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Abstract 

Internal tandem duplication of FMS-like receptor tyrosine kinase (FLT3-

ITD) is present in 15-35% of acute myeloid leukaemia (AML) patients and it has 

been associated with an aggressive AML phenotype. FLT3-ITD expressing cell lines 

have been shown to generate increased levels of reactive oxygen species (ROS) and 

DNA double strand breaks (dsbs). However, the molecular basis of how FLT3-ITD-

driven ROS leads to the aggressive form of AML is not clearly understood.  

Herein, we show that in the FLT3-ITD expressing AML cell line, MV4-11, 

inhibition of FLT3 leads to a reduction in the levels of total ROS and H2O2, as 

measured by DCF and Peroxy Orange 1 (PO1) probes respectively. Interestingly, 

levels of both total ROS and H2O2 are attenuated by DPI and VAS-2870-achieved 

inhibition of NADPH oxidases (NOXs). In contrast, the aforementioned inhibitions 

do not affect amount of H2O2 in mitochondria, as analysed by MitoPY1 probe. We 

also observe that the majority of H2O2 in FLT3-ITD-expressing MV4-11 cells 

colocalises to the endoplasmic reticulum (ER). The inhibition of FLT3 or NOXs 

decreases the amount of H2O2 in the ER. Furthermore, ER localisation of ROS in 

MV4-11 cells corresponds to the localisation of p22
phox

, a small membrane-bound 

subunit of NOX complex. This indicates that p22
phox

 bound to NOX complex 

mediates generation of ROS in FLT3-ITD-expressing cells. 

This work also presents a novel mechanism of FLT3-ITD-driven stimulation 

of NOX that occurs through a stabilisation of p22
phox

. We show that 32D cells, a 

myeloblast-like cell line transfected with FLT3-ITD, possess higher steady protein 

levels of p22
phox 

than their wild type FLT3 (FLT3-WT)-expressing counterparts. 
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Moreover, stimulation of FLT3-WT with FLT3 ligand (FL) results in an increase in 

p22
phox

 protein levels, accompanied by an elevation in cellular H2O2. Similarly, the 

inhibition of FLT3-ITD signalling, using various FLT3 tyrosine kinase inhibitors 

(TKIs), uniformly results in a post-translational downregulation of p22
phox

. 

Furthermore, siRNA knockdown of p22
phox

 dramatically attenuates an accumulation 

of H2O2 in the ER. We also show that depletion of NOX2 and NOX4, but not NOX1 

proteins causes a reduction in endogenous H2O2 levels, suggesting that these are the 

isoforms activated by elevated p22
phox

 levels.  

We show that genomic instability induced by FLT3-ITD, through stimulation 

of ROS production, leads to an increase in nuclear levels of H2O2, as measured by 

NucPE1 probe. The presence of H2O2 in the nucleus is largely reduced by inhibition 

of FLT3 or NOX. Furthermore, similar results are also observed following siRNA 

knockdowns of p22
phox

 or NOX4.  

We demonstrate that 32D cells, a myeloblast-like cell line transfected with 

FLT3-ITD have a higher level of both oxidised DNA and DNA dsbs than 32D cells 

transfected with the wild type FLT3 receptor (FLT3-WT). Furthermore, PKC412 

treatment also causes reduction in oxidative DNA damage and DNA dsbs.  

Additionally, inhibition of FLT3-ITD, p22
phox

 and NOX knockdowns decrease the 

number of DNA dsbs. We also show that NOX4 and p22
phox

 partially localize to the 

nuclear membrane in MV4-11 cells expressing FLT3-ITD. Taken together these data 

indicate that NOX and p22
phox

 mediate the ROS production downstream of FLT3-

ITD and that, in turn, these ROS diffuse to the nucleus to cause genomic instability. 
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In summary, this study presents a novel mechanism of genomic instability 

generation in FLT3-ITD-expressing AML cells, whereby FLT3-ITD activates NOX 

complexes by stabilising p22phox. This in turn leads to elevated generation of ROS 

and DNA damage in these cells. Both of these phenomena contribute to the 

aggressiveness and chemoresistance of leukaemia. Therefore, NOXs are potentially 

attractive targets for novel treatments of AML. 
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Leukaemia 

Leukaemia is a myeloproliferative disease characterised by an abnormal growth 

of white blood cells. The word leukaemia comes from Ancient Greek leukos “white” 

and haima “blood”. The world incidence of leukaemia in 2012 was approximately 

352,000 of new diagnosed cases, which accounts for 2.5% of all cancers (Ferlay et 

al., 2015). 

Leukaemia is a broad term that describes a number of white blood disorders of 

different aetiology. It can be classified as myeloid or lymphocytic, depending on the 

lineage of the affected cells. Alternatively, leukaemia can be described as acute or 

chronic, depending on the aggressiveness of the disease. Combining the two criteria 

results in four main subtypes of leukaemia: chronic lymphocytic leukaemia (CLL), 

chronic myeloid leukaemia (CML), acute lymphocytic leukaemia (ALL) and acute 

myeloid leukaemia (AML) (LLS., 2011). 

Epidemiology and Current Treatment of Acute Myeloid Leukaemia 

AML is a heterogeneous clonal disorder of haemopoietic progenitor cells and the 

most common malignant myeloid disorder in adults. While the general prevalence is 

approximately 3.8 cases per 100,000, the figure dramatically rises to 17.9 cases in 

the population of adults over 65 year old (Estey and Döhner, 2006). The standard 

AML treatment has changed little in passed twenty years (Roboz, 2012). At the time 

of writing, the majority of AML patients, who are not participating in the clinical 

trials, receive an induction chemotherapy of cytarabine and an anthracycline 
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(idarubicin or daunorubicin), followed by consolidation therapy or stem cell 

transplantation. This standard chemotherapy maximally offers 60-70% complete 

remission rate and 30-40% 5-year overall survival (Emadi and Karp, 2014). The 

novel treatments have not been approved in the last few decades due to either high 

levels of toxicity or little levels of effectiveness in the clinical trials. This 

demonstrates the importance and the need for the development of new drugs. 

Leukaemic Stem Cell 

Survival, proliferation and differentiation are the three fundamental phenomena 

driving the process of haematopoiesis. In acute myeloid leukomogenesis, the 

haematopoietic progenitor acquire abnormalities that lead to imbalance between the 

three processes that lead to the expansion of the leukemic stem cell (LSC) clone 

(Bonnet and Dick, 1997). In order for these abnormalities to develop into fully 

malignant disease, multiple independent genetic and epigenetic alterations in proto-

oncogenes and/or tumour suppressor genes are required to occur. LSCs are 

characterised by the limitless self-renewal, cytoprotection and attenuated telomerase 

activity (Lane and Gilliland, 2010). Furthermore, LSCs are rather not found in the 

blood circulation. They primarily reside in the bone marrow microenvironment that 

additionally enables them to avoid the cytotoxic effects of the chemotherapy and the 

re-emergence to result in relapse of the disease (Lane et al., 2009).  
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Molecular Basis of Pathogenesis of AML 

AML is a biochemically complex heterogenous disease. Several chromosomal 

aberrations and genetic mutations are systematically being used to prognostically 

classify AML based on its cytogenetics. The European Leukaemia Net Prognostic 

System categorises patients into four risk groups: favourable, intermediate-1, 

intermediate-2 and adverse (Roboz, 2012). The groups are classified depending on 

the subsets of cytogenetic and molecular markers. This classification allows to 

prediction of the response to the chemotherapy or allogeneic stem cell 

transplantation. For example, internal tandem duplications of FML-like tyrosine 

kinase 3 (FLT3-ITD) are associated with poor outcomes due to an aggressive disease 

phenotype. There are also two other types of classification of AML cases. The 

French-American-British (FAB) classification that divides AML into 8 types, M0-

M7, based on the type of cell which the leukaemia developed and its degree of 

maturity. The World Health Organisation classification divides AML into: AML 

with recurrent genetic abnormalities, AML with multilineage dysplasia, and AML 

and MDS, therapy related (Vardimann et al., 2012).  

Chromosomal aberrations, for example deletions and translocations are detected 

in 55 % of AML patients (Döhner and Döhner, 2008). The evidence suggest that 

leukemogenesis is a multi-step process. For example, RUNX-RUNX1T1 fusion 

protein causes impairment in myeloid differentiation, however the protein does not 

result in fully leukaemic phenotype in a murine model (Döhner and Döhner, 2008). 

These initiating fusion oncogenes have to be followed by the complementing 

mutations that activate signal transduction pathways resulting in increased 
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proliferation/survival or block in apoptosis/differentiation. Often these mutations 

lead to activation of receptor tyrosine kinase signalling pathways, as it is in the case 

of FLT3, Neuroblastoma RAS Viral Oncogene Homologue (NRAS) or steel factor 

receptor (KIT) (Döhner and Döhner, 2008). Therefore AML mutations has classified 

into 2 major groups. Class I comprises mutations activating signal transduction 

pathways that lead to increased proliferation and survival of cells, for instance FLT3 

or RAS. Class II contains mutations that affect differentiation or self-renewal 

properties of cells, for example CEBPA, MLL and NPM1. In order for the disease to 

develop class I mutation must be accompanied by class II mutation, which is the 

basis of the two-hit model of the development of AML. 

FLT3 signalling 

In total, 25-45% of patients with AML will have some form of mutation in 

FLT3, making it the most common genetic aberration in AML (Stirewalt and 

Radich, 2003). FLT3 also known as a FLK-2, is a class III receptor tyrosine kinase 

with a strong sequence similarities to other members of this class, macrophage 

colony-stimulating factor receptor (FMS), platelet-derived growth factor receptor 

(PDGF) and (KIT). All of the class III members play important roles in proliferation, 

differentiation and survival of the haematopoietic cells (Rosnet and Birnbaum, 

1993). Mice with disruption of FLT3 and KIT possess deficiency in hematopoietic 

cell numbers and early lethality of the animals. This suggests that FLT3 acts in 

conjunction with other cytokines to stimulate proliferation and differentiation of the 

hematopoietic progenitors (Mackarehtschian et al., 1995).  
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FLT3 gene encodes 993-amino acid protein in human that is expressed in early 

myeloid and lymphoid haematopoietic cells (Rosnet et al., 1996). The protein is 

composed of the 5 extracellular immunoglobulin-like (Ig-like) domains, a 

transmembrane domain, a juxtamembrane domain and 2 cytoplasmic domains with a 

tyrosine kinase motif (Levis and Small, 2003) (Figure 1). Two forms of FLT3 have  

 

been described, a mature 160 kDa – glycosylated protein and an immature 130 kDa – 

unglycosylated protein (Stirewalt & Radich, 2003). In normal cells expression of 

FLT3 is restricted to early myeloid and lymphoid progenitors, whereas leukaemic 

cells express FLT3 in 70-90% of patients with AML and ALL (Stirewalt and Radich, 

2003).  

NH2

Extracellular ligand-

binding domain

Transmembrane domain

Juxtamembrane domain

Tyrosine kinase domain

Tyrosine kinase domain

COOH

Figure 1. FLT3 structure. 

The protein is composed of extracellular ligand-binding domain, a 

transmembrane domain, a juxtamembrane domain and 2 cytoplasmic domains 

with a tyrosine kinase motifs.
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Unstimulated FLT3 resides as a monomer in the plasma membrane (PM) 

(Masson and Ronnstrand, 2009). The receptor remains in the inactive conformation 

due to the steric inhibition mediated by the juxtamembrane domain (Meshinchi and 

Appelbaum, 2009). Upon FLT3 ligand (FL) binding, it homodimerises, tyrosine 

kinases are activated. The receptor autophosphorylates at the tyrosine residues that 

become docking sites for receptor-binding signalling effectors (Masson and 

Ronnstrand, 2009) (Masson & Rönnstrand, 2009; Turner, Lin, Issarachai, Lyman, & 

Broudy, 1996). Phosphorylation of FLT3 can be detected as early as 5min post 

ligand stimulation (Fenski et al., 2000). FLT3 signalling is tightly regulated by the 

immediate internalisation of the FLT3-FL complex (Turner et al., 1996). This secure 

control of the FLT3-FL complex is a part of negative regulation of FLT3 signalling 

that monitors the proliferation/survival signals in these cells. The FLT3 signal is 

primarily transduced via phosphatidylinositol-3 kinase (PI3K) and rat sarcoma 

protein kinase (RAS) pathways leading to protein kinase B (AKT), signal 

transducers and activators of transcription 5 (STAT5) and extracellular regulated 

kinase 1/2 (ERK1/2) activation (Masson and Ronnstrand, 2009).  

PI3K/AKT pathway is one of the most important cell growth and survival 

signalling pathways in cancer development. Growth factors activate PI3K lipid 

kinase that catalyses phosphorylation of the 3 position hydroxyl group of the inositol 

ring of phosphatidylinositol (PtdIns). This in turn recruits plecstrin homology (PH) 

possessing proteins e.g. AKT. AKT is a serine/threonine kinase and a positive 

modulator of survival through inhibition of the pro-apoptotic Bad and Foxo3a 

proteins. The latter also regulates cell cycle progression, rendering AKT an 
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important stimulant of cell proliferation. Indirectly, AKT also activates mammalian 

target of rapamycin (mTOR) serine/threonine kinase that by initiation of ribosomal 

translation of messenger RNA (mRNA) into proteins that play important role in cell 

growth, metabolism and cell cycle progression.  

The RAS pathway commences with the activation of small GTPase, RAS 

that possesses an intrinsic ability to hydrolyze guanosine triphosphate (GTP) to 

guanosine diphosphate (GDP). Active RAS positively regulates a mitogen-activated 

protein kinase (MAPK) cascade that leads to activation of (extracellular regulated 

kinase) ERK1/2 which is involved in a block of differentiation, anti-apoptosis and 

proliferation.  

 Phosphorylated FLT3 kinase becomes a docking site for STAT5. Following 

the transduction of the phosphor-signal onto STAT5, the protein dimerises and 

translocates into the nucleus where it binds to STAT5 response elements. STAT5 

acts as a potent activator of transcription for a variety of genes, e.g. proviral 

integration site 1/2 oncogene (PIM1/2) involved in anti-apoptosis and survival.  

FLT3 mutations in haematological malignancies. 

The most common FLT3 mutation is an internal tandem duplication (ITD) in 

exons 14 and 15, which occurs in 15-35% of AML cases, 1-3% of ALL cases and 5-

10% of patients with myelodysplasia (MDS) (Stirewalt and Radich, 2003). The 

fragment of the juxtamembrane domain (JM) (3->400 base pairs) is duplicated and 

inserted in a direct head-to-tail orientation, resulting in an in-frame mutation 
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(Takahashi, 2011, Stirewalt and Radich, 2003). Regardless of the sequence or the 

length of the insert, the ITD in the JM domain drives a constitutive phosphorylation 

of tyrosines followed by the homodimerisation of the receptor (Kiyoi et al., 1998). 

Crystallisation studies have demonstrated that non-mutated JM region stabilises the 

auto-inhibited conformation of the kinase domain (Griffith et al., 2004). It seems that 

elongation of the JM domain attenuates the negative regulation of the 

phosphorylation of the receptor (Griffith et al., 2004, Kiyoi et al., 2002). Although 

ITD mutation can activate FLT3 independently of FL, the notion of FL not affecting 

ITD receptor may be incorrect. The majority of FLT3-ITD studies were performed in 

cell lines that express FL, thus it remained unclear, whether in addition to the 

independent route, FL-mediated activation of FLT3-ITD occurred. Consequently, 

Zheng et al. carried out a similar study in FL deficient cells, showing that 

stimulation of the cells with FL leads to further activation of ITD mutants, resulting 

in the increase in the receptor phosphorylation as well as the enhanced survival 

(Zheng et al., 2011). 

FLT3-ITD mutations cause a constitutive activation of wild type-FLT3 (FLT3-

WT) signalling, including PI3K and RAS pathways that are both crucial for the 

leukaemic transformation of AML cells (Gilliland and Griffin, 2002, Brandts et al., 

2005a, Kothe et al., 2013). It has been demonstrated that constitutive activation of 

AKT is necessary for increased survival, proliferation and myeloid transformation 

(Brandts et al., 2005a). Furthermore, transfection of dominant negative RAS strongly 

inhibited the colony formation generated by mutated FLT3-ITD (Kothe et al., 2013). 
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Interestingly, the constitutive activation of FLT3-ITD results not only in the 

permanently dysregulated activation of FLT3-WT/FL pathway, but also in the 

additional FLT3-ITD unique signalling events. For example, cells stably transfected 

with FLT3-WT demonstrate little phosphorylation of STAT5 and show no STAT5 

bound to DNA (Choudhary et al., 2007, Mizuki et al., 2000, Spiekermann et al., 

2003). Conversely, cells stably transfected with FLT3-ITD manifest a strong STAT5 

phosphorylation and STAT5 DNA binding. FLT3-ITD is thought to activate STAT5 

in a different mechanism to IL-3-stimulated activation (Choudhary et al., 2007, 

Choudhary et al., 2009). It has been reported that STAT5 phosphorylation is 

independent of JAK and SRC kinases and it cannot be inhibited by overexpression of 

suppressor of cytokine signalling 1 (SOCS1), its negative regulator (Choudhary et 

al., 2007). STAT5 has also been shown to directly bind FLT3 in vitro (Choudhary et 

al., 2007). Additionally, FLT3-ITD represses the expression of crucial regulators of 

differentiation, Pu.1 and CCAAT-enhancer-binding protein (C/EBP), which FLT3-

WT fails to accomplish, allowing the cells expressing FLT3-WT to differentiate 

(Choudhary et al., 2005b). 

Mutations of the receptor tyrosine kinase may not only lead to their constitutive 

activation, but also to subcellular mislocalisation (Choudhary et al., 2009). FLT3-

ITD mutation causes an impaired trafficking of the receptor and its prolonged 

residence, for example, in the endoplasmic reticulum (ER) (Choudhary et al., 2009). 

Thus, fully-glycosylated mature 160 kDa FLT3 is detected at the PM, while partially 

glycosylated, immature FLT3 form localises to the ER (Choudhary et al., 2009). 

Therefore, the signalling differences between activated FLT3-WT and FLT3-ITD 
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can be partially explained by their differential localisations. Kothe et al. have 

observed RAS activation mainly at the plasma membrane, suggesting that plasma-

membrane FLT3 is responsible for the stimulation of RAS/ERK pathway in AML 

cells (Kothe et al., 2013). Conversely, the ER-present immature FLT3 aberrantly 

activates STAT5 and its downstream signalling (Choudhary et al., 2009) (Figure 2).  

The second most common FLT3 mutation is a missense point mutation where 

aspartic acid is substituted for tyrosine (D835Y) in exon 20 of the tyrosine kinase 

domain (TKD). This mutation occurs in 5-10% of AML, 2-5% of MDS, and 1-3% of 

ALL patients (Yamamoto et al., 2001). Although the substitution renders FLT3 

constitutively active and causes an interleukin-3 (IL-3) independent proliferation of 

32Ds cells, the patients carrying the FLT3-ITD receptor have significantly poorer 

prognosis and shorter progression free-survival than the ones carrying FLT3-D835Y 

mutation (Choudhary et al., 2005a, Fenski et al., 2000, Meshinchi et al., 2006, 

Mizuki et al., 2000, Yamamoto et al., 2001). Interestingly, the two activating types 

of FLT3 mutations, yield substantial differences in the signalling downstream the 

phosphorylated receptor (Choudhary et al., 2005a) and transcription profiles (Lu et 

al., 2007). 

Furthermore, the signalling downstream of constitutively phosphorylated FLT3-

D835Y resembles more of the ligand stimulated FLT3-WT than of the FLT3-ITD 

(Choudhary et al., 2005a). The differences in the transforming potential of the two 

FLT3 activating mutations can be partially explained by the lack of support of 

colony formation by the FLT3-D835Y (Choudhary et al., 2005a). Additionally, 
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FLT3-D835Y fails to activate STAT5 and to repress the myeloid transcription 

factors c/EBPα and Pu.1 which are important signal transducers in the 

pathophysiology of AML (Choudhary et al., 2005a). Leischner et al. reported that 

SRC mediates the FLT3-ITD induced activation of STAT5 (Leischner et al., 2012). 

Tyrosines 598 and 591 are found to be essential for SRC binding and these are only 

weakly phosphorylated in FLT3-D835Y, preventing SRC to bind to FLT3 with 

mutation in TKD (Leischner et al., 2012).  

Figure 2. FLT3-ITD signalling at the endoplasmic reticulum and plasma 

membrane.
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Current management of patients with FLT3 mutations. 

Newly diagnosed FLT3-ITD patients receive the standard induction therapy with 

similar results to other AML patients. However, patients that are hemizygous for 

FLT3/ITD mutations relapse more often and quicker than patients without the 

mutation (Grafone et al., 2012, Levis and Small, 2003). The survival in the relapse is 

also the poorest for these patients (Grafone et al., 2012). Allogeneic transplantation 

in first remission gives a better outcome than conventional consolidation 

chemotherapy in patients carrying the FLT3-ITD mutation (Levis, 2013). However, 

FLT3-ITD-harbouring cases still have a higher relapse risk than patients with other 

AML subtypes (Levis and Small, 2003). Moreover, there is a group of patients that 

cannot undergo allogeneic transplantation or intensive induction chemotherapy, e.g. 

the elderly, hence the treatment options for these patients are greatly limited. 

