
10 > 0, sin(θ) > 0 is positive (when

we take the positive argument). Changing the sign of D0
10 is equivalent to imposing a

π phase change to one of the energetic modes. If we wish to demand that the coupling

frequency Ω to be always positive we need only initialise the state vector correctly.
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When the sign of (4.16) is negative, we may take its positive value in the spatial mode

Hamiltonian matrix and impose a π phase difference between the spatial modes.

The spatial modes, |0〉 and |1〉, are coupled for values of α 6= 0, π/2. The difference

between the local frequency terms |ξ1 − ξ0| reaches a minimum for α = π/4 and xb = 0,

whilst the coupling frequency Ω reaches a maximum. A slight asymmetry exists about

α = π/4 when xb 6= 0, causing the point of maximum coupling to occur at values of

α > π/4.

4.2.2 Remarks

All elements of the Hamiltonian in the spatial mode basis depend on the barrier position

xb and the initial state distribution through α. One can interpret the initial state

dependency by realising that α characterises its energy, which in the traditional picture

of tunneling is an important factor as well. As α changes, the local frequencies of each

spatial mode ξµ and their interaction frequency Ω change accordingly.

Map B may be considered physically less viable than Map A as the spatial modes are

decoupled when only one energy eigenstate is occupied. Furthermore the local frequen-

cies of the spatial modes assume the frequency values of the energy eigenstates. This

is less than desirable as one expects two equally sized symmetric spatial modes to have

the same local frequency, as found for Map A. Whilst Map B satisfies the demands of

reproducing the density dynamics of the spatial modes, the above arguments suggest

that Map B is an unphysical solution and (potentially) should be discarded.
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Figure 4.4: An angle of θ
2 between the {|ψ0〉, |ψ1〉} and {|0〉, |1〉} coordinate systems.

4.3 The Spatial Mode Kets

A reasonable first approximation for the definition of the |0〉 and |1〉 spatial mode kets,

is to expand them in terms of the energy eigenfunctions as (see figure 4.4),

|0〉 = cos( θ2)|ψ0〉+ sin( θ2)|ψ1〉, (4.18a)

|1〉 = − sin( θ2)|ψ0〉+ cos( θ2)|ψ1〉. (4.18b)

These kets satisfy the usual orthogonality condition 〈η|η′〉 = δηη′ .

For the remainder of this chapter we explore the inherent difficulties involved with

attempting to establish a strict definition of the spatial mode kets. To begin we first show

how definition (4.18) is unsatisfactory. Thereafter we propose an alternative definition of

the spatial mode ket and three requirements that this definition needs to satisfy so that

the spatial mode ket can be considered properly defined. Whilst we can show that our

alternative definition satisfies the necessary requirements, further complications exist

which prevent the recovery of the spatial mode Hamiltonian. We discuss these points

and then conclude.

From (4.18) we can construct a spatial mode projector |η〉〈η| with η = 0, 1. The density

of the |0〉 and |1〉 spatial regions are then given by,

ρ0(t) = 〈Ψ(t)|0〉〈0|Ψ(t)〉, ρ1(t) = 〈Ψ(t)|1〉〈1|Ψ(t)〉, (4.19)



4 Spatial Mode Dynamics 114

where |Ψ(t)〉 is the two-mode quantum state (4.1a). Explicitly the densities of the spatial

modes are,

ρ0(t) = c2
0 cos2( θ2) + c2

1 sin2( θ2) + 2c0c1 cos( θ2) sin( θ2) cos(ω−10t),

ρ1(t) = c2
0 sin2( θ2) + c2

1 cos2( θ2)− 2c0c1 cos( θ2) sin( θ2) cos(ω−10t).
(4.20)

We now recall that according to equation (4.6) the densities of the spatial modes are,

ρ0(t) = c2
0D0

00 + c2
1D0

11 + 2c0c1D0
10 cos(ω−10t),

ρ1(t) = c2
0D1

00 + c2
1D1

11 + 2c0c1D1
10 cos(ω−10t).

(4.21)

Initially one may think that a direct comparison of (4.20) and (4.21) should give the

solutions for the angle of rotation. However, this is not the case, as the resulting solutions

are in conflict with each other. We find,

D0
00 = D1

11 = cos2( θ2), (4.22a)

D0
11 = D1

00 = sin2( θ2), (4.22b)

−D1
10 = D0

10 = cos( θ2) sin( θ2). (4.22c)

The first relation claims that D0
00 = D1

11, which is in general not true, and similarly

D0
11 = D1

00 is not generally correct. The above three relations together infer that,

(
−D1

10

)2
=
(
D0

10

)2
= D0

00D0
11 = D1

00D1
11 = D0

00D1
00 = D0

11D1
11. (4.23)

In all but some special cases the above is not satisfied. A particular case of interest is the

symmetric double well, with the barrier position located at the midpoint between the

trap centers. In the asymptotic limit, (i.e. when the trap centers have a large separation)

we indeed find this relation to be satisfied. Each of the above terms approaches 1
4 , and

we find that, cos( θ2) = sin( θ2) = 1√
2
, which is the usual value assumed for the spatial

mode kets in equation (4.18).

On The Definition Of The Spatial Mode Kets

Whilst the definition of the two-mode spatial ket according to (4.18) certainly satisfies

the orthogonality constraints 〈η|η′〉 = δηη′ , further examination reveals that (4.18) fails

to recover the correct density dynamics of the quantum state, in the said spatial modes.

In this section we take a moment to address the question as to ‘what requirements

the spatial mode ket must satisfy, such that it can be considered sufficiently defined?’.

We propose the following answer to this question. The spatial mode ket is considered

sufficiently defined when the following three stipulations are satisfied:
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1. The spatial mode ket should obey the usual orthogonality condition 〈η|κ〉 = δηκ.

2. The spatial mode ket should allow to define a spatial projector Pη = |η〉〈η|, which

satisfies (Pη)
n = Pη and

∑
η Pη = 1.

3. The spatial projector should recover the density of the spatial modes as,

ρη(t) = 〈Ψ(t)|Pη|Ψ(t)〉.

Immediately we can see that the first condition is satisfied by the spatial mode ket defi-

nition (4.18). Whilst (4.18) also satisfies condition 2 above, we have already shown that

condition 3 is unfulfilled. Therefore we assert that, according to the above requirements,

the definition of the spatial mode ket (4.18) is insufficient.

To find an alternative closed form expression for the spatial mode kets, we first examine

the definition of the spatial projector,

Pη =

∫
Vη
dx |x〉〈x| =

∞∑
µ,ν=0

Dηµν |ψµ〉〈ψν | = |η〉〈η|. (4.24)

We recognise that the above definition does indeed satisfy the third requirement since,

according to (4.6), the density dynamics of the spatial modes are correctly accounted for.

What we aspire to achieve is to factorize the spatial ket |η〉 from the term on the right

hand side of the above. This is a non trivial exercise, as we recognise that the second last

term offers no obvious means of factorisation. There is however an alternative means

by which we can attempt to achieve this. To begin, let us first check if the definition

of the spatial projector satisfies the second requirement. If we can demonstrate that

(Pη)
2 = Pη, then it is easily shown by induction that (Pη)

n = Pη. Continuing along

these lines we have,

(Pη)
2 =

 ∞∑
µ,ν=0

Dηµν |ψµ〉〈ψν |

 ∞∑
q,p=0

Dηqp|ψq〉〈ψp|

 . (4.25)

Taking the inner product 〈ψν |ψq〉 = δνq, we find

(Pη)
2 =

∞∑
µ,ν,p=0

DηµνDηνp|ψµ〉〈ψp|. (4.26)

Explicitly we have,

(Pη)
2 =

∞∑
µ,ν,p=0

(∫
Vη
dx 〈ψµ|x〉〈x|ψν〉

∫
Vη
dx′ 〈ψν |x′〉〈x′|ψp〉

)
|ψµ〉〈ψp|. (4.27)
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We rearrange the integrals as,

(Pη)
2 =

∞∑
µ,p=0

(∫
Vη
dx

∫
Vη
dx′ 〈ψµ|x〉〈x|

[ ∞∑
ν=0

|ψν〉〈ψν |

]
|x′〉〈x′|ψp〉

)
|ψµ〉〈ψp|. (4.28)

Since the summation in square brackets is simply the identity we find,

(Pη)
2 =

∞∑
µ,p=0

(∫
Vη
dx

∫
Vη
dx′ 〈ψµ|x〉〈x|x′〉〈x′|ψp〉

)
|ψµ〉〈ψp|. (4.29)

Here we recognise that the inner product 〈x|x′〉 is just another way of writing the delta

function δ(x− x′).3 Finally we have,

(Pη)
2 =

∞∑
µ,p=0

(∫
Vη
dx 〈ψµ|x〉〈x|ψp〉

)
|ψµ〉〈ψp| =

∞∑
µ,p=0

Dηµp|ψµ〉〈ψp|. (4.30)

Therefore (Pη)
2 = Pη and by induction (Pη)

n = Pη. It can be easily shown that the

sum over the spatial modes is the identity. We have,

∑
η

Pη =
∞∑

µ,ν=0

∑
η

Dηµν |ψµ〉〈ψν | =
∞∑

µ,ν=0

δµν |ψµ〉〈ψν | =
∞∑
µ=0

|ψµ〉〈ψµ| = 1. (4.31)

Hence the second requirement is satisfied. In proving that this requirement is satisfied

we have found a new identity (see footnote 3),

∞∑
ν=0

DηµνDκνp = Dηµp δηκ. (4.32)

The Spatial Mode Ket

At this point we may proceed to attempt to define the spatial mode ket. To do so, we

argue that the spatial ket is the normalised projector on the quantum state at t = 0.

Explicitly we have,

〈η|η〉 = 〈Ψ(0)| Pη

ρη(0)
|Ψ(0)〉 =

(
〈Ψ(0)| Pη√

ρη(0)

)(
Pη√
ρη(0)

|Ψ(0)〉

)
. (4.33)

where ρη(0) is the density of the spatial mode at t = 0, according to (4.6), and we made

use of the property (Pη)
n = Pη. Our initial state is expanded in terms of the energy

3For the case when the limits of the two integrals are Vη and Vκ respectively, we must consider that
the volume elements can be non-overlapping. In that case, if x is an element of Vη it is not an element
of Vκ, and vise-versa for x′. It then follows that by taking the inner product 〈x|x′〉 we obtain the delta
function δηκ.



4 Spatial Mode Dynamics 117

eigenmodes as, 4

|Ψ(0)〉 =

∞∑
ν=0

cν(0)|ψν〉. (4.34)

From (4.24) and (4.34), we find that the spatial mode ket is defined as,

|η〉 ≡ 1√
ρη(0)

∞∑
µ,ν=0

cµ(0)Dηµν |ψν〉. (4.35)

Let us proceed to check is this definition satisfies the first requirement 〈η|κ〉 = δηκ. From

the above, the inner product is given by,

〈η|κ〉 =
1√
ρη(0)

∞∑
µ,ν=0

c∗µ(0)Dηµν〈ψν |
1√
ρκ(0)

∞∑
α,β=0

cβ(0)Dκαβ|ψα〉,

〈η|κ〉 =
1√

ρη(0)ρκ(0)

∞∑
µ,ν,β=0

c∗µ(0)cβ(0)DηµνDκνβ .
(4.36)

From the identity (4.32) and (4.6) we find,

〈η|κ〉 =
1

ρη(0)

∞∑
µ,β=0

c∗µ(0)cβ(0)Dηµβ δηκ = δηκ. (4.37)

Hence the first requirement is satisfied. What remains to be done is to check whether

the definition of the spatial ket (4.35) allows us to recover the spatial projector (4.24).

We find,

Pη = |η〉〈η| =
1

ρη(0)

∞∑
p,q,r,s=0

cp(0)c∗r(0)DηpqDηrs|ψq〉〈ψs|. (4.38)

From a direct comparison between the spatial projector (4.24) and (4.38) above it is

clear that both relations are not equivalent. In order for both relations to be equal, the

following stipulation must be satisfied;

∞∑
p,r=0

cp(0)c∗r(0)DηpqDηrs =
∞∑

p,r=0

cp(0)c∗r(0)DηprDηqs. (4.39)

This is not true in general. However, in the interest of progressing with the calculation,

let us assume that for a given state we can choose the barrier location(s) so that the

above is upheld. In so doing we find,

Pη =
1

ρη(0)

 ∞∑
p,r=0

cp(0)c∗r(0)Dηpr

 ∞∑
q,s=0

Dηqs|ψq〉〈ψs|

 . (4.40)

4Here and in the following we are no longer making use of Euler notation.
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From the definition of the spatial mode density (4.6) at t = 0, we are left with,

Pη =
∞∑

q,s=0

Dηqs|ψq〉〈ψs|. (4.41)

This exercise has shown us that only under the strict condition of (4.39), are the spatial

kets allowed to be defined. It follows that if (4.39) is satisfied, the wavefunction and the

Hamiltonian in the spatial basis can be described for an arbitrary number of spatial-

energetic modes. We detail this calculation in appendix A.6.

4.4 Discussion

The principle results of this chapter is the mapping of the Hamiltonian between the

spatial and energetic bases, (4.15) and (4.16) respectively. We showed that the Hamil-

tonian in both representations is related by a rotation. Each element of the spatial

mode Hamiltonian matrix exhibits contributions from the quantum state’s energetic

mode coefficients, and the overlap of the energy eigenfunctions in the spatial regions.

We showed that there is two unique mappings between the spatial and energetic rep-

resentations, of which one mapping displays the expected characteristics of the spatial

mode Hamiltonian matrix.

Whilst the Hamiltonian matrices can be easily related in both representations, the same

cannot be said for the spatial and energetic coordinate system of the wavefunction

(figure 4.4). Due to a difficulty in factorising the spatial mode projector Pη = |η〉〈η|,
the definition of the spatial mode ket in terms of the energy eigenkets cannot be achieved.

The work contained in this chapter is a closed form mapping that relates the spatial and

energetic dynamics of a wavefunction occupying two spatial and energetic modes. An off

diagonal ‘interaction’ term can easily be added by hand to the energetic mode Hamil-

tonian matrix. For such operators, the phenomenon of self-trapping can be formally

demonstrated by increasing the value of the off diagonal term (see Appendix A.7). As

the interaction term increases, the ‘self-trapping’ becomes more pronounced. Relating

this off diagonal term to physical systems is the focus of immediate developments to the

work contained in this chapter. One avenue of potential exploration is a non-interacting

BEC, coupled to an appropriate arrangement of laser fields, that supply the necessary

momentum for the transition between the two lowest modes of the double well. Future

work in this direction will help to unveil the nature of self trapping for the light-matter

interaction, thereby shedding further insight as to the nature of self-trapping for the

matter-matter interaction.



Chapter 5

Three Level Atom Optics via the

Tunneling Interaction - Revisited

Fundamental to optical processes such as Stimulated Raman Adiabatic Passage (STI-

RAP) [46], coherent population trapping [169], electromagnetically induced transparency

[55], laser cooling [38] and beyond, is the interaction between light and matter [13]. The

transport of matter waves is made possible for the same phenomenological reasons as

STIRAP, albeit in the absence of the usual light matter interaction, as outlined in chap-

ter 3. Whilst STIRAP and subsequently spatial adiabatic passage (SAP) are considered

well understood, authors have highlighted conceptual pitfalls, such as the appearance of

apparent super-luminal velocities when SAP is analised using Bohmian mechanics [44].

The number of works focused on understanding the physics underpinning the mecha-

nisms of coherent matter wave transport [39, 170] remain few. With the insight gained

from chapter 4 on the nature of the tunneling interaction, here we decompose an original

work on SAP [56] with an aim to establish a more fundamental understanding of matter

wave transport.

In SAP processes, the tunneling interaction between localised spatial modes replaces

the Rabi coupling interaction between an atom’s internal electronic states generated

by an applied laser field. Absent from the literature of matter wave transport, is an

exact model describing the quantum tunneling interaction between spatial modes. The

relationship between the spatial and energetic mode description of the wavefunction, de-

tailed in chapter 4, has added insight into the nature of quantum tunneling, albeit for two

spatial-energetic modes. An elegant way of generalising that work to N spatial-energetic

modes (and furthermore to the time dependent regime) is currently not obvious, but

highly desirable for multi-mode spatial systems. For three mode SAP processes, it is

119
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typical in the literature to find the usual 3×3 model Hamiltonian presented for pedagog-

ical reasons in combination with a full numerical integration of Schrödinger’s equation

(Appendix B.1). We followed this approach with our two experimental proposals for ob-

serving spatial adiabatic passage (SAP) of single atoms (and a weakly interacting BEC)

using a triple waveguide atom chip structure [116] (section 3.3) and time-dependent

radio-frequency potentials [171] (section 3.4) respectively. Probing the relationship be-

tween the time dependent Schrödinger equation and the dynamics of the wavefunction

in the spatial mode basis offers the potential of uncovering the link between the matrix

mechanics of condensed matter physics and quantum optics [39].

In this chapter we revisit the novel scheme proposed by Eckert et al. [56] which they

showed to be the atom optical analogue of STIRAP. Using the foundational work of chap-

ter 4 as a starting point of reference, we dissect in detail their proposed SAP model. The

aim of which is to develop the theoretical understanding of SAP processes by bridging

the gap between the spatial and energetic dynamics of the system, described via the

spatial mode Hamiltonian matrix and the time dependent Schrödinger equation. We

demonstrate that the correct 3 × 3 spatial mode Hamiltonian assumes tunneling inter-

action contributions from both nearest neighbour, and next nearest neighbour spatial

regions. In addition the local energetic values of the spatial regions change in time. We

present an alternative approach for integrating the time dependent Schrödinger equation

which allows for an easy comparison with the spatial mode counterpart. Subsequently

we show that both representations are equivalent and that matter wave transport in

SAP processes is a result of a geometric phase acquired from the cyclical evolution.

In section 5.1 we present the SAP model. The eigenvalues and eigenfunctions of the

system’s time dependent potential can be solved for analytically, which is outlined in

section 5.1.3. The complete spatial mode Hamiltonian can be recovered, to a very good

approximation, by defining a basis for each potential region, detailed in section 5.2.1.

Following the analysis of the system in the spatial basis picture, we move to the en-

ergetic basis in section 5.3 and demonstrate that both representations are equivalent.