Interestingly FLT3-ITD mutations are often accompanied by the abnormalities in 

the nucleophosmin (NPM1) gene that results in a mislocalisation of this protein to 

the cytoplasm. When present in the absence of FLT3, NPM1 mutations are regarded 

as favourable and allogeneic transplantation is usually unnecessary. Interestingly, it 

has been proposed that a favourable NPM1 mutation counter-balances the possession 

of the aggressive FLT3-ITD. However the evidence for this phenomenon is still 

under debate (Wander REF). 

Small FLT3 tyrosine kinase inhibitors (TKIs), such as midostaurin (PKC412), 

have been developed and studied in the past few years (Grunwald and Levis, 2013, 

Wander et al., 2014). The main issue with medical efficacy of FLT3 inhibitors is the 



Chapter 1: General Introduction. 

 

 

14 

 

inability to sustain the FLT3 inhibition in vivo at the dose that would not have 

serious off-target effects (Wander et al., 2014, Ostronoff and Estey, 2013). A 

breakthrough in the FLT3 pharmacology was a development of quizartinib (AC-220) 

that is significantly more potent than its precursors and is able to inhibit FLT3 in 

vivo at the tolerable doses (Grunwald and Levis, 2013, Wander et al., 2014). 

Although the results demonstrated the blast clearance and 51% remission rate in the 

group of patents >69 year old, it was observed that patients developed a resistance 

conferring point mutations in the FLT3 protein itself (Grunwald and Levis, 2013, 

Smith et al., 2012, Wander et al., 2014, Ostronoff and Estey, 2013). This suggests 

that possibly this potent inhibitor should be used in combination with other 

chemotherapeutics to prevent or delay the resistance (Wander et al., 2014). 

Reactive Oxygen Species (ROS).  

ROS are reactive, natural by-products of normal aerobic metabolism, formed by 

the partial reduction of the oxygen. The family includes: highly unstable oxygen 

radicals: superoxide (O2·
-
), hydroxyl (OH·) and singlet (

1
O2) that can be quickly 

converted into more stable, freely diffusible non-radicals: hypochlorous acid, ozone 

(O3), hydrogen peroxide (H2O2). Due to their chemical instability and reactivity, 

ROS have been known for years for their damaging effects to all types of 

macromolecules and hence cellular organelles and strictly associated with 

pathologies involving accumulation of damaged molecules (Murphy et al., 2011, 

Winterbourn, 2008, Cooke et al., 2003).  
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The balance between generation of ROS and ROS scavenging by cellular 

antioxidants provides the platform to redox homeostasis that can be easily tipped to 

an oxidative stress state when the ROS production exceeds its removal. Oxidative 

stress can be characterised by lipid peroxidation, protein carbonylation, damage to 

membranes and organelles and DNA. Antioxidants are molecules that by reacting 

with oxidants protect biomolecules from oxidative damage. They can be of 

enzymatic (e.g. catalase, superoxide dismutase) and non-enzymatic nature (e.g. 

glutathione, vitamin C, vitamin E).  

In the past two decades, accumulative evidence in the literature has demonstrated 

that the oxidative properties of ROS exert a far larger role than the cellular injury 

and that their biological effects, in fact, can be beneficial.  In the 1970, several 

groups reported that ROS are able to mimic signalling effects of insulin, followed by 

reports demonstrating that exogenous H2O2 can cause an increase in cell 

proliferation (Czech et al., 1974). These findings pioneered the field of redox 

signalling biology that focuses on the signalling effects of ROS. Since then, more 

than 10,000 papers have been published on the topic, manifesting the wide scope of 

ROS phenomenon as well as the enormous interest from the scientific community.  

The pivotal property of the ROS to exerting the effects mentioned above is their 

ability to oxidatively modify molecules. In the case of nucleic acids, the oxidation 

involves damage to the genetic information (Cooke et al., 2003). This, in turn, can 

lead to mutagenic changes that could promote or initiate carcinogenic events. 

Regarding the effects of ROS on proteins, while high concentration of cellular ROS 

can lead to damaging effects, tightly regulated, local ROS generation can cause 
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reversible post-translational modification, at cysteine (Miki and Funato, 2012), 

selenocysteine (Hawkes and Alkan, 2010), methionine (Hoshi and Heinemann, 

2001) and histidine (Lee and Helmann, 2006) residues of proteins. Cysteines (Cys-

SH), for example, are readily oxidised by H2O2 to cysteine sulfenic acid (Cys-SOH) 

or disulphide (Cys-S-S-Cys). These oxidations belong to reversible modifications 

that can be reversed by cellular antioxidant enzymes. Thus, cysteines are often 

regarded as reversible redox switches, which through oxidative modification can 

change protein conformation, affect the active (or binding) site of the protein or 

change its surface properties (Wang et al., 2012).  

A key to all signalling pathways is the transience and reversibility of the effect; 

although high concentrations of H2O2 (millimolar) cause irreversible oxidation of 

cysteines on target proteins, much lower nanomolar levels of H2O2 induce transient 

changes on these amino acids relevant to signal transduction (Day et al., 2012). All 

of the above characteristics allow H2O2 to act as the messaging substances in the 

redox signalling pathways on the various types of proteins e.g. transcription factors, 

phospholipases, protein kinases and phosphatases (Banno and Nozawa, 2003, 

Kojima et al., 2007, Marinho et al., 2014, Woolley et al., 2013a). 

Due to high reactivity/instability of ROS signalling molecules like H2O2, the 

molecular target (e.g. protein, DNA) has to be localised relatively close to the site of 

ROS generation (Mishina et al., 2011). It is difficult to calculate the actual 

intracellular propagation distance of ROS molecules as it largely depends on the 

redox conditions of the compartment (Malinouski et al., 2011). The specific spatio-

temporal character of the ROS signalling demonstrates the importance for 
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localisation, with redox signalling likely controlled to proximal targets (Ushio-fukai, 

2009). For instance, it has been demonstrated in endothelial cells, that ER-residing 

NOX4 oxidises protein tyrosine phospahatase (PTP1B), modulating its activity 

(Chen et al., 2008). However, mutation in PTB1B changes the localisation of the 

protein from the ER-residing to diffused cytoplasmic distribution and NOX4 fail to 

oxidise and affect the function of mutant PTP1B (Chen et al., 2008).  

As aptly noted by Murphy et al., the term ‘ROS’ is often used in the literature to 

describe a functionally distinct molecule in cell signalling (Murphy et al., 2011). 

However, it should to be understood that various ROS have very different physical 

and chemical properties that allow them to behave in diverse ways modifying 

distinct target molecules e.g. different kinetics, degradation and chemical reactivity 

(Murphy et al., 2011). For instance, due to its extreme reactivity OH· is mainly 

considered as a damaging molecule that is not capable of signal transduction. OH· 

reacts virtually at the site of its production, as it has a very short half-life of 10
-9

 s. 

Contrastingly, H2O2 is not a radical and is sufficiently stable to diffuse in the 

cytoplasm (to a few microns) (Mishina et al., 2011), although the extent of diffusion 

of in the cell and across the biomembranes is still under debate. The small size of 

H2O2 allows it to diffuse, stability renders it able to convey the message and 

reactivity ensures the transience of the signal. On the other hand, it is possible that 

redox signalling utilises alternative mechanisms of H2O2 transport intra- and/or 

intercellularly. For example, it was shown that Aquaporin-3, a water channel, 

mediates the uptake of H2O2 from the extracellular space regulating signalling events 

inside the cells (Miller and Chang, 2010). It has also been reported that specific 
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aquaporins 3/8 (AQP3/8), transport NOX-derived H2O2 through PM from 

extracellular space in different cell types e.g. leukaemia. H2O2 shares numerous 

structural and chemical features with water, e.g. similar size, dipole moment and 

hydrogen bonding capabilities (Almasalmeh et al., 2014). 

The dichotomy of ROS functioning renders them contributors to physiological 

and pathological conditions. Thus, while a low concentration of localised ROS is 

critical to downstream signalling of many growth factors, cytokines and hormones 

(Bae et al., 1997, Finkel, 1998, Martindale and Holbrook, 2002, Rhee et al., 2000, 

Sundaresan et al., 1995, Thannickal and Fanburg, 2000), an excessive ROS may 

cause cellular damage and death. ROS have been uniformly demonstrated to be 

elevated in many cancers e.g. prostate, colon cancer, and leukaemia (Szatrowski and 

Nathan, 1991, Zhou et al., 2003). Cancers are often caused by the mutations in the 

growth factor signalling pathways that render them constitutively active. This 

increased growth, in turn stimulates cellular metabolism that causes an abundant 

generation of ROS (Petros et al., 2005, Wallace, 2005). Alternatively, the growth 

factor-oncogenes stimulate NADPH oxidases that also generate ROS (Gough and 

Cotter, 2011, Reddy et al., 2011, Wu and Terada, 2009). However, the excess of 

ROS in cancer cells, generally does not lead to cell death. Cancer cells not only 

quickly adapt to the increased ROS levels, for instance, by activating additional 

DNA repair pathways, but even utilise them in stimulating cell proliferation or 

creating genomic instability (Mahalingaiah and Singh, 2014, Rassool et al., 2007, 

Sallmyr et al., 2008b). Thus, depending on the concentration of ROS and adaptation 

of cells to these, ROS can activate either pro-survival or pro-death pathways and in 
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the state of disease, these could lead to proliferative or degenerative disorders 

(Woolley et al., 2013a) (Figure 3). 

 

Figure 3. Paradigm of ROS effects in a cell. Healthy cells have developed 

adaptations to overcome damaging effects of ROS. Here, as a result of a balance 

of controlled generation of ROS, sufficient concentration of antioxidants and 

cellular repair, low concentration of ROS (low [ROS]) causes a limited 

proliferation and survival. Metabolism of cancer cells generates high 

concentration of ROS (high ([ROS]), this potentiates the growth and survival 

signalling and causes genomic instability. This could lead to significant cellular 

damage. However, cancer cells are equipped with an adequate adaptation to 

ROS. By stimulating both, supplementary repair pathways and expression of 

antioxidants, cancer cells utilize the benefits of ROS, without extensive damage. 

When the concentration of ROS in the normal cell rises dramatically, for 

instance, due to treatment with ROS-inducing agent, oxidative stress that 

damages biomolecules and organelles occurs. If the damage is irreparable, the 

cell undergoes cell death.
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Endogenous ROS sources.  

Mitochondria 

There are many intracellular sources of ROS. In many cell types (Figure 4.) 

Mitochondria are thought to be one the largest contributors to the endogenous ROS 

pool. During the oxidative respiration, the electrons flow down the respiratory chain 

resulting in the reduction of molecular oxygen to water. Alternatively, some of the 

oxygen can also undergo a one-electron reduction to produce a superoxide anion. 

There are two main sites of last phenomenon occurring in the mitochondria, namely 

complex I and complex III of the electron transport chain. Similarly to other ROS, 

the mitochondria-originated ROS can have both damaging as well as signalling 

properties.  

NADPH oxidase 

NADPH oxidases (NOXs) are thought to be the first family of enzymes that 

generates ROS not as a by-product, but as their primary function (Bedard and 

Krause, 2007). Historically, NOXs have been identified as the sources of ROS in the 

phagocytes that contribute to the microbial killing (Babior, 1999, Henderson et al., 

1987, Henderson and Chappel, 1996, Cross and Segal, 2004). When the expression 
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of NOX enzymes was reported, it was hypothesised that NOX-generated ROS may 

contribute to the pathological effects of oxidative stress, possibly linking NOX to 
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Figure 4. Localised intracellular ROS production. ROS are mainly produced by 

mitochondria and NOXs within the cell, and these are located in discrete cellular 

compartments. In order to understand redox reactions, knowledge of the spatial 

characteristics of ROS homeostasis is essential. 
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cellular transformation. The NOX family consists of 7 members: NOX1-5 and 

DUOX1, 2 that possess preserved functional and structural similarities (Bedard and 

Krause, 2007). They are all transmembrane proteins with a NADPH-binding site, a 

FAD-binding site, 6 transmembrane domains and four haeme-binding histidines 

(Bedard and Krause, 2007). Furthermore, they are able to transfer electrons from 

NADPH across biological membranes to molecular oxygen.  

NOX2, also called gp91
phox

 is a prototype of the NOX family. It was first 

described in phagocytes, however further expression studies have revealed that 

NOX2 is one of the most widely distributed NOX isoforms found in humans (Bedard 

and Krause, 2007). NOX2 is a highly glycosylated protein that migrates at 70-90 

kDa. The active NOX2 is a complex of gp91
phox

 and other subunits (Groemping and 

Rittinger, 2005). NOX2 is constitutively associated with p22
phox

 membrane subunit 

that is essential for the complex stability (Dinauer et al., 1991). The activation of 

NOX2 requires the translocation of other cytosolic subunits (Groemping and 

Rittinger, 2005). Phosphorylated p47
phox 

interacts with p22
phox

 and organises the 

translocation of other activating subunits, i.e. p67
phox

 and GTPase Rac1/2 (Bedard 

and Krause, 2007, Groemping et al., 2003). The fully assembled NOX2 complex 

allows the generation of superoxide by the transfer of electrons from NADPH in the 

cytosol to oxygen on the luminal or extracellular space (Figure 5) (Sumimoto et al., 

1996).  
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NOX1 has a molecular mass of 55-60 kDa (Cui et al., 2006). While NOX1 is 

most highly expressed in colon epithelium, it is also present in a variety of different 

tissues (Bedard and Krause, 2007, Juhasz et al., 2009). Similarly to NOX2, NOX1 is 

unstable in the absence of p22
phox

 subunit, and it requires an organiser subunit 

NOXO1 (p47
phox

 homolog), and activating subunit NOXA1 (p67
phox

 homolog) and 

Figure 5. NOX2 complex structure and enzymatic activity. Gp91phox is stabilized 

at the membrane by p22phox subunit. Upon the activation, the phosphorylated 

p47phox binds to the complex and organizes the translocation of p67phox, p40phox

and Rac1/2 GTPase. The fully assembled complex uses cytosolic NADPH to 

produce superoxide on the luminal/extracellular side of the complex.
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the Rac GTPase for the complex activation (Ambasta et al., 2004, Bedard and 

Krause, 2007).  

NOX3 is primarily expressed in the inner ear, although low expression has 

also been detected in other tissues (Bánfi et al., 2004). NOX3 is activated in an 

analogous manner to NOX1 and NOX2 (Bánfi et al., 2004). However, the details of  

its activation are not as clear. NOX3 stimulation is dependent on p22
phox

 and 

cytosolic subunits (Bánfi et al., 2004, Ueno et al., 2005). While NOX3 activity has 

been reported to increase in the presence of NOXO1, the effects of NOXA1, Rac 

GTPase vary (Bedard and Krause, 2007). Moreover, p47
phox

 and p67
phox

 were also 

demonstrated to induce NOX3 activation (Ueno et al., 2005).  

 NOX4 was initially shown to be highly expressed in kidney, but similarly to 

other NOX isoforms, it is expressed in a variety of tissues (Cheng et al., 2001, 

Bedard and Krause, 2007). It is evolutionary more distant to NOX2, 1 and 3 

(Sumimoto, 2008). Subcellular localisation studies revealed that NOX4 resides 

mainly in the ER and the nucleus (Bedard and Krause, 2007, Chen et al., 2008, 

Anilkumar et al., 2013, Hilenski et al., 2004). NOX4 mRNA is induced in response 

to different stimuli e.g. ER stress and hypoxia (Bedard and Krause, 2007). While 

NOX4 requires p22
phox

 for the complex stabilisation and ROS generation, the 

cytosolic regulatory subunits seem not required (Ambasta et al., 2004). The reports 

regarding the requirement of NOX4 for Rac1/2 are not entirely conclusive (Geiszt et 

al., 2000, Carmona-Cuenca et al., 2008, Kao et al., 2008, Martyn et al., 2006, Gorin 

et al., 2003, Inoguchi et al., 2003). However, in the heterologously NOX4-
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expressing cell lines, Rac does not appear to be required for NOX4 activity (Kao et 

al., 2008, Bedard and Krause, 2007). What particularly distinguishes NOX4 from the 

previously described NOX isoforms is the fact that the ROS detected as a product of 

NOX4 activity is H2O2 and not O2·
-
 (Takac et al., 2011, Nisimoto et al., 2014). 

Initially, it was thought that O2·
-
 is such a reactive species that it immediately 

dismutates into H2O2. However, a recent study has proposed that NOX4 has an 

intrinsic ability to produce H2O2 and that the 3
rd

 extracytosolic loop (E-loop) of 

NOX4 that possesses Cys-226, Cys-270 and His-222 are all essential for this 

property (Takac et al., 2011). Importantly, NOX4/ E-loop mutants have generated 

O2·
-
 as the primary product that failed to increase the phosphorylation of ERK1/2, 

an important effect of NOX4-generated H2O2 (Takac et al., 2011). NOX4 is also the 

only constitutively active enzyme in the NOX family when exogenously expressed 

(Martyn et al., 2006). This characteristic lies in the B-loop and the penultimate C 

terminus of the protein (von Löhneysen et al., 2012).  

In contrast to NOX1-4, NOX5 possesses Ca
2+ 

-binding EF hand domain 

(Banfi et al., 2004). NOX5 migrates at 85kDa on the SDS-PAGE and it is suggested 

that the protein is not glycosylated (Brar et al., 2003, Bedard and Krause, 2007). 

NOX5 is widely expressed in a variety of tissues. NOX5 does not require p22
phox

 or 

the cytosolic subunits (Kawahara et al., 2005). However, an increase in the cytosolic 

Ca
2+

 is crucial for the protein-protein interaction inside the complex that is 

responsible for NOX5 activation (Banfi et al., 2004, Bedard et al., 2012). DUOX1 

and DUOX2 were originally discovered at the plasma membrane in thyroid epithelial 
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cells (Ohye and Sugawara, 2010). They produce H2O2 in a Ca
2+

 dependant manner 

(Ohye and Sugawara, 2010). DUOXs possess Ca
2+

 EF hand domains and a 

peroxidase like domain of not clear function (Bedard and Krause, 2007). 

The pathological mechanisms of variety of diseases have “utilised” the 

damaging products of NOX, ROS. While the spatially and temporarily controlled 

generation of ROS has been shown to play positive biological roles, the 

unconstrained production of these reactive molecules may lead to detrimental 

cellular pathologies. That is why, NOXs have been implicated in numerous diseases, 

e.g. diabetes, atherosclerosis, neurodegenerative disorders, cancers (Figure 6) 

(Lambeth and Neish, 2014, Lambeth, 2007, Altenhofer et al., 2012). The over-

production of ROS from NOX in a disease-state may originate in the over-expression 

of NOX or their regulatory subunits or availability of their substrate, NADPH (Block 

and Gorin, 2012, Reddy et al., 2011).  

NOX enzymes have been implicated in many cancers (Figure 6) of different 

origins (Block and Gorin, 2012, Weyemi et al., 2013). It seems that the elevated 

redox stimulation gives cancer cells some evolutionary advantage. As mentioned 

before, tumours adapt quickly to the oxidative origin (Irwin et al., 2013, Landriscina 

et al., 2009). Thus, increased levels of ROS could only benefit these cells by 

stimulation of cell survival as well as genomic instability, the two desired 

characteristics for cancer progression (Clerkin et al., 2008, Waris and Ahsan, 2006, 

Acharya et al., 2010, Landriscina et al., 2009, Trachootham et al., 2008). NOX-

derived ROS, often act as secondary signalling molecules in growth factor signalling 
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downstream of many growth factors e.g. epidermal growth factor (EGF) and platelet-

derived growth factor (PDGF) (Chen et al., 2008, Mahadev et al., 2004, Sundaresan 

et al., 1995). Universally, NOX propagate the signal by hyperphosphorylation of 

kinases by oxidative inhibition of protein tyrosine phosphatases (PTPs) e.g. PTP1B, 

phosphatase and tensin homolog (PTEN) and SRC homology region 2 domain-

containing phosphatase-1 (SHP-1) (Lou et al., 2008, Groen et al., 2005, Wright et al., 

2009). PTPs possess redox sensitive cysteines, resulting in the deactivation of the 

catalytic function of the enzyme (Groen et al., 2005, Wang et al., 2012). This results 

in the loss of negative regulation of the kinases leading to increase in the 

uncontrollable proliferation and survival of cancer cells (Brandts et al., 2005a, Reddy 
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Figure 6. NOX isoforms in human diseases.
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et al., 2011, Dickinson et al., 2011a, Mondol et al., 2014, Brar et al., 2003, Chen et 

al., 2008). Moreover, NOX signalling often leads to inactivation of tumour 

suppressors (Block and Gorin, 2012). For instance, NOX1 have been demonstrated 

to activate sirtuin 1, that inactivates p53, promoting an anti-apoptotic response (Puca 

et al., 2010). Interestingly, NOX2 and NOX4 have been involved in the glucose 

uptake, necessary for the increased metabolism of cancer cells (Prata et al., 2008). 

NOX1 and NOX4-originated ROS act also as stimulators to VEGF production that 

stimulates angiogenesis, necessary for the delivery of the nutrients and oxygen to the 

solid tumours (Block and Gorin, 2012). At the later stages of tumourigenesis, NOX 

play a role in the invasion and metastasis of cancer cells (Kim et al., 2010, Reddy et 

al., 2011, Block and Gorin, 2012). This is mainly achieved by the redox regulation of 

SRC and NF-κB at the invasive microdomains called invadopodia (Diaz and 

Courtneidge, 2012, Gianni et al., 2010a, Gianni et al., 2010b, Binker et al., 2009). At 

these sites, ROS control cell adhesion, migration and invasive matrix degradation. 

To conclude, the dual nature of ROS - their ability to simultaneously promote 

growth and damage the biomolecules, has been extensively employed by the cancer 

machinery (Clerkin et al., 2008, Trachootham et al., 2008, Wu, 2006). In 2000, a 

review article was published titled “Hallmarks of cancer” (Hanahan and Weinberg, 

2000). The authors summarised the critical features of cancer cells such as 

autonomous growth and evasion of apoptosis (Hanahan and Weinberg, 2000). The 

structural and functional diversity of NOX signalling substrates make them potent 

regulators in the majority of these cancer hallmarks and thus, excellent tools in the 

process of tumourigenesis (Figure 7) (Block and Gorin, 2012). 
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Fluorescent probes for ROS measurement 

ROS signalling is controlled in a spatiotemporal manner and as such there is a 

need to study the dynamics at precise subcellular locations. There are many dyes 

commercially available that are used for ROS-detection, but most of them do not 

meet the ideal criteria that would allow for the localisation of the redox events (see 

Figure 8). Much recent work has been aimed and remedying this problem.   

Most of the commercially available dyes for ROS are based on the oxidation-

reduction processes between the ROS and reduced probe, which fluoresces upon 

oxidation. The most commonly utilised probe to detect ROS is 2’,7’- 

dichlorodihydrofluorescein (DCF). The widespread usage of DCF has revealed a list 

of its shortcomings: 1) it is not selective for H2O2, 2) it is easily photo-oxidised and 

photo-bleached, 3) it does not react directly with H2O2, but it requires peroxidase or 

metal catalysts, 4) displays a non-linear relationship between concentration of ROS 

and fluorescent signal, and 5) it is easily membrane diffusible (Chen et al., 2010).  

 Many contradicting studies on the specificity of another commonly used 

ROS-probe, dihydroethidium (DHE). There have been some reports published that 

suggested a specificity towards superoxide anion (Bindokas et al., 1996, Carter Wo 

Fau - Narayanan et al., 1994), while other studies showed reactions between DHE 
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and haeme proteins or ROS/ reactive nitrogen species (RNS) (Bilski et al., 2009, 

Palazzolo-Ballance et al., 2007). In 2010, Zielonka and Kalyanaraman extensively 

reviewed DHE as a ROS-detecting probe (Zielonka and Kalyanaraman, 2010). DHE 

fluorescent signals can be and DHE can be oxidised by various radicals to form 
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NOX1 regulates expression of EGFR and its ligand in liver 

cells (Sancho 2010).

NOX4 regulates migration of epithelial cells (Tobar et al, 

2010). 

NOXs suggested to play a role in the chronic inflammation 

associated with cancer (Wu et al 2014).

NOX1 and NOX4 cause upregulation of VEGF in 

melanoma cells (Govindarajan et al, 2007).

NOX2 and NOX4 stimulate glucose uptake, through 

upregulation of GLUT1 receptor (Maraldi et al, 2010).

NOX1 activates sirtuin-1 that inactivates p53 leading to 

inhibition of apoptosis (Puca et al, 2010).

NOX4 causes DNA damage in HRASV12-overexpressing 

cells (Weyemi et al, 2012). 

Cancer hallmark:
NOX effect:

Figure 7. NOX isoforms and hallmarks of cancer.
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differentially oxidised products. However, only product reaction with superoxide 

giving the superoxide-specific product 2-OH-E(+) alters the signal so the probe can 

be excited by 396 nm wavelength. Thus, in order to reveal the superoxide-induced 

signal, a 396 nm wavelength should be used as an excitation source (Robinson et al., 

2006, Robinson et al., 2008). 

 DHE has been conjugated to the triphenylphosphonium (TPP
+
) moiety, 

resulting in the MitoSOX dye, in order to target the probe specifically to 

mitochondria. Cationic TPP+ allows the probe to move through the mitochondrial 

membrane and accumulate in the mitochondrial matrix. While MitoSOX possesses 

the inherent disadvantages associated with DHE, it is a promising tool to investigate 

mitochondrial superoxide/ROS production (Robinson et al., 2008). 

Boronate-deprotection probes 

The propensity of H2O2 to interact with boronate groups was employed in the 

synthesis a family of fluorescent probes allowing the precise investigation of this 

intracellular signalling ROS (see Figure 4) (Lippert et al., 2011). These 

monoboronate-based family of probes (Peroxyfluor-3, Peroxy Orange 1 and Peroxy  



Chapter 1: General Introduction. 

 

 

32 

 

   

Ideal fluorescent ROS-detecting probe

1. Chemoselectivity ROS-type chemoselectivity and no cross-reactivity 

with other ROS to avoid disambiguity of the type of 

ROS involved in the reaction; Based on the innate 

chemical nature of the ROS type;

2. Membrane 

pearmibility

Good membrane permeability but little diffusion of 

the product to allow for localization of the reaction;

3. Sensitivity Good sensitivity (nano-micro range of ROS 

concentration) to detect signalling concentration of 

the ROS;

4. Defined spectral 

peaks

Narrow peaks of excitation and emission spectra to 

allow simultaneous detection of more than one probe;

5. Photostability Little photo-oxidation and photo-bleaching to 

facilitate imaging on the microscope;

6. Post-fixation

retention

Retention after fixation to allow for simultaneous  

detection of the dye and the antibody for 

colocalization studies;

7. Linear response Linear relationship between the fluorescent signal to 

the ROS concentration to allow for quantitative 

studies of the ROS generation;

8. Signal-to-noise 

ratio

Low fluorescence of the ROS-unbound form to avoid 

false signal from the accumulation of the probe in the 

cell;

9. Bioorthogonality Bioorthogonality and non-toxicity of the probe not to 

interfere with other biological processes;

10. In vivo capability Possibility of the probe usage in the in vivo studies to 

permit of the redox reaction studies in the animal 

models;

11. Two-photon 

microscopy

Compatibility with two-photon microscopy to allow 

for deep tissue penetration imaging and prolonged 

observation without specimen damage;

Figure 8. Criteria of ideal fluorescent ROS-detecting probe.
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Yellow 1) can detect physiological/signalling changes in H2O2 concentration upon 

phorbol 12-myristate 13-acetate (PMA), epidermal growth factor (EGF) stimulation 

(Dickinson et al., 2010a) The colour palette of these probes can be utilised to  

colocalise the H2O2 generation in the cell with an organelle-tracker or concurrent 

detection of H2O2 and other ROS probes e.g. 2- [6-(4'-amino)phenoxy-3H-xanthen-

3-on-9-yl]benzoic acid (APF) (Dickinson et al., 2010a, Woolley et al., 2012). 

Combination of boronate-phenol chemistries to organelle-targetable functioning 

groups, have proven particularly useful in the development of Mitochondrial Peroxy 

Yellow 1 probe (MitoPY1) that specifically detects H2O2 inside the mitochondria 

(Dickinson and Chang, 2010, Dickinson et al., 2013). Similar to MitoPY1, Nuclear 

Peroxy Emerald 1 (NucPE1) utilises boronate chemistry to measure H2O2 in the 

nucleus. This dye offers an opportunity to investigate H2O2 in the nucleus that 

potentially, could be a marker of genotoxic stress in cells.    

Genomic Instability 

Normal cells display very little of DNA damage that is usually immediately 

repaired by the extensive highly faithful cellular DNA repair system. However, DNA 

damage that escapes DNA repair or errors in the process of DNA repair results in 

genetic alterations that may lead to carcinogenesis (Burrell et al., 2013). Moreover, it 

has also been proposed that tumours require a certain level of genomic instability as 

the probability of cancer cells to transform into tumour cells is too low unless the 

cells are genomically unstable (Sieber et al., 2003).  



Chapter 1: General Introduction. 

 

 

34 

 

One of the main origins of genomic instability is increased ROS production that 

causes excessive DNA damage (Sallmyr et al., 2008b, Sallmyr et al., 2008a). Both 

mitochondria and NOXs have been demonstrated to produce DNA damaging- ROS 

(Nieborowska-Skorska et al., 2012, Weyemi and Dupuy, 2012). Mitochondria of 

BCR-ABL expressing stem cells in chronic myeloid leukaemia produce increased 

amounts of H2O2 that leads to DNA damage (Nieborowska-Skorska et al., 2012). 

Sallmyr et al. showed that FLT3-ITD-generated ROS are mediated by Rac1 

GTPase, which is an essential component of NOX complex (Sallmyr et al., 2008a). 

Moreover, emerging work has suggested that NOX4-derived ROS may play a 

substantial role in genomic instability (Weyemi and Dupuy, 2012). Over-expression 

of Harvey rat sarcoma viral oncogene (HRAS
V12

) induced NOX4-generated ROS 

and DNA damage that leads to cellular senescence (Weyemi and Dupuy, 2012). 

Furthermore, NOX4 has been localised to mitochondria where it could damage 

mitochondrial DNA resulting in mitochondrial dysfunction accompanied by 

increased production of ROS (Frazziano et al., 2014). Interestingly, NOX4 has also 

been localised to nuclear membrane and nucleus itself and although the 

physiological role of this phenomenon is unclear, it is possible that ROS generation 

in the nucleus could transduce redox signalling on nuclear protein targets e.g. 

transcription factors (Matsushima et al., 2013). Alternatively, a low level of genomic 

instability as a consequence of the presence of the ROS in the nucleus could provide 

some evolutionary advantage.  

In addition to endogenous DNA damaging agents, cancer cells modify the DNA 

repair system e.g. by promoting the unfaithful mechanisms and silencing the error-
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free mechanisms (Popp and Bohlander, 2010, Sallmyr et al., 2008b). FLT3-ITD and 

BCR-ABL oncogenes have been demonstrated to induce the alternative non-

homologous end joining (NHEJ) pathways and to reduce the classical NHEJ (Fan et 

al., 2010). Alternative NHEJ is characterised by increased levels of translocations, 

increased size of DNA deletions that leads to accumulation of damaged DNA (Fan et 

al., 2010, Popp and Bohlander, 2010).  

Overexpression of mutant NRAS and BCL2, often occurring in leukaemias, has 

been demonstrated to lead to disease progression through increased levels of NOX-

generated ROS, DNA damage and error-prone repair pathways (Rassool et al., 

2007). Authors suggest that as a mechanism of genomic instability acquisition that 

underlies leukemic progression. Another study has also investigated this hypothesis 

showing that NOX4 localises to the nucleus where it causes ROS production and 

DNA damage (Gordillo et al., 2010, Anilkumar et al., 2013, Spencer et al., 2011, 

Weyemi and Dupuy, 2012). NOX4 siRNA silencing resulted in the inhibition of 

ROS generation specifically in the nucleus as well as a decrease in the level of DNA 

double strand breaks (dsbs) (Guida et al., 2014). 

Objectives 

ROS-induced mediation of survival, proliferation, invasion and metastasis 

processes has already been well documented (Wu, 2006, Pelicano et al., 2004, 

D'Autreaux and Toledano, 2007, Trachootham et al., 2008, Waris and Ahsan, 2006, 

Clerkin et al., 2008). Therefore, identification of specific ROS sources, delineation 
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of mechanisms of their activation as well as their redox effects on tumourigenic 

processes are of great interest to cancer biologists. AML patients cells possess higher 

levels of ROS than their healthy counterparts (Hole et al., 2013). Interestingly, the 

presence of FLT3-ITD, an AML oncogene, has been previously associated with 

increased ROS levels. However the exact source and mechanism of stimulation of 

ROS-generation is still unclear. In light of this, the objective of this study was to 

identify the molecular source of ROS in FLT3-ITD-harbouring AML cells. 

Furthermore, due to the aforementioned dependency of the redox effects on ROS 

localisation, it was also of interest to localize ROS and their sources in these cells. 

Finally, considering the damaging nature of ROS, the final aim of this study was to 

investigate possible effects of the FLT3-ITD-stimulated ROS on genomic instability 

in AML cells. 
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Reagents and Chemicals 

The ROS probe DCF (2',7'-dichlorodihydrofluorescein diacetate; H2DCFDA; 

#D-399) and MitoSOX (Red Mitochondrial Superoxide Indicator; #M36008), ER-

Tracker™ Red dye (BODIPY® TR Glibenclamide; #E34250), ER-Tracker™ Green 

(BODIPY® FL Glibenclamide, # E34251) were all purchased from Molecular 

Probes (Life Technologies, Dublin, Ireland).  Hoechst (bisBenzimide Hoechst 33342 

trihydrochloride; #B2261) was purchased from Sigma-Aldrich (Dublin, Ireland). 

The mitochondrial Peroxy Yellow 1 (MitoPY1), Peroxy Orange 1 (PO1) and 

Nuclear Peroxy Emerald 1 (NucPE1) were a kind gift from Dr. Christopher Chang, 

University of Berkley in CA, USA. Detailed protocols of their syntheses are 

available (Dickinson et al., 2011b, Dickinson et al., 2010a, Dickinson and Chang, 

2010). 

FLT3-ITD was inhibited using PKC412 (Midostaurin; [9S-(9α,10β,11β,13α)]-N-

(2,3,10,11,12,13-Hexahydro-10-methoxy-9-methyl-1-oxo-9,13-epoxy-1H,9H-

diindolo[1,2,3-gh:3',2',1'-lm]pyrrolo[3,4-j][1,7]benzodiazonin-11-yl)-N-

methylbenzamide; Tocris Biosciences in Bristol, UK), AC-220 (Quizartinib; Urea, 

N-[5-(1,1-dimethylethyl)-3-isoxazolyl]-N'-[4-[7-[2-(4-

morpholinyl)ethoxy]imidazo[2,1-b]benzothiazol-2-yl]phenyl]-; # S1526-SELL from 

Selleck Chem from Stratech in Suffolk, UK) or CEP-701 (Lestaurtinib; 

(9S,10S,12R)-2,3,9,10,11,12-Hexahydro-10-hydroxy-10-(hydroxymethyl)-9-methyl-

9,12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i][1,6]benzodiazocin-; #3395 

from Tocris Biosciences in Bristol, UK ) at the indicated times and concentrations.  
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NOX inhibition was achieved using diphenyleneiodonium (DPI; Sigma-Aldrich 

in Dublin, Ireland) or VAS-2870 (3-benzyl-7-(2-benzoxazolyl)thio-1,2,3-

triazolo[4,5-d]pyrimidine) from Enzo Life Sciences (Lausen, Switzerland), at the 

indicated times and concentrations.  

Once purchased, inhibitors were resuspended in dimethylsulfoxide (DMSO), 

aliquoted and stored at -20°C, as recommended by the producer.  

Stimulation of wild type FLT3 (FLT3-WT) was achieved using a recombinant 

human FLT3 ligand FLT3 ligand (FL; 100 ng/ml) purchased  from Peprotech in 

United States (#300-19). Bovine serum albumin (BSA; Sigma-Aldrich, Dublin, 

Ireland) was used as a vehicle. 

In all cases, if not shown, inhibitor concentrations were chosen based on their 

greatest effect with a negligible decrease in cellular viability. Unless otherwise stated 

all other chemicals and reagents were purchased from Sigma-Aldrich in Dublin, 

Ireland. 

Cell culture and treatments 

Human patient-derived leukemic cell lines MV4-11 (homozygous for the FLT3-

ITD mutation), MOLM-13 (heterozygous for the FLT3-ITD mutation) and HL-60 

(homozygous for the FLT3-WT), were all purchased from DSMZ (Braunschweig, 

Germany). 32D, a murine immortalised myeloblast-like cell line cell line, stably 

transfected with FLT3-WT and FLT3-ITD, respectively, were a kind gift from Prof. 

Hubert Serve from Goethe University Frankfurt and Prof. Frank D. Bohmer from the 
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Universitatsklinkium Jena in Germany. The cell lines were maintained in Roswell 

Park Memorial Institute (RPMI) 1640 (Sigma-Aldrich in Dublin, Ireland) medium, 

supplemented with 10% Foetal Bovine Serum (FBS; Sigma-Aldrich in Dublin, 

Ireland), 1% penicillin/streptomycin (Sigma-Aldrich in Dublin, Ireland) and 2 mM 

L-glutamine (Gibco, Invitrogen Corporation, Paisley, UK) in a humidified incubator 

at 37°C with 5% CO2. For 32D cell lines, 10% WEHI-conditioned medium was 

added as a source of interleukin-3 (IL-3). The WEHI conditioned medium was 

harvested from a 48 h culture of WEHI, a macrophage-like, derived from a BALB/c 

mouse treated for tumor induction cell line, which produce and secrete IL-3. Before 

carrying out experiments that involved a comparison of 32D/FLT3-WT and 

32D/FLT3-ITD, the cells were washed twice with PBS and IL-3- starved overnight 

in 5% FBS medium, as recommended previously (Choudhary et al., 2009, Sallmyr et 

al., 2008a)  

Except for 32D cells, all cell lines were maintained between 0.1-1.5x10
6 

cells/ml 

and were subcultured every 2-3 days. 32D cells were maintained between 0.2-

1.0x10
6
 cells/ml and subcultured every 2 days. Cell counts were obtained using a 

haemocytometer under a light microscope. Cell viability was determined by trypan 

blue exclusion (Sigma-Aldrich in Dublin, Ireland).  

Antibodies 

Primary antibodies used for immunoblotting: anti-p22
phox

 (Rabbit #sc-20781; 

Santa Cruz Biotechnology, CA, USA), anti-p67
phox

 (Rabbit #sc-15342 ; Santa Cruz 
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Biotechnology, CA, USA), anti-NOX4 used in MV4-11 cell lysates: (Rabbit 

#NB110-58851; Novus Biologicals in CO, USA), anti-NOX4 used in 32D cell 

lysates (Goat #sc-21860; Santa Cruz Biotechnology, CA, USA), anti-NOX1 (Rabbit 

#ab55831, Abcam in Cambridge, UK), anti-GAPDH (Mouse #RGM2-500, 

Advanced Immunochemicals in Long Beach, CA, USA) anti--Actin (Mouse 

#A5441; Sigma-Aldrich in Dublin, Ireland) and anti-NOX5 (Rabbit #HPA019362; 

Sigma-Aldrich in Dublin, Ireland) anti-NOX2 (Rabbit #07-024; from 

Millipore/Upstate Biotechnology in MA, USA), anti-P-STAT5 ( Rabbit Tyr694/699; 

#04-886; from Millipore/Upstate Biotechnology in MA, USA), anti-tubulin (Mouse 

#T5168 from Sigma-Aldrich in Dublin, Ireland), anti-FLT3 (Rabbit; 8F2 #3462S) 

and anti-P-FLT3 (Rabbit Tyr591, 33G6 Rabbit mAb #3474) were purchased from 

Cell Signaling Technology (Boston, MA, USA). Secondary antibodies for Western 

blotting were Li-Cor IRDye secondary antibodies: IRDye® 680RD Donkey anti-

Rabbit IgG (H + L) (#926-68071), IRDye® 680RD Goat anti-Mouse IgG (H + L) 

(#926-68070) and  IRDye® 800CW Donkey anti-Rabbit IgG (H + L) (#926-32213) 

were purchased from Li-Cor Biosciences, Nebraska, USA) used for detection with 

the Odyssey System. 

Primary antibodies used for immunofluorescence: anti-8-OHdG (Mouse 

#ab26842; Abcam  in Cambridge, UK), anti-γH2AX (Phospho-Histone H2A.X 

(Ser139) (20E3) Rabbit mAb (Alexa Fluor® 488 Conjugate; Rabbit #9719, from 

Cell Signaling Technology (Boston, MA, USA)), anti-NOX4 (Rabbit #NB110-

58851; Novus Biologicals from Littleton in US), NUP98 (Mouse #SC-74578; Santa 

Cruz Biotechnology, CA, USA), anti-p22
phox

 (Rabbit #SC20781; Santa Cruz 
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Biotechnology, CA, USA), anti-KDEL (Mouse 10C3 # ab12223; from Abcam in 

Cambridge, UK). 

Measurement of intracellular H2O2 

Total intracellular H2O2 was measured by incubating cells with 10 μM of cell-

permeable H2O2–probe PO1 added to the medium for 1 h at 37°C in the dark. Cells 

were then briefly washed with phosphate buffered saline (PBS) and immediately 

read by flow cytometry using FACSCalibur (BD Biosciences, Europe) and Cellquest 

Pro software (Beckton Dickinson). The probe was excited using FL2-H (red) flow 

cytometry laser. The fluorescent intensity of cells of 10,000 events was recorder. The 

viability/healthiness of the cells, based on their size and granularity, was estimated 

using FSC-H and SSC-H lasers. The geometric mean of 3 technical replicates of 

fluorescence of viable cells was calculated. The fluorescence of control cells was 

expressed as 100% and the fluorescence of treated cells was expressed as a 

percentage of the control. The measurement of nuclear H2O2 was achieved using 

NucPE1. The cells were incubated for 45 min at 10 μM of NucPE1 added to the 

medium in the dark at 37°C. The incubation was followed by PBS washing and 

analysis by flow cytometry as explained above. The probe was excited using a FL1-

H (green) flow cytometry laser. Mitochondrial ROS were measured using MitoSOX 

probe. The cells were incubated with 5 μM of freshly prepared MitoSOX for 15 min 

in the dark at 37°C. The incubation was followed by PBS washing and analysis by 

flow cytometry as explained above. The probe was excited using a FL2-H (red) flow 

cytometry laser. 
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Confocal live microscopy  

Confocal fluorescence live imaging studies were performed with a Zeiss 

LSM510 META confocal microscope fitted with a 6361.4 plan apochromat lens. 