We outline a methodology to time evolve SAP in the non-interacting regime, which is

an alternative to the usual split operator approach, section 5.3. This technique allows

for a deeper understanding of the temporal dynamics of the system, uncovering the

importance of the delay between the motion of the trap centers, how this delay affects

the necessary constraints of adiabaticity and why the ‘counter-intuitive’ trap motions

facilitates the transport of the matter wave. In addition this approach unveils how the

SAP technique imposes a π change of phase to one of the wavefunction’s basis states

due to the geometry of the evolution covered in sections 5.3.1 and 5.3.2. We discuss how

SAP itself is a consequence (and example of) a geometric phase, which exists for both

the traditional ‘counter-intuitive’ and the ‘intuitive’ trap motions. Finally we discuss
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the technique of fraction SAP in section 5.4. This technique allows for the creation of

arbitrary superposition states between the outer traps, which is also independent of the

total time taken for the evolution and thus geometric in nature.

5.1 Spatial Adiabatic Passage: Model

To maintain the generality of this work we scale the spatial co-ordinates x with respect

to the length
√

~/mω, where m is the mass of the atom, ω is the trapping frequency of

the harmonic oscillator and ~ is Planck’s constant divided by 2π.

For our numerical purposes we deal with the time dependent SAP Hamiltonian by

discretising the total time taken for the evolution into N + 1 points in time. We identify

the Hamiltonian at each time step by its time co-ordinate tn where n = 0, 1, 2, . . . , N .

Each of these points in time is separated by equal distances of time ∆t, where tn+1−tn =

∆t. The total time for the process is then N∆t. As the time for the stationary interval

∆t increases, the total time taken for the process also increases. At each time step tn the

wavefunction evolves according to the Hamiltonian H(tn) for an increment of time ∆t

followed by an instantaneous change of the Hamiltonian at the following point in time.

The evolved wavefunction then assumes a linear combination of the Hilbert space basis

states at the following time step t = tn+1. The discretisation of the time spectrum in

this way allows for the simulation of adiabatic evolution according to the time dependent

Hamiltonian. This is further detailed in section 5.3.

5.1.1 The Hamiltonian And The Time Dependent Potential

Proposed in [56] is a novel scheme to actualise the high fidelity transport of a neutral

atom in an array of optical dipole traps. The system is modeled using a one dimensional

linear arrangement of three truncated piecewise harmonic potentials of equal trapping

frequency (see figure 5.1). Each harmonic potential is centered on the position xη where

η = 0, 1, 2 refers to the left, middle and right harmonic potential respectively. Subse-

quently the spatial region spanned by each potential well is denoted |η〉 = |0〉, |1〉, |2〉. A

‘counter-intuitive’ motion of the trap centers transports a matter wave from |0〉 → |2〉.
The form of the potential V(x, tn) is determined by the position of each trap center

xη(tn). In scaled units,

V(x, tn) =
1

2
min

 2∑
η=0

(
x + xη(tn)

)2 . (5.1)
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Figure 5.1: In blue is the scaled potential V(x, tn)/25. Overlayed are the gs-triplet
eigenfunctions. In solid cyan, dash-dot green and dashed magenta are; 〈x|ψ0(t0)〉,
〈x|ψ1(t0)〉 and 〈x|ψ2(t0)〉 respectively. The spatial regions spanned by the traps are
labeled |1〉, |2〉 and |3〉 for the left, middle and right harmonic potentials respectively.

The scaled Hamiltonian is,

H(tn) = ~ω
(
− ∂2

∂x2
+ V(x, tn)

)
. (5.2)

At each time step the eigenfunctions |ψµ(tn)〉 of (5.2) can be solved for by both numer-

ical techniques [172] (i.e. via the finite difference method, appendix B.2) and analytical

means. We detail how to solve for the eigenfunctions analytically in section 5.1.3. As

usual the operation of the Hamiltonian (at each tn) on the eigenfunctions of the po-

tential returns their (scaled) eigenenergy as H(tn)|ψµ(tn)〉 = ~ωµ(tn)|ψµ(tn)〉. Shown

in figure 5.1 is the scaled potential and the three lowest eigenfunctions 〈x|ψν(t0)〉, with

ν = 0, 1, 2. These three eigenfunctions are asymptotically degenerate in the limit of

large trap separations, and their scaled eigenenergies approach ~ω/2. In the following,

we refer to these eigenfunctions as the ground state triplet (gs-triplet).

The potential, the spatial modes |0〉, |1〉, |2〉 and the three lowest eigenfunctions are

illustrated in figure 5.1. Here we have made a deliberate change to the previous notation

used for the spatial modes, |0〉L,M,R, from chapter 3, sections 3.3 and 3.4. We have

adapted this notation as the latter infers that each spatial mode has it own energy

spectrum. From the work of chapter 4 we know that the ‘local energy’ of each spatial

mode depends on the occupied energetic modes of the wavefunction. Therefore for a

given wavefunction, the possible energetic values of the spatial mode are not of interest,

and we resort to the simpler |0〉, |1〉, |2〉 notation.
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5.1.2 The Trap Motions

STIRAP has been thoroughly outlined in chapter 3 but for ease of reading we re-hash

the basic principles here. A key feature of the STIRAP process is the time dependent

Stokes laser pulse Ωs(t) (coupling the unoccupied electronic states |1〉 and |2〉) which

is applied first, followed by the pump laser pulse Ωp(t) (coupling states |0〉 and |1〉),
with an appropriate delay. This is reproduced in this matter wave setting by firstly

decreasing the distance between traps |1〉 and |2〉 followed by decreasing the distance

between traps |0〉 and |1〉. As the outer traps approach the center trap, it causes a

splitting in the eigenenergies ~ων(tn) of the basis states |ψν(tn)〉. In turn this increases

the Rabi ‘tunneling’ interaction between the spatial regions spanned by the traps in a

manner analogous to the optical case.

The outer traps are initially separated a distance dmax from the center trap, which is

located at the origin. Throughout the SAP evolution they move from this maximum

separation distance from the center trap to a minimum separation dmin. The total

time taken for the evolution is discretised into N time steps. The delay between the

motion of the outer trap centers is allowed to take a total of length δ time steps, where

δ = (0.1)N . The ‘counter-intuitive’ paths of the left (x0(tn)) and right (x2(tn)) trap

centers are subsequently given by,

x0(tn) = Θ(n− δ − 1)
{
dmax−dmin

2

[
cos
(

2π(n−δ)
N−δ

)
+ 1
]

+ dmin

}
+ Θ(δ − n)dmax, (5.3a)

x2(tn) = −Θ(N − δ − n− 1)
{
dmax−dmin

2

[
cos
(

2πn
N−δ

)
+ 1
]

+ dmin

}
−Θ(n+ δ −N)dmax, (5.3b)

where Θ(z) is the Heaviside step function, Θ(z) = 0 (Θ(z) = 1) when z < 0 (z ≥ 0) and

n = 0, 1, 2, . . . , N .

5.1.3 The Energy Eigensystem

Conducive to developing a complete illustration of the SAP procedure for this piecewise

triple harmonic oscillator, an analytical means of determining the eigensystem of (5.2)

is necessary. A technique to recover the energy eigensystem for two piecewise harmonic

oscillators is found in Razavy ‘Quantum Theory of Tunneling’ [14], which we extend

here for an arbitrary arrangement of three piecewise harmonic oscillators. In doing so

we impose that each trap has the same trapping frequency but the procedure detailed

can be easily generalised to account for traps with unequal trapping frequencies.
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To arrive at a general solution for the whole three trap potential, we must solve for each

individual potential separately and afterwards ensure that these solutions are continuous

over the whole potential. To do so we define the point of intersection between the left

and middle trap as al, and the point of intersection between the middle and right trap

as ar. The scaled potential at each time step tn is thus given (from section 5.1.1) by,

V(x, tn) =


(
x + x0(tn)

)2
/2, for −∞ < x ≤ al,(

x + x1(tn)
)2
/2, for al ≤ x ≤ ar,(

x + x2(tn)
)2
/2, for ar ≤ x <∞.

(5.4)

The middle trap center x1(tn) is stationary and is located on the origin. For resonant

harmonic traps the intersection points are al = −x0(tn)/2 and ar = −x2(tn)/2, with the

position of the trap centers defined by (5.3).

Schrödinger’s equation must be solved within the boundaries of each trap. Furthermore

the logarithmic derivatives of neighbouring solutions must be equal at each boundary.

The procedure is as follows. Firstly we write (5.2) for each potential well in scaled units,

(
d2

dx2
−
(
x + x0(tn)

)2
2

+

(
υ +

1

2

))
φ0
υ(x, tn) = 0, for −∞ < x ≤ al, (5.5a)(

d2

dx2
−
(
x + x1(tn)

)2
2

+

(
υ +

1

2

))
φ1
υ(x, tn) = 0, for al < x ≤ ar, (5.5b)(

d2

dx2
−
(
x + x2(tn)

)2
2

+

(
υ +

1

2

))
φ2
υ(x, tn) = 0, for ar < x <∞. (5.5c)

The eigenenergies of the eigenfunctions for each spatial region must be equal as,

Hηφηυ(x, tn) = ~ωυφηυ(x, tn) where ~ωυ = ~ω(υ + 1
2) and Hη is the operator within

the bounds of the η spatial region. Changing the position of the trap centers does

not change the functional form of the eigenfunctions in each spatial region but, as we

will momentarily show, it changes the relative contribution each spatial mode solution

contributes to the eigenfunctions of the whole potential.1

The solutions of the dimensionless equations (5.5) are the parabolic cylinder functions,

φηυ(x, tn) = Dυ(
√

2(x + xη(tn))) [31]. We can expect that the quantum number υ

1 For the case when the three traps have unequal trapping frequencies, we note here that changing
the trapping frequency of each harmonic potential changes the functional form of the eigenfunctions for
each spatial region. The condition that their energies are the same in each spatial region, must still
be satisfied. For harmonic traps of unequal trapping frequencies, i.e. ωl, ωm, ωr, the quantum number
associated with the solution of each spatial region is different υl, υm, υr. For such a non-trivial case
it helps to proceed in terms of a single quantum number υm. This is achieved by relating the υl and
υr quantum numbers to υm as, υl = (ωm − ωl + 2ωmυm)/(2ωl), and υr = (ωm − ωr + 2ωmυm)/(2ωr),
where ωlmr is the trapping frequencies of the left, middle and right potential respectively. Similarly the
intersection points are changed as al = −x0(tn)ωm/(ωm + ωl) and ar = −x2(tn)ωm/(ωm + ωr).
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associated with the eigenenergies of the system is non-integer. Therefore the parabolic

cylinder functions vanish for x→∞ but will diverge for x→ −∞. With this in mind we

may first construct the solutions to the left and right traps such that the argument of the

function is always positive within the bounds of the traps, i.e. φ0
υ(x, tn) = Dυ(−

√
2(x +

x0(tn))) and φ2
υ(x, tn) = Dυ(

√
2(x + x2(tn))).

The solution for the middle trap presents a small problem since it is bounded by both

the left and right traps. If we were solving for the middle and left boundary, or the

middle and right boundary alone, it would be rather straightforward. The issue is that

we require a solution that satisfies logarithmic derivative condition at both bounds and

does not diverge to infinity at either. In order to resolve this we write the solution of

the middle trap as a superposition of the solutions on both the left and right sides. To

put it more straightforwardly this means,

φ0
υ(x, tn) = Dυ(−

√
2(x + x0(tn))), (5.6a)

φ1
υ(x, tn) = αDυ(

√
2 x) +Dυ(−

√
2 x), (5.6b)

φ2
υ(x, tn) = Dυ(

√
2(x + x2(tn))), (5.6c)

To simplify we have let x1(tn) = 0.

In the usual way we may connect the solutions of adjacent traps by requiring that they

satisfy the logarithmic derivatives at the boundaries,(
φ0
υ(x, tn)′

φ0
υ(x, tn)

)
al

=

(
φ1
υ(x, tn)′

φ1
υ(x, tn)

)
al

, (5.7a)(
φ2
υ(x, tn)′

φ2
υ(x, tn)

)
ar

=

(
φ1
υ(x, tn)′

φ1
υ(x, tn)

)
ar

. (5.7b)

The prime ′ indicates the derivative with respect to x. The simultaneous equations of

(5.7) are a function of both α (the coefficient of the middle trap solution) and υ (the

quantum number of the energy eigenfunction).

The parabolic cylinder functions satisfy the recurrence relations,

Dυ+1 (x)− x Dυ (x) + υDυ−1 (x) = 0,

D′υ (x) +
x

2
Dυ (x)− υDυ−1 (x) = 0,

which can be used in the explicit evaluation of (5.7).

In order to resolve for υ it helps to first rearrange equations (5.7) in terms of α. We

note for resonant harmonic traps al = −x0(tn)/2 and ar = −x2(tn)/2 and to abbreviate
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we define x0 ≡ x0(tn) and x2 ≡ x2(tn).

α =

√
2Dυ

(−x0√
2

)
Dυ+1

(
x0√

2

)
−Dυ

(
x0√

2

)[√
2Dυ+1

(−x0√
2

)
+ x0Dυ

(−x0√
2

)]
Dυ

(−x0√
2

)[
2
√

2Dυ+1

(−x0√
2

)
+ x0Dυ

(−x0√
2

)] , (5.8a)

α =

Dυ

(
x2√

2

)[
2
√

2Dυ+1

(
x2√

2

)
− x2Dυ

(
x2√

2

)]
Dυ

(
x2√

2

)[√
2Dυ+1

(−x2√
2

)
+ x2Dυ

(−x2√
2

)]
−
√

2Dυ

(−x2√
2

)
Dυ+1

(
x2√

2

) , (5.8b)

In practice making use of a software program such as Mathematica allows an easy

progression from equation (5.7) to equation (5.8).

For a known value of υ we can find α. To find the values of υ we construct a function

F(υ), by subtracting the right hand sides of both the above equations. We have,

F(υ) =

√
2Dυ

(−x0√
2

)
Dυ+1

(
x0√

2

)
−Dυ

(
x0√

2

)[√
2Dυ+1

(−x0√
2

)
+ x0Dυ

(−x0√
2

)]
Dυ

(−x0√
2

)[
2
√

2Dυ+1

(−x0√
2

)
+ x0Dυ

(−x0√
2

)]

−
Dυ

(
x2√

2

)[
2
√

2Dυ+1

(
x2√

2

)
− x2Dυ

(
x2√

2

)]
Dυ

(
x2√

2

)[√
2Dυ+1

(−x2√
2

)
+ x2Dυ

(−x2√
2

)]
−
√

2Dυ

(−x2√
2

)
Dυ+1

(
x2√

2

) .
(5.9)

The roots of F(υ) = 0 are the allowed values of υ. For each value of υ the corresponding

value of α is found from either of equations (5.8).

The non-normalised eigenfunctions are given by equation (5.6). In order to preserve

continuity, we rewrite the solutions to each region of the triple well as,

φ0
υ(x, tn) = k0 Dυ(−

√
2(x + x0(tn))), for −∞ < x ≤ al, (5.10a)

φ1
υ(x, tn) = k1

[
αDυ(

√
2 x) +Dυ(−

√
2 x)

]
, for al ≤ x ≤ ar, (5.10b)

φ2
υ(x, tn) = k2 Dυ(

√
2(x + x2(tn))), for ar ≤ x <∞. (5.10c)

where,

k0 = 1,

k1 = Dυ(−x0(tn)/
√

2)/

(
αDυ(−x0(tn)/

√
2) +Dυ(x0(tn)/

√
2)

)
,

k2 = sign

[
αDυ(−x2(tn)/

√
2) +Dυ(x2(tn)/

√
2)

]
sign

[
Dυ(x2(tn)/

√
2)

]
.

From these relations we may construct the normalised eigenfunctions.
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Figure 5.2: A plot of the function F(υ) recovered from equation (5.9). The vertical
lines indicated the position of the poles.

To do so we first abbreviate φηυ ≡ φηυ(x, tn). We make use of the Heaviside step function

Θ(z) and let Vη represent the spatial region spanned by the |η〉 harmonic trap. The

normalised eigenfunctions of the triple well potential are thus given by,

ψυ(x, tn) =
Θ(−x− al)φ0

υ −
[
Θ(x + al)−Θ(x + ar)

]
φ1
υ + Θ(x + ar)φ

2
υ√∫

V0 dx |φ
0
υ|2 +

∫
V1 dx |φ

1
υ|2 +

∫
V2 dx |φ

2
υ|2

. (5.12)

The notation for the energy eigenfunctions may be interchanged with the Dirac notation

as, ψυ(x, tn) = 〈x|ψυ(tn)〉.

Numerical Example

In our units the eigenvalues of the triple well harmonic oscillator are,

Eυ = ~ω
(
υ +

1

2

)
. (5.13)

For the usual one dimensional harmonic oscillator the ground state is ~ω/2 and the

quantum number υ is an integer, υ = 0, 1, 2, . . . . For this triple well harmonic oscillator

the quantum number υ associated with the eigenfunctions |ψυ(tn)〉, is non-integer.

For the purposes of clarity and completeness we momentarily consider a numerical exam-

ple; we choose a particular case when the ‘potential barrier’ between the spatial modes is

small. We let (x0(tn), x1(tn), x2(tn)) = (2.4527, 0,−2.4551) and all harmonic traps have

the same trapping frequency. When the trap centers are in close proximity (as is the

case here) the eigenspectrum of each spatial mode cannot be approximated by harmonic
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Figure 5.3: The gs-triplet eigenfunctions ψµ(x, tn), (for µ = 0, 1, 2) of the piecewise
triple harmonic oscillator potential. The trap centers are (x0(tn), x1(tn), x2(tn)) =

(2.4527, 0,−2.4551).

oscillator states. Furthermore a state localised in any spatial mode has a short lifetime

as it is in the strong coupling or the high frequency tunneling regime.

The roots of F(υ) allow us to recover the quantum number υ associated with each

eigenfunction. In figure 5.2 we show the function F(υ) for our chosen parameters, where

the poles are indicated by the position of the vertical dashed lines. The three roots

which are the solutions for the eigenfunctions are the non-integer roots. Note there is

an ‘extra’ root that lies on the origin which is not a solution for the eigenfunctions of

the potential and is therefore neglected. There are similar ‘extra’ roots at all integer

values of υ which are neglected as they do not recover the correct eigenfunctions of the

potential.

We find that the quantum numbers associated with the ground, first and second ex-

cited eigenfunctions are, (υ0, υ1, υ2) = (−0.20491,−0.03398, 0.22687). The value of α

corresponding to each of these numbers is found from (5.8). The related eigenfunc-

tions for these three quantum numbers are constructed from (5.12) and found plotted

in figure 5.3. These eigenfunctions can be readily compared to a situation close to the

asymptotic limit, as in figure 5.1, and the asymmetric case in figure 5.5. The eigenfunc-

tions |ψν〉 for ν = 0, 1, 2 for each magnitude of the trap separations can be identified by

their functional form or, to be precise, by the number of nodes.