Excitation of PO1 at 543 nm was carried out with Ar laser and emission was 

collected between 560–615 nm. Excitation of MitoPY1 at 514 nm was carried out 

using Ar laser and collected between 505–550 nm. Excitation of ER tracker green at 

488 nm was carried out using Ar laser and emission was collected between 505–530 

nm. The live imaging of NucPE1 probe was carried out using excitation at 488 nm 

with Ar laser and emission was collected using a META detector at about 520 nm. 

The Hoechst dye was incubated together with NucPE1 where indicated. The multi-

tracking mode of scanning was applied for acquisition of the images. Image analysis 

was performed in MetaMorph Offline and Carl Zeiss Zen 2009 Light Edition. 

Aprroximately 4–5 h (for PKC412 and VAS-2870 treatments) or 24 h (after siRNA 

transfection) before imaging MV4-11 cells were plated on poly-D-lysine (#P4707; 

Sigma-Aldrich in Dublin, Ireland) coated glass bottomed dishes (#P35G-1.5-14-C; 

MatTek Corporation, Ashland, US). An hour before imaging, cells were stained with 

green or red ER tracker dye (1 µM), as recommended by protocol provided by the 

producer. PO1 (5 µM), MitoPY1 (5 µM) or NucPE1 (10 µM) probes were added, as 

recommended by Dickinson et al. (Dickinson et al., 2011b, Dickinson et al., 2010a, 

Dickinson and Chang, 2010). Where indicated, cells were treated with DPI (5 µM or 

1 µM) PKC412 (50 nM or 200 nM) or VAS-2870 (10 µM) for 1 h before imaging. 

After treatment, cells were washed twice with PBS buffer and incubated in fresh 

medium during imaging.  
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Immunofluorescence 

MV4-11 cells were cultured for 16 h on Poly-D-lysine covered coverslips. 

Coverslips were then washed in PBS twice (all washes were 5min each) and fixed 

for 1 h in 3% PFA/ PBS, followed by a 5 min PBS wash. Cells were treated with 

50mM NH4Cl for 10 min which was followed by three PBS washes. The cells were 

subsequently permeabilised using 0.05% saponin/ 0.2% BSA/PBS for 5 min and 

washed with PBS. The antigens were blocked for 15 min with 5% FBS/PBS. The 

coverslips were incubated with 50 µl of KDEL, p22
phox

, NOX4 or NUP98 primary 

antibody solutions (1/100 in 5% FBS/PBS) and incubated at room temperature for 1 

h in humidification chambers. The primary antibody incubation was again followed 

by two 5 min-washings with PBS. 50 µl of Alexa fluor 594 or Alexa fluor 488 

secondary antibody solutions (1/100 in 5% FBS/PBS) were added onto coverslips 

and incubated for 1 h at room temperature. The Hoechst stain (1:1000) was also 

added to the appropriate secondary antibody in FBS/PBS solution. The coverslips 

were subsequently washed thoroughly with PBS, followed by water and finally 

mounted on the slides using 5 µl of mowiol (Sigma-Aldrich, Dublin, Ireland). The 

slides were dried overnight at room temperature. Images were acquired using 

multiphoton laser scanning microscope Flouview1000 MPE (Mason Technology 

Dublin, Ireland) with 100x oil immersion objective.  
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γH2AX  immunofluorescence 

Approximately 200,000 cells were washed for 5 min in PBS and cytopsun for 5 

min at 500 g onto the slides. The slides were allowed to dry for 1 h. Following 

drying, cells were fixed for 1 h in 3% PFA/ PBS. The fixing step was followed by a 

5 min PBS wash. The slides with cells cytospun onto them were incubated in 70% 

ethanol overnight at -20°C. On the next day, the cells were washed twice with PBS 

for 5 min each time. The antigens were blocked for 15 min using 5% FBS/PBS and 

incubated with 50 µl of γH2AX primary antibody (1/100 in 5% FBS/PBS) and 

Hoechst solutions (1:1000 in 5% FBS/PBS) at room temperature for 1 h in the 

humidification chambers. The primary antibody incubation was followed by washing 

with PBS. Cells were visualised on a Leica DM LB2 fluorescence microscope 

(Leica, Nussloch, Germany) using a TRITC filter. Images of the cells were acquired 

by Nikon Digital Sight DS-Fi1C camera (Nikon, Japan) using NIS-Elements 

software (version 3.0, Nikon, Japan).  

8-OHdG assay 

Oxidative damage was assessed using 8-hydroxy-2`-deoxyguanosine (8-OHdG) 

as a marker, as described in Moiseeva et al. (Moiseeva et al., 2009). Approximately 

2×10
6
cells were washed with PBS and fixed for 1 h in 3% PFS/PBS. After washing 

off the fixative, the cells were treated with 2 M HCl for 20 min at room temperature. 

HCl was removed and the cells were treated with 0.1 M sodium borate, pH 8.5 for 2 

min. Cells were then washed and permeabilised with 0.2% BSA, 0.05% 
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saponin/PBS. The permeabilisation buffer was washed off three times with 3% 

BSA/PBS and incubated with primary anti-8-OHdG antibody overnight at 4°C in a 

humidification chamber. On the next day, the cells were washed three times with 3% 

BSA/PBS solution, and incubated with the secondary antibody conjugated to Alexa 

fluor 594 for 1 h at room temperature. After removing the secondary antibody, the 

cells were washed three times in PBS and analysed using flow cytometry. 10,000 

events were acquired for each of the technical replicates. The geometric mean was 

calculated based on gated healthy population of cells. 

γH2AX quantification using flow cytometry 

The levels of DNA double strand breaks (dsbs) were measured using γH2AX as 

a marker (Valdiglesias et al., 2013). Approximately 2×10
6
cells were washed with 

PBS and fixed for 1 h in 3% PFA/PBS. The cells were then incubated in 70% 

ethanol at -20°C overnight. The next day, the cells were washed and blocked for 15 

min with 1% BSA/PBS. Following washing, the cells were incubated in γH2AX 

antibody conjugated to Alexa Fluor 488 (Cell Signaling Technology, #9719) in 1% 

BSA/PBS solution at 4°C overnight. The cells were then washed and analysed by 

flow cytometry. 10,000 events were acquired for each of the technical replicates. The 

geometric mean was calculated based on gated healthy population of cells. 
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Western Blotting 

Following the treatments of indicated durations or siRNA transfections, cells 

were washed with ice-cold PBS and centrifuged at 300g for 5 min at 4°C. Following 

careful removal of PBS, cells were incubated in Radio Immunoprecipitation Assay 

(RIPA) lysing buffer [Tris–HCl (50 mM; pH 7.4), 1% NP-40, 0.25% sodium 

deoxycholate, NaCl (150 mM), EGTA (1mM), sodium orthovanadate (1 mM), 

sodium fluoride (1 mM), cocktail protease inhibitors (Roche, Welwyn, Hertforshire, 

UK) and 4-(2-Aminoethyl) benzenesulfonyl fluoride hydrochloride (200 mM)] for 1 

h on ice. Every 15 min cells in RIPA solution were vortexed to ensure the thorough 

cell lysis. This was followed by centrifugation at 14 000 g for 15 min to remove cell 

debris. The protein concentration in the supernatant was determined by the Bio-Rad 

Protein Assay (Bio-Rad, Hemel Hempstead, UK) using bovine serum albumin 

(BSA) as a protein standard. Based on the Bio-Rad Protein Assay, equivalent 

amounts of proteins (30-70 μg per lane) were diluted in 2X loading buffer (10% 

sodium dodecyl sulfate (SDS), 100mM dithiothreitol (DTT), glycerol, bromophenol 

blue, Tris-HCl) and loaded into the 10-15% SDS–polyacrylamide gel. The proteins 

were stacked at 90 V for 20 min and resolved at 120 V using SDS–polyacrylamide 

gel electrophoresis (SDS-PAGE). The proteins were then transferred from the SDS-

polyacrylamide gel to the nitrocellulose membrane for 1 h (Schleicher and Schuell, 

Dassel, Germany). Following the transfer, membranes were washed with Tris-

buffered saline/0.1% Tween-20 (TBST) for 5 min. Protein antigens on the 

membranes were blocked for 1 h with 5% (w/v) non-fat dry milk or 5% (w/v) BSA 

solutions, based on the producer’s recommendations. The membranes were then 
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incubated overnight with the appropriate primary antibodies diluted in the blocking 

solution. The primary antibodies against the loading control proteins: GAPDH, 

tubulin and β-actin were incubated for 1 h. On the next day, the membranes were 

washed with two times with TBST and once with TBS for 5 min each time. The 

membrane was incubated in the secondary antibody coupled with Alexa Fluor 680 or 

800 diluted in the blocking solution for 1 h, followed by the same TBST/TBS 

washing. The signal was detected with the Odyssey infrared imaging system (LI-

COR Biosciences).  

Small Interfering RNA (siRNA) transfection 

The siRNA transfection of MV4-11 cells was performed using the Nucleofector 

Kit L (Amaxa, Cologne, Germany) and AmaxaNucleofector Technology according 

to the protocol provided by the company. The predesigned siRNAs used for 

silencing were: p22
phox

 (ID: S3786 (A), S194371 (B), S194372 (C)), NOX4 (ID: 

S27015 (A), S27014 (B), S27013 (C)). For the negative control, the siRNA used was 

Silencer Select Negative Control #1 siRNA (Control). All were purchased from 

Ambion, Warrington, UK. Cells were seeded at 0.5×10
6
/ml 16 h before the 

transfection. Before the procedure siRNA solutions were prepared in 50 µl of the 

nucleofection buffer provided. Approximately 2×10
6 

cells were cytospun at 300g for 

5 min at room temperature and resuspended in 50 µl of the same nucleofection 

buffer. The solutions of cells and siRNA were combined and the mixture of the two 

solutions was immediately transferred into the certified nucleofection cuvette. The 

cuvette was inserted into the nucleofection cuvette holder and the correct 
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nucleofection program was applied (Q-001). The contents of the cuvette were 

immediately diluted in the fresh medium (0.5 ml) and added dropwise onto the 6-

well plate with more of fresh medium in it (1.5 ml). The final density of cells in the 

well following the transfection was 1×10
6
/ml. The plate was transferred to a 

humidified incubator (37°C with 5% CO2) and left there for 24 h.  

The siRNA transfection of 32D cells was performed using the Nucleofector Kit 

V (Amaxa, Cologne, Germany) and Amaxa Nucleofector Technology (E-032 

program) according to the protocol provided by the company. The predesigned 

siRNA were used for silencing: p22
phox

 (ID: s201230 (A), s64648 (B), s201231 (C)), 

NOX4 (ID: s211726 (A), s211725 (B), s78320 (C)). All were purchased from 

Ambion, Warrington, UK. The nucleofection procedure applied for 32D cells was 

exactly the same as with MV4-11, except for the number of cells that was there was 

transfected in one sample was 1×10
6
 rather than 2×10

6
 cells. This also resulted in the 

final density of cells in the well following the transfection to be 0.5×10
6
/ml.  

Statistical Analysis 

The results are expressed as a percentage of control, defined to 100%. Values are 

mean ± standard deviation (SD). Data were statistically analysed using Student’s t-

test with p<0.05. 
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Introduction 

Cancer cells and cell lines have been shown to possess higher levels of ROS 

than their healthy counterparts (Kumar et al., 2008, Farquhar and Bowen, 2003, 

Fried and Arbiser, 2008). ROS are thought to promote cell survival (Woolley et al., 

2013a), migration (Wu, 2006), metastasis (Ishikawa et al., 2008), proliferation 

(Reddy et al., 2011, Block and Gorin, 2012) and drug resistance (Trachootham et al., 

2009). Therefore, ROS are increasingly recognised as powerful stimulants of 

tumourigenesis (Block and Gorin, 2012) and are thus attractive targets for molecular 

cancer chemotherapy.  

ROS induce intracellular signalling through covalent modifications of their 

protein substrates. H2O2 exerts its signalling effects primarily through oxidation of 

key cysteine residues on target proteins (Miki and Funato, 2012). This, in turn, can 

modulate the activity of H2O2 signalling partners. For example, many protein 

tyrosine phosphatases possess redox-susceptible cysteines. These cysteines can be 

easily and reversibly oxidised by H2O2, which inhibits the enzymatic activity of the 

phosphatases (Ostman et al., 2011). Subsequent inactivation of phosphatases 

attenuates the negative regulation of kinases, leading to an increased phosphorylation 

state in the cell. Such a state facilitates phosphorylation-dependant growth factor 

signalling. An alternative mechanism of ROS signal transduction is by oxidation of 

kinases (Nakashima et al., 2002). For instance, oxidation of cysteines of SRC kinase 

leads to its activation, which is required for cell attachment to the extracellular 

matrix and tumourigenesis (Giannoni et al., 2005).  
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Many oncogenes have been found to induce generation of ROS in various 

cancers of different tissue origin (Vafa et al., 2002, Hole et al., 2013). Oncogenes 

have the molecular ability to stimulate mitochondria or NOX enzymes to generate 

these increased amounts of ROS. For example, c-MYC has been shown to induce 

ROS production that localises to mitochondria and damages mitochondrial DNA in 

human fibroblasts (Vafa et al., 2002). In the case of NOXs, the most common 

mechanism of achieving higher levels of ROS is through activation of the NOX 

complex by phosphorylation of NOX regulatory subunits such as p47
phox

 or p22
phox

 

(Brandes et al., 2014). It has also been proposed that increased concentration of the 

NOX substrate, NADPH can lead to elevation in ROS production (Brandes et al., 

2014).  

 Several oncogenes commonly mutated in different types of leukaemia have 

been shown to alter cellular levels of ROS (Reddy et al., 2011). Presence of BCR-

ABL, prevalent in CML; and FLT3-ITD, RAS and c-KIT, common in AML; result 

in an increased concentration of ROS which in turn can affect growth and 

proliferation of leukaemic cells (Reddy et al., 2011, Sallmyr et al., 2008a). 

Moreover, elevation in ROS usually results in DNA damage that can lead to genomic 

instability and further increases in tumour aggressiveness of the disease (Jackson and 

Loeb, 2001). However, the molecular sources of ROS in these cells have not yet 

been elucidated.  

 FLT3-ITD is a frequent activating mutation which results in a constitutively 

active receptor tyrosine kinase (RTK). Mutated FLT3-ITD is a potent regulator of 

survival, proliferative and differentiation pathways, all of which are important in the 
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development of leukaemia (Gilliland and Griffin, 2002). The presence of FLT3-ITD 

mutation has been proposed to elevate ROS levels through NOX activation (Sallmyr 

et al., 2008a). In this study, FLT3-ITD-regulated phosphorylated STAT5 (P-STAT5) 

was shown to interact with Rac1, a GTPase involved in activation of NOX complex 

(Sallmyr et al., 2008a). Conversely, Reddy et al. have found that pharmacological 

inhibition of FLT3-ITD (and other leukaemic oncogenes) resulted in a reduction in 

mitochondrial superoxide levels. This suggests that mitochondria may be the source 

of the oncogene-induced ROS in leukaemia (Reddy et al., 2011). More importantly, 

the same study has demonstrated that  NOX-generated ROS, as opposed to 

mitochondrial ROS, were involved in the regulation of cell growth and migration 

processes in AML cells (Reddy et al., 2011).  

 As H2O2-induced signal transduction is based on the oxidation of its target, it 

could be concluded that H2O2 oxidising reactivity would induce a number of non-

specific signalling events. However, redox signalling processes are tightly regulated 

by the localisation of H2O2 production to the molecular target. This guarantees its 

chemical reactivity and signalling specificity (Mishina et al., 2011). Therefore, it is 

essential that studies of redox signalling biology should be accompanied by the 

localisation studies of ROS generating systems and their signalling partners. 

 The aims of our work were to localise ROS generated by the FLT3-ITD 

oncogene and to examine different sources of ROS, particularly H2O2, in FLT3-ITD 

expressing cells. This would allow us to investigate possible redox signalling 

downstream of FLT3-ITD in AML.  
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Results 

FLT3 expression and phosphorylation in MV4-11 and HL-60 cell lines.  

In order to study FLT3-ITD redox signalling, we chose the MV4-11 cell line 

model that was derived from an AML patient with the FLT3-ITD mutation. Western 

blotting analysis of MV4-11 lysates confirmed the expression of FLT3 in these cells 

(Figure 1.1.a). The upper band represents the glycosylated mature FLT3, which runs 

at 160 kDa and the lower band corresponds to the unglycosylated FLT3 that runs at 

130 kDa. In order to compare FLT3-ITD and FLT3-WT signalling, we also selected 

HL-60, a patient-derived cell line that expresses wild type FLT3. Expression of 

FLT3 by Western blotting was also confirmed in these cells (Figure 1.1.a).  

To study the molecular events downstream of FLT3, we employed a small tyrosine 

kinase inhibitor (TKI) of FLT3, PKC412. Attenuation of FLT3 phosphorylation in 

MV4-11 cells following the PKC412 treatment validated the inhibitory activity of 

PKC412 (Figure 1.1.b). 

ROS levels following the inhibition of FLT3 using PKC412 in MV4-11 cells.  

It has been previously published that inhibition of the FLT3-ITD oncogene, 

using CEP-701 inhibitor, resulted in a significant decrease in the levels of ROS in 

patient samples (Sallmyr et al., 2008a). To investigate if this is similarly occurring 

when using PKC412; and to establish how this changes over a range of 

concentrations of PKC412 at 1 h and 24 h incubations, MV4-11 cells were stained  
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Figure 1.1. FLT3 expression/phosphorylation in  MV4-11 and HL-60 cell lines. a) 

Western blotting analysis of FLT3 expression in MV4-11  and HL-60 cells. Actin 

was used as a loading control. b) Western blotting analysis of phosphorylated-

FLT3 (P-FLT3), FLT3 in MV4-11 cells treated with the vehicle (DMSO) or 50 

nM PKC412 for 24 h. Tubulin was used as a loading control.

MV4-11 HL-60

actin

FLT3

FLT3

P-FLT3
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with a fluorescent ROS probe, DCF. The fluorescence intensity of DCF was 

compared  between control and treated  cells (Figure 1.2.a). The results have shown 

that inhibition of FLT3 is followed by the inhibition of generation of ROS and that 

these ROS remain at the lower level over 24 h FLT3 inhibition (Figure 1.2.b).  

Levels of ROS following NOX inhibition using DPI in MV4-11 cells.  

 NOX enzymes have been recently identified as one of the most important 

ROS sources in cancer cells (Block and Gorin, 2012). In order to investigate their 

effects in the MV4-11 cell line, we employed a common flavin protein inhibitor, 

DPI. To investigate the changes in ROS levels, the cells were treated with a range of 

DPI concentrations for 1 h (Figure 1.3.a) and 24 h (Figure 1.3.b). At 1 h, a 5 μM 

concentration was the smallest dose that resulted in the largest decrease in ROS, 

whereas at 24 h a concentration of 0.5 μM was the smallest DPI dose that led to the 

largest decline in ROS.  

Comparison of ROS levels following FLT3 inhibition or NOX inhibition in 

MV4-11 cells 

NOX-produced ROS have been reported to regulate cell growth and migration in cell 

lines expressing FLT3-ITD, such as MOLM-13 (Reddy et al., 2011). NOX-

activating GTPase, Rac1 has also been shown to interact with STAT5, to induce 

ROS-generation downstream of FLT3-ITD. This has suggested that Rac1 could 

activate NOX enzymes in these cells (Reddy et al., 2011, Sallmyr et al., 2008a).  
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Figure 1.2. ROS levels following the inhibition of FLT3 using 50-250 nM range 

of PKC412 concentrations in MV4-11 cells. FACS analysis of DCF fluorescence 

as a measure of the levels of ROS following the PKC412 treatment at a) 1 h and 

b) 24 h. Results are shown as relative geometric mean  SD. Statistical analysis 

was carried out using the Student's t-test (p<0.005 is marked with *).
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Figure 1.3. Levels of ROS following the inhibition of NOX using different 0.5-10 

μm DPI concentrations in MV4-11 cells. FACS analysis of DCF fluorescence as a 

measure of the levels of ROS following the DPI treatment at a) 1 h and b) 24 h. 

Results are shown as relative geometric mean  SD. Statistical analysis was 

carried out using the Student's t-test (p<0.005 is marked with *).
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Based on the FLT3-ITD-NOX association, we decided to inhibit FLT3 or NOX in 

MV4-11 cells and compare the levels of ROS thereafter. Inhibition of NOX,achieved 

using DPI inhibitor resulted in approximately 30% reduction in the relative DCF 

fluorescence, whereas inhibition of FLT3 resulted in approximately 20% reduction 

(Figure 1.4). 

Confocal microscopy of ROS production in MV4-11 treated cells. 

Although the difference in redox state of healthy and AML cells is already 

established, the localisation and the cellular source of these ROS remain elusive. In 

the beginning of the localisation studies, with the aid of confocal microscopy, we 

attempted to image DCF fluorescent staining of ROS in MV4-11 cells. However, the 

pseudocoloured imaging of DCF– stained MV4-11 cells demonstrated an extensive 

diffusion of the probe inside cells (Figure 1.5.a). Nonetheless, DPI-treated cells 

possessed lower levels of ROS than the vehicle-treated control cells (Figure 1.5.b). 

Furthermore, we have also observed that regions of the highest DCF intensity 

localised substantially with the red endoplasmic reticulum (ER) tracker (Figure 

1.5.b).  

Confocal microscopy images of specific H2O2 levels in live MV4-11 cells 

following FLT3 inhibition or NOX inhibition 

The extent of total levels of ROS induced by FLT3-ITD were previously 

reported (Sallmyr et al., 2008a). However, the levels of specific ROS have not been  
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Figure 1.4. Levels of ROS in MV4-11  cells following treatment with FLT3 

receptor inhibitor PKC412 and NOX protein inhibitor DPI. a) FACS analysis of 

relative DCF fluorescence of control (grey),  PKC412 1 h 50 nM treated (red), 

DPI 1 h 5 µM treated (green). b) Bar chart representation of FACS results in a). 

Results are shown as  relative geometric mean SD. Statistical analysis was 

carried out using the Student's t-test (p<0.005 is marked with *).
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Figure 1.5. Confocal microscopy representing the localisation of ROS in live 

MV4-11 treated cells, using DCF. Level of ROS following NOX inhibition with 

DPI. a) Pseudo-coloured image of DCF on the right represents intensity 

distribution (from highest intensity indicated by white to the lowest designated by 

black). b) DCF staining (green) of ROS in DMSO treated and DPI 5 µM 1 h 

treated cells colocalising with ER tracker (red), followed by the merge panel. The 

scale bar corresponds to 10 µm.
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yet examined. It is important to investigate the type of ROS involved, as each ROS 

induces specific oxidations, which can lead to different signalling events 

(D'Autréaux and Toledano, 2007). H2O2 is the main signalling ROS, yet probably 

due to technical limitations, FLT3-ITD driven formation of it was not yet 

investigated. In recent years a new family of boronate-based ROS probes has been 

developed that brightly fluoresce upon specific reaction with H2O2 (Miller et al., 

2005). This provided us with the opportunity to specifically investigate FLT3-ITD 

generated H2O2, which has not been previously examined. Both inhibitions of FLT3 

and NOX resulted in significant decreases in endogenous H2O2, as measured with 

Peroxy Orange 1 (PO1) (Figure 1.6.a and b). Similarly to DCF measurements, DPI 

treatment resulted in a larger decline in PO1 fluorescence (30%) than PKC412 

treatment (20%).  

This result encouraged us to pursue confocal imaging of live MV4-11 cells stained 

with PO1. As with DCF, we first examined distribution of the oxidised PO1 probe. 

The pseudocolouring of the PO1 staining revealed specific accumulation of PO1 in 

certain intracellular structures resembling the ER (Figure 1.7.a). Double staining of 

PO1 and green ER tracker revealed a high level of colocalisation between the two 

dyes (Figure 1.7.b). Moreover DPI treatment of MV4-11 cells prior to the staining 

caused a marked decrease in PO1 fluorescence (Figure 1.7.b). Due to the lack of 

specificity of DPI for NOXs, we employed a newly developed NOX specific 

inhibitor VAS-2870 (Freyhaus et al., 2006, Sancho and Fabregat, 2011). Similarly to 

the previous experiment, vehicle treated (DMSO) control MV4-11 cells showed  
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Figure 1.6.  Levels of H2O2 in  MV4-11 cells following treatment with FLT3 

receptor inhibitor PKC412 and NOX protein inhibitor DPI. a) FACS analysis of 

relative PO1 fluorescence of control (grey),  PKC412 1 h 50 nM treated (red), 

DPI 1 h  treated (green). b) Bar chart representation of FACS results in a), results 

are shown as relative geometric mean SD. Statistical analysis was carried out 

using the Student's t-test (p<0.05 is marked with *).
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PO1a)

b)

Figure 1.7. Confocal microscopy of live cells showing the  localisation of H2O2, 

using PO1.  Levels of H2O2 in  MV4-11 cells following treatment with NOX 

protein inhibitor DPI. a) Pseudocolouring of the PO1 staining of MV4-11 cells. b) 

Colocalisation of  ER tracker (left panel) and PO1 (middle panel) of MV4-11 

cells, with merged stains (right panel). The scale bar corresponds to 10 µm.
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colocalised staining of PO1with the green ER tracker stain. Analogously to DPI, 

treatment with VAS-2870 substantially abolished the PO1 fluorescence (Figure 1.8).  

In order to examine the effects of FLT3-ITD on H2O2 formation, we analysed 

the co-staining of PO1 and ER tracker in PKC412-treated and control treated cells. 

The merged image of the ER tracker and PO1 probe confirmed the localisation of 

H2O2 in the ER of MV4-11 cells (Figure 1.9). Furthermore, PKC412-achieved FLT3 

inhibition led to the attenuation of PO1 fluorescence, as analysed by confocal 

microscopy. 

Confocal live microscopy images of H2O2 levels in mitochondria following FLT3 

and NOX inhibition in MV4-11 cells.  

Mitochondrial superoxide was previously shown to be altered following the 

inhibition of FLT3-ITD (Reddy et al., 2011). To investigate if FLT3-ITD inhibition 

could affect the mitochondrial H2O2, we imaged MitoPY1 probe subsequent to the 

inhibition of FLT3-ITD. MitoPY1 is a H2O2-specific probe that stains mitochondria 

(Dickinson and Chang, 2010). Surprisingly, H2O2 levels in mitochondria were not 

altered by the PKC412 treatment (Figure 1.10).  

VAS-2870 is a newly developed NOX-inhibitor that has not been yet 

characterised (Freyhaus et al., 2006, Stielow et al., 2006, Sancho and Fabregat, 

2011). The most common NOX inhibitor, DPI has been previously shown to inhibit 

electron transport of mitochondria (Li and Trush, 1998). In order to investigate non- 

specific off-target effects of VAS-2870 on mitochondrial ROS (Figure 1.11), we 
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have stained control cells and VAS-2870-treated cells with MitoPY1. The possibility 

of VAS-2870 inhibiting mitochondrial ROS formation. 

   

Figure 1.8. Confocal microscopy images of H2O2 levels following NOX inhibitor, 

VAS-2870 in live MV4-11 cells. PO1 staining (red; middle panel) of H2O2 in 

DMSO treated (upper image) and VAS-2870 10 µM 1 h treated cells (bottom 

image). ER tracker staining (green; left panel). The merged image of ER tracker 

and PO1 (right panel). The scale bar corresponds to 10 µm. 
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Figure 1.9. Confocal microscopy representing the  localisation of H2O2 in MV4-

11 treated cells, using PO1.  Levels of H2O2 in  MV4-11 cells following treatment 

with FLT3 inhibitor, PKC412. Colocalisation of H2O2-specific probe, PO1 

staining and ER tracker to localise ROS production in untreated and PKC412 50 

nM 1 h treated cells. The scale bar corresponds to 10 µm.  
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Figure 1.10. Confocal microscopy images of H2O2 levels in mitochondria 

following PKC412 treatment in live MV4-11 cells. a) MitoPY1, mitochondrial 

H2O2-specific probe staining comparing the DMSO and PKC412 (50 nM for 1 h) 

treated cells. b) Quantification of relative mean MitoPY1 fluorescence of DMSO 

and PKC412 (50 nM for 1 h) treated cells. The scale bar corresponds to 10 µm.
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Figure 1.11. Confocal microscopy images of H2O2 levels in mitochondria 

following VAS-2870 treatment in live MV4-11 cells. a) MitoPY1, mitochondrial 

H2O2-specific probe staining comparing the DMSO and VAS-2870 (10 µM for 1 

h) treated cells. b) Quantification of relative mean MitoPY1 fluorescence of 

DMSO and VAS-2870 (10 µM for 1 h) treated cells. The scale bar corresponds to 

10 µm.
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Discussion 

A number of studies have demonstrated that cancer cells use ROS as 

secondary messengers to activate redox signalling, which affects cell proliferation, 

growth and genomic instability (Waris and Ahsan, 2006). However mechanisms that 

stimulate ROS production, as well as their molecular sources remain unclear. 

Leukaemic oncogenes have been previously shown to regulate ROS production 

(Reddy et al., 2011). In this chapter, we showed that cells expressing the mutated 

FLT3-ITD receptor generate H2O2 in the ER, primarily via NOXs. 

We observed that primary AML blasts produce 5-fold more of ROS than 

their healthy counterparts (data not shown). This change is similar to what has 

already been  reported by Hole et al. (Hole et al., 2013). Oxidative stress has been 

implicated as a factor in the relapse of AML patients (Zhou et al., 2010). 

Furthermore, the N-RAS and BCL-2 expressing murine model of AML has also 

manifested increased ROS and DNA damage (Rassool et al., 2007). Similarly, 

markers of increased oxidative stress were detected in the blood of chronic myeloid 

leukaemia (CML) and MDS patients (Farquhar and Bowen, 2003, Sallmyr et al., 

2008b, Naughton et al., 2009). Moreover, the elevated ROS were demonstrated to be 

associated with increased DNA damage in MDS samples (Peddie et al., 1997).  

ROS can induce damaging or signalling effects (Gough and Cotter, 2011). 

The dichotomous nature of ROS function allows them to stimulate proliferation and 

growth pathways, with simultaneous damage to DNA. This provides tumour cells 

with an evolutionary mechanism for AML progression (Hole et al., 2013).  
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Leukaemic oncogenes (for example FLT3, BCR-ABL and C-KIT) are known 

to generate increased levels of ROS (Hole et al., 2011). Mutated FLT3-ITD is one of 

the most prevalent genetic alterations in AML patients (Gilliland and Griffin, 2002). 

Stable transfection of 32D cell line with mutated FLT3-ITD was shown to elevate 

ROS in comparison to transfection of the same cells with FLT3-WT (Sallmyr et al., 

2008a). We decided to examine the extent of ROS induced by FLT3-ITD in a non-

over-expression system. We used the MV4-11 cell line as our model, as these are 

homozygous for FLT3-ITD. To examine FLT3-ITD signalling we also employed 

PKC412, a tyrosine kinase inhibitor against activated FLT3. PKC412 has been 

shown to inhibit FLT3 and reduce the number of leukaemic blasts in the patients’ 

circulation (Stone et al., 2005). Following confirmation of FLT3 expression and its 

phosphorylation in MV4-11 cells, we established that inhibition of FLT3 using 

PKC412 results in a reduction in endogenous levels of ROS.  

 ROS are a family of heterogenous molecules that possess distinct oxidative 

properties, kinetics rates and diffusion characteristics (Murphy et al., 2011). 

Therefore, it is important to specify the type of ROS when studying redox- regulated 

processes. This is especially true for redox signalling as some ROS (e.g. H2O2) are 

capable of causing reversible oxidation of target proteins, which allows for reversible 

regulation of the signal. In contrast to this, hydroxyl radical (OH·) has been 

exclusively shown to have damaging properties accompanied by lack of any target 

specificity (Garcia-Santamarina et al., 2014).  

Considering these differences, we investigated if FLT3 specifically induces 

H2O2 production, using newly developed H2O2-specific fluorescent probes (Woolley 
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et al., 2012). H2O2 specificity of the probes, developed by Dickinson et al., is based 

on the chemical reaction of H2O2 with boronate group upon which the probe emits a 

fluorescent signal (Dickinson et al., 2010a). We selected PO1 probe to specifically 

study H2O2 generation stimulated by FLT3-ITD. Following FLT3-ITD inhibition 

with PKC412, we demonstrated that H2O2 levels in MV4-11 cells were significantly 

decreased.  

NOXs have been formerly shown to play an essential role in the growth, 

proliferation and migration of leukaemic cells (Reddy et al., 2011, Hole et al., 2013). 

Based on this knowledge, we investigated how much of the H2O2 generated in 

FLT3-expressing cell line originated from NOXs. In order to examine this, we 

treated FLT3-ITD expressing MV4-11 cells with DPI, a common NOX inhibitor. 

The use of DPI as a NOX inhibitor has been quite controversial due to the general 

inhibitory characteristics of DPI against flavin proteins (O'Donnell et al., 1993). 

Several reports have shown that an increased DPI concentration can also inhibit 

electron transport in mitochondria or cytochrome P-450 reductase (Li and Trush, 

1998, Prabhakar, 2000). On the other hand, it has also been shown that lower 

concentrations of DPI are selective for NOX enzymes (Serrander et al., 2007). We 

demonstrated that changes in H2O2 levels following FLT3 inhibition largely reflect 

changes following DPI-achieved NOX inhibition. To date there have been mixed 

conclusions drawn regarding the molecular sources of ROS in FLT3-positive cells, 

oscillating between mitochondria and NOX proteins (Reddy et al., 2011, Sallmyr et 

al., 2008a). Although both of these reports have shown that NOX proteins regulated 

growth and migration of FLT3-ITD expressing cells (Sallmyr et al., 2008a, Reddy et 
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al., 2011), Reddy et al. did not report any significant changes in total levels of ROS 

following NOX siRNA knockdowns, as measured by DCF. However, we 

discovered, using the PO1 probe, that inhibition of NOXs result in the attenuation of 

ROS generation in FLT3-ITD AML cells. Similarly to AML, DPI treatment has been 

recently shown to reduce endogenous ROS levels in chronic myeloid leukaemia 

(CML) patient samples, Moreover, the study reported that DPI treatment has induced 

apoptosis in BCR-ABL expressing CML cells (Sanchez-Sanchez et al., 2014). 

Importantly to this project, when used in combination with PKC412, NOX inhibition 

has synergistically attenuated proliferation of MV4-11 cells (Sanchez-Sanchez et al., 

2014). This has indicated a therapeutic potential of DPI against AML leukaemic 

cells. 

 Although DPI is a commonly used inhibitor of NOX, due to its possible off-

target effects, we employed a novel NOX inhibitor, VAS-2870. VAS-2870 has been 

previously shown as a specific inhibitor of NOX activity (Freyhaus et al., 2006, 

Stielow et al., 2006, Sancho and Fabregat, 2011). Importantly, inhibition of NOX 

using VAS-2870 in MV4-11 cells also resulted in a dramatic reduction in the 

endogenous H2O2. This eliminated the specificity issues of DPI inhibition, 

confirming the role of NOX in the production of H2O2 in FLT3-ITD expressing 

MV4-11 cells.   

 Due to the high reactivity of H2O2 and hence limitations of its diffusion, the 

target of H2O2 oxidation has to be localised in close proximity to H2O2 generation. 

Cells protect their structures from the damaging oxidative effects by accumulating 

antioxidant molecules (Mishina et al., 2011, Irwin et al., 2013). Therefore, certain 
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distance between the source and the target of H2O2 could lead to neutralisation of 

H2O2 by an antioxidant enzyme. This emphasises the importance of localisation 

studies in redox biology. Up to few years ago, localisation of ROS at the subcellular 

level was almost impossible due to technical shortcomings related to ROS 

measurements. However recently, along with some developments in new fluorescent 

probes and genetically encoded ROS sensors, some localisation methods have 

become available. The family of boronate-based specific H2O2 sensors  rely on the 

specific boronate-to-phenol switch upon reaction with H2O2 (Dickinson et al., 2010a, 

Miller et al., 2005, Dickinson et al., 2010b, Dickinson et al., 2011a, Dickinson et al., 

2011b, Dickinson et al., 2013, Dickinson and Chang, 2010). They also have 

improved stability, increased sensitivity to signalling concentrations of H2O2 and 

limited diffusibility of the molecule (Dickinson et al., 2010a, Lippert et al., 2011). 

For instance, PO1 was used to localise H2O2 in the phagosomes of PMA-stimulated 

RAW264.7 macrophages (Dickinson et al., 2010a). They appeared to be suitable 

candidates for H2O2 localisation studies in AML cells. We demonstrated, using PO1 

that the brightest regions of PO1 staining, which corresponds to the highest 

concentration of H2O2, localises to the ER in MV4-11 cells. It has been shown 

recently that NOX4 and p22
phox

 reside in the ER of monocyte-derived macrophages 

(Lee et al., 2010). This could explain the ER-localisation of ROS in monocyte-like 

MV4-11 cells.  

 The ER-derived redox signalling is particularly interesting in FLT3-ITD 

expressing cells as it has been demonstrated that the partially glycosylated, immature 

form of FLT3-ITD is located on the ER membrane. The ER-bound FLT3-ITD 
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aberrantly activates STAT5, a potent regulator of growth and proliferation of 

leukaemic cells (Choudhary et al., 2009). We demonstrated that siRNA down-

regulation of ER-residing p22
phox

 led to a reduction in the phosphorylation of STAT5 

(Woolley et al., 2012). In support of this finding, NOX knockdown resulted in a 

decrease in the phosphorylation of STAT5 and BCR-ABL in CML cell lines 

(Sanchez-Sanchez et al., 2014). H2O2 has been previously shown to specifically 

oxidise cysteine residues of phosphatases. ER-localised H2O2 in leukaemia could 

therefore potentially inhibit ER-resident redox-sensitive phosphatases, responsible 

for de-phosphorylation of STAT5 transcription factor. In fact, NOX4 has been 

demonstrated to regulate PTP1B phosphatase located in the ER of endothelial cells 

(Chen et al., 2008). Further highlighting the importance of NOX proximity to their 

target, a mutation in PTP1B, which de-localised it from the ER, abolished NOX4 

ability to regulate this phosphatase.   

 In summary this work has shown that FLT3-ITD signalling leads to an 

increase in the level of ROS in AML cell lines. We found that H2O2, a common 

signalling molecule, is produced by FLT3-ITD. The highest concentration of H2O2 is 

located in the ER in MV4-11 cells, suggesting that the possible source of H2O2 is 

also localised there. This H2O2 generation was almost completely inhibitable by both 

PKC412 and DPI, indicating that it is both FLT3- and NOX- dependent.  



 

 

Chapter 4: FLT3-ITD-activated NOX affects redox status in AML cells. 

 

 

 

 

Chapter 4 

 

 

FLT3-ITD-activated NOX affects 

redox status of the nucleus in 

AML cells.  



Chapter 4: FLT3-ITD-activated NOX affects redox status in AML cells. 

 

 

77 

 

Introduction 

Altered redox status is an important characteristic of cancers and the 

evidence for this has been found in many solid tumours and leukaemias. Myeloid 

leukaemia cells appear to have a dysfunctional redox metabolism (Wang et al., 2010, 

Hole, 2011, Hole et al., 2013, Irwin et al., 2013). In the context of AML, patients’ 

samples are characterised by chronic oxidative stress that could induce aggressive 

features of AML, such as chemoresistance and relapse.   

Along with mitochondria, NOX enzymes have been recently identified as one 

of the main sources of ROS in cancers (Sabharwal and Schumacker, 2014, Block and 

Gorin, 2012). NOX isoforms are composed of different subunits. The formation of 

the NOX1-3 complexes is dependent on recruitment of the membrane subunit 

p22
phox

, cytosolic subunits, p47
phox

, p67
phox

, p40
phox

 and the GTPase Rac1 (Bedard 

and Krause, 2007). NOX4 does not require cytosolic subunits and its activity is 

therefore only dependent on the presence of p22
phox

 (Brandes et al., 2014). Specific 

down-regulation of any of the membrane or cytosolic subunits reduces ROS-

production (Block and Gorin, 2012). NOX5 and DUOX1/2 do not bind other 

regulatory subunits and are activated by calcium (Bedard and Krause, 2007). Many 

cancer cell lines and cancer patient samples have been associated with higher levels 

of NOX catalytic or regulatory subunits at the mRNA and/or protein level (Block 

and Gorin, 2012). NOX-generated ROS have been demonstrated to regulate several 

features of tumour phenotypes such as activation of oncogenes, deregulation of cell 

growth, reduction in apoptosis, inactivation of tumour suppressors, induction of 

angiogenesis, as well as invasion and metastasis (Block and Gorin, 2012). Moreover, 
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ROS-mediated DNA damage could facilitate cancer evolution and the development 

of chemoresistance (Landriscina et al., 2009). NOXs are thus attractive therapeutic 

targets in many cancers (Block and Gorin, 2012).  

Several oncogenes and growth factors have been shown to induce NOX 

expression or activation (Weyemi et al., 2012, Naughton et al., 2009, Reddy et al., 

2011).  For example, over-expression of H-RAS has been shown to increase 

expression of NOX4 and p22
phox

 in the thyroid cell line, HThy-ori cells (Weyemi et 

al., 2012).  Transforming growth factor-β1 (TGF-β1) has been demonstrated to 

induce NOX4 expression, which in turn mediated the differentiation of cardiac 

fibroblasts into myofibroblasts (Cucoranu et al., 2005).  

In comparison to other intracellular signalling molecules, ROS have 

extremely short half-lives, lack target specificity. They achieve signal transduction 

through oxidation of target macromolecules. Therefore, the ability of NOX-

generated ROS to act as signalling molecules is largely dependent on the proximity 

of the NOX to its molecular target (Winterbourn, 2008). It is thus not surprising that 

the location of NOX within the cell and consequently the location of ROS generation 

is critical. Indeed, kinetic studies of H2O2 reactions have demonstrated that redox 

signalling is highly compartmentalised, with H2O2 having limited diffusion from its 

site of generation (Mishina et al., 2011). For instance, live cell imaging of H2O2 has 

shown that PDGF-induced NOX generation of H2O2 was localised to specific 

locations in the cytoplasm (Mishina et al., 2011). Chen et al. demonstrated that 

NOX4 oxidises ER-localised PTP1B, while a mutant PTP1B, which does not to 

localise to the ER, does not undergo oxidation by NOX4 (Chen et al., 2008). Taken 
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together, these studies demonstrate the importance of subcellular colocalisation of 

the ROS generating system and their molecular targets. 