At this point we note that as the trap centers are moved throughout the SAP evolution,

the energy of each eigenfunction |ψυ(tn)〉 changes as the scaling of the quantum number

υ changes (see (5.13)). Keeping track of the each eigenfunction (ground, first or second
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excited) using these non-integer numbers is not practical. However the ground, first

and second excited eigenfunctions are identifiable (for all tn) in SAP processes from

their functional form. For the purposes of clarity we shall, from here on, refer to the

ground first and second excited eigenfunction using the labels ν = 0, 1, 2 respectively.

Equation 5.13 becomes,

Eν = ~ω
(
υν +

1

2

)
= ~ων . (5.14)

The properties of the eigenfunctions of (5.12) exhibit a trait similar to those of the

three square wells potential studied in [39], in that they form groups of three or triplets.

Herein we refer to the three lowest eigenfunctions |ψν(t0)〉, for ν = 0, 1, 2, as the ground

state triplet (gs-triplet), and examples are found plotted in both figures 5.3 and 5.1. In

the limit of large separation between the traps the eigenenergies ~ωυ(tn) = ~ω(υ+ 1/2)

of the gs-triplet asymptotically approach ~ω/2, for ν = 0, 1, 2. Similarly for the first

excited triplet, their eigenenergies asymptotically approach 3~ω/2, for ν = 3, 4, 5, and

so on.

5.2 SAP in the Spatial Mode Basis

Chapter 4 showed that the Hamiltonian operator in the spatial basis is related to the

operator in the energy basis by a rotation, made possible via the Euler rotation matrices.

When two energetic modes are occupied, this rotation matrix consists of one angle of

rotation which determines the phase and amplitude evolution of two spatial modes.

When (for instance) the three lowest energetic modes are occupied |ψ0〉, |ψ1〉 and |ψ2〉, the

corresponding rotation matrix consists of three angles of rotation. These angles θ10, θ21

and θ20 depend on the frequency difference between the energetic modes, ω−10, ω
−
21 and

ω−20, and the overlap of the energy eigenfunctions in the different spatial regions Dηµν .

The spatial mode Hamiltonian matrix is related to the energetic mode Hamiltonian

matrix by the rotation HR = RHR†, where the rotation matrix R = RxRyRz and,

Rx =


cos θ10 sin θ10 0

−sin θ10 cos θ10 0

0 0 1

 ; Ry =


cos θ21 0 sin θ21

0 1 0

−sin θ21 0 cos θ21

 ;

Rz =


1 0 0

0 cos θ20 sin θ20

0 −sin θ20 cos θ20

 ; H = ~


ω0 0 0

0 ω1 0

0 0 ω2

 .

(5.15)

Resolving for a closed form solution for each of these angles, using a method analogous

to that of chapter 4, is a cumbersome task. Evaluating the density evolution in both
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representations, using these three angles, results in equations that are far too big to

work with in any type of reasonable fashion. For the purposes of this work we assert

that an exact solution for each of these angles is not necessary. Until the correct spatial-

energetic map is available, for three (or N) spatial-energetic modes, we present in the

following a means of approximating the rotation matrix R.

5.2.1 The Trap Basis Approximation

In general it is not possible to construct a basis to represent a spatial region of an

arbitrary potential, e.g. a 1-D harmonic trap. However, potentials wherein the density

of a wavefunction (which is some linear superposition of the basis states) may assume

a local maximum in a spatial region, whilst having a negligible density in the other

spatial regions, do offer the possibility to construct a basis to represent each spatial

region. The functional form of this triple well harmonic potential is an example of such

a potential and subsequently we may define a basis for the spatial regions spanned by

the traps [70]. The ‘ground state’ of each harmonic trap may be expanded as a linear

combination of the ground state triplet eigenfunctions |ψν(tn)〉, for ν = 0, 1, 2. In the

adiabatic limit the evolution of the wavefunction is completely confined to the gs-triplet

eigenfunctions. Therefore we are justified in constructing this basis using only these

three eigenfunctions. This ‘trap basis’ can be used to recover an approximate form of

the rotation matrix R. Thereafter the spatial Hamiltonian matrix HR may be recovered

to a good approximation.

In our dimensionless units, the ‘ground state’ of each harmonic trap is a gaussian located

on each trap center,

〈x|ϑη(tn)〉 = exp
(
− (x + xη(tn))2

)
. (5.16)

The ‘trap basis’ for |η〉 is a normalised linear combination of the gs-triplet eigenfunctions,

which is the projection of |ϑη(tn)〉 on the sum of the basis states |ψν(tn)〉. The ket |η〉
may be defined as,

|η〉 =
2∑

ν=0

Rην(tn)|ψν(tn)〉. (5.17)

For brevity we omit to include the time coordinate, tn, in the spatial mode ket. The

elements Rην are defined by,

rην(tn) =

∫
dx 〈ϑη(tn)|x〉〈x|ψν(tn)〉,

Rην(tn) = rην(tn)/

√√√√ 2∑
µ=0

rηµ(tn).

(5.18)
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Here we make use of Rην to construct a rotation matrix R which acts to rotate the usual

energetic Hamiltonian matrix H, to approximate the equivalent spatial Hamiltonian

matrix HR.

HR(tn) = R(tn)H(tn)R−1(tn). (5.19)

where the elements of R(tn) are given by (5.18) and H(tn) is a diagonal matrix whose

diagonal elements, ~ω0(tn), ~ω1(tn) and ~ω2(tn), are the eigenenergies of the gs-triplet

eigenfunctions.

The spatial modes, as defined per the ‘trap basis’ approximation, do not form an or-

thonormal basis. As a result we are forced to make use of the inverse of the rotation

matrix R(tn), rather than its hermitian conjugate, when rotating to the spatial mode

Hamiltonian matrix. The principle downfall of the trap basis approach is that the re-

sulting approximation to the spatial mode Hamiltonian is non-hermitian, which is an

artifact of having to use the inverse of R(tn) when rotating between both bases.

The explicit form of the spatial Hamiltonian matrix of (5.19) is,

HR(tn) = ~


ξ0(tn) Ω01(tn) Ω02(tn)

Ω10(tn) ξ1(tn) Ω12(tn)

Ω20(tn) Ω21(tn) ξ2(tn)

 . (5.20)

The degree of how non-hermitian HR(tn) becomes during the SAP process is related to

the minimum approach distance dmin. Naturally the correct spatial Hamiltonian matrix

is hermitian and can found by making use of the Euler rotation matrices (5.15) and

employing a related, but more sophisticated, approach as that of chapter 4. The trap

basis approximation is more than sufficient for our purposes.

5.2.2 Temporal Evolution of the Spatial Modes

At each time step the wavefunction is expanded in the Schrödinger picture as a linear

combination of the energetic modes and in the spatial basis, as a direct sum of the spatial

modes. Respectively we have,

|Ψ(tn)〉 = c0(tn)|ψ0(tn)〉+ c1(tn)|ψ1(tn)〉+ c2(tn)|ψ2(tn)〉, (5.21a)

|Ψ(tn)〉R = b0(tn)|0〉+ b1(tn)|1〉+ b2(tn)|2〉. (5.21b)

Whilst the spatial mode kets also depend on tn, here we omit this detail for the purposes

of abbreviation. In section 5.3 we discuss the phase evolution of the wavefunction in the
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energetic basis. In the spatial representation the wave equation reads,

ı~
d

dt
|Ψ(tn)〉R = HR(tn) |Ψ(tn)〉R,∫ |Ψ(tn+1)〉R

|Ψ(tn)〉R

d|Ψ(tn)〉R
|Ψ(tn)〉R

= − ı
~

∫ tn+1

tn

HR(tn) dt.
(5.22)

The distance between any two points in time is a constant value, tn+1− tn = ∆t, and it

follows that the evolved wavefunction at tn+1 is given by,

|Ψ(tn+1)〉R = exp
(
− ı
~

HR(tn) ∆t
)
|Ψ(tn)〉R. (5.23)

From this relation the wavefunction may be iteratively time evolved from some initial

state at t = t0 to its final state at t = tN . The initial spatial mode state vector, b(t0) =

(b0(t0), b1(t0), b2(t0))T, is given by the square root of the densities of the wavefunction

in each spatial mode.

bη(t0) =
√
ρη(t0), (5.24)

where,

ρη(tn) =
2∑

µ,ν=0

c∗µ(tn)cν(tn)Dηµν(tn); Dηµν(tn) =

∫
Vη
dx 〈ψµ(tn)|x〉〈x|ψν(tn)〉.

(5.25)

When the initial state coefficients cν(t0) in the Schrödinger picture are all real valued

there is no phase difference between the spatial modes at t0 and (5.24) is the correct

initial state in the spatial basis. The work of chapter 4 has demonstrated this principle

for two spatial and energetic modes.

5.2.3 Numerical Calculations

We require the initial state to be localised in |0〉, such that

(b0(t0), b1(t0), b2(t0))T ≈ (1, 0, 0)T. Therefore we choose the energetic mode amplitudes

to be (c0(t0), c1(t0), c2(t0))T =
(√

0.25,
√

0.5,
√

0.25
)T

. As the eigenenergies of the basis

states are close in value at t0 (i.e. dmax large), the localised probability density of this

initial state is long lived.

For our numerical work the maximum and minimum allowed distances between the outer

and central wells (in dimensionless units) are dmax = 9 and dmin = 2.25. The time scale

is discretised into N + 1 time steps with N = 4 × 104, and the time step ∆t = 0.0375,

giving a total time of tN = 1500. We show in section 5.3.1 that these parameters are in

the adiabatic regime. The ‘counter-intuitive’ paths of the η = 0, 2 trap centers are given

by (5.3).
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Figure 5.4: (a) The absolute value of the spatial mode coefficients (b) The eigen-
frequencies of the triple well harmonic oscillator (c) The local frequency terms of the
spatial modes (d) The interaction frequency between the spatial modes. The solid

(dashed) lines are the upper (lower) matrix elements of HR(tn).

In vector form (5.23) becomes,
b0(tn+1)

b1(tn+1)

b2(tn+1)

 = exp

−ı

ξ0(tn) Ω01(tn) Ω02(tn)

Ω10(tn) ξ1(tn) Ω12(tn)

Ω20(tn) Ω21(tn) ξ2(tn)

∆t



b0(tn)

b1(tn)

b2(tn)

 . (5.26)

This relation is used to iteratively time evolve the initial state vector from t = t0 → tN .

The matrix elements for each time step are calculated using the trap basis approach of

section 5.2.1.

In figure 5.4 (a) we show the probability densities of the spatial mode coefficients

throughout the evolution. As expected the ‘counter-intuitive’ motion of the trap cen-

ters has shown complete transfer of probability density from |0〉 → |2〉. In (b) is the

frequency spectrum of the gs-triplet eigenfunctions, which is equivalent to the eigenfre-

quencies of HR/~. The eigenenergy ~ω1(tn) corresponds to the eigenvalue of the usual

dark state eigenvector, discussed in chapter 3. The dark state eigenenergy remains

effectively constant throughout the evolution, i.e. at all tn it is ≈ 0.5~ω.

As the trap centers move there is a splitting of the eigenspectrum and a ‘reshuffling’ of

the probability density of the eigenfunctions between the spatial regions spanned by the

traps. This reshuffling (addressed in further detail in sections 5.3.2 and 5.3.3) in turn

changes the values of the matrix elements of HR(tn). In figure 5.4 (c) and (d) are the

matrix elements of HR(tn)/~. In (c) are the local frequencies of the spatial modes. For

the majority of the evolution ξ0 = ξ1 = ξ2 = 0.5, but around its midpoint these values

change slightly. The timescale over which these slight changes are happening corresponds
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to the times when the dark state’s energy eigenvalue differs from 0.5 in (b). At all times

the trace of the Hamiltonian matrix is equivalent in both bases, Tr
(
HR

)
= Tr

(
H
)
.

In (d) we show the interaction frequencies between the spatial modes. The upper (lower)

matrix elements are the solid (dashed) lines. The trap basis approach has recovered

(albeit non-hermitian) the familiar characteristic form of the SAP ‘counter-intuitive’

tunnel coupling between the spatial modes. The tunneling interaction between the

unoccupied spatial modes Ω12(tn) increases first (reminiscent of the Stokes pulse in

STIRAP), followed in-situ by Ω01(tn) (the pump pulse in STIRAP). The trap basis

approximation has also uncovered the existence of an interaction frequency between

the outer traps, Ω02(tn). To date this interaction frequency has always been assumed

negligible for SAP processes. Obvious from figure 5.4 (d), this interaction frequency

reaches a significant magnitude at the midpoint of the evolution. The sign of Ω02(tn)

is opposite that of the nearest neighbour trap interaction frequencies; at present we are

unaware of any obvious physical interpretation for this artifact. Whilst this interaction

term may certainly be neglected without significant error, as is usual in the literature,

when it is omitted the eigenvalues of the Hamiltonian matrix in the spatial and energetic

bases are no longer equal.

The most significant insight the trap basis approximation offers is illuminating the direct

relationship between the Hamiltonian matrix in the energetic and spatial bases. It follows

that the interaction terms between the spatial modes may be derived analytically from

an arbitrary potential of interest. The extension of the work outlined in chapter 4 to

three spatial and energetic modes would provide a means of analytically determining

the exact spatial dynamics of the wavefunction in the spatial basis.

5.3 SAP in the Energetic Basis

Schrödinger’s equation reads,

ı~
d

dt
|Ψ(tn)〉 = H(tn) |Ψ(tn)〉. (5.27)

With expansion (5.21a), we make use of the chain rule and project on the left hand side

with
∫
dx 〈ψµ|x〉〈x|. This allows us to recover a differential equation for each coefficient,

ċµ(tn) = −ı
2∑

ν=0

(
ων(tn)δµν − γ̇µν(tn)

)
cν(tn), (5.28)

where,

γ̇µν(tn) = ı

∫
dx 〈ψµ(tn)|x〉〈x|ψ̇ν(tn)〉. (5.29)
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This term preserves the unitarity of the evolution whilst coupling the dynamical evo-

lution of the basis states. It follows that the phase evolution of the energetic mode

coefficients are iteratively time evolved as,

c(tn+1) = U(tn) c(tn). (5.30)

The time evolution operator is given by,

U(tn) = exp

−ı

ω0(tn)− γ̇00(tn) −γ̇10(tn) −γ̇20(tn)

−γ̇01(tn) ω1(tn)− γ̇11(tn) −γ̇21(tn)

−γ̇02(tn) −γ̇12(tn) ω2(tn)− γ̇22(tn)

∆t

 . (5.31)

For a time independent Hamiltonian the geometric component γ̇µν(tn) = 0 for all µ, ν

and we observe the usual dynamical evolution of the basis states. For the time dependent

Hamiltonian, the geometric component acts to decay the usual dynamical evolution

whilst coupling the basis states. As can be seen from (5.29), ı/~γ̇µν(tn) is real valued.

Noted in [173], this phase factor is non-integrable as the phase evolution of the coefficients

is interdependent, since we now have off diagonal terms in the energetic Hamiltonian

matrix.

Presently we diverge from the usual form of the time evolution operator (5.31) and derive

an analogous expression that helps to shed some light on the coupling of the energetic

modes for time dependent processes. Analogous to (5.23) the phase evolution of the

basis states in the energy eigenbasis reads,

|Ψ(tn+1)〉 = exp
(
− ı
~

H(tn) ∆t
)
|Ψ(tn)〉. (5.32)

At each time step the state ket is expanded as a linear superposition of the energetic

modes as,

|Ψ(tn)〉 =
2∑

ν=0

cν(tn)|ψν(tn)〉. (5.33)

Projecting on the left of (5.32) with 〈Ψ(tn+1)| we find the time evolution operator of

(5.30) may also we expressed as,

U(tn) =


e−ıω0(tn)∆tcos θ00(tn) e−ıω1(tn)∆tcos θ01(tn) e−ıω2(tn)∆tcos θ02(tn)

e−ıω0(tn)∆tcos θ10(tn) e−ıω1(tn)∆tcos θ11(tn) e−ıω2(tn)∆tcos θ12(tn)

e−ıω0(tn)∆tcos θ20(tn) e−ıω1(tn)∆tcos θ21(tn) e−ıω2(tn)∆tcos θ22(tn)

 .

(5.34)
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The angle θµν(tn) is a measure of the rotation of the Hilbert space which is the projection

of the basis states between the times tn and tn+1 as,

cos θµν(tn) =

∫
dx 〈ψµ(tn+1)|x〉〈x|ψν(tn)〉. (5.35)

For a time independent Hamiltonian, we find that cos θµν(tn) = δµν , and there is no

longer any need for the discretised time notation. However, for the time dependent

case this matrix is not diagonal and the angle θµν(tn) becomes an important measure,

which acts to couple the occupied eigenfunctions so that their phase evolution becomes

interdependent. The elements of the rotation matrix, cos θµν(tn), in general exhibit a

non-hermitian character. As the eigenspectrum changes in time, ~ωµ(tn+1)− ~ων(tn) is

not necessarily equal to ~ων(tn+1)− ~ωµ(tn), for µ 6= ν. For our numerical work we find

the time evolution operator according to (5.34) a more natural tool for determining the

phase evolution of the energetic mode coefficients.

5.3.1 SAP: Adiabaticity And The Geometric Phase

For the numerical work in this section we use the same parameters as those outlined in

section 5.2.3. Our initial state c(t0) = (
√

0.25,
√

0.5,
√

0.25)T localises the matter wave

in |0〉. The ‘counter-intuitive’ motion of the trap centers (equation (5.3)) determines how

the potential and eigenspectrum changes in time (section 5.1.3). The time evolution of

the wavefunction is determined via equation (5.30), where the time evolution operator

is given by equation (5.34). Here we allow the length of the stationary period ∆t to vary

between 0→ 0.02.

A working interpretation of the adiabatic criterion is that the system’s evolution has to

be slow enough that additional eigenfunctions of the Hilbert space are not excited. For

the purposes of this work, we wish to remain confined to the gs-triplet, therefore the

process is considered adiabatic as long as higher order eigenfunctions are not occupied

at any intermediate time tn. Typical values of tN for this time dependent process are

tN > 1000.