NOX isoforms have been localised to nearly all organelles (Bedard and 

Krause, 2007). Moreover, localisation of a particular NOX isoform can vary between 

tissue and cell types (Bedard and Krause, 2007). NOX isoforms have been 

colocalised to the plasma membrane, mitochondrion, nucleus, nuclear membrane, 

ER and secondary and tertiary granules (Bedard and Krause, 2007). A number of 

studies have demonstrated that differential subcellular localisation of NOX isoforms 

can result in distinct molecular events. For example, in vascular smooth muscle cells 

(VSMC), the mitogenic activity of NOX1 and senescence-induction by NOX4 have 

led scientists to study the localisation of these two NOX isoforms. Interestingly, 

immunofluorescent staining revealed distinct localisation patterns of NOX1 and 

NOX4, with NOX1 localised on the cell surface, and NOX4 to focal adhesion points  

(Hilenski et al., 2004).  

 We previously demonstrated in chapter 3, that FLT3-ITD-stimulated ROS 

localise to the ER, and have suggested that NOXs are the main source of ROS in 

FLT3-ITD mutated leukaemia. The aim of this work is to determine the mechanism 

by which NOX is activated by oncogenic signals from FLT3-ITD; investigate the 

localisation of the ROS source in the AML cells as well as to examine the redox 

status of the nucleus. The knowledge resulting from such investigations will allow us 

to determine if NOX-produced ROS could play a role in the genomic instability seen 

in AML.  
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Results 

NOX expression following FLT3-ITD inhibition. 

Having established in the previous chapter that FLT3-ITD-induced ROS are 

generated by NOX enzymes, we examined the effects of FLT3-ITD signalling on 

expression of NOX proteins. It has been previously published that cells possessing a 

mutated FLT3 express NOX2, NOX4 and NOX5 as well as their regulatory subunits 

(Reddy et al., 2011). The inhibition of FLT3 with PKC412 for 8 and 24 h did not 

reveal any changes in NOX2, NOX4, NOX5 or p47
phox

 expression (Figure 2.1). 

However, when we examined the protein level of p22
phox

, a membrane subunit of 

NOX complexes, we discovered that FLT3 inhibition causes a significant reduction 

in the steady protein level of p22
phox

 (Figure 2.2.a). 

p22
phox

 expression following the inhibition of FLT3-ITD. 

 Selective tyrosine kinase inhibitors (TKIs), including FLT3 inhibitors can 

also have effects on other kinases (Bain et al., 2007, Zarrinkar et al., 2009). In order 

to confirm that the p22
phox

-reduction was solely due to FLT3 inhibition, we 

employed two other FLT3 kinase inhibitors: CEP-701 and AC-220. AC-220 was 

recently reported to potently inhibit FLT3 kinase at nanomolar concentrations 

without many off-target effects (Zarrinkar et al., 2009).  
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Figure 2.1. NOX expression following FLT3-ITD inhibition. Western blotting 

analysis of NOX isoforms 2, 4 and 5, as well as p47phox subunit expression 

following PKC412 treatment over 8 h and 24 h in MV4-11 cells. β-actin is shown 

as a loading control.
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Figure 2.2. p22phox expression following the inhibition of FLT3-ITD in MV4-11 

cells. a) The level of protein expression of p22phox following PKC412 treatment in 

MV4-11 cells for 2-24 h. b) The level of protein expression of p22phox following 

24 h treatments with different FLT3 inhibitors, i.e. PKC412, AC220 and CEP-701. 

β-actin is shown as a loading control.
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Inhibition of FLT3 with either of these drugs resulted in a reduction in p22
phox

 

protein levels (Figure 2.2.b) in MV4-11 cells.   

In order to further examine the effects of FLT3 inhibition on p22
phox

 levels, 

we have explored this result in MOLM-13 cells which are heterozygous for FLT3-

ITD and HL-60 cells which are homozygous for FLT3-WT. PKC412 treatment of 

MOLM-13 cells for 8 and 24 h resulted in a partial reduction in p22
phox

 protein level 

(Figure 2.3.a). On the other hand, the protein levels of p22
phox

 in HL-60 cells were 

not affected by FLT3 inhibition (Figure 2.3.b). 

Immunofluorescence staining of p22
phox

 and KDEL (ER marker) in MV4-11 

cells. 

 We have demonstrated that the H2O2-selective PO1 probe localises to the ER 

in MV4-11 cells. Therefore, we carried out a localisation study of p22
phox

 in these 

cells. To confirm the specificity and suitability for immunofluorescence of the anti-

p22
phox

 antibody, we knocked down the p22
phox

 protein using siRNA transfection 

(Figure 2.4.a). Secondly, we colocalised the anti-p22
phox

 antibody with the anti-

KDEL antibody, which is a standard ER marker (Figure 2.4.b). The colocalisation 

analysis revealed that approximately 70% of anti-p22
phox

 colocalised with anti-

KDEL, which demonstrated that p22
phox

 is localised to the ER.  
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Figure 2.3. p22phox expression following the inhibition of FLT3-ITD and FLT3-

WT expressing cells. a) Western blotting analysis of p22phox expression  following 

8-24 h PKC412 treatment in MOLM-13 cells. DMSO was used as a vehicle 

control. b) Western blotting analysis of p22phox expression  following PKC412 8-

24 h treatment in HL-60 cells. DMSO was used as a vehicle control. β-actin is 

shown as a loading control.
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b)

p22phox KDEL Merge

Figure 2.4. Colocalisation of p22phox with KDEL (ER marker) in MV4-11 cells. a) 

Immunofluorescence staining of anti- p22phox (green) with the nuclear Hoechst 

counterstain (blue) at 24 h post- p22phox siRNA transfection. The left image 

represents cells treated with scrambled siRNA and the right image represents 

p22phox  siRNA treated  cells. The scale bar is 10 μm. b) Immunofluorescence 

staining of colocalisation of p22phox (green, left) protein with ER marker KDEL 

(red, middle) in MV4-11 cells. The merged image of KDEL and p22phox is 

displayed in the right panel. The statistical analysis of the percentage of 

colocalisation of green overlapping with red (G) and red overlapping with green 

(R) is displayed in the bottom left corner of the merged image. The scale bar is 5 

μm. 
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ROS levels following p22
phox

 siRNA knockdown. 

Considering that both H2O2 and p22
phox

 colocalised to the ER, we 

investigated ROS levels in MV4-11 cells, following p22
phox

 siRNA knockdown. The 

3D histogram of DCF fluorescence of cells treated with scrambled siRNA (control) 

showed a substantial reduction in the fluorescent signal compared to the p22
phox

 

siRNA-treated cells (Figure 2.5).  

We also employed PO1 as a H2O2 selective probe to study the colocalisation 

of H2O2 and the ER tracker. Similarly to what has been observed with DCF, we 

discovered that p22
phox

 siRNA transfection has led to a decrease in the colocalisation 

of PO1 with the ER tracker (Figure 2.6).  

Colocalisation of NucPE1 probe with Hoechst in MV4-11 cells.  

 Leukaemic oncogenes have been shown to affect genomic instability, which 

contributes to cancer aggressiveness and tumour progression (Reddy et al., 2011). In 

order to study the effect of ROS on genomic instability, we used the Nuclear Peroxy 

Emerald 1 (NucPE1) probe that specifically measures H2O2 in the nucleus 

(Dickinson et al., 2011b). NucPE1, just like its precursor PO1, possesses a boronate 

functional group to selectively respond to H2O2 and specifically accumulates in the 

nucleus (Dickinson et al., 2011b). The staining pattern of NucPE1 indicated a strong 

nuclear localisation, which was confirmed by co-staining with the Hoechst nuclear 

stain in MV4-11 cells (Figure 2.7).  
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p22phox siRNA
Control p22phox siRNA

Figure 2.5. Level of ROS following p22phox siRNA knockdown, measured with 

DCF. a) Confocal microscopy of DCF staining of  live MV4-11 cells following 

the treatement with p22phox siRNA (right image), compared with the scrambled 

siRNA treated control (left image). The scale bar is 10 μm. b) Histogram 3D 

representation of the DCF fluorescence in a), with the left image showing the 

control and the right image presenting the p22phox siRNA treated cells. 
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Figure 2.6. p22phox siRNA knockdown reduced H2O2 levels in MV4-11 cells. a) 

MV4-11 cells were electroporated with either control siRNA (top panel) or 

p22phox siRNA (bottom panel), stained with PO1 (middle panel) and ER tracker 

(left panel) and then imaged using confocal microscopy. Merged images of 

control and p22phox siRNA treated cells are shown in the right panel. The scale 

bar represents 10 μm. b) Quantification of PO1 fluorescence based on the 

confocal microscopy images from (a). Results are shown as a relative mean % 

PO1 fluorescence  SD. Statistical analysis was carried out using the student t-

test (p<0.005 is marked with *).
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Figure 2.7. Colocalisation of NucPE1 probe with Hoechst in live MV4-11 cells. a) 

The pseudo-coloured image of NucPE1 on the left represents intensity 

distribution (from highest intensity indicated by white to the lowest designated by 

black). The scale bar represents 10 μm. b) MV4-11 cells were stained with 

NucPE1 and Hoechst, then imaged with a confocal laser scanning microscope. 

The scale bar represents 5 μm.
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Levels of cellular and nuclear H2O2 following the FLT3-ITD inhibition.  

 In order to study the levels nuclear H2O2 generated by FLT3-ITD signalling, 

we inhibited FLT3 to investigate alterations in NucPE1 fluorescence. Analysis of 

NucPE1 and PO1 staining by confocal microscopy revealed that attenuation of 

FLT3-signalling reduced the level of H2O2 in both the cytosol and the nucleus 

(Figure 2.8). 

 Quantification of fluorescence of NucPE1 in a sample of 10,000 cells by flow 

cytometry demonstrated that cells treated with PKC412 have approximately 20% 

less H2O2 than their control equivalents (Figure 2.9). 

Confocal microscopy of cellular and nuclear H2O2 following NOX inhibition. 

 We carried out a series of experiments to investigate whether NOXs are a 

source of the nuclear ROS observed. MV4-11 cells were treated with DPI inhibitor 

or vehicle control. The confocal images of NucPE1/PO1 showed that inhibition of 

NOX with DPI causes a reduction of cytosolic and nuclear H2O2 (Figure 2.10). Flow 

cytometry analysis of the staining showed that DPI decreased approximately 40% of 

NucPE1 fluorescence (Figure 2.11). 

 In order to confirm that the effects of DPI on nuclear H2O2 are due to NOX 

inhibition, rather than off target inhibitions, we used an additional NOX selective 

inhibitor, VAS-2870. The treatment of MV4-11 cells with VAS-2870 for 1 h 

resulted in a decrease in cellular and nuclear H2O2, as measured with PO1 and 

NucPE1 respectively (Figure 2.12). 
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Figure 2.8. Cellular and nuclear H2O2 levels following the FLT3-ITD inhibition. 

PKC412-treated (right panel) and DMSO-treated (Control; left panel) live MV4-

11 cells were stained with NucPE1 (bottom images) and PO1 (top images), then 

imaged with a confocal laser scanning microscope. The scale bar represents 10 

μm.
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Figure 2.9. Levels of nuclear H2O2 following the FLT3-ITD inhibition. a) FACS 

analysis of relative mean NucPE1 fluorescence of control (DMSO; grey) and 

PKC412 treated MV4-11 cells (red). b) Bar chart represents flow cytometry

analysis of mean relative % NucPE1 fluorescence of DMSO treated (Control) and 

PKC412 treated (50 nM; 1 h) MV4-11 cells. Results are shown as relative 

geometric mean SD. Results are representative of at least 3 biological replicates. 

Statistical analysis was carried out using the student t-test (p<0.005 is marked 

with *).
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Figure 2.10. Confocal microscopy of cellular and nuclear H2O2 following NOX 

inhibition in live MV4-11 cells. DPI-treated (bottom panel) and DMSO-treated 

(Control; top panel) MV4-11 cells were stained with NucPE1 (green; left images) 

and PO1 (red; right images), then imaged with a confocal laser scanning 

microscope. The scale bar represents 10 μm.
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Figure 2.11. Quantification of nuclear H2O2 following NOX inhibition in MV4-11 

cells. a) FACS analysis of relative mean NucPE1 fluorescence of control (DMSO; 

grey) and DPI-treated (1 µM; 1 h) MV4-11 cells (red). b) Bar chart represents 

flow cytometry analysis of relative mean % NucPE1 fluorescence of DMSO 

(Control) treated and DPI treated MV4-11 cells. Results are shown as relative 

geometric mean SD. Results are representative of at least 3 biological replicates. 

Statistical analysis was carried out using the student t-test (p<0.005 is marked 

with *).
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Figure 2. 12. Confocal microscopy of levels of cellular and nuclear H2O2

following NOX inhibition with VAS-2870 in live MV4-11 cells. VAS-2870-

treated (bottom panel) and DMSO-treated (Control; top panel) MV4-11 cells were 

stained with NucPE1 (green; left images) and PO1 (red; right images), then 

imaged with a confocal laser scanning microscope. The scale bar represents 10 

μm.

PO1NucPE1

PO1NucPE1

VAS-2870 

Control Control 

VAS-2870 



Chapter 4: FLT3-ITD-activated NOX affects redox status in AML cells. 

 

 

96 

 

Confocal microscopy of cellular and nuclear H2O2 levels following p22
phox 

siRNA knockdown in MV4-11 cells.  

 Considering that FLT3-ITD regulated NOX complex through stabilisation of 

p22
phox

, we transfected MV4-11 with p22
phox

 siRNA and investigated H2O2 levels in 

cytosol and the nucleus. Western blotting analysis of p22
phox

 expression in MV4-11 

cells following siRNA transfection revealed knockdown of the target protein (Figure 

2.13.a). Comparing confocal images of siRNA and control treated cells showed that 

p22
phox

 knockdown leads to reductions of H2O2, not only in the cytosol, but also in 

the nucleus (Figure 2.13.b). Flow cytometry analysis of the same experiment, 

demonstrated approximately 20% decrease in PO1/NucPE1 fluorescence following 

p22
phox

 knockdown in MV4-11 cells, based on 10, 000 cells (Figure 2.14).  

Colocalisation of NOX4/p22
phox 

to the nuclear membrane in MV4-11. 

 Several reports suggested that NOX4 is localised to the nucleus and/or 

nuclear membrane (Lee et al., 2010, Weyemi and Dupuy, 2012, Weyemi et al., 

2012). Based on the change in NucPE1 fluorescence following p22
phox

 knockdown, 

we investigated NOX4 localisation in MV4-11 cells. At first, we co-stained the 

NOX4 antibody with Hoechst. However, we did not observe any colocalisation 

between these two stains (Figure 2.15). When analysing immunostaining of NOX4 

and NUP98, which targets nuclear pores, we noticed a substantial colocalisation 

which indicated localisation of NOX4 in the nuclear membrane (Figure 2.15). 

Moreover, we have also colocalised anti-p22
phox

 to  
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p22phox

β-actin

p22phox siRNA

Figure 2. 13. Confocal microscopy of level of cellular and nuclear H2O2 following 

p22phox siRNA knockdown in live MV4-11 cells. a) Western blotting analysis of 

p22phox protein expression 24 h post-transfection. MV4-11 cells were transfected 

with scrambled siRNA or p22phox siRNA (A, B and C) and lysed 24 h later. β-actin 

was used as a loading control. b) MV4-11 cells were stained with PO1 (red; left 

panel) and NucPE1 (green; middle) for 1 h,  24 h post  the transfection. Merges of 

the two probes are shown in the right images. Top panel shows scrambled siRNA

treated cells (control) and bottom panel shows p22phox  siRNA treated cells. The 

scale bar represents 10 μm. 
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Figure 2. 14. Quantification of  cellular and nuclear H2O2 following the p22phox 

siRNA knockdown. MV4-11 cells were stained with either PO1 (a) or NucPE1 

(b) for 1 h, 24 h after the siRNA transfection. a) FACS analysis of relative mean 

PO1 fluorescence of control (scrambled siRNA; grey) and p22phox siRNA treated 

(Control; red) MV4-11 cells. b) FACS analysis of relative mean NucPE1 

fluorescence of control (scrambled siRNA; grey) and p22phox siRNA treated 

(Control; red) MV4-11 cells. c) Bar chart represents flow cytometry analysis of 

mean relative %PO1 and  % NucPE1 fluorescence of control treated and p22phox 

siRNA treated MV4-11 cells. Results are shown as relative geometric mean SD. 

Results are representative of at least 3 biological replicates. The asterisk indicates 

statistically significant difference (p<0.05) as analysed by Student t-test. The 

error bars represent  SD.
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Figure 2. 15. Colocalisation of NOX4/p22phox and nuclear membrane in MV4-11. 

Confocal images represent NOX4, p22phox and NUP98 immunofluorescence as 

indicated on the images. The merged images are shown in the right panels. Cells 

were incubated on poly-D-lysine coated coverslips for 16 h, then fixed in 3% 

PFA/PBS and followed by NOX4, NUP98,  p22phox and Hoechst staining. Images 

were acquired using confocal microscopy. The scale bar represents 10 μm. 
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anti-NUP98, suggesting that NOX4 and p22
phox

 operate together in a complex at the 

nuclear membrane (Figure 2.15). 
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Discussion 

The aim of this chapter was to investigate the mechanism of NOX activation 

by FLT3-ITD in AML. In the previous chapter, we showed that in the MV4-11 cell 

line NOXs were involved in the generation of H2O2 in the ER, stimulated by FLT3-

ITD signalling. Inhibition of NOXs with DPI, a selective NOX inhibitor has resulted 

in a reduction in endogenous concentration of H2O2.  

Tumour cells have elevated NOX-generated ROS that in turn stimulate 

proliferation, survival and genomic instability (Block and Gorin, 2012). Alterations 

in the redox environment and genomic instability of cancer cells have been recently 

reviewed as an enabling hallmark of cancer (Hanahan and Weinberg, 2011). 

Leukaemic oncogenes have been previously shown to affect redox homeostasis of 

cells; either by increasing the generation of ROS or by modulating the expression of 

antioxidants (Irwin et al., 2013). To date, two reports have associated FLT3-ITD to 

increased production of ROS. Sallmyr et al. proposed that FLT3-ITD leads to 

phosphorylation of STAT5 that in turn interacts with Rac1, a NOX GTPase (Sallmyr 

et al., 2008a). On the other hand, Reddy et al. has shown that the presence of FLT3-

ITD mutation alters the concentration of NADPH, a substrate of NOX (Reddy et al., 

2011). 

 Several oncogenes have been shown to increase the expression of NOX 

catalytic subunits. (Weyemi et al., 2012). However, we did not observe any changes 

in levels of NOX catalytic subunits following FLT3 inhibition (NOX1, 2, 4 and 5). 

Therefore, we investigated the expression of regulatory subunits. We showed that 
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FLT3-ITD drives the stabilisation of p22
phox

, which is a novel mechanism of NOX 

regulation by mutated FLT3. p22
phox

 is a small membrane subunit that is required for 

the formation of a functionally active NOX 1-4 complex (Bedard and Krause, 2007). 

By regulating steady levels of p22
phox

, FLT3-ITD can control the activity of NOX 

isoforms (NOX1, 2 and 4) expressed in myeloid cells (Naughton et al., 2009). 

Studies have shown that due to the stabilisation function of p22
phox

 in the NOX 

complex, p22
phox

 knockdown leads to decreased NOX activity (Ambasta et al., 

2004). Similarly to FLT3-ITD, Insulin-like growth factor (IGF-1) and foetal bovine 

serum (FBS) have been shown to activate NOX through p22
phox

 in pancreatic cancer 

cells (Edderkaoui et al., 2011). However, in the latter case, p22
phox

 was up-regulated 

transcriptionally (Edderkaoui et al., 2011). We  demonstrated that FLT3-ITD up-

regulates p22
phox

 at the post-translational level by inhibition of its degradation 

(Woolley et al., 2012). In both AML and pancreatic cancer, p22
phox

 has been shown 

to possess strong anti-apoptotic and pro-survival functions (Edderkaoui et al., 2011, 

Reddy et al., 2011). In support of these findings, similar regulation of NOX by 

oncogenes was seen in the BCR-ABL expressing CML cell line, K562 (Landry et 

al., 2013). Inhibition of BCR-ABL with Imatinib led to post-translational down-

regulation of p22
phox

 which resulted in the reduction of ROS production in these 

cells. These reports suggest that oncogenic up-regulation of the small regulatory 

subunit p22
phox

 may be a common mechanism for regulating ROS generation in 

cancers.  

Importantly, p22
phox

 degradation was also observed when two additional 

FLT3 inhibitors, AC-220 and CEP-701, were used in MV4-11 cells. This strongly 
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supports the notion that FLT3 inhibition leads to p22
phox

 degradation. Moreover, 

when the study was extended to MOLM-13 cells, which are heterozygous for FLT3-

ITD, p22
phox

-degradation was also seen. In contrast to this, PKC412-mediated FLT3 

inhibition in HL-60 cells, which express inactive FLT3-WT, did not result in a 

change in p22
phox

 protein level. This demonstrated that only active FLT3-ITD 

regulates protein level of p22
phox

. 

p22
phox

 was previously reported to localise to the ER in many cell lines of 

different origin (Weyemi et al., 2012)  However, its subcellular localisation was not 

investigated in leukaemic cells. Having established that H2O2 accumulated in the ER, 

we demonstrated colocalisation of p22
phox

 and the ER marker antibody, KDEL. 

Analysis of p22
phox

 and ER colocalisation revealed that 70% of p22
phox

 

immunostaining overlaps with KDEL. In support of this finding, this was also 

observed before in monocytes, cells of similar origin to AML cells (Lee et al., 2010). 

Although pharmacological inhibition of NOX with DPI reduced FLT3-ITD-

induced H2O2, the specific function of p22
phox

 in generation of ROS was not shown 

(chapter 3). Using two different ROS probes, we demonstrated that p22
phox

-targetted 

siRNA transfection caused a significant reduction in both total ROS and specifically 

H2O2. These results vary from previously published data by Reddy et al. which 

showed that p22
phox

 knockdown does not affect the redox status of AML cells 

(Reddy et al., 2011). However, that study was carried out in MOLM-13 cells, that 

are heterozygous for FLT3-ITD, and solely used DCF as the ROS indicator which 

was then measured with flow cytometry (Reddy et al., 2011). Based on our confocal 

microscopy, analysis of DCF staining shows an equally dispersed pattern, difficult to 
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localise subcellularly. In contrast, PO1 has demonstrated not only to be H2O2 

specific, but also more reliable in localisation studies. Disadvantages of DCF have 

also been extensively reviewed in several recent papers, hence our focus on the H2O2 

specific, PO1 probe (Chen et al., 2010). 

Importantly, p22
phox

 siRNA knockdown has caused a significant reduction in 

cellular H2O2 in the ER, which confirms the hypothesis that FLT3-ITD induced 

stabilisation of ER-resident p22
phox

 leads to the increase of H2O2. To our knowledge, 

it is one of the first studies that show a highly localised generation/accumulation of 

H2O2 in the ER. 

ROS generation has also been known for years to have detrimental and 

damaging effects on all cellular structures. One of the consequences of the increased 

ROS generation, especially in cancer is genomic instability, defined by a high 

frequency of mutations in the genome. Genomic instability has also been considered 

recently as an enabling hallmark of cancer as it allows premalignant cells to evolve 

into fully cancerous cells. We have shown that accumulation of p22
phox

 leads to H2O2 

generation at the ER. Could this H2O2 diffuse from the ER to the nucleus to cause 

DNA damage? In order to answer this question, we used a newly-developed  H2O2-

specific probe, NucPE1, which specifically localises to the nucleus (Dickinson et al., 

2011b). NucPE1 has been shown to fluoresce brightly upon reaction with H2O2 

(Dickinson et al., 2011b).  

The strong nuclear localisation of NucPE1 in leukaemic cells was confirmed 

by NucPE1 and Hoechst co-staining. In order to investigate the levels of nuclear and 
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cellular H2O2 in MV4-11 cells, we stained them with NucPE1 and PO1 respectively. 

The ability to monitor cellular and nuclear H2O2 gave us the opportunity to examine 

how redox changes in the cytosol affect nuclear H2O2. FLT3-ITD-induced nuclear 

ROS has never been studied before. In this thesis, we demonstrated using confocal 

microscopy and flow cytometry that inhibition of FLT3 leads to a reduction of both 

cytosolic and nuclear ROS in MV4-11 cells. This suggests that by stabilising p22
phox

, 

FLT3-ITD induces H2O2 generation in the ER that diffuses to the nucleus. The 

involvement of NOX in generating nuclear H2O2 was examined by DPI and VAS-

2870-mediated inhibition of NOX. Interestingly, NOX inhibition yielded a larger 

reduction in NucPE1 fluorescence than FLT3 inhibition. This is likely explained by 

NOX acting independently of FLT3 as well as through FLT3-stimulation. Moreover, 

the general activity of NOX in AML patient samples suggests that FLT3-ITD-

regulated stabilisation of p22
phox

 only potentiates NOX activity (Hole et al., 2013). 

Interestingly, a study was published subsequently to our work reporting that MOLM-

13 and THP-1 cells produce a reduced amount of nuclear H2O2 following NOX 

inhibition, as measured with NucPE1(Guida et al., 2014). 

 Specific knockdown of p22
phox

 reduced H2O2 in the ER. Interestingly, the 

same knockdown also reduced nuclear H2O2. Since p22
phox

 is an essential subunit of 

NOX1-4 isoforms, we suspect that these are the isoforms that are involved in 

endogenous ROS production. NOX 1, 2 and 4 are the isoforms that have been 

previously reported to be expressed in myeloid cells (Reddy et al., 2011, Lee et al., 

2010). Furthermore, specific NOX4 knockdown has been demonstrated to reduce 
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nuclear ROS production in myelodysplastic syndromes (MDS), a disease closely 

related to AML (Guida et al., 2014). 

 In addition to confocal microscopy, we quantified PO1 and NucPE1 staining 

by flow cytometry that allowed us to analyse a larger population of cells. This 

analysis revealed about 20% reduction in cytosolic and nuclear H2O2 following 

p22
phox 

siRNA knockdown. This change corresponds strongly to the decrease 

previously seen with PKC412-mediated FLT3 inhibition. This suggests that the H2O2 

production by FLT3-ITD involves p22
phox

-dependent stabilisation of NOX. Initially, 

this result seems to contrast the data published by Reddy et al., where it was 

suggested that even though p22
phox

 is a potent regulator of growth and migration in 

MOLM-13 cells, mitochondria were the main ROS source stimulated by FLT3-ITD 

(Reddy et al., 2011). However, the levels of ROS following the p22
phox

 knockdown 

were assessed using DCF, which corresponds to the total ROS level. On the other 

hand, we have shown that p22
phox

 knockdown specifically down-regulates H2O2 in 

the ER when measured with PO1. Moreover, we used MV4-11 cells that are 

homozygous for FLT3-ITD mutation, rather than MOLM-13 that are heterozygous 

for FLT3-ITD. NOX enzymes were previously suggested to regulate ROS generation 

downstream of FLT3-ITD by interaction of Rac1 with phosphorylated STAT5 

(Sallmyr et al., 2008a). The knockdown of either proteins resulted in a significant 

reduction of endogenous ROS (Sallmyr et al., 2008a). The involvement of Rac1 

suggests that the NOX1 and 2 are activated by this interaction, but not NOX3 as this 

isoform is not expressed in myeloid cells (Bedard and Krause, 2007). In addition to 

this, it has recently been demonstrated that Rac1 could additionally activate NOX4 
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(Hajas et al., 2013). This suggests that NOX1, 2 and 4 could be regulated by Rac1-

STAT5 interaction.  

 Reactive chemistry of ROS forces their generation to be localised close to 

their target (Mishina et al., 2011). We have shown that p22
phox

 siRNA knockdown 

affects the redox environment of the nucleus as the concentration of nuclear H2O2 

was reduced following the siRNA transfection. This suggested that NOX/p22
phox

-

generated H2O2 should be produced near to or even in the nucleus. Out of 7 NOX 

isoforms, NOX4 has been previously shown to be localised to the nucleus (Hajas et 

al., 2013, Kuroda et al., 2005, Matsushima et al., 2013, Spencer et al., 2011). H-

RAS-induced NOX4/p22
phox

 complex has been localised to the nuclear fraction of 

the lysed HThy-ori3 cells (Weyemi et al., 2012). Furthermore, NOX4 was shown to 

localise to the nucleus in cells similar to ours, including MOLM-13, THP-1 and 

MDS patient samples (Guida et al., 2014). Surprisingly, in the AML model, staining 

of NOX4 with Hoechst did not reveal any NOX4 foci present in the nucleus. 

Although plausible for our hypothesis, the high content of hydrophobic residues in 

the transmembrane region of NOX4 may not allow NOX4 to form a functional 

protein in the nucleus. However, it has been published recently that the 28 kDa splice 

variant of NOX4, which lacks the putative transmembrane domains, localised to the 

nucleus where it produces H2O2 in vascular cells (Anilkumar et al., 2013). 

DNA within the cell is enclosed by the nuclear membrane, where membrane-

bound NOX4 could possibly generate H2O2. Thus, we have co-stained MV4-11 cells 

with nuclear pore marker (NUP98) and antibodies against the NOX4/p22
phox

 

complex. The colocalisation study revealed that a significant portion of 



Chapter 4: FLT3-ITD-activated NOX affects redox status in AML cells. 

 

 

108 

 

NOX4/p22
phox

 overlapped with nuclear membrane. Interestingly, this result was later 

confirmed in a study showing that NOX4 localised to the nuclear membrane with 

GTP-bound Rac1 in the alveolar epithelial cells (Hajas et al., 2013). This would 

suggest that possibly NOX4 could interact with Rac1, a GTPase previously 

implicated in AML at the nuclear membrane.  

 In summary, this work has shown that FLT-ITD stimulates ROS-generation 

from NOX by stabilising p22
phox

, a small membrane component of the NOX 

complex. We have demonstrated that this p22
phox

 localises to the ER, where H2O2 

was accumulating. The H2O2 generation at the ER is reduced following the 

pharmacological inhibition of FLT3, NOX or the siRNA knockdown of p22
phox

. 

Moreover, NOX-generated H2O2 downstream of FLT3-ITD changes the levels of 

H2O2 in the nucleus in MV4-11 cells. The localisation experiment has shown that 

NOX4 and p22
phox

 localises to the nuclear membrane in these cells, suggesting that 

H2O2 generated at NOX diffuses into the nucleus. 
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Introduction 

Genomic instability has been suggested to be the main cause of genetic 

diversity of cancer that ultimately leads to tumour cell evolution. It was proposed 

that tumour cells must acquire some form of genomic instability, because the normal 

rate of mutation is insufficient to provide the number of mutations required for the 

oncogenic transformation (Sieber et al., 2003, Loeb et al., 2003, Sallmyr et al., 

2008b). In AML the evolution of a leukaemic clone is accompanied by the 

acquisition of increased number of genetic defects, which lead to increased cell 

survival, proliferation and a halt in differentiation towards functional white blood 

cells.  

There are several mechanisms implicated in genomic instability (Burrell et 

al., 2013). For example, ROS production has been associated with genomic 

instability due to the damaging DNA oxidation. Cancer cells often possess increased 

levels of DNA damage along with increased ROS production (Waris and Ahsan, 

2006, Cooke et al., 2003), suggesting that mutagenesis by ROS can contribute to the 

initiation of cancer as well as its promotion and progression.  

Oxidative DNA damage can cause a wide range of DNA alterations such as 

base pair mutations, deletions and insertions (Cooke et al., 2003). Although all ROS 

possess oxidative characteristics, only few of them, for instance hydroxyl radical 

(OH·), have a capacity to damage DNA (Cooke et al., 2003). While superoxide anion 

and H2O2 have not been shown to damage DNA directly, they can undergo a series 

of reactions that will lead to generation of mutating OH· (Henle and Linn, 1997). For 
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example H2O2 can be converted into OH· in the presence of iron in the Fenton 

reaction (Henle and Linn, 1997). The extremely reactive chemistry of OH· suggests 

that in order to damage DNA, it must be generated in the nucleus. Therefore, ROS 

should be produced in or in the proximity of the nucleus to form OH· close to DNA, 

that can in turn cause DNA damage (Mishina et al., 2011). Moreover, the presence of 

endogenous ROS in the nucleus can modify how cells respond to stress and regulate 

the genes’ expression of proteins that are responsible for cell proliferation, survival 

and differentiation (Wu, 2006).  

ROS-induced genotoxic stress could be an important source of resistance to 

drugs (Karihtala and Soini, 2007). Although a significant progress has been made in 

the success of chemotherapies against cancer over the last few decades, ultimately 

many patients stop responding to the therapy due to acquisition of chemoresistance. 

Adaptation to higher concentration of ROS by stimulation of survival mechanisms 

and antioxidant systems could give cells a mechanism for the induction of resistance 

to drugs (Trachootham et al., 2008).   

An alternative mechanism for the generation of genomic instability is 

associated with unfaithful or insufficient repair of DNA damage, for instance, dsb 

repair or replicative stress (Sieber et al., 2003, Pelicano et al., 2004). Cells possess a 

complex network of DNA repair mechanisms to prevent accumulation of genetic 

mutations that could arise from the oxidative stress. DNA dsbs are one of the most 

dangerous lesions that can results in deletions, insertions and translocations of DNA. 

There are two DNA repair mechanisms responsible for DNA dsb repair: a precise 

homologous recombination (HR) and a less-precise non-homologous end-joining 
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(NHEJ) (Sallmyr et al., 2008b). The accuracy of the DNA dsb repair depends highly 

on the requirement of the homologous DNA duplex. Furthermore, recent studies 

suggest that a novel, alternative end-joining (A-EJ) plays a significant role in cancer 

cells (Sallmyr et al., 2008b). The alternative NHEJ often subjects DNA to severe 

errors, such as deletions and translocations.  

In AML, the presence of mutated FLT3-ITD in patients leads to an increased 

relapse risk after chemotherapy. In leukaemia, oncogenic signalling from FLT3-ITD 

and BCR-ABL has been demonstrated to increase expression of unfaithful A-EJ 

DNA repair proteins with a simultaneous down-regulation of DNA repair members 

of the faithful NHEJ (Fan et al., 2010). Interestingly, it was also shown that 

increased efficiency of FLT3-ITD-stimulated DNA repair contributes to drug-

resistance (Seedhouse et al., 2006). These findings suggest that oxidative stress and 

alterations in DNA repair could lie in the basis of relapse concerns in FLT3-ITD-

positive AML.  

We have previously shown that FLT3-ITD oncogene stimulates NOX-

enzymes to generate H2O2 at the ER and nuclear membrane in AML cell lines. The 

aim of this chapter is to investigate if mutated FLT3-ITD is able to induce oxidative 

DNA damage by activation of NOX enzymes. This knowledge could reveal the role 

of NOX-generated ROS in genomic instability in FLT3-ITD-positive AML.  
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Results 

 In previous chapters, we established that FLT3-ITD stimulates H2O2 

generation in the ER. This formation of H2O2 is attenuated when FLT3 is inhibited 

with the tyrosine kinase inhibitor, PKC412. Moreover, level of H2O2 is also reduced 

when FLT3-ITD possessing MV4-11 cells are treated with a NOX inhibitor, DPI. 

We also demonstrated that mutated FLT3-ITD regulates NOX enzymes by inhibiting 

degradation of p22
phox

. Confocal microscopy following a specific p22
phox

-targeted 

siRNA knockdown revealed a reduction of H2O2 in the ER in the anti-p22
phox

 siRNA 

treated cells. In order to investigate possible effects of NOX-generated ROS on 

genomic instability in AML, levels of nuclear H2O2 were investigated. Attenuation of 

FLT3 signalling, NOX activity or p22
phox

 siRNA knockdown all led to significant 

reduction in the oxidative state in the nucleus. Furthermore, the localisation study of 

NOX4 and p22
phox

 demonstrated that they both localised to the nuclear membrane in 

MV4-11 cells. This suggests that the stimulation of NOX activity by the FLT3-ITD 

oncogene contributes to the genomic instability in AML cell lines.  

 In this chapter, in addition to FLT3-ITD expressing MV4-11 AML cell line, 

we also employed an over-expression FLT3 system. FLT3-WT or mutated FLT3-

ITD plasmids were stably transfected into 32D cells. 32D is a murine immortalised 

myeloblast-like cell line that is grown in IL-3 supplemented medium. Following 

transfection, due to a strong cytokine-like FLT3-ITD signalling, 32D/FLT-ITD 

expressing cells became IL-3 independent (Mizuki et al., 2000, Fenski et al., 2000). 

In order to confirm the expression and phosphorylation status of the FLT3 receptor 

in the 32D-transfected cells, Western blotting of anti-FLT3 and anti-phosphorylated 
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FLT3 (P-FLT3) was carried out. The analysis revealed expression of FLT3-ITD in 

32D/FLT3-ITD cells and expression of FLT3-WT in 32D/FLT3-WT (Figure 3.1.a). 

Phosphorylation of STAT5 was also investigated to confirm the signalling 

differences between 32D/FLT3-WT and 32D//FLT3-ITD. As expected, FLT3/WT 

did not lead to phosphorylation of STAT5 (P-STAT5), whereas FLT3/ITD 

manifested a strong P-STAT5 signal (Figure 3.1.b). Moreover, treatment of 

32D/FLT3-ITD cells with PKC412, a FLT3-selective tyrosine kinase inhibitor, led to 

dephosphorylation of FLT3-ITD (Figure 3.1.c).  

Levels of H2O2 in 32D cells transfected with FLT3-WT or FLT3-ITD. 

 In previous chapters we showed that inhibition of FLT3-ITD results in the 

depletion in H2O2. In order to analyse how FLT3/ITD compares to FLT3/WT 

signalling regarding H2O2 formation in 32D cells, we utilised the PO1 probe. To 

remove IL-3 signalling, we starved 32D cells for 4 h before the experiment. IL-3 is a 

potent cytokine that affects similar pathways to FLT3-ITD, thus its presence in the 

medium could mask potential FLT3-ITD-signalling effects. Quantification of PO1 

fluorescence demonstrated that 32D cells transfected with FLT3-ITD possess 

approximately 100% more H2O2 than 32D cells expressing FLT3-WT (Figure 3.2).  
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Figure 3.1. Expression and phosphorylation of FLT3 and FLT3/ITD and its effects 

on signalling in 32D cells transfected with FLT3-WT or FLT3-ITD. a) Western 

blotting analysis of  FLT3 expression in 32D/FLT3-WT or 32D/FLT3-ITD lysed 

cells. The top band represents the mature glycosylated  FLT3 (160 kDa). The  

lower band represents the immature unglycosylated FLT3 (130 kDa). b) Western 

blotting of phosphorylated STAT5 (P-STAT5) in 32D/FLT3-WT or 

32D/FLT3/ITD lysed cells. c) Western blotting of phosphorylated FLT3 (P-FLT3) 

and total FLT3 in vehicle treated (DMSO) or PKC412 treated 32D/FLT3-ITD 

cells. Tubulin was used as a loading control in both immunoblots.
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Figure 3.2.  Level of H2O2 in 32D cell line transfected with FLT3-WT or FLT3-

ITD receptor. a) FACS analysis of relative PO1 fluorescence of 32D cells 

transfected with FLT3-WT (grey) or FLT3-ITD (red). b) Bar chart representation 

of FACS results in a). Results are shown as relative geometric mean SD. Results 

are representative of at least 3 independent experiments. Statistical analysis was 

carried out using the student t-test (p<0.05 is marked with *).
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Levels of H2O2 in 32D cells transfected with FLT3-WT or FLT3-ITD following 

NOX or FLT3-ITD inhibition.  

In order to investigate the extent of ROS induction by FLT3-expression we 

used PKC412 to inhibit FLT3 in 32D cells. PKC412 treatment of 32D/FLT3-ITD 

resulted in a 30% decrease in the level of H2O2, based on the PO1 probe analysed by 

flow cytometry (Figure 3.3). In contrast, 100 nM PKC412 did not affect the level of 

H2O2 in 32D cells transfected with FLT3-WT. To further examine the role of NOX 

in H2O2 production in 32D cells, we employed DPI, a previously used NOX 

inhibitor. Using PO1 probe, we demonstrated that DPI treatment depleted the H2O2 

pool by 30% in the 32D cells expressing FLT3-ITD, the effect that mimicked FLT3 

inhibition. Interestingly, inhibition of NOX with DPI in 32D/FLT3-WT cells did not 

reduce endogenous H2O2 levels (Figure 3.3). 

Nuclear H2O2 levels in 32D cells transfected with FLT3-WT or FLT3-ITD. 

 Having confirmed the changes in the redox state when either FLT3-ITD or 

FLT3-WT was expressed in 32D cells, we decided to investigate if the endogenously 

produced H2O2 was affecting levels of H2O2 in the nucleus. This was necessary to 

ensure that the FLT3 over-expression cell lines could be used to investigate genomic 

instability in these cells. We demonstrated using NucPE1 that FLT3-ITD expression 

in 32D cells resulted in an approximately 25% increase in the nuclear ROS in 

comparison to cells expressing FLT3-WT (Figure 3.4).  

  



Chapter 5: NOX-generated ROS damage DNA in FLT3-ITD positive AML cells. 

 

 

118 

 

   

Figure 3.3. Level of H2O2 in 32D cell line transfected with FLT3-WT or FLT3-

ITD receptor, following NOX or FLT3-ITD inhibition. Bar chart representation of 

a FACS analysis of relative PO1 fluorescence of 32D cells transfected with FLT3-

WT or FLT3-ITD following treatment with DPI 1 μM or PKC412 100 nM. 