If each incremental change in the eigenfrequencies ∆ων(tn) = ων(tn+1)− ων(tn) for the

basis states is sufficiently small (for our purposes this change is less than 10−3), and the

‘continuous time’ increment ∆t is sufficiently large, the process as a whole is smoothly

varying. When these conditions are satisfied the chosen quantum state evolves adiabat-

ically. In the limit where ∆t → 0 the functional form of the initial wavefunction will

not change throughout the whole evolution. To maintain its initial form, the quantum

state assumes contributions from the higher order eigenfunctions. Toward the midpoint
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Figure 5.5: Counter-intuitive trap paths. (a) The final densities of the energetic
mode coefficients as a function of the total time tN . (b) The probability density of the
wavefunction in the traps |1〉 (dark blue), |2〉 (pink) and |3〉 (light blue), with tN = 1500.

of the process the potential and basis states differs most significantly (from their ini-

tialised values) and consequently the quantum state will assume a large contribution

from higher order eigenfunctions. Increasing the value of the stationary interval ∆t ad-

equately allows the quantum state to smoothly evolve into the basis states at each time

step.

In figure 5.5(a) we show these probability densities at the end of the evolution for

different durations of the process, tN = N∆t. For tN < 1000 there is an erratic pattern

in the densities of the final state corresponding to diabatic evolution. However for

tN > 1000 the probability densities maintain a small amplitude (indicated in figure).

Close examination of the oscillation amplitude shows that it is not actually constant, but

rather exhibits a repetitious pattern, and we are in the adiabatic regime. In figure 5.5(b)

are the densities of the spatial modes (η = 0, 1, 2) throughout the SAP process with

∆t = 0.0375, calculated via equation (5.25).
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The initial state c(t0) =
(√

0.25,
√

0.5,
√

0.25
)T

is localised in |0〉. Conversely, the fi-

nal state c(tN ) ≈ eıϕ
(√

0.25, eiπ
√

0.5,
√

0.25
)T

is localised in |2〉, where ϕ is a global

phase. The first excited eigenfunction |ψ1(tN )〉 has acquired a π phase from this cycli-

cal process. This acquired phase is detectable/measurable as the probability density

of the wavefunction has been transported from |0〉 → |2〉. This evidently alludes that

SAP is a consequence of, and example of, a geometric phase. To explore the nature of

this phase factor we consider the temporal evolution of the wavefunction for both the

‘counter-intuitive’ and ‘intuitive’ trap motions.

5.3.2 SAP: Counter-Intuitive Trap Paths

Synonymous with matter wave transport in SAP processes is the so-called ‘spatial dark

state’. Here we look at the occupation of the energy eigenfunctions throughout the SAP

evolution according to Schrödinger equation. In figure 5.6(a) are the amplitudes of the

basis states |cν(tn)|2 when tN = 1500. Visible from the plot is a rapid exchange of

probability density at the beginning (and end) of the evolution, whereby the wavefunc-

tion obtains (loses) complete occupation of the first excited eigenfunction |ψ1(tn)〉. The

rapid change at the beginning (and end) is due to the breaking of the symmetry. Ini-

tially the interaction terms are all zero, thus the initial state has contributions from all

eigenvectors. When the trap motions begin, the interaction terms assume values which

result in the complete occupation of |ψ1(tn)〉. Following a complete cyclical evolution,

all interaction terms return to zero and the π phase acquired by |ψ1(tn)〉 localises the

matter wave in |2〉. The |ψ1(tn)〉 energy eigenfunction corresponds to the ‘spatial dark

state’ of the spatial Hamiltonian matrix in section 5.2.1.

At tn = t4×103 the matter wave has assumed complete occupation of |ψ1(tn)〉, indicated

by the vertical dashed line in figure 5.6(a). The underlying reason for this transition

can be understood by looking at the change in the functional form of the basis states

between tn = t0 and tn = t4×103 . In figure 5.1 are the eigenfunctions of the gs-triplet at

tn = t0, and in figure 5.6(b) are the eigenfunctions at tn = t4×103 . The ‘counter-intuitive’

motion of the |2〉 trap center localises 〈x|ψ1(tn)〉 in |0〉, whereas the ground and second

excited eigenfunctions (〈x|ψ0(tn)〉 and 〈x|ψ2(tn)〉) have significant densities only in the

|1〉 and |2〉 spatial regions. As the eigenspectrum of the gs-triplet is initially very close

in value, transitions between these states readily occurs. An adiabatic motion of the

trap centers prohibits excitation of the wavefunction to higher lying triplets and allows

the wavefunction to assume complete occupation of |ψ1(tn)〉.

As we pass the mid-point of the evolution the relative distances of the outer traps to

the central one are reversed. As a result the densities of the eigenfunctions in the
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Figure 5.6: (a) The probability densities |cν(tn)|2 for the ‘counter-intuitive’ trap
motions, where ν = 0 dash-dot blue, ν = 1 in green and ν = 2 is in red. (b) In solid
blue is the scaled potential V(tn)/25. Overlayed are the gs-triplet eigenfunctions at

tn = t4×103 .

respective spatial regions are reversed. |ψ1(tn)〉 is now localised in |2〉 and the remain-

ing eigenfunctions have significant densities only in |0〉 and |1〉. During this exchange

there is a large spatial overlap of the energetic modes. Since the eigenspectrum is

broadly separated (see figure 5.4(d)), and the motion is adiabatic, transitions between

the basis states are inhibited and the wavefunction remains in |ψ1(tn)〉. At tn = tN

the potential returns to its symmetric form and the wavefunction assumes the state

c(tN ) ≈ eıϕ
(√

0.25, eiπ
√

0.5,
√

0.25
)T

. The phase difference present in the wavefunction

between at the initial and final times is evidenced by the fact that the probability density

is now localised in |2〉.
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Figure 5.7: Intuitive trap paths. (a) Temporal density of the energetic mode coeffi-
cients. (b) Final densities of the energetic mode coefficients as a function of the total

time tN .

5.3.3 SAP: Intuitive Trap Paths

The motion of the trap centers given by (5.3) describes the ‘counter-intuitive’ case.

Simply by interchanging the relations provided we have the ‘intuitive’ trap motions for

the wavefunction c(t0) ≈
(√

0.25,
√

0.5,
√

0.25
)T

localised in |0〉. In figure 5.7(a) are

the densities of the energetic coefficients throughout the evolution with tN = 1500. In

contrast to the ‘counter-intuitive’ case, the initial delay between the motion of the |0〉 and

|2〉 trap centers extinguishes the density of 〈x|ψ1(tn)〉 in |0〉, whilst the 〈x|ψ0(tn)〉 and

〈x|ψ2(tn)〉 energetic modes have densities in |0〉 and |1〉 exclusively. As a consequence,

the wavefunction assumes a linear superposition of |ψ0(tn)〉 and |ψ2(tn)〉. Throughout

the evolution transitions readily occur between these two states as they are close in

energy and have a large spatial overlap. Toward the midpoint of the process, transitions

between |ψ0(tn)〉 and |ψ2(tn)〉 are reduced due to the splitting of the eigenspectrum but

still occur since their densities span overlapping spatial regions. Numerically it can be
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shown that if the delay between the trap paths is too large the eigenspectrum becomes

narrow at the midpoint of the evolution and transitions to the |ψ0(tn)〉 and |ψ2(tn)〉
basis states readily occur, and consequently leakage into |1〉 is observed.

When the traps return to their initial positions the final state is somewhat unpredictable

as the amplitude of the energetic modes at the end of the process depends on tN .

Illustrated in figure 5.7(b) is the dependency of the final energetic mode densities as

a function of the total time tN . The oscillatory pattern visible in the plot continues

ad-infinitum as tN →∞.

If the phase difference between the basis states at tN were random, we would certainly

observe a random distribution of density between all spatial modes, however this is

not the case. Since |ψ0(tn)〉 and |ψ2(tn)〉, which facilitated the transport of state, have

densities only in only the |1〉 and |2〉 spatial regions (past the midpoint of the evolution),

similarly the final state has densities in only the |1〉 and |2〉 spatial regions. The weighting

of the densities in these regions is dependent on the total time tN . We may infer that

the reason densities exist only in |1〉 and |2〉 is due the phase difference between the basis

states (at tN ) acquired from the cyclical evolution. Therefore, similar to the ‘counter-

intuitive’ scheme there is a geometric phase present in the ‘intuitive’ scheme, albeit less

obvious or appealing. A consequence of the geometric phase for the ‘intuitive’ procedure

is that the wavefunction becomes ‘localised’ in (some weighted combination of) |1〉 and

|2〉.

5.4 Fractional SAP

In what has now become referred to as fractional SAP (or fractional CTAP [79]), an

appropriate adjustment of the trap paths allows for the creation of an even superposition

state between the outer traps, originally shown in [70, 174]. Additionally an arbitrary

superposition state between the outer traps can be created. In the adiabatic regime,

this superposition state is independent of the total time taken for the process and is

therefore geometric in origin. Here we detail, and offer an intuitive explanation for, the

f-SAP (fractional SAP) process.

For the numerical work in this section, we discretise the time evolution into N + 1 time

steps, with N = 4.4× 104. The stationary period is ∆t = 0.1s, so the total time for the

process is tN = 4.4 × 103s. The maximum and minimum distances of the outer traps,

with respect to the center trap, are dmax and dmin respectively. The f-SAP process

is invoked by adjusting the motion of the target trap x2(tn), whilst the initial trap

maintains the usual trajectory used in SAP processes.
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Figure 5.8: The trap paths as a function of the delay parameter δ. In solid blue is
x0(tn), and in dashed cyan is x2(tn) according to (5.36) and (5.37) respectively. The

chosen values of δ = 4× 103, and δ = −4× 103, are indicated in the figure.

Visible from figure 5.8, the |0〉 trap is initially stationary, x0(tn) = dmax, for a period of
1
11N time steps. It then follows the approach and return sequence, reaching a minimum

distance dmin, for the following 9
11N time steps. For the final 1

11N time steps, the |0〉
trap is stationary, x0(tn) = dmax. Numerically this is expressed as,

x0(tn) = Θ
(

9
11N − n− 1

){
dmax−dmin

2

[
cos

(
2π

(
n− 1

11N
)

9
11N

)
+ 1

]
+ dmin

}
+ Θ

(
1
11N − n

)
dmax + Θ

(
n− 10

11N − 1
)
dmax,

(5.36)

where Θ(z) is the Heaviside step function.

The target trap begins its approach sequence, as is usual for the f-SAP procedure.

However, once it reaches the minimum distance dmin, the target trap remains stationary

for a certain time interval before completing its return sequence. Once it has reached the

maximum separation dmax, it then remains stationary until the process is completed.

Numerically we let the variable δ determine the length of the stationary period. For

δ = 4×103, we have the usual SAP process, as the stationary period is zero. When δ = 0,

the initial and target traps both return to their maximum separation points in sync.

When this occurs, we obtain the even superposition between the outer traps [70, 174].

For other values of the delay parameter, we obtain a range of superposition states. To

demonstrate, we let δ vary from δ = 4× 103 to δ = −4× 103 (i.e. δ = N
11 → −

N
11). The

path of the |0〉 trap for both of these parameters is shown in figure 5.8. Numerically the
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path of the initial trap, as a function of the delay δ is written,

x2(tn) = −Θ
(

4.5
11 N − n− 1

){
dmax−dmin

2

[
cos

(
2πn
9
11N

)
+ 1

]
+ dmin

}
−
(
Θ
(
n− 4.5

11 N − 1
)
−Θ

(
n− 5.5

11 N + δ − 1
))
dmin

−
(
Θ
(
n− 5.5

11 N + δ
)
−Θ

(
n− 10

11N + δ
))
×

×

{
dmax−dmin

2

[
cos

(
2π

(
n− 1

11N+δ
)

9
11N

)
+ 1

]
+ dmin

}
−Θ(n− 10

11
N + δ)dmax.

(5.37)

The initial state c(t0) = (1/2, 1/
√

2, 1/2)T is localised in the |0〉 spatial mode. The time

dependent Hamiltonian changes according to the trap motions (5.36) and (5.37), and

the quantum state evolves via c(tn+1) = U(tn)c(tn), where U(tn) is given by (5.34).

In figure 5.9(a) we show the densities of the final state in the η = 0, 2 spatial modes at

the end of the f-SAP process, with ρ0(tN ) and ρ2(tN ) given by (5.25). We note here

that when δ = 4 × 103 we have the traditional SAP process, and the final quantum

state is localised in the η = 2 spatial mode. Close examination of figure 5.9(b) shows

that the final state is c(tN ) ≈ eıϕ
(√

0.25, eiπ
√

0.5,
√

0.25
)T

. Conversely when δ =

−4 × 103, the matter wave is not transported to |2〉, and the final state is localised

in the η = 0 spatial mode. From figure 5.9(b) we may infer that the final state is

c(tN ) ≈ eıϕ
(√

0.25,
√

0.5,
√

0.25
)T

. For all other values of the delay parameter, δ, the

final state is in some weighted spatial superposition between the outer traps.

When δ = 0, the traps return to their initial positions in sync and the final state is

distributed evenly between the η = 0, 2 spatial modes, shown in figure 5.9(a). From (b)

we acknowledge that in this case |ψ1〉 is the only energetic mode occupied at the end of

the (even) f-SAP evolution. To help interpret this result we first recognise that there is

not one, but a set of quantum states that may occupy an even superposition between

the η = 0, 2 spatial modes. From figure 5.1 we can see that the quantum state in the

energetic representation c = (1/
√

2, 0, 1/
√

2)T, corresponds to the quantum state in the

spatial representation b = (1/
√

2, 0, 1/
√

2)T, i.e. an even superposition between the

outer traps. Our work from chapter 4 has shown that when there is no phase difference

between the energetic modes, there is also no phase difference between the spatial modes.

Here we wish to establish how a phase difference between the spatial modes, relates to

the quantum state in the energetic representation. To do so, let us consider the spatial

state b = (1/
√

2, 0, eıφs/
√

2)T, where 0 ≤ φs ≤ 2π. In the spatial representation, it is

a trivial exercise to apply the phase difference between the spatial modes. However, to

apply the phase φs to the quantum state in the energetic representation, we first expand
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Figure 5.9: (a) The density of the spatial modes |0〉 and |2〉, at the end of the f-SAP
process, as a function of the delay parameter δ. Note that when δ = 0 the traps return
to their initial positions in sync and we obtain an even superposition between the outer

traps. (b) The densities of the energetic modes at tn = tN , as a function of δ.

the state in terms of the energy eigenfunctions as,

〈x|Ψinit〉 = c̃0〈x|ψ0〉+ c̃1〈x|ψ1〉+ c̃2〈x|ψ2〉. (5.38)

where the amplitudes of the even superposition state are (c̃0, c̃1, c̃2)T = (1/
√

2, 0, 1/
√

2)T.

Thereafter we separate the state into its components in the different spatial modes,

η = 0, 1, 2 and multiply the component in the η = 2 spatial mode by the desired phase

factor. We have,

〈x|Ψnew〉 = 〈x|Ψinit〉V0 + 〈x|Ψinit〉V1 + eıφs〈x|Ψinit〉V2 (5.39)

It follows that the ‘new’ energetic mode coefficients are given by,

cν =

∫
dx 〈ψν |x〉〈x|Ψnew〉. (5.40)
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Figure 5.10: A quantum state, c = (c0, c1, c2)T, evenly distributed between the
η = 0, 2 spatial modes. Plotted are the densities of the energetic modes |cν |2 for ν = 1
green, and ν = 0, 2 blue, dash-dot red, as a function of the phase difference φs between

η = 0, 2 spatial modes. See text for details.

In figure 5.10 we show the densities of the energetic mode coefficients |cν |2, for ν =

0, 1, 2 as a function of the phase difference, φs, between the η = 0, 2 spatial modes.

Obvious from the figure is that when the phase difference between the spatial modes

is, φs = π, the only energy eigenfunction occupied is |ψ1〉. Here we recall that the

functional form of 〈x|ψ1〉, shown in figure 5.1, is antisymmetric. It therefore makes

sense that there is a π phase difference between the spatial modes, when |ψ1〉 is the only

occupied energetic mode. We may now affirm that the f-SAP protocol, which produces

an even superposition state between the η = 0, 2 spatial modes, imposes a π phase on

the quantum state in the spatial representation. The acquired phase is independent of

the total time taken for the evolution and is (once again) geometric in origin.

Returning to figure 5.9(b) we note that for the traditional SAP process (δ = 4×103), the

π phase acquired from the cyclical evolution is manifest in the energetic modes. Since

only one spatial mode is occupied (|2〉), there can be no phase difference between the

spatial modes. Conversely, for the even f-SAP process (δ = 0), the π phase acquired

from the cyclical evolution is manifest in the spatial modes. Here, only one energy

eigenfunction is occupied (|ψ1〉), thus there can be no phase difference between the

energetic modes. Varying the delay parameter from δ = 4× 103 → 0, distributes the π

phase between both the spatial and energetic representations, thereby creating a range

of spatial superposition states between |0〉 and |2〉 which is independent of the total time

tN .

From figure 5.9(b) we see that when δ = −4× 103, the final state is localised in |0〉, and

there is no phase difference between the energetic modes. Tuning the delay parameter

from δ = 0→ −4× 103, extinguishes the phase acquired from the f-SAP evolution from
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π → 0. Consequently the range of spatial superposition states created, between |0〉
and |2〉, is the inverse of those created when the delay is varied from δ = 4 × 103 → 0.

Thus it is revealed that tuning the delay parameter allows for the creation of an arbitrary

spatial superposition state between |0〉 and |2〉, which is independent of tN and therefore

geometric in origin.

5.5 Discussion

We have shown in this chapter a means of relating the evolution of the wavefunction in

the spatial and energetic basis. Using the trap basis approximation an intuitive relation-

ship between the phase evolution of the spatial and energetic modes becomes obvious.

The interaction frequency between nearest neighbour, and next nearest neighbour spatial

modes, is uncovered using this approach. This demonstrates that interaction frequency

between any two modes must be resolved as a component of the interaction between

all spatial modes. A distinct advantage of using the trap basis approach, is that the

matrix elements of the spatial mode Hamiltonian do not depend on the state of the

wavefunction in the energetic representation, as was found in chapter 4.

Here we have shown that SAP acts to impose a π phase on the |ψ1(tn)〉 eigenfunction due

to the geometry of the cyclical evolution. The nature of this type of quantum geometric

phase is such to impose a phase on the internal energetic modes of the quantum state.

The signature of the acquired phase in three level SAP processes, is the transport of a

localised matter wave from |0〉 → |2〉. We further showed how this phase is present in

f-SAP processes, which permits the creation of spatial superposition states between the

outer spatial modes.

The form of the geometric phase acquired from a quantum state in SAP processes differs

from, for instance, the classical geometric phase acquired by Foucault’s pendulum [175].

Following a full rotation of the earth, the plane through which Foucault’s pendulum

oscillates is rotated by an angle which is determined by the solid angle it traces out

during the rotation of the earth. A classical geometric phase of this type imposes a

global geometric phase to the whole system whereas the geometric phase associated

with SAP and STIRAP processes acts to impose a phase on an internal state of the

system.

Traditionally the dark state eigenvector in the spatial representation, is considered the

reason for the transport of the matter wave. Here we examined the mechanism of the

SAP process via the dark state in the energetic representation. Viewing the transport of

the wavefunction in the energetic basis shows that SAP is a consequence of a geometric
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phase acquired from the cyclical evolution. Extending the usual three trap potential

to multiwell potentials offers exciting possibilities for the creation of spatial qubit and

qutrit states.



Chapter 6

SAP In Four Mode Systems -

Qubit and Qutrit States

Controlling the dynamics of single quantum particles is one of the holy grails in the area

of quantum engineering. While for charged particles strong coupling to electrodynamical

fields can be used, for neutral atoms only recently microtraps based on optical and

magnetic fields have been developed [176]. Numerous experimental setups have been

suggested and demonstrated which show great promise for, the production, control and

study of nano scale devices. Today experimental advances have shown a high degree of

control over the manipulation and storage of single atoms using optical dipole traps [154],

tightly focused laser beams [177] and electro-optical nanotraps for single atoms [178].

Site resolved images of single atoms on optical lattices have been achieved [179] and

the coherent splitting of BECs using active optical elements with programmable phase

gratings [180]. Recently it has been pointed out that many of the adiabatic techniques

in optics (in particular STIRAP processes [46, 47, 59, 181]) have an analogon with atoms

in trapped microscopic potentials. These include the transfer of neutral atoms between

optical dipole traps [43, 56] and radio frequency potentials [171], electrons in arrays of

quantum dots [40, 57, 64, 67, 77, 78], the transfer of a classical light source [81, 82]

and neutral atoms in waveguide arrays [70, 116] and nanocircuits [63]. With the rate

of modern experimental development the realisation of these systems looks promising

and the testing of the underlying theoretical models an exciting prospect. Here we

explore the potentiality of multi-mode Spatial Adiabatic Passage (SAP) systems for the

engineering of spatial qubit and qutrit states.

For three level SAP (and STIRAP) systems there is a single population trapping state,

known as the ‘dark state’ in the spatial mode basis, which corresponds to the first

excited eigenfunction in the energetic mode basis. Extensions of this model to four level

148
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systems and beyond, allows for an exploration of a much richer phenomenology. For four

level systems in particular there are two population trapping states. The dynamics of

these population trapping states allows for the creation of superposition states between

localised spatial modes, and was originally explored in optical systems by Unanyan et

al. [182]. As we have already shown there is a distinct advantage attributed to the

study of of these adiabatic processes in the matter wave setting. The dynamics of the

systems under study may be explored from not only the traditional quantum optics

viewpoint but also in the energy eigenbasis. Moreover, in the matter wave setting, the

spatial mode Hamiltonian shows significant and non-negligible cross coupling between

all localised spatial modes. When four localised spatial modes are considered, the SAP

process can be used to create superposition states between two target spatial modes,

which is the focus of this chapter. Here we show that all elements of the spatial mode

Hamiltonian matrix contribute to the SAP process, which can be used to measure an

existing phase difference in an even ‘spatial mode’ superposition quantum state.

The content of this chapter is essentially a marriage of two papers, the first by Eckert

et al. [56] and the second by Unanyan et al. [182], made possible from the theoretical

grounding of the SAP process established in chapter 5. The former bridged the gap

between three-level optical and three-level atom-optical STIRAP, now known by the

acronym SAP. Whereas the latter studied non-abelian geometrical phase factors of a

four level atom which are present in a STIRAP-type evolution. Unanyan et al. showed

that in systems with more than one population trapping state, possible in four or more

level systems, a non-Abelian transformation can take place, which changes the expecta-

tion value of a physical observable. In our case this is the trap occupation probability.

In section 6.1 we present the time dependent potential, the related Hamiltonian and the

energy eigensystem. The time evolution of the system in the spatial basis is outlined in

section 6.2.1 and in the energetic basis in section 6.2.2. We perform numerical calcula-

tions to show that these systems readily produce an even superposition state between

the target spatial modes in section 6.2.2. We demonstrate that this procedure can be

implemented to measure any existing phase difference between the spatial modes in sec-

tion 6.3. In turn this facilitates the creation of superposition states between the spatial

modes. The control of the phase of the spatial modes allows for the creation of arbitrary

qubit and qutrit states. In section 6.5 we discuss the results and conclude.

6.1 The Hamiltonian And The Time Dependent Potential

As in chapter 5, we discretise the time spectrum into N + 1 points in time, where each

time coordinate is identified by tn where n = 0, 1, 2, . . . , N , and tn+1− tn = ∆t. At each
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Figure 6.1: (a) Schematic consisting of the four spatial modes |0〉, |1〉, |2〉 and |3〉
spanned by resonant harmonic traps. Overlayed are in interaction frequencies between
the spatial modes. Inset is the related optical scheme. (b) The numerical grid used for

the numerical calculations. The contour lines show the position of the traps.

time step tn the wavefunction evolves according to the Hamiltonian H(tn) for a station-

ary increment of time ∆t followed by an instantaneous change of the Hamiltonian at the

following point in time. The evolved wavefunction then assumes a linear combination of

the Hilbert space basis states at the following time step t = tn+1.

The system we consider consists of four piecewise harmonic potentials arranged in a

Y-shaped structure on a two dimensional plane as shown in fig. 6.1(a). Each harmonic

potential is centered on the position (xη, yη) where η = 0, 1, 2, 3 refers to the trap centers

of the related harmonic traps. The trapping frequency in the x̂ and ŷ directions are equal

ωx = ωy = ω, and each harmonic trap has the same trapping frequency. The spatial

modes |η〉 = |0〉, |1〉, |2〉, |3〉 are the spatial regions spanned by each trap. This potential

is made time dependent by allowing the outer traps to move along the lines indicated

by Ω01, Ω12 and Ω13, whilst the center trap |1〉 remains stationary at all times. The two

dimensional time dependent potential is defined at each tn by,

V(x, tn) =
1

2
min

3∑
η=0

[(
x+ xη(tn)

)2
+
(
y + yη(tn)

)2]
. (6.1)

where x = (x, y), and the all lengths have been scaled by
√

~/mω. The scaled Hamilto-

nian is,

H(tn) = ~ω
(
− ∂2

∂x2
+ V(x, tn)

)
. (6.2)

At present there is no obvious way to determine, by analytic means, the related eigen-

system of this two dimensional Hamiltonian. It is possible however to obtain the related

eigensystem by using numerical techniques. This essentially reduces to a two dimensional
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eigenvalue and eigenvector problem, solvable using the technique of finite differences

[183]. The procedure involved is outlined in section 6.1.2.

6.1.1 The Trap Motions

This arrangement of four harmonic traps offers a wealth of different ways to perform a

cyclical evolution. As this a first exploration of this type of potential we consider a simple

form of the time dependence. The harmonic traps all have the same trapping frequency

ωx = ωy = ω, and the center trap |1〉 remains stationary at all times (x1(tn), y1(tn)) =

(0, 0). We shall consider an initial state localised in the |0〉 trap and the |2〉 and |3〉
traps take the form of the target traps, similar to the single target spatial mode in the

usual three mode SAP. The outer traps approach the center trap along the axis joining

the trap centers, whilst maintaining a constant angle of 2π/3 between all outer traps,

as illustrated in figure 6.1. We impose the “counter-intuitive” trap motions by allowing

the |2〉 and |3〉 trap centers to first approach the center |1〉 trap, followed by the |0〉 trap

with an appropriate delay. The delay between the motion of the trap centers is taken

to be δ = (0.1)N time steps. All traps are initially separated a distance dmax and reach

a minimum distance dmin from the center trap.

The path of the η = 0, 2, 3 trap centers are then,

x0(tn) = 0, (6.3a)

y0(tn) = Θ(α0)
{
dmax−dmin

2 [cos (θ0) + 1] + dmin

}
+ Θ(β0)dmax, (6.3b)

x2(tn) = −cos(π3 )

(
Θ(α2)

{
dmax−dmin

2 [cos (θ2) + 1] + dmin

}
+ Θ(β2)dmax

)
, (6.4a)

y2(tn) = −sin(π3 )

(
Θ(α2)

{
dmax−dmin

2 [cos (θ2) + 1] + dmin

}
+ Θ(β2)dmax

)
, (6.4b)

x3(tn) = cos(π3 )

(
Θ(α3)

{
dmax−dmin

2 [cos (θ3) + 1] + dmin

}
+ Θ(β3)dmax

)
, (6.5a)

y3(tn) = −sin(π3 )

(
Θ(α3)

{
dmax−dmin

2 [cos (θ3) + 1] + dmin

}
+ Θ(β3)dmax

)
, (6.5b)

where Θ(z) is the Heaviside step function, and n = 0, 1, 2, . . . , N . The usual counter-

intuitive motion of the trap centers is employed when (α0, β0, θ0) = (n−δ−1, δ−n, 2π(n−
δ)/(N − δ)), and (α2, β2, θ2) = (α3, β3, θ3) = (N − n− δ − 1, n+ δ −N, 2πn/(N − δ)).
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6.1.2 The Finite Difference Method

A prerequisite to properly time evolving this time dependent system is a means of

correctly deriving the eigenvalues and eigenfunctions of the potential at each time step.

Presently an analytical means of finding the eigensystem is beyond our current capacity,

but what we can do is make use of the numerical technique known as the finite difference

method to approximate the eigensystem, which is the focus of this section.1

We aim to construct a computer code that can numerically compute the eigenvalues and

two dimensional eigenfunctions of,(
−1

2

∂2

∂x2
− 1

2

∂2

∂y2
+ V(x, y)

)
ψ(x, y) = Eψ(x, y), (6.6)

for a potential V(x, y) with an energy eigenvalue E. For abbreviation purposes we have

omitted to include the time step tn.

Our potential (6.1) is represented on a square numerical grid, with the total number of

points along the x̂ and ŷ axes of Nx = Ny = 27. A schematic of our grid is found in

figure 6.1(b). This is our computational domain, consisting of a total of Nx×Ny nodes, at

the locations (x, y). The distance between each node in the x̂ and ŷ directions are equal,

∆x = ∆y, seen in fig. 6.2(a). An array of nodes is generated by evaluating the Cartesian

product of the x and y locations. The result is a grid of points, shown in figure 6.2(b),

with the grid nodes labeled (xp, yq) respectively, with a total of Nx = P nodes in the x̂

direction and Ny = Q nodes in the ŷ direction. The labeling of the nodes in this manner

is important in building a set of linear equations whose solution determines the numerical

approximation. The grid shown in figure 6.2(b) is that on which the numerical solution

to (6.6) is to be determined. Therefore to solve equation (6.6) using finite differences,

an eigenvalue problem of size Nx ×Ny must be solved.

The procedure for solving (6.6) using finite differences is as follows; Each node is iden-

tifiable by its label, (xp, yq), which is referred to as local numbering. The corresponding

number of the node in the mesh is called the global number of the node. Therefore for

a node of local numbering (p, q), the corresponding global number is r = (p− 1)Nx + q,

when the nodes are set up as in figure 6.2. The global number corresponds to the row

and column indices of the matrix whose eigenvalues determine the numerical solution.

1We acknowledge insightful discussions with Robert Sheehan for the clarification of the theory con-
tained in this section.
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Figure 6.2: (a) Finite Difference Nodes, (b) Finite Difference Node Numbering and
(c) the Grid spacing around the point (xp, yq).

An important consideration is how the global numbering of a node corresponds to its

location (xp, yq) on the mesh. Inverting the formula for the global numbering we obtain,

(p, q) =

(⌊r − 1

Nx

⌋
+ 1, r −Nx

⌊r − 1

Nx

⌋)
. (6.7)

where bxc is the floor function, i.e. the smallest integer less than or equal to x. From

this formula the necessary matrices can be constructed and the value of the function

ψν(x, y) can be assigned to each node correctly.

The numerical solution to (6.6) is evaluated using the finite difference technique by

replacing the partial derivatives in (6.6) with the equivalent derivatives using finite

differences. To proceed we define the value of the function at the node (xp, yq) as

ψ(xp, yq) ≡ ψp,q. The second order partial derivatives of the function is then given by,

∂2

∂x2
ψp,q ≈

ψp−1,q − 2ψp,q + ψp+1,q

(∆x)2
, (6.8a)

∂2

∂y2
ψp,q ≈

ψp,q−1 − 2ψp,q + ψp,q+1

(∆y)2
. (6.8b)

A conceptual illustration of the relevant labeling is found in figure 6.2(c). Plugging the

above into (6.6) results in,

− ψp−1,q

2(∆x)2
− ψp+1,q

2(∆x)2
+
ψp,q−1

2(∆y)2
− ψp,q+1

2(∆y)2
+

(
Vp,q +

1

(∆x)2
+

1

(∆x)2

)
ψp,q = Eψp,q. (6.9)

In order to evaluate the related eigensystem the above equation needs to be converted

to an eigenvalue problem. To do so we build a matrix from the information contained

on the mesh, by converting the local index values into global index values. For a total

number of Nx nodes in the x̂-direction and Ny nodes in the ŷ-direction (with Nx = Ny),

the global number of the node (xp, yq) is given by r = (p− 1)Nx + q. It follows that,

(p, q)→ r, (p± 1, q)→ r ±Nx, (p, q ± 1)→ r ± 1. (6.10)
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Figure 6.3: The functional form of the gs-quadruplet at t = t0. In (a) is 〈x|ψ0(t0)〉,
(b) is 〈x|ψ1(t0)〉, (c) is 〈x|ψ2(t0)〉 and (d) is 〈x|ψ3(t0)〉.

Rewriting (6.9) in terms of the global index r,

− ψr−Nx
2(∆x)2

− ψr+Nx
2(∆x)2

+
ψr−1

2(∆y)2
− ψr+1

2(∆y)2
+

(
Vr +

1

(∆x)2
+

1

(∆x)2

)
ψr = Eψr. (6.11)

This relation allows us to build the necessary matrix from the mesh information. The

matrix itself will be sparse and is best described as a tridiagonal matrix with wings. The

diagonal terms in the matrix multiply ψr, the upper and lower diagonal terms multiply

ψr±1, and the terms in the wings multiply ψr±Nx .

6.1.3 The Energy Eigensystem and Initialisation of the State Vector

The eigenfunctions of this four trap system are arranged in quadruplets. There are four

eigenfunctions which form the ground state quadruplet (gs-quadruplet), four which form

the first excited quadruplet and so on. In the limit of a large separation between the

trap centers, the eigenenergies of the gs-quadruplet approach ~ω, and the eigenenergies

of the first excited quadruplet approach 2~ω, and so on. Here we confine our analysis

of this system to the gs-quadruplet. The state vector is prepared in some superposition

of the gs-quadruplet and by maintaining an adiabatic evolution the wavefunction is not

excited to occupy higher lying eigenfunctions.

Applying the finite difference outlined in section 6.1.2 we recover both the eigenener-

gies and eigenfunctions at each time step tn. The eigenfunction of the gs-quadruplet

〈x|ψν(tn)〉, with ν = 0, 1, 2, 3, at t = t0 are plotted in figure 6.3. The eigenenergies

of the gs-quadruplet are correspondingly labeled ~ων(tn). Here we note that the first
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excited eigenfunction 〈x|ψ1(tn)〉 has no significant density contribution in the |0〉 and

|1〉 spatial modes. As a result the initial state we choose, which is localised in |0〉, has

no contribution from this eigenfunction. In section 6.2 we show that this eigenfunc-

tion remains unoccupied throughout the SAP process for the trap motions outlined in

section 6.1.1.

In this section we wish to highlight the behaviour of the eigenenergies of (6.2) throughout

the SAP evolution, according to the trap motions found in section 6.1.1. At each tn, the

related Hamiltonian matrix in the energetic basis is formally written,

H(tn) = ~


ω0(tn) 0 0 0

0 ω1(tn) 0 0

0 0 ω2(tn) 0

0 0 0 ω3(tn)

 . (6.12)

In figure 6.4 we show the above eigenenergies as a function of time for the SAP process.

Here we note an unusual behaviour, in that the eigenenergies of the ν = 1, 2 energetic

modes exhibit crossings as the process evolves in time. This trait is unique to these

types of time dependent four mode ‘resonant’ potentials, and is not found in analogous

two and three spatial mode potentials.2

6.2 Spatial Adiabatic Passage

The energetic and spatial Hamiltonian matrices have been shown to be related by a

rotation. The exact mapping is derived in chapter 4 for two energetic and spatial modes.

The trap basis approximation, which has been covered in detail in chapter 5, can be

applied to our four spatial mode potential that is of interest presently, thereby allowing

the recovery of the spatial mode Hamiltonian matrix.

In section 6.2.1 we outline the trap basis approximation and show the values of the

time dependent spatial mode Hamiltonian matrix elements throughout the SAP process.

Thereafter in section 6.2.2 we describe the phase evolution of the wavefunction in both

the spatial and energetic bases and show that SAP in this four mode system can be easily

used to produce an even superposition state between the |2〉 and |3〉 spatial modes.
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Figure 6.4: (a) The eigenfrequencies of the gs-quadruplet throughout the SAP evolu-
tion. (b) Detailed view of the crossing of the time dependent eigenfrequency spectrum

exhibited by the ω1 and ω2 eigenfrequencies.

6.2.1 The Spatial Hamiltonian Matrix

For the purposes of continuity of reading and clarity we shall briefly outline the trap basis

approximation in this section. The spatial mode Hamiltonian matrix HR(tn) is given by

a correct rotation of the energetic mode Hamiltonian matrix H(tn) of equation (6.12).

2The phenomenon of avoided crossings in the spatial eigenenergy spectrum is well known [30], i.e.
Landau-Zener potentials.
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Figure 6.5: (a) The interaction frequencies of HR/~, the lower matrix elements are
the dashed lines. In magenta are Ω12(tn), Ω13(tn); In cyan is Ω01(tn); In green are
Ω02(tn), Ω03(tn); In blue are Ω23(tn), Ω32(tn); In red are Ω20(tn), Ω30(tn);. (b) The

local spatial modes frequencies (diagonal elements of HR/~).

Here we approximate this as,

HR(tn) = R(tn) H(tn) R−1(tn),

HR(tn) = ~


ξ0(tn) Ω01(tn) Ω02(tn) Ω03(tn)

Ω10(tn) ξ1(tn) Ω12(tn) Ω13(tn)

Ω20(tn) Ω21(tn) ξ2(tn) Ω23(tn)

Ω30(tn) Ω31(tn) Ω32(tn) ξ3(tn)

 .
(6.13)

The elements of the rotation matrix R, denoted Rην , are given by,

Rην(tn) = rην(tn)/

√√√√ 3∑
µ=0

rηµ(tn), rην(tn) =

∫
dx 〈ϑη(tn)|x〉〈x|ψν(tn)〉. (6.14)
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The function 〈x|ϑη(tn)〉 is (in our scaled units) a gaussian located on each trap center,

〈x|ϑη(tn)〉 = exp
(
− (x+ xη(tn))2 − (y + yη(tn))2

)
. (6.15)

This gaussian assumes the same functional form as the ground state of each ‘isolated’

harmonic trap.

The contributions of the elements that characterise the spatial mode Hamiltonian matrix

HR/~ are shown in figure 6.5, for the counter-intuitive trap paths in section 6.1.1. As

we found in chapter 5, the operator in the spatial basis is non-hermitian, which is an

artifact of having to use the inverse, rather than the transpose of R(tn), to approximate

the spatial mode Hamiltonian matrix (6.13). The interaction frequencies between the

outer and center trap assume the expected form (shown in (a)) which is typical of the

models used in the literature. The magnitude of the interaction frequencies between the

outer traps is negligible by comparison, but nonetheless their inclusion is essential to

ensure that the eigenvalues of the Hamiltonian matrices in both the spatial and energetic

bases are equal at all tn. In (b) are the local frequencies of the spatial modes. Their

value is for all practical purposes constant throughout the evolution, and at all times,

Tr (HR(tn)) = Tr (H(tn)).

6.2.2 Phase Evolution of the Wavefunction

Here we make use of the tools employed in chapter 5 to describe the phase evolution

of the wavefunction in both the energetic and spatial basis. As we are confined to the

gs-quadruplet, the wavefunction is expanded at the time tn in a superposition of the gs-

quadruplet energetic modes. Similarly the wavefunction in the spatial basis is expanded

in a superposition of the four spatial modes at any time tn. These are respectively,

|Ψ(tn)〉 = c0(tn)|ψ0(tn)〉+ c1(tn)|ψ1(tn)〉+ c2(tn)|ψ2(tn)〉+ c3(tn)|ψ3(tn)〉, (6.16a)

|Ψ(tn)〉R = b0(tn)|0〉+ b1(tn)|1〉+ b2(tn)|2〉+ b3(tn)|3〉. (6.16b)

The phase evolution of the basis state coefficients are determined by the time evolution

operators in the energetic and spatial bases respectively as,

c(tn+1) = U(tn)c(tn), (6.17a)

b(tn+1) = UR(tn)b(tn). (6.17b)

The time evolution operator in the spatial basis is quite simply given by UR(tn) =

exp
(
− ı

~H(tn)∆t
)
. The time evolution operator in the energetic basis was derived in
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section 5.2.2 and is given by,

Uµν(tn) =

∫
dx 〈ψµ(tn+1)|x〉〈x|ψν(tn)〉 exp (−ıων(tn)∆t) . (6.18)

For the SAP process we consider a quantum state initially localised in the |0〉 spa-

tial mode. Therefore at t = t0 we infer that the state vector of the gs-quadruplet

is c(t0) = (1/2, 0, 1/
√

2, 1/2)T. Notably the is no contribution from the 〈x|ψ1(tn)〉
energetic mode. The state vector in the spatial basis is subsequently initialised as

b(t0) = (
√
ρ0(t0),

√
ρ1(t0),

√
ρ2(t0),

√
ρ3(t0))T ≈ (1, 0, 0, 0)T, where,

ρη(tn) =
3∑

µ,ν=0

c∗µ(tn)cν(tn)Dηµν(tn); Dηµν(tn) =

∫
Vη
dx 〈ψµ(tn)|x〉〈x|ψν(tn)〉.

(6.19)

The area spanned by each spatial mode |η〉 is labeled Vη.

Due to the symmetry of the four mode potential, the first excited eigenfunction |ψ1(tn)〉
remains unoccupied throughout the whole SAP evolution. We consider ourselves in

the adiabatic regime when the final occupation density of the energetic mode coeffi-

cients, maintain a small amplitude oscillatory pattern, about some constant value. In

figure 6.6(a) we show |cν(tN )|2 for ν = 0, 1, 2, 3 for tN = 100→ 5000. As tN is increased,

the visible oscillatory pattern repeats. For the SAP evolution we use a total time for

the evolution of tN = 3000 as we are in the adiabatic regime.

The counter-intuitive trap motions diminishes the densities of the |ψ0(tn)〉 and |ψ3(tn)〉
energy eigenfunctions in the |0〉 spatial mode. Whereas the |ψ2(tn)〉 becomes localised in

the |0〉 spatial mode, whilst the first excited eigenfunction |ψ1(tn)〉 remains confined to

|2〉 and |3〉. As a result the wavefunction assumes complete occupation of |ψ2(tn)〉, shown

in (b) for tN = 3000. This continues until the end of the process, when the traps begin to

return to their initial positions for tn > tN−δ; at all times |c1(tn)|2 = 0. At the end of the

process the eigenfunctions assume their initial functional forms, as shown in figure 6.3.

The final state of the wavefunction is then c(tN ) ≈ eıϕ(1/2, 0, eıπ/
√

2, 1/2)T. Similar to

the three mode case (chapter 5) the cyclical evolution has imposed a π phase change

on the |ψ2(tn)〉 eigenfunction and the density of the wavefunction has been transported

from |0〉 → |2〉, |3〉. Since |ψ2(tn)〉 has equal densities in the |2〉 and |3〉 spatial modes the

final state is an even superposition of |2〉 and |3〉. In figure 6.6(c) are the densities of the

spatial modes ρη(tn)
(
|bη(tn)|2

)
in solid (dashed light) blue throughout the evolution.
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Figure 6.6: Counter-Intuitive trap motions. (a) The absolute value of the energetic
mode coefficients at the end of the evolution as a function of the total time. (b) The
absolute value of the energetic mode coefficients throughout the evolution for tN = 3000.
(c) The densities of the spatial mode coefficients ρη(tn)

(
|bη(tn)|2

)
in solid (dashed light)

blue, with tN = 3000 and η = 0, 1, 2, 3.
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6.3 Spatial Mode Phase Imprinting

In this section we consider our initial state to be the even superposition between the

|2〉 and |3〉 spatial modes. The target spatial mode is thus |0〉. We subsequently adapt

the motion of the trap centers from section 6.1.1 so that the |0〉 approaches the |1〉
trap center followed by the |2〉 and |3〉 trap centers moving in sync. This motion is

employed when (α0, β0, θ0) = (N −n− δ− 1, n+ δ−N, 2πn/(N − δ)), and (α2, β2, θ2) =

(α3, β3, θ3) = (n− δ − 1, δ − n, 2π(n− δ)/(N − δ)).

The initial state c̃(t0) = (
√

2/7, 0, eıπ
√

3/7,
√

2/7)T localises the wavefunction in an

even superposition between the |2〉 and |3〉 spatial modes. In the spatial basis the initial

coefficients are bη(t0) =
√
ρη(t0), therefore we find b(t0) ≈ (0, 0, 1/

√
2, 1/
√

2)T. In this

section we explore the effect of imprinting a phase difference, of eıφ, between the |2〉
and |3〉 spatial modes. This can be achieved experimentally and is an involved process

but nonetheless is possible. Numerically we will consider the phase imprinting in both

the energetic and spatial bases. The initial state is expanded in terms of the energy

eigenfunctions as,

〈x|Ψinit(t0)〉 = c̃0〈x|ψ0(t0)〉+ c̃1〈x|ψ1(t0)〉+ c̃2〈x|ψ2(t0)〉+ c̃3〈x|ψ3(t0)〉, (6.20)

where (c̃0, c̃1, c̃2, c̃3)T = (
√

2/7, 0, eıπ
√

3/7,
√

2/7)T. In the energetic mode basis we

apply the phase eıφ on the |2〉 spatial mode. Numerically this is achieved by separating

the initialised wavefunction |Ψinit(t0)〉 into its components in each spatial mode, and

multiplying the component in the |2〉 mode by the desired phase factor. We have,

〈x|Ψnew(t0)〉 = 〈x|Ψinit(t0)〉V0 + 〈x|Ψinit(t0)〉V1 + eıφ〈x|Ψinit(t0)〉V2 + 〈x|Ψinit(t0)〉V3 .
(6.21)

The new initialised coefficients in the energetic basis are then given by,

cν(t0) =

∫
dx 〈ψν(t0)|x〉〈x|Ψnew(t0)〉, (6.22)

with ν = 0, 1, 2, 3. As we will momentarily show, the effect of this phase imprinting is to

excite the wavefunction to occupy the population trapping state |ψ1(t0)〉. In the previous

section we observed that the population of this state remains unchanged throughout the

whole SAP evolution. In the spatial basis the imprinting of the phase is much more

straight forward. For an applied phase eıφ, the initialised state vector in the spatial

basis is given by b(t0) = (0, 0, eıφ/
√

2, 1/
√

2)T.

In the following we compare the evolution of the state vector in both the energetic and

spatial bases according to the time evolution operators (6.17) respectively, as we tune

the applied phase from φ = 0→ 2π, in the adiabatic regime tN = 3000. In figure 6.7(a)
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Figure 6.7: (a) The densities of the spatial modes at the end of the evolution, in
solid (dashed light) blue is ρη(tN ) (|bη(tN )|2). (b) The densities of the energetic mode
coefficients at the end of the SAP evolution. (c) The densities of the spatial modes
at the end of the evolution, in solid (dashed light) blue is ρη(tN ) (|bη(tN )|2). (d) The

densities of the energetic mode coefficients throughout the SAP evolution.

the densities of the spatial modes at the end of the SAP process for both time evolution

operators are compared as a function of the applied phase. In solid (dashed light) blue

is ρη(tN ) (|bη(tN )|2). We point out that for no applied phase the quantum state is

transferred to the |0〉 spatial mode, as expected, and in the energetic basis the final

state is differs from the initial state as the |ψ1(t0)〉 has acquired a π phase from the

evolution.

When the applied phase, eıφ = eıπ, the population remains in the |2〉 and |3〉 spatial

modes. For all other values of the applied phase we observe the creation of qutrit states,

i.e. the final state is some superposition of the |0〉, |2〉 and |3〉 modes. These qutrit states

are geometric in origin as the final state is independent of the total time taken for the

SAP evolution. In figure 6.7(c) we show the densities of the spatial modes throughout

the evolution when eıφ = eıπ/3. Here we note that for longer times the intermediate

densities oscillate more rapidly, yet the final state is always the same.

In order to gain an insight into the creation of these qutrit states it is necessary to

observe the role the applied phase plays in the evolution of the energetic modes. In

figure 6.7(b) the densities of the energetic mode coefficients at the end of the evolution

are shown. We note that when the applied phase eıφ = eıπ, the wavefunction assumes

complete occupation of the population trapping state |ψ1(tn)〉. As the population of

this state remains unchanged throughout the SAP evolution, the final densities remain

confined to |2〉 and |3〉. For intermediate values of the applied phase φ = 0 → 2π, the
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Figure 6.8: The gs-quadruplet eigenfunctions 〈x|ψν(tn)〉 for the asymmetric trap
paths at tn = t8000, and ν = 0, 1, 2, 3 inset.

excitation of the quantum state to occupy the population trapping state varies smoothly.

Consequently the densities of the outer traps also vary smoothly. In figure 6.7(d) we

show the densities of the energetic modes throughout the SAP process. Obvious from

the plot the population of |ψ1(tn)〉 remains unchanged whilst the remaining basis states

exhibit the usual exchange of densities.

6.4 Dynamic Phases in Four Mode SAP

We have shown thus far that due to the symmetry of this four SAP model the first

excited eigenfunction |ψ1(tn)〉 plays no role in the population transfer process. Breaking

the symmetry of the potential invokes the inclusion of |ψ1(tn)〉 during the temporal

dynamics of the system. In the following we will show that when an asymmetry is

present in the time dependent potential, non-adiabatic coupling occurs between the

|ψ1(tn)〉 and |ψ2(tn)〉 eigenfunctions, and it follows that the final state is dependent on

the total time allocated for the evolution.

There are many ways that the symmetry of the system may be broken. Two simple

methods are to (a) reduce the relative minimum approach distance between the target

traps and center trap, or (b) to change the relative delay between the target trap paths,

i.e. they no longer approach the center trap in sync. Here we make use of the latter. We

adapt the definition of the trap paths as outlined in section 6.1.1 as follows; The |0〉 and

|3〉 trap centers maintain the same paths as before, whereas, the |2〉 trap center begins

its approach and return sequence at the midpoint between the paths of the |0〉 and |3〉
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traps. For this evolution we discretise the time spectrum finely by setting N = 16×104.

To show the effect of the non-adiabatic coupling between the ν = 1, 2 energetic modes

we let ∆t range from 0.01875→ 0.1875, therefore the total time taken for the evolution

ranges between tN = 3000 → 30000. The delay between the motion of the |0〉 and |3〉
trap centers is δ = (0.1)N = 16000 time steps, and therefore the delay between the |0〉
and |2〉 trap centers is δ2 = (0.05)N = 8000 time steps. Consequently the symmetry of

the potential is broken at tn = t8000. The functional form of the eigenfunctions at the

time step tn = t7999 is effectively the same as that in figure 6.3. However at tn = t8000 the

symmetry is broken and the ν = 1, 2 energetic modes exhibit a large spatial overlap, see

figure 6.8. These eigenfunctions share a large spatial overlap throughout the evolution,

and since their eigenenergies are close in value throughout the process, non-adiabatic

transitions readily occur between these two basis states. This non-adiabatic coupling

continues until tn = t152000.

We further illustrate the effect of the non-adiabatic coupling between the ν = 1, 2 basis

states in figure 6.9. In (a) are the densities of the spatial modes at the end of the

evolution as a function of the total time tN , and in (b) are the densities of the energetic

modes. Whilst a regular sinusoidal relationship exists for the final state in both the

spatial and energetic bases, at present it is not obvious how to quantify this relationship.

Whilst this four mode model may be used to generate qubit and qutrit states when the

potential maintains a symmetry throughout the evolution, introducing asymmetry into

the process adds extra complications and destroys the geometric nature of the final state

of the system.

6.5 Discussion

In this chapter we have presented the spatial analogue of a well known four level optical

system. This model can be extended to similar four level optical systems, such as [184],

by making an appropriate arrangement of the traps and their paths. We applied the

time dependent evolution of the wavefunction in the energetic basis and spatial basis

via the trap basis approximation, from the work of chapter 5 to uncover the dynamics

involved in this four level system.

It was shown that, as in the three mode SAP, a single population trapping state exists

that transports the wavefunction from |0〉 to an even superposition between the |2〉 and

|3〉 spatial modes, for the counter-intuitive motion of the trap centers. When the process

is reversed, and the |0〉 mode takes the place of the target spatial mode, with an even

superposition state initially between |2〉 and |3〉, the state is transport with the usual

high fidelity associated with SAP processes. This approach was shown to be sensitive
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Figure 6.9: Asymmetric trap paths. (a) The densities of the spatial modes, at the
end of the evolution, as a function of tN . (b) The densities of the energetic modes, at

the end of the evolution, as a function of tN .

to any existing phase difference between |2〉 and |3〉, made possible via the population

trapping state |ψ1(tn)〉.

We showed that this system is highly sensitive to any introduced asymmetry. Modifying

the motion of the |2〉 and |3〉 trap centers produces two population trapping states

whose eigenenergies are very close in value. In addition these state assume a large

spatial overlap. This spatial overlap and their quasi-degenerate nature leads to highly

non-adiabatic coupling which destroys the geometric SAP process. It follows that the

system becomes sensitive to the total evolution time leading to a final state which, albeit

sinusoidal with respect to tN , is non-trivial to predict.



Chapter 7

Conclusion and Outlook

In this thesis we have investigated the relationship between the spatial and energetic

mode dynamics of ultracold fermionic and bosonic systems. Our work on spontaneous

emission in anisotropic Fermi seas has shed light two interesting aspects of ultracold

Fermi gases; these are the degenerate shell structure of anisotropic harmonic trapping

geometries, and the anisotropic spatial decay rate of excited fermions in the presence

of an anisotropic ground state Fermi sea. This work offers a perspective with which

to study directional photon scattering experiments performed on ultracold Fermi gases.

The formulae for the degeneracies of the energetic levels of the three dimensional har-

monic oscillator offer a deterministic solution to the number of bound momentum or

energetic modes that exist as a function of the trap shape. We have shown that they are

fundamental tool in the description of directional photon emission in ultracold Fermi

gases, without the use of an optical cavity.

Spatial adiabatic passage (SAP) is a dynamic and growing field, albeit it has not yet

enjoyed the same experimental success as its optical counterpart. Our two experimental

proposals have given a strong indication for the feasibility of matter wave transport

in both atom chips (waveguide settings) and radio frequency potentials. To take our

work from the outlined theoretical analysis to experimental realisation is a formidable

challenge from an engineering and fabrication point of view. Unforeseen obstacles that

we have omitted to address, such as the roughness of wires on atom chips at the nanoscale

and below and the strict confinement of the radio-frequency potentials along a one

dimensional axis, are left to the enthusiastic experimentalist to tackle. The theory of

SAP may be well rounded but the decision as to whether it is sufficient is at the mercy of

an appropriate experiment. We hope that our investigations will help to guide a venture

in this direction.

166
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Our work on the the nature of the quantum tunneling interaction is a contribution to the

fundamental understanding of spatial mode dynamics. In a general sense our derived

mapping is of interest to all communities in quantum mechanics and optics that deal with

the tunneling phenomenon, which are vast in both breath and number. Of particular

appeal is extending the derived model to the time dependent case. We focused on the

mapping between the energetic and spatial mode Hamiltonian when the energetic mode

Hamiltonian is time independent and diagonal. Introducing a time dependent coupling

term between the energetic modes offers a mechanism to study adiabatic time dependent

processes, and moreover to study geometric phases in both representations.

With the insight as to the form of the spatial mode Hamiltonian of chapter 4 we examined

a pioneering work on matter wave transport [56] via the SAP technique. We found

that a means of extending the exact two mode model to approximate the three mode

model of SAP was possible. For here it was shown that this approximation recovers the

standard form of the 3 × 3 spatial mode Hamiltonian found in the literature for SAP

processes. Two key components of the operator emerged; firstly that the eigenvalues in

both the spatial and energetic representations are the same, and secondly it revealed

the presence of a coupling term between the outer traps, which reaches a significant

magnitude at the midpoint of the evolution. This coupling term has thus far been

neglected in the literature (with no significant error) but is necessary to include so that

the eigenvalues of the operator in both representations are the same. Moreover there

is a direct relationship between the eigenvectors of the 3× 3 spatial mode Hamiltonian

matrix and the energy eigenfunctions. The latter is the coordinate space representation

of the former. Thereafter we moved to the energetic mode representation where we

showed that the SAP process imposes a π phase change to one of the internal energetic

modes of the systems. A signature of this phase is the transport of the wavefunction

from |0〉 → |2〉. We showed that the acquired phase is independent of the time taken

for the cyclical process, and therefore geometric in origin. This geometric phase is also

present in fractional SAP process, which afford the creation of spatial mode qubit state

between the outer traps.

The final work of the thesis ‘SAP In Four Mode Systems - Qubit and Qutrit States’

demonstrated the feasibility of generating spatial qubit and qutrit states. Here the

coupling interaction between the outer traps cannot be neglected, and as a result there

is but one dark state, as opposed to two found in the optical case. We were able to find

that the usual SAP process creates an even superposition state between the two target

traps |2〉 and |3〉. We used this superposition state to explore the consequences of an

applied phase difference between the spatial modes. Here we found that when the SAP

process is reversed, with no phase difference, the state is transported to |0〉. However,

the applied phase difference between the spatial modes inhibits the transfer process,
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creating a qutrit state between |0〉, |2〉 and |3〉. The applied phase excites the system to

occupy a population trapping state which is unique to this type of four mode system.

We showed that the density of the final state in each spatial mode can be quantified

as a function of the applied phase. Finally we revealed that when the symmetry of

the evolution is broken (i.e. the target traps no longer move in sync but have different

paths), that a qutrit state between the outer traps is once again created. However

the final state of the system depends of the total time taken for the evolution and

therefore is not completely geometric, i.e. there are dynamical contributions to the final

state. At present there is no obvious way to quantify the dynamical and geometric phase

contributions to the final state. Further work in this venture, with an aim to understand

the dynamical and geometric phase factors, could lead to the possibility of applying

techniques borrowed from Optimal Control to dampen the dynamical contributions and

arrive at an all geometric means of producing arbitrary qutrit states.



Appendix A

Supplementary Calculations

A.1 Chapter 2: Transition Matrix

From (2.74) we have,

〈m|T †(α)|n〉 = e|α|
2/2〈m|eα∗ âe −α â† |n〉. (A.1)

Expanding the exponential on the right hand side of (A.1) and using the identities (2.77)

we find,

e −α â
† |n〉 =

∞∑
p=0

(−α)p

p!
(â†)p|n〉 =

∞∑
p=0

(−α)p

p!

√
(n+ p)!

n!
|n+ p〉. (A.2)

Similarly we consider the operation of e α
∗ â on the state ket |n + p〉 by expanding the

exponential and using the identities (2.77),

e −α
∗ â|n+ p〉 =

∞∑
q=0

(α∗)q

q!
âq|n+ p〉 =

n+p∑
q=0

(α∗)q

q!

√
(n+ p)!

(n+ p− q)!
|n+ p− q〉. (A.3)

Plugging both these relations into (A.1) we find the r.h.s. reduces to,

e|α|
2/2

∞∑
p=0

(−α)p

p!

√
(n+ p)!

n!

n+p∑
q=0

(α∗)q

q!

√
(n+ p)!

(n+ p− q)!
〈m|n+ p− q〉. (A.4)

Since 〈n|m+ p− q〉 = δn,m+p−q, we obtain the condition q = n+ p−m, and that the

outer sum must begin at p = m. Therefore (2.76) is given by,

〈m|T †(α)|n〉 = e|α|
2/2 (α∗)m−n√

m!n!

∞∑
p=m

(
−|α|2

)p
p!

(n+ p)!

(n+ p−m)!
. (A.5)
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A.2 Chapter 2: Cigar Trap

We apply the Lamb-Dicke Parameter for the cigar trap as given by (2.99) to simplify

(2.98) as,

∞∑
n=0

|〈n|eık(Ω)·r|0〉|2 =
∞∑

(nx,ny ,nz)=0

e−
η2

λ (sin2θcos2ϑ+sin2θsin2ϑ)−η2cos2θ

(
η2

λ

)nx+ny (
η2
)nz

nx! ny! nz!

×
(
sin2θ

)nx+ny (
cos2ϑ

)nx (
sin2ϑ

)ny
(cos2θ)nz

(A.6)

To further reduce this expression, we make a change of variables, N = nx + ny, which

allows us to rearrange the sums
∑∞

nx=0

∑∞
ny=0 →

∑∞
N=0

∑N
nx=0,

∞∑
n=0

|〈n|eık(Ω)·r|0〉|2 =

∞∑
N=0

N∑
nx=0

∞∑
nz=0

e−
η2

λ
sin2θ+η2cos2θ η

2(N+nz)

N !nz!λN
(sin2θ)N (cos2θ)nz

×

(
N∑

nx=0

N !

nx!(N − nx!)

(
sin2ϑ

)N−nx (
cos2ϑ

)nx)
.

(A.7)

Using the identity,

N∑
nx=0

N !

nx!(N − nx)!

(
sin2ϑ

)N−nx (
cos2ϑ

)nx
=
(
1 + cot2ϑ

)N (
sin2ϑ

)N
= 1. (A.8)

we reduce (A.7) to the following compact form,

∞∑
n=0

|〈n|eık(Ω)·r|0〉|2 = e−
η2

λ
sin2θ−η2cos2θ

∞∑
N=0

∞∑
nz=0

(
η2

λ sin2θ
)N

N !

(
η2cos2θ

)nz
nz!

. (A.9)

A.3 Chapter 3: Laser Mode

We develop from equation (3.6),

〈αle−ıωlt|E(x)|αle−ıωlt〉 = εl

√
~ωl

2ε0V

(
〈αle−ıωlt|âl|αle−ıωlt〉+ 〈αle−ıωlt|â†l |αle

−ıωlt〉
)
.

(A.10)

From the expansion of the coherent state as given by (3.5) the first and second terms of

the above become respectively,

〈αle−ıωlt|âl|αle−ıωlt〉 = exp
[
− |αl|2

]
〈0l|exp

[
α∗l e

ıωltâl
]
âl exp

[
αle
−ıωltâ†l

]
|0l〉, (A.11a)

〈αle−ıωlt|â†l |αle
−ıωlt〉 = exp

[
− |αl|2

]
〈0l|exp

[
α∗l e

ıωltâl
]
â†l exp

[
αle
−ıωltâ†l

]
|0l〉. (A.11b)
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Of interest is the common term on the right hand side, exp
[
αle
−ıωltâ†l

]
|0l〉. Expanding

the exponential we have,

exp
[
αle
−ıωltâ†l

]
|0l〉 =

∞∑
µ=0

αµl e
−ıµωlt

µ!

(
â†l

)µ
|0l〉. (A.12)

At this point it is prudent to define the creation and annihilation operators â†l , âl.The

vacuum state may be define as,

|vac〉 = |0〉 = |00, 01, 02, . . . , 0l, . . . , 0L〉, (A.13)

where the notation |nl〉 refers to n photons in the energetic mode l. For the purposes of

abbreviation we write,

|nl〉 = |00, 01, 02, . . . , nl, . . . , 0L〉. (A.14)

It follows that the creation and annihilation operators are defined by,

(
â†l

)µ
|nl〉 =

√
(n+ µ)!

n!
|(n+ µ)l〉, (A.15a)

(âl)
µ |nl〉 =

√
n!

(n− µ)!
|(n− µ)l〉. (A.15b)

Equation (A.12) becomes,

exp
[
αle
−ıωltâ†l

]
|0l〉 =

∞∑
µ=0

αµl e
−ıµωlt
√
µ!

|µl〉. (A.16)

Plugging the above into (A.11) we find,

〈αle−ıωlt|âl|αle−ıωlt〉 = e−|α|
2
∞∑
µ=0

αµl e
−ıµωlt
√
µ!

√
µ 〈0l|exp

[
α∗l e

ıωltâl
]
|(µ− 1)l〉, (A.17a)
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2
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µ=0

αµl e
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√
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√
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ıωltâl
]
|(µ+ 1)l〉.

(A.17b)
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Expanding the exponentials once again (A.11) is expressed,

〈αle−ıωlt|âl|αle−ıωlt〉 = e−|α|
2
∞∑

µ,ν=0

αµl e
−ıµωlt
√
µ!

√
µ

(α∗l )
ν eıνωlt

ν!
〈0l| (âl)ν |(µ− 1)l〉,

(A.18a)

〈αle−ıωlt|â†l |αle
−ıωlt〉 = e−|α|

2
∞∑

µ,ν=0

αµl e
−ıµωlt
√
µ!

√
µ+ 1

(α∗l )
ν eıνωlt

ν!
〈0l| (âl)ν |(µ+ 1)l〉.

(A.18b)

Making use of (A.15) and tidying up,

〈αle−ıωlt|âl|αle−ıωlt〉 = e−|α|
2
∞∑

µ,ν=0

αµl (α∗l )
ν e−ı(µ−ν)ωlt

ν!
√

(µ− 1− ν)!
〈0l|(µ− 1− ν)l〉, (A.19a)

〈αle−ıωlt|â†l |αle
−ıωlt〉 = e−|α|

2
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µ,ν=0

αµl (α∗l )
ν e−ı(µ−ν)ωlt

ν!
√

(µ+ 1− ν)!
(µ+ 1) 〈0l|(µ+ 1− ν)l〉.

(A.19b)

For (A.19a) and (A.19b) we recognise 〈0l|(µ− 1− ν)l〉 = δµ,ν+1, and 〈0l|(µ+ 1− ν)l〉 =

δµ+1,ν .

〈αle−ıωlt|âl|αle−ıωlt〉 = e−|α|
2
e−ıωlt (αl)

∞∑
ν=0

|αl|2ν

ν!
= αle

−ıωlt, (A.20a)

〈αle−ıωlt|â†l |αle
−ıωlt〉 = e−|α|

2
eıωlt (α∗l )
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µ=0

|αl|2µ

µ!
= α∗l e

ıωlt. (A.20b)

We recognise that αl = α∗l and 〈N〉 = α2 to express (A.10),

〈αle−ıωlt|E(x)|αle−ıωlt〉 = 2

√
~ωl
2ε0

√
〈N〉
V

εl cos(ωlt). (A.21)

A.4 Chapter 3: Magnetic Field of a Linear Conductor

The two fundamental postulates of magnetostatics that specify the divergence and curl

of B in free space [185] are,

∇ ·B = 0, (A.22)

∇×B = µ0J +
∂D

∂t
, (A.23)

where J is the current density. The first of these postulates denies the existence of iso-

lated magnetic poles or mono-poles. The term ∂D/∂t (which is called the displacement
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current) was added to the second postulate (eq. (A.23)) by Maxwell in order to maintain

the conservation of charge.

For a continuously differentiable vector field P we may explicitly write the divergence

theorem and Stoke’s theorem respectively as [186],∫∫∫
V
∇ ·P dV =

∫∫
∂V

P · dA, (A.24)∫∫
S
∇×P · dA =

∮
C

P · dl, (A.25)

where ∂V is surface bounding the volume V , and C is the contour bounding the surface

S.

Returning to the postulate of eq. (A.23) we take the volume integral of the divergence

of both sides, and assume ∂D/∂t = 0. Here our vector field P = J and we arrive at,∫∫∫
V
∇ · (∇×B) dV = µ0

∫∫∫
V
∇ · J dV, (A.26)

To simplify the equation we use Gauss’s theorem (eq. (A.24)). For the left hand side we

set P = ∇×B whereas ∫∫
∂V

(∇×B) · dA = µ0

∫∫
∂V

J · dA, (A.27)

Then using Stoke’s theorem (eq. (A.25)) we may arrive at what is called Ampére’s

Circuital Law,1 ∮
C

B · dl = µ0I, (A.28)

since the current I =
∫∫
∂V J · dA.

As we stated earlier this relation is true for any closed path. The simplest path is of

course a circle centered at right angles to the current carrying conductor. Therefore we

can write the magnetic field at any point on the closed loop in cylindrical co-ordinates

(r̂, θ̂, ẑ) (shown in Fig. 3.6(a)) as, B · dl = Bwrdθθ̂ and integrate over all angles, θ =

0 → 2π, we find a relation for the magnetic field at a distance r from the conductor.

When the current in the wire Iw is aligned along the +ẑ direction, the magnitude of the

1Ampére is widely acknowledged as being the father of electrodynamics and the unit of current, the
Amp, is named after him. Most famous for establishing his “Force Law” between wires carrying direct
current and the induction of current in one wire due to the current in another. Ampére’s work has
played a key role in establishing the fundamental postulates of magnetostatics in free space. However,
a common misnomer is crediting Ampére with the original derivation of, what is known as, “Ampére’s
Circuital Law” [187]. This law was first discussed by Maxwell in his “Treatise on Electricity and Elec-
tromagnetism”. To find the theorem, however, Maxwell based himself on Ampére’s work, in particular
on his concept of the magnetic shell.
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magnetic field Bw(r) at a distance r from the wire is,

B(r) = Bw(r) θ̂ =
µ0Iw
2πr

θ̂. (A.29)

A.5 Chapter 3: Commutator Evaluation

We make use of the Baker-Campbell-Hausdorff formula,

eıλBAe−ıλB = A+ ıλ[B,A] +
ı2λ2

2!
[B, [B,A]] +

ı3λ3

3!
[B, [B, [B,A]]] + . . . . (A.30)

Defining λ = ωrft/~ we expand the two terms of interest in equation (3.71) as,

eıλFzFxe
−ıλFz = Fx + ıλ[Fz, Fx] +

ı2λ2

2!
[Fz, [Fz, Fx]] +

ı3λ3

3!
[Fz, [Fz, [Fz, Fx]]]

+ · · ·+ ınλn

n!
[Fz, [Fz, ...[Fz, [Fz, Fx]]...]] + . . . , (A.31a)

eıλFzFye
−ıλFz = Fy + ıλ[Fz, Fy] +

ı2λ2

2!
[Fz, [Fz, Fy]] +

ı3λ3

3!
[Fz, [Fz, [Fz, Fy]]]

+ · · ·+ ınλn

n!
[Fz, [Fz, ...[Fz, [Fz, Fy]]...]] + . . . . (A.31b)

From the identity [Fi, Fj ] = ı~εijkFk of equation (3.73), we explicitly evaluate the first

six terms in the above expansion. The terms of interest reduce to,

eıλFzFxe
−ıλFz = Fx + ıλ (ı~Fy) +

ı2λ2

2!

(
~2Fx

)
+
ı3λ3

3!

(
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)
+
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(
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)
+
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(
ı~5Fy

)
+ . . . , (A.32a)

eıλFzFye
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(
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)
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)
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(
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)
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(
−ı~5Fx

)
+ . . . . (A.32b)

Collecting together the coefficients of the Fx and Fy terms, and substituting back in for

λ, with λ = ωrft/~, we have,

eı
ωrft

~ FzFxe
−ıωrft~ Fz = Fx
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1− (ωrft)

2

2!
+
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4
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3
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5
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)
, (A.33a)

eı
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4

4!
+ . . .

)
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(
ωrft−

(ωrft)
3

3!
+

(ωrft)
5
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− . . .

)
. (A.33b)
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Evaluating further commutators in the series, the above is found to satisfy,

eı
ωrft

~ FzFxe
−ıωrft~ Fz = Fx

( ∞∑
n=0

(−1)n(ωrft)
2n

(2n)!

)
− Fy
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m=1

(−1)m−1(ωrft)
2m−1

(2m− 1)!

)
,

(A.34a)

eı
ωrft

~ FzFye
−ıωrft~ Fz = Fy

( ∞∑
n=0

(−1)n(ωrft)
2n

(2n)!

)
+ Fx
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m=1

(−1)m−1(ωrft)
2m−1

(2m− 1)!

)
.

(A.34b)

These series expansions are quite simply the series expansions for the cosine and sine

functions respectively. Finally these terms simplify to,

eı
ωrft

~ FzFxe
−ıωrft~ Fz = Fx cos ωrft− Fy sin ωrft, (A.35a)

eı
ωrft

~ FzFye
−ıωrft~ Fz = Fy cos ωrft+ Fx sin ωrft. (A.35b)

This is equation (3.74).

A.6 Chapter 4: N Spatial-Energetic Mode Relationship

In this appendix we detail a calculation that generalises the relationship between N + 1

spatial and energetic modes, under the assumption that the condition (4.39) is upheld.

The Wavefunction And Hamiltonian In The Spatial Mode Basis

Given that we have a (potentially) satisfactory definition of the spatial mode ket (4.35)

we may now explore the power of this definition. A quantum state is expanded in a

linear superposition of the energetic modes as, 2

|Ψ(t)〉 =

N∑
ν=0

cν(t)|ψν〉. (A.36)

The c-numbers evolve in time according to the system Hamiltonian as,

cµ(t) = cµe
−(ı/~)Ht, with

H = ~
∞∑
ν=0

ων |ψν〉〈ψν |. (A.37)

Here we make use of the spatial mode projector (4.38) to relate the wavefunction in the

spatial and energetic bases, and the Hamiltonian in the spatial and energetic bases.

2The summation limits can be written
∑∞
ν=0, where we assume only N+1 of the complex coefficients

cν have finite values. However, for the purposes of clarity and simplicity here we assume that only the
lowest N + 1 energy eigenfunctions are occupied.
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The wavefunction in the spatial basis is related to its counterpart in the energetic basis

via the identity projector (4.31) as,

|Ψ(t)〉R =
N∑
η=0

|η〉〈η|Ψ(t)〉 =
N∑
η=0

bη(t)|η〉. (A.38)

The complex numbers bη(t) are related to the coefficients in the energetic basis as,

bη(t) =

N∑
ν=0

cν(t)〈η|ψν〉. (A.39)

Conversely we may ‘rotate’ back to the energetic basis by projecting with the identity

on the wavefunction in the spatial basis,

|Ψ(t)〉 =
∞∑
µ=0

|ψµ〉〈ψµ|Ψ(t)〉R =
N∑
µ=0

cµ(t)|ψµ〉. (A.40)

The complex numbers cµ(t) are related to the coefficients in the spatial basis as,

cµ(t) =

N∑
η=0

bη(t)〈ψµ|η〉. (A.41)

As we can see the definition of the spatial mode ket (4.18) has allowed us to establish

a projector in the spatial basis (4.31) which easily relates the wavefunction in both the

spatial and energetic bases, (A.38) and (A.40).

The Hamiltonian in the Spatial and Energetic Bases

We can once again make use of the spatial mode identity (4.31) to rotate the Hamiltonian

in the energetic basis to the spatial basis. We let HR denote the Hamiltonian in the

spatial basis, and acknowledge that it is given by projecting the spatial identity (4.31)

on both sides of the energetic mode Hamiltonian (A.37).

HR =

N∑
η,κ=0

|η〉〈η|H|κ〉〈κ| = ~
∞∑
µ=0

N∑
η,κ=0

ωµ|η〉〈η|ψµ〉〈ψµ|κ〉〈κ|. (A.42)

The first inner product reduces to,

〈η|ψµ〉 =
1√
ρη(0)

N∑
m,n=0

c∗n(0)Dηnm〈ψm|ψµ〉,

=
1√
ρη(0)

N∑
n=0

c∗n(0)Dηnµ.

(A.43)
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and the second inner product is,

〈ψµ|κ〉 =
1√
ρκ(0)

N∑
p,q=0

cp(0)Dκqp〈ψq|ψµ〉,

=
1√
ρκ(0)

N∑
p=0

cp(0)Dκµp.

(A.44)

Plugging in both of the above expressions into (A.42) the spatial Hamiltonian matrix is

reduced to a simple form,

HR = ~
N∑

η,κ=0

Ωηκ|η〉〈κ|. (A.45)

where,

Ωηκ =
1√

ρη(0)ρκ(0)

∞∑
µ=0

N∑
n,p=0

ωµ c
∗
n(0)cp(0)DηnµDκµp. (A.46)

Making use of the identity (4.32) is not possible here, due to the presence of the ωµ term

above.

Here the definition of the spatial mode ket (4.35) and the projector in the spatial basis

(4.31) allows us to easily relate the Hamiltonian in both the spatial and energetic bases,

(A.37) and (A.45).

A.7 Chapter 4: Non Diagonal Hamiltonian Matrix

In this appendix we consider a Hamiltonian matrix which is not diagonal. As before the

diagonal elements of the Hamiltonian matrix are the eigenenergies of the first two ener-

getic modes |ψ0〉 and |ψ1〉, which is given by ~ω0 and ~ω1 respectively, where ω0 < ω1.

These energetic modes are allowed to interact with a strength ~Γ, where the frequency

Γ is real valued. As usual the quantum state is expanded as a linear superposition of

these two basis states as,

|Ψ(t)〉 = c0(t)|ψ0〉+ c1(t)|ψ1〉. (A.47)

In Euler form the initial state is cν(0) = cνe
ıϕν . Without loss of generality we assume

that our initial state is real valued, with ϕ1−ϕ0 = 0. The phase and amplitude evolution

of the complex coefficients of the energetic modes then satisfies,

c(t) = exp
(
− ı
~

Ht
)

c,(
c0(t)

c1(t)

)
= exp

(
−ı

(
ω0 Γ

Γ ω1

)
t

)(
c0

c1

)
.

(A.48)
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The eigenvalues of the Hamiltonian matrix H are,

~λ0 =
~
2

(
ω+

10 −
√

(ω−10)2 + 4Γ2

)
,

~λ1 =
~
2

(
ω+

10 +
√

(ω−10)2 + 4Γ2

)
,

(A.49)

where we have defined,

ω±10 ≡ ω1 ± ω0. (A.50)

In the same manner as before, we focus on the mapping of this system into the left-right

or |0〉-|1〉 basis. To simplify the calculation, we move to the eigenbasis of the Hamiltonian

matrix H.

|Ψ̃(t)〉 = c̃0(t)|ψ̃0〉+ c̃1(t)|ψ̃1〉. (A.51)

The new eigenvectors are defined in terms of the old by,

|ψ̃0〉 =
λ0 − ω1√

(λ0 − ω1)2 + Γ2
|ψ0〉+

Γ√
(λ0 − ω1)2 + Γ2

|ψ1〉,

|ψ̃1〉 =
Γ√

(λ1 − ω0)2 + Γ2
|ψ0〉+

λ1 − ω0√
(λ1 − ω0)2 + Γ2

|ψ1〉,
(A.52)

and the phase evolution of the new coefficients in this decoupled basis satisfies,

c̃0(t) = e−ıλ0t
(

c0(λ0−ω1)√
(λ0−ω1)2+Γ2

+ c1Γ√
(λ0−ω1)2+Γ2

)
,

c̃1(t) = e−ıλ1t
(

c0Γ√
(λ1−ω0)2+Γ2

+ c1(λ1−ω0)√
(λ1−ω0)2+Γ2

)
.

(A.53)

Presently of interest are the temporal densities of the spatial regions. We discretise the

Hilbert space into two spatial modes which are allowed to have an arbitrary size which

remains constant over time. If the volume of the η-th spatial region is represented by

Vη (η = 0, 1), and the sum of the volume elements equal the total space, we can define

the operator that projects on exactly one of these regions as, 3

Pη =

∫
Vη
dx |x〉〈x| =

1∑
µ,ν=0

D̃ηµν |ψ̃µ〉〈ψ̃ν |, (A.54)

where D̃ηµν is a tensor whose elements are given by,

D̃ηµν ≡
∫
Vη
dx 〈ψ̃µ|x〉〈x|ψ̃ν〉. (A.55)

3Here we do not have a projector in the strictest sense as we are (in this case) not projecting on both
sides with the identity as we did previously in chapter 4 i.e. with

∑∞
ν=0 |ψν〉〈ψν |. However this projector

(as we define in the following) is valid in the context within which we are using it.
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Figure A.1: The temporal density ρ0(t) (solid blue) and |b0(t)|2 (dashed cyan) of the
η = 0 spatial mode with α = π/4, xb = 0, and Γ = 0, 0.75, 5 (inset) for the one

dimensional harmonic oscillator.

By exploiting the completeness relations of the eigenfunctions {ψµ} and the fact that∑
η Pη = 1, it is easy to prove that D̃ηµν = D̃ηνµ and

∑
η D̃

η
µν = δµν . The temporal density

of the state (A.51) in the spatial regions η = 0, 1 is given by ρη(t) = 〈Ψ̃(t)|Pη|Ψ̃(t)〉 which

can be written as:

ρη(t) =

1∑
µ,ν=0

c̃∗µ(t)c̃ν(t) D̃ηµν , ρη(t) = Mη +Nη cos(λ−10t). (A.56)

For brevity we have defined,

λ±10 ≡ λ1 ± λ0, (A.57)

and,

Mη ≡ c̃ 2
0 D̃

η
00 + c̃ 2

1 D̃
η
11, Nη ≡ 2 c̃0c̃1D̃η10. (A.58)

Here we note N0 = −N1. The elements of the spatial mode Hamiltonian are,

~ξ0 =
~λ+

10

2
− ~λ−10

2
cos(θ),

~ξ1 =
~λ+

10

2
+

~λ−10

2
cos(θ),

~Ω =
~λ−10

2
sin(θ).

(A.59)

Progressing along the same lines outlined in chapter 4 we arrive at the same two map-

pings, A and B. The only difference between the following maps and those of section 4.2

is that the variables Mη and Nη are given by (A.58).

To briefly illustrate the contribution imparted by the Γ term to the evolution of the

wavefunction, we have plotted in figure A.1 the density of the |0〉 spatial mode, for the

one dimensional harmonic oscillator, with α = π/4 for our initial state (4.17), with the



A Supplementary Calculations 180

barrier located at the origin, xb = 0. Three values of the coupling parameter are chosen

Γ = 0, 0.75, 5, labelled in the figure. As we can see, increasing the value of Γ increases the

frequency of the density oscillations whilst decreasing their amplitude. In the absence

of any coupling, the density is seen to periodically oscillate about the mean value of

0.5. What is clear from the figure is that increasing the coupling term, Γ, localises the

quantum state in its initial spatial mode.

The coupling term causes periodic transitions between the energetic modes of the quan-

tum state, at a rate which is constant in time i.e. linear transitions. Similarly, the

interaction (coupling) term g1D in the Gross-Pitaevskii equation (3.89) causes periodic

transitions between the energetic modes of the quantum state, albeit non-linear. Both

equations exhibit the properties of quantum self trapping for large values of the cou-

pling term. Of interest is a means of formally relating the coupling term Γ to the

Gross-Pitaevskii coupling term g1D.



Appendix B

Numerical Techniques

In the following we outline the numerical methods employed for the numerical inte-

gration of the time dependent Schrödinger equation. We make use of two numerical

techniques, the first is known as the split operator method (section B.1), and the second

is called the finite difference method (section B.2). The split operator method allows

may be employed in one, two and three dimensions, depending on the system considered.

Whereas the finite difference method is a numerical diagonalisation technique, which al-

lows for the recovery of the eigenfunctions of an arbitrary one dimensional potential.

This numerical tool is quite powerful as it provides an insight as to the functional form

of the eigenfunctions of a Hamiltonian, whose solutions may or may not be analytically

known. The purpose of both approaches is to numerically propagate in time, a quantum

state subject to a time dependent Hamiltonian of the form,

H(tn) = − ~2

2m

d2

dx2
+ V(x, tn). (B.1)

where x = (x, y, z) for three dimensions, x = (x, y) for two, and x = (x) for one

dimensional Hamiltonians.

B.1 The Split Operator Method

To begin, let us briefly review the integration of Schrödinger’s equation of an arbitrary

state |Ψ(tn)〉, subject to the Hamiltonian H(tn), to find the representation of the state

at the time, tn+1. The Hamiltonian is assumed to remain stationary for a period of time

tn+1 − tn = ∆t, and this is the interval of interest here. In its general form the time

181



B Numerical Techniques 182

dependent Schrödinger equation reads,

ı~
d

dt
|Ψ(t)〉 = H(t) |Ψ(t)〉. (B.2)

Rearranging we have,
d|Ψ(t)〉
|Ψ(t)〉

= − ı
~
dt H(t). (B.3)

This is typically integrated by assuming that the Hamiltonian is stationary for a period

of time ∆t. The differential equation is then integrated between to points in time, tn

and tn+1. Formally we write,

∫ |Ψ(tn+1)〉

|Ψ(tn)〉

d|Ψ(t)〉
|Ψ(t)〉

= − ı
~

∫ tn+1

tn

dt H(t). (B.4)

The solution to the above is given by,

|Ψ(tn+1)〉 = exp
(
− ı
~

H(tn)∆t
)
|Ψ(tn)〉. (B.5)

The Hamiltonian of equation (B.1) consists of both kinetic and potential parts, H(tn) =

K + V(tn). The kinetic and potential operators are made up of the position (x) and

momentum (p) operators respectively. Explicitly these are,

K =
p2

2m
, (B.6a)

V(tn) = V(x, tn), (B.6b)

where, p = −ı~ d/dx. For the purpose of abbreviation we define V(tn) ≡ V.

For the numerical evaluation of (B.5) we make use of one form of the Baker-Campbell-

Hausdorff formula, which is known as the Zassenhaus Formula. To do so, we expand

the exponential term containing the operators, K and V, by taking the necessary com-

mutators. If we let λ = −ı
∫ tn+1

tn
dt/~ = −ı ∆t/~,

exp (λK + λV) = exp (λK) exp (λV) exp

(
−λ

2

2
[K,V]

)
. (B.7)

The third order and higher terms in the expansion are neglected since [K,V] commutes

with K and V. If we evolve using a very small time step, the contribution from the last

exponential can effectively be ignored, as it is of the order ∆t2. Hence we are justified

in taking the following approximation,

exp (λK + λV) ≈ exp (λK) exp (λV) , (B.8)

However, Feit and Fleck [188] improved the above approximation by introducing a novel
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propagation scheme which is strictly unitary. In this method the evolution operator is

approximated by a symmetric splitting of the kinetic energy operator in the following

way,

exp (λH) = exp

(
λ

2
K

)
exp (λV) exp

(
λ

2
K

)
+O(λ3). (B.9)

The error in this splitting is of third order in ∆t which can neglected when taking a

small time step. Let us define the operation of applying a (fast) Fourier transform and

inverse (fast) Fourier transform as, F [ ] and F−1[ ], respectively. The wavefunction

is then iteratively calculated as,

〈x|Ψ(tn+1)〉 = F−1

[
exp

(
λ

2
K

)
F

[
exp (λV) F−1

[
exp

(
λ

2
K

)
F
[
〈x|Ψ(tn)〉

]]]]
.

(B.10)

Provided the change to the Hamiltonian (B.1) are small and the chosen time step is

small the above approach is stable.

B.2 The Finite Difference Method

For one dimensional systems we assume that the confinement in the y and z directions

is much larger than the confinement in the x directions, i.e. ωx � ωy,z. Subsequently

the model used for numerical purposes is one dimensional. For the numerical method

outline here we scaled the spatial co-ordinates x with respect to the length
√
~/mω. For

illustrative purposes we use write (B.1) in scaled co-ordinates for some potential V (x),

H = −1

2

d2

dx2
+ V (x). (B.11)

Here we omit to include time dependence but it can be invoked by changing the func-

tional form of the potential V (x). We are looking to write a computer code that solves

for the eigenfunctions ψ(x) and eigenvalues E of the wave equation,(
−1

2

d2

dx2
+
x2

2

)
ψ(x) = Eψ(x). (B.12)

The numerical solution to (B.12) is evaluated using the finite difference technique by

replacing the second order derivative with an expression using finite differences. To

proceed we discretise the one dimensional spatial region into nodes xm where the distance

between adjacent nodes is xm+1 − xm = ∆x, and m = 0, 1, 2, . . . ,M . The second

derivative term is then written,

− 1

2

d2

dx2
ψ(xm) =

−ψ(xm+1) + 2ψ(xm)− ψ(xm−1)

2∆x2
. (B.13)
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In matrix form, this is given by,

− 1

2

d2

dx2
ψ(x) =

1

2 ∆x2



2 −1 0 · · · 0

−1 2 −1 · · ·
...

0 −1 2
. . . 0

...
...

. . .
. . . −1

0 · · · 0 −1 2





ψ(x0)

ψ(x1)

ψ(x2)
...

ψ(xM )


. (B.14)

The discretised potential is also written in matrix form,

V (x) =



V (x0) 0 0 · · · 0

0 V (x1) 0 · · · 0

0 0 V (x2)
. . .

...
...

...
. . .

. . . 0

0 0 · · · 0 V (xM )


. (B.15)

Defining αm ≡ (∆x)V (xm) + 2, the Hamiltonian is given by,

H =
1

2∆x



αm −1 0 · · · 0

−1 αm −1 · · ·
...

0 −1 αm
. . . 0

...
...

. . .
. . . −1

0 · · · 0 −1 αm


. (B.16)

Numerical diagonalisation of the above Hamiltonian allows for the recovery of the correct

eigenfunctions and eigenvalues that satisfy Hψ(x)− Eψ(x) = 0.
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P. Grangier. Quantum Interference Between Two Single Photons Emitted

by Independently Trapped Atoms. Nature, 440:779–782, January 2006. URL

http://dx.doi.org/10.1038/nature04628.

[94] J. Eschner, Ch. Raab, F. Schmidt-Kaler, and R. Blatt. Light Interference from

Single Atoms and Their Mirror Images. Nature, 413:495–498, July 2001.

URL http://dx.doi.org/10.1038/35097017.

[95] Gavin K. Brennen, Carlton M. Caves, Poul S. Jessen, and Ivan H. Deutsch. Quan-

tum Logic Gates in Optical Lattices. Physical Review Letters, 82:1060–1063,

February 1999. URL http://dx.doi.org/10.1103/PhysRevLett.82.1060.

[96] D. Jaksch, H.-J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller. Entanglement

of Atoms via Cold Controlled Collisions. Physical Review Letters, 82:1975–

1978, March 1999. URL http://dx.doi.org/10.1103/PhysRevLett.82.1975.

[97] D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin. Fast
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[146] P. O. Löwdin. Proton Tunneling in DNA and its Biological Implications.

Reviews of Modern Physics, 35:724–732, 1963. URL http://dx.doi.org/10.

1103/RevModPhys.35.724.

[147] H. W. Fink and C. Schönenberger. Electrical Conduction Through DNA

Molecules. Nature Letters, 398:407–410, April 1998. URL http://dx.doi.org/

10.1038/18855.

[148] K. Kohen and J. P. Klinman. Hydrogen Tunneling in Biology. Chem-

istry and Biology, 6:R191–R198, July 1999. URL http://dx.doi.org/10.1016/

S1074-5521(99)80058-1.

[149] H. Yamada and K. Iguchi. Some Effective Tight-Binding Models for Elec-

trons in DNA Conduction: A Review. Physical Review Letters, 2010:380710,

May 2010. URL http://dx.doi.org/10.1155/2010/380710.

[150] C. R. Moylan and J. I. Brauman. Advances in Classical Trajectory Methods.

JAI Press, ISBN 999-479-042-0, 1994.

[151] John Clarke and Alex I. Braginski. The SQUID Handbook: Fundamentals

and Technology of SQUIDs and SQUID Systems. Wiley, ISBN 352-740-

229-2, 2004.

[152] C. Weitenberg, M. Endres, J. F. Sherson, M. Cheneau, P. Schauß, T. Fukuhara,

I. Bloch, and S. Kuhr. Single-Spin Addressing in an Atomic Mott Insu-

lator. Nature, 471:319–324, March 2011. URL http://dx.doi.org/10.1038/

nature09827.

[153] P. Harrison. Quantum Wells Wires and Dots. Wiley, ISBN 047-077-097-X,

2009.

[154] R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov. Optical Dipole Traps For

Neutral Atoms. Advances In Atomic, Molecular, and Optical Physics, 42:95–

170, April 2000. URL http://dx.doi.org/10.1016/S1049-250X(08)60186-X.

http://dx.doi.org/10.1209/0295-5075/90/10005
http://dx.doi.org/10.1103/PhysRevA.83.043612
http://dx.doi.org/10.1103/PhysRevA.83.043612
http://dx.doi.org/10.1103/RevModPhys.35.724
http://dx.doi.org/10.1103/RevModPhys.35.724
http://dx.doi.org/10.1038/18855
http://dx.doi.org/10.1038/18855
http://dx.doi.org/10.1016/S1074-5521(99)80058-1
http://dx.doi.org/10.1016/S1074-5521(99)80058-1
http://dx.doi.org/10.1155/2010/380710
http://dx.doi.org/10.1038/nature09827
http://dx.doi.org/10.1038/nature09827
http://dx.doi.org/10.1016/S1049-250X(08)60186-X


Bibliography 200
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