Results are shown as relative geometric mean SD. Results are representative of 

at least 3 independent experiments. Statistical analysis was carried out using the 

student t-test (p<0.05 is marked with *).
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Figure 3.4. Level of nuclear H2O2 in 32D cell line transfected with FLT3-WT or 

FLT3-ITD receptor, as measured with NucPE1. a) FACS analysis of relative 

NucPE1 fluorescence of 32D cells transfected with FLT3-WT (grey) or FLT3-

ITD (red). b) Bar chart representation of FACS results in a). Results are shown as 

relative geometric mean SD. Results are representative of at least 3 independent 

experiments. Statistical analysis was carried out using the student t-test (p<0.05 is 

marked with *).
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Mitochondrial ROS in 32D cells transfected with FLT3-WT or FLT3-ITD. 

 Since mitochondria were previously suggested to be implicated in the redox 

status of FLT3-expressing cell line, we decided to measure mitochondrial ROS in 

both FLT3-WT and FLT3-ITD expressing 32D cells (Reddy et al., 2011). 

Interestingly, there was no significant difference noted in mitochondrial ROS, as 

measured with MitoSOX fluorescence analysis, using flow cytometry (Figure 3.5).  

 Level of DNA dsbs in FLT3-WT and FLT3-ITD expressing cells. 

 In order to study genotoxic stress in FLT3-ITD leukaemia, we employed 

gamma H2AX (γH2AX) immunofluorescence. H2AX is a nucleosome core histone 

and induction of DNA dsbs triggers its phosphorylation in cells. The phosphorylated 

H2AX is referred to as γH2AX and it has become one of the most commonly used 

measure of DNA dsbs (Valdiglesias et al., 2013). At first, we followed the 

previously used immunofluorescence protocol with paraformaldehyde (PFA) based 

fixation step. However, this protocol did not reveal an expected punctuate staining of 

γH2AX foci (Figure 3.6.a). Therefore, we applied a protocol previously published by 

Sallmyr et al. (Sallmyr et al., 2008a). The latter procedure requires fixation by 70% 

cold ethanol treatment. This protocol greatly improved the staining, revealing a clear 

γH2AX foci (Figure 3.6.b). 
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Figure 3.5. Level of mitochondrial ROS in 32D cell line transfected with FLT3-

WT or FLT3-ITD, as measured with MitoSOX. a) FACS analysis of relative 

MitoSOX fluorescence of 32D cells transfected with FLT3-WT (grey) or FLT3-

ITD (red). b) Bar chart representation of FACS results in a). Results are shown as 

relative geometric mean SD. Results are representative of at least 3 independent 

experiments. Statistical analysis was carried out using the student t-test (p<0.05 is 

marked with *).
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Figure 3.6. Comparison of the number of DNA dsbs in HL-60 cells and MV4-11 

cells, using  γH2AX immunofluorescence. a) Optimisation of γH2AX staining 

using different antibody concentrations in MV4-11 cells. Left image presents 

γH2AX immunofluorescence using 4% PFA/PBS as a fixation agent. Right 

image shows γH2AX immunofluorescence using ethanol as a fixation agent. b) 

Cells were incubated on the poly-D-lysine coated coverslips for 16 h. Cell were 

then fixed in ethanol and followed by γH2AX and Hoechst staining. The scale 

bar represents 10 μm.
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Before pursuing genomic instability studies in the 32D over-expression 

system, we investigated DNA damage levels in cell lines expressing FLT3-WT (HL-

60) and FLT3-ITD (MV4-11). Confocal microscopy of γH2AX immunofluorescence 

revealed its nuclear localisation and punctuate pattern of staining. Based on analysis 

of γH2AX immunostaining, FLT3-WT expressing HL-60 cells showed fewer DNA 

dsbs that FLT3-ITD-expressing MV4-11 (Figure 3.6).  

 In order to accelerate the quantification of γH2AX staining per cell, flow 

cytometry was used as an analytical tool rather than confocal microscopy (Figure 

3.7). MV4-11 cells that are homozygous for FLT3-ITD mutation possessed the 

highest number of DNA dsbs. Also MOLM-13 cells, which are heterozygous for 

FLT3-ITD, displayed approximately 20% less DNA dsbs. Finally, FLT3-WT 

expressing only HL-60 showed 30% less DNA dsbs than MV4-11 cells.  

 The same dsb-marker, γH2AX was used to investigate DNA damage in cells 

transfected with FLT3-WT or FLT3-ITD. 32D/FLT3-ITD cells showed 

approximately 75% more DNA dsbs than 32D/FLT3-WT cells (Figure 3.8).  

Oxidised DNA levels in 32D cells transfected with FLT3-WT or FLT3-ITD  

 FLT3-ITD has been demonstrated to alter the repair of DNA dsbs which 

could lead to changes in the levels of dsbs independent of ROS. In order to compare 

oxidative damage of DNA in FLT3-ITD versus FLT3-WT expressing 32D cells, we 

employed a second DNA damage marker, 8-hydroxy-2'-deoxyguanosine (8- 
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Figure 3.7. Levels of DNA dsbs in HL-60, MOLM-13 and MV4-11, using 

γH2AX immunofluorescence. a) FACS analysis of relative anti-γH2AX

fluorescence of MV4-11 cells (grey), MOLM-13 cells (red) and HL-60 cells 

(green). b) Bar chart representation of FACS results in a). Results are shown as 

relative geometric mean SD. Results are representative of at least 3 independent 

experiments. Statistical analysis was carried out using the student t-test (p<0.05 is 

marked with *).
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Figure 3.8. Level of DNA dsbs in 32D cell line transfected with FLT3-WT or 

FLT3-ITD receptor, as measured with γH2AX immunofluorescence. a) FACS 

analysis of relative anti-γH2AX fluorescence of 32D cells transfected with FLT3-

WT (grey) or FLT3-ITD (red). b) Bar chart representation of FACS results in a). 

Results are shown as relative geometric mean SD. Results are representative of 

at least 3 independent experiments. Statistical analysis was carried out using the 

student t-test (p<0.05 is marked with *).
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OHdG). 8-OHdG is a predominant form of ROS-induced DNA lesion and therefore 

is widely used as a biomarker of oxidative stress (Valko et al., 2004). The 

immunofluorescence of anti-8-OHdG, quantified using flow cytometry revealed that 

32D/FLT3-ITD cells possess over 100% more 8-OHdG than their wild type 

counterparts (Figure 3.9).  

DNA dsbs levels in 32D cells expressing FLT3-WT or FLT3-ITD, following the 

inhibition of NOX or FLT3-ITD.  

In previous chapters we showed that NOX enzymes generate ROS in the 

FLT3-ITD expressing MV4-11 cells. We also demonstrated that there is a significant 

difference between level of oxidative DNA damage in 32D/FLT3-WT and 

32D/FLT3-ITD. In order to investigate the source of DNA damage in 32D cells 

transfected with FLT3-ITD, we used DPI, a NOX-selective inhibitor. When 32D 

cells expressing either FLT3-WT or FLT3-ITD were treated with DPI, a 30% 

decrease in γH2AX was noted in 32D/FLT3-ITD. In contrast, a 20% increase in 

γH2AX was observed in 32D/FLT-WT (Figure 3.10).  

PKC412 treatment of 32D/FLT3-ITD cells led to a reduction in the 

endogenous levels of H2O2. We investigated if the PKC412-mediated FLT3 

inhibition in 32D cells would lead to a reduction in DNA dsbs levels. PKC412 

treatment, over a 24 h period resulted in a 40% decrease in γH2AX fluorescence. To 

confirm specificity of the PKC412-induced effects, the same treatment was applied 

to 32D/FLT3-WT cells. This did not decrease the number of DNA dsbs (Figure 

3.10). 
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Figure 3.9. Level of oxidised DNA in 32D cell line transfected with FLT3-WT or 

FLT3-ITD receptor, as measured with 8-OHdG immunofluorescence. a) FACS 

analysis of relative anti-8-OHdG fluorescence of 32D cells transfected with 

FLT3-WT (grey) or FLT3-ITD (red). b) Bar chart representation of FACS results 

in a). Results are shown as relative geometric mean SD. Results are 

representative of at least 3 independent experiments. Statistical analysis was 

carried out using the student t-test (p<0.05 is marked with *).
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FLT3-ITD receptor, following NOX or FLT3-ITD inhibition, as measured with 

γH2AX immunofluorescence. Bar chart of FACS analysis of anti-γH2AX
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Reversible FLT3-ITD inhibition effects on the levels of DNA damage in MV4-11 

cells. 

To investigate if the oxidised DNA damage could be readily reversed in 

MV4-11 cells, we used PKC412 and DPI inhibitors. At first we treated cells with 

PKC412 for 24 h, which resulted in a 35% reduction of 8-OHdG. Upon removing 

PKC412 and allowing the cells to recover for 16 h, the level of 8-OHdG almost 

returned to 100%. Importantly, when PKC412 removal was followed by the addition 

of DPI to the recovery conditions 8-OHdG only declined by 5-10% (Figure 3.11).  

 DNA dsbs are one of the most serious DNA lesions. The protocol used in the 

previous paragraph was also applied to measure the reversibility of DNA dsbs in 

FLT3-ITD expressing MV4-11 cells. PKC412 treatment reduced the level of DNA 

dsbs by 20%. The 24 h recovery period from the drug resulted in the regeneration of 

DNA dsbs in these cells (Figure 3.12). However, the increase in the level of DNA 

dsbs was slightly higher than that in the control. This may be due to the fact that the 

PKC412 inhibitor may distinctly affect 8-oxoguanine/γH2AX generating and 

repairing pathways. The removal of FLT3-inhibitor led to an immediate stimulation 

of the major oncogene signalling pathway in these cells. This may have led to a 

temporary up-regulation/down-regulation of certain pathways that would result in 

the increase in the γH2AX e.g. DNA dsb repair. Importantly, when the cells were 

treated with DPI during the recovery time, restoration of the initial number of DNA 

dsbs was partially prevented. These data suggested that FLT3 and NOX-generated 

DNA damage could be reversed by inhibiting either of these proteins. 
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Figure 3.11.  Reversible FLT3-ITD inhibition effects on the levels of oxidised 

DNA in MV4-11 cells. a) FACS analysis of relative anti-γH2AX fluorescence of 

MV4-11 cells treated with  drug vehicle DMSO (grey), 50 nM PKC412 for 24 h 

(red), 50 nM PKC412 for 24 h  followed by PBS wash and 16 h recovery time 

(green), 50 nM PKC412 for 24 h  followed by PBS wash and 16 h recovery time 

in the presence of 1 µM DPI. b) Bar chart representation of FACS results in a). 

Results are shown as relative geometric mean SD. Statistical analysis was 

carried out using the student t-test (p<0.05 is marked with *).
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Figure 3.12.  Reversible FLT3-ITD inhibition effects on the levels of DNA dsbs

in MV4-11 cells. a) FACS analysis of relative anti-γH2AX fluorescence of MV4-

11 cells treated with  drug vehicle DMSO (grey), 50 nM PKC412 for 24 h (red), 

50 nM PKC412 for 24 h  followed by PBS wash and 16 h recovery time (green), 

50 nM PKC412 for 24 h  followed by PBS wash and 16 h recovery time in the 

presence of 1 µM DPI. b) Bar chart representation of FACS results in a). Results 

are shown as relative geometric mean SD. Statistical analysis was carried out 

using the student t-test (p<0.05 is marked with *).
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Effects of p22
phox

 siRNA knockdown on oxidative DNA damage in MV4-11 cells. 

We showed that FLT3-ITD regulated NOX proteins via the stabilisation of 

p22
phox

 subunit. Moreover, we demonstrated that specific p22
phox

 siRNA knockdown 

reduced the level of nuclear H2O2, implying that p22
phox

 as a component of NOX 

could play a role in oxidative DNA damage in these cells. In order to examine this 

hypothesis, we analysed 8-OHdG immunofluorescence in cells transfected with 

control siRNA or anti-p22
phox

 siRNA. Western blot analysis revealed that level of 

p22
phox 

protein was reduced 24 h post siRNA transfection (Figure 3.13.a). The same 

cells were also stained for 8-OHdG and analysed by flow cytometry (Figure 3.13.b) 

c). Scrambled siRNA treated cells (control) showed 30% more 8-OHdG than the 

cells transfected with siRNA directed against p22
phox

 (Figure 3.13.b and c).  

Once we established that p22
phox

 was necessary for NOX-generated ROS to 

oxidatively damage DNA, we examined if it could also cause DNA dsbs in MV4-11 

cells. The γH2AX immunofluorescence was examined using flow cytometry at 24 h 

post-transfection. MV4-11 cells transfected with p22
phox

 siRNA were observed to 

have 30% less DNA dsbs than control cells (Figure 3.14.a and b). 

Effects of NOX4 siRNA knockdown on H2O2 in MV4-11 cells 

In chapter 4, we localised NOX4 to the nuclear membrane. In order to 

examine if NOX4 plays a role in genomic instability in FLT3-ITD expressing cells,  
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p22phox siRNA (red). c) Bar chart representation of FACS results in b). Results are 

shown as relative geometric mean SD. Statistical analysis was carried out using 

the student t-test (p<0.05 is marked with *).
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we utilised an siRNA knockdown approach. Firstly, using Western blotting we 

confirmed a successful NOX4 knockdown. While siRNA sequences A and C did not 

seem to change the NOX4 expression at the protein level, NOX4 siRNA B 

significantly reduced the amount of NOX4 protein in these cells (Figure 3.15.a). 

Secondly, we examined if NOX4 was generating H2O2 in MV4-11 cells. 

MV4-11 cells transfected either with scrambled siRNA or NOX4-targeted siRNA 

were stained with the H2O2-probe, PO1. Flow cytometric analysis revealed that cells 

with NOX4 protein knocked down generated 30% less H2O2 than the control cells 

(Figure 3.15.b and c). 

 To demonstrate that NOX4 was the NOX isoform responsible of redox 

changes in the nucleus, we employed the NucPE1 probe on the siRNA treated cells. 

Following NOX4 protein down-regulation MV4-11 cells produced about 20% less of 

the nuclear H2O2 than the scrambled siRNA treated cells, as analysed using flow 

cytometry (Figure 3.16.a and b).  

Effects of NOX4 siRNA knockdown on DNA dsbs in MV4-11 cells. 

 Once we established that NOX4 was localised to the nuclear membrane and 

was responsible for changes in the level of H2O2 in the nucleus, we examined if 

NOX4-generated H2O2 could cause DNA damage in MV4-11 cells. This could link 

NOX4 activity to genomic instability in AML cells. Using flow cytometry, we 

examined the number of DNA dsbs, 24 h post-transfection. We demonstrated that 
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NOX4 siRNA knockdown led to approximately 20% reduction in the number of 

DNA dsbs in FLT3-ITD expressing MV4-11 cells (Figure 3.17).  
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p22
phox

 expression in 32D/FLT3-WT or 32/FLT3-ITD cells 

 Steady state levels of p22
phox

 were dramatically reduced following FLT3 

inhibition in MV4-11 cells and MOLM-13 cell lines (Figure 2.2/2.3). In order to 

demonstrate this in 32D cells, we compared p22
phox

 protein levels in cells expressing 

FLT3-WT, FLT3-ITD and following PKC412 inhibition or IL-3 starvation. Western 

blotting analysis of p22
phox 

revealed that the cells transfected with FLT3-ITD 

possessed a higher level of p22
phox 

than their wild type counterparts (Figure 3.18), 

which expressed very low levels of the protein. Similarly to MV4-11 cells, the 

inhibition of FLT3 receptor with PKC412 over 24 h caused a partial decrease in 

p22
phox 

expression. IL-3 starvation resulted in a slight down-regulation of p22
phox

. 

This is not surprising as IL-3 has been shown to activate the AKT pathway, which in 

turn has been implicated in stimulating p22
phox

 expression (Songyang et al., 1997, 

Edderkaoui et al., 2011). 

Effects of p22
phox

 knockdown on cellular H2O2 in 32D cells transfected with 

FLT3-WT or FLT3-ITD. 

We concluded that NOX4/p22
phox

 complex was producing DNA-damaging 

H2O2 in FLT3-ITD expressing MV4-11 cells. How much of this NOX-generated 

H2O2 was stimulated by FLT3-ITD signalling was still not clear. Specific p22
phox

 

siRNA knockdown in 32D cells, allowed us to investigate the effects of p22
phox

-

dependent NOX isoforms in cells expressing wild type or mutant FLT3. 
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Figure 3.18. p22phox expression in 32D cells, transfected with FLT3-WT or FLT3-

ITD following IL-3 starvation or FLT3 inhibition. Western blotting analysis of 

p22phox protein expression, followed by no treatment (IL-3+), 16 h IL-3 

starvation (IL-3-), PKC412 100 nM without  IL-3 starvation (PKC412 100 nM

IL3+), or PKC412 100 nM with IL-3 starvation (PKC412 100 nM IL3-) in 32D 

cells transfected with FLT3-WT or FLT3-ITD. GAPDH was used as a loading 

control.
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In order to confirm the siRNA knockdown, p22
phox

 protein levels were analysed 

using Western Blotting 24 h post siRNA transfection (Figure 3.19.a). This analysis 

revealed that p22
phox

 siRNA sequence B was successful at down-regulating p22
phox

. 

In the next step, using PO1 we decided to measure endogenous H2O2 in 32D/FLT3-

WT treated either with scrambled siRNA or p22
phox

 siRNA. We did not observe any 

differences between control and p22
phox

 depleted 32D cells transfected with FLT3-

WT (Figure 3.19.b). 

p22
phox 

effects on production of H2O2 were then investigated in 32D cells 

expressing FLT3-ITD. Firstly, Western blotting confirmed protein depletion 24 h 

post transfection (Figure 3.20.a). Cellular H2O2 was reduced by over 20% in cells 

treated with p22
phox

 siRNA in comparison to control treated cells (Figure 3.20.b). 

This result confirmed p22
phox

-mediated effects occurring downstream of activated 

mutant FLT3. 

Effects of p22
phox

 knockdown on DNA dsbs in 32D/FLT3-ITD and 32D/FLT3-

WT cells. 

In the previous figures we showed that p22
phox

 is a key partner driving ROS 

formation downstream of FLT3-ITD signalling. In order to examine if p22
phox

-driven 

H2O2 contributes to the difference in the level of DNA damage between FLT3-WT 

or FLT3-ITD expressing 32D cells, we analysed γH2AX immunofluorescence of 

post-p22
phox

-transfected cells. p22
phox

-depleted FLT3-ITD-expressing 32D cells 

possessed 20% less DNA dsbs than their control counterparts (Figure 3.21.a). 

Moreover, analogous p22
phox

 knockdown did not affect DNA dsbs in  
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32D cells expressing FLT3-WT (Figure 3.21.b). 

Effects of NOX4 siRNA knockdown on cellular H2O2 in 32D cells, transfected 

with FLT3-ITD.  

 So far we have established that FLT3-ITD stabilised p22
phox

, which through 

NOX activation mediated DNA damage formation. This could possibly lead to 

genomic instability in these cells. MV4-11 cells were shown to express NOX4 at 

their nuclear membrane. Knockdown of NOX4 in these cells led to a reduction in 

nuclear H2O2 and DNA dsbs. In order to examine NOX4 function in murine 

32D/FLT3-ITD cells, we next decided to knock down NOX4 using siRNA 

transfection. Treatment with the siRNA sequence against murine NOX4 resulted in a 

decrease in a NOX4 steady protein level (Figure 3.22.a). 32D/FLT3-ITD cells 

depleted of NOX4 were shown to possess 30% less endogenous H2O2, as measured 

with PO1 (Figure 3.22.b). Moreover, γH2AX fluorescence of the NOX4 siRNA 

treated cells revealed that the number of DNA dsbs was decreased by over 30% in 

relation to the scrambled siRNA treated cells (Figure 3.22.c). Unexpectedly, NOX4 

knockdown (30%) led to a larger effect than p22
phox

 knockdown (20%). 

Effects of NOX1 siRNA knockdown on cellular H2O2 in 32D cells, transfected 

with FLT3-ITD. 

 We established an association between FLT3-ITD, p22
phox

 and NOX4 in 

contributing to genomic instability in FLT3-ITD-expressing cells. However, since 

FLT3-ITD regulates NOX activity through p22
phox

 stabilisation, it should be  
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Figure 3.22. Effects of NOX4 siRNA knockdown on cellular H2O2 in 32D cells, 

transfected with FLT3-ITD. a) Western blotting analysis of NOX4 expression, 24 

h following the siRNA nucleofection. GAPDH was used as a loading control. b) 

Bar chart representation of  flow cytometric analysis of  relative mean % PO1 

fluorescence, 24 h following the NOX4 siRNA knockdown in 32D/FLT3-ITD. c) 

Bar chart representation of  flow cytometric analysis of  relative mean % γH2AX 

fluorescence, 24 h following the NOX4 siRNA knockdown in 32D/FLT3-ITD. 

Results are shown as relative geometric mean SD. Statistical analysis was 

carried out using the student t-test (p<0.005 is marked with *). 
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investigated if other p22
phox

-dependent NOX isoforms also coul play a role in 

genomic instability in these cells. Myeloid cells have previously been shown to 

express NOX1, NOX2, NOX4 and NOX5 (Naughton et al., 2009, Lee et al., 2010). 

However, murine 32D cells do not have the Nox5 gene. NOX1 and NOX2 are 

p22
phox

-dependant as well as NOX4, thus it is possible that they could also play a 

role in FLT3-ITD-induced genomic instability. In order to study possible NOX1 

effects in FLT3-ITD AML, we specifically knocked down NOX1 using anti-NOX1 

siRNA (Figure 3.23.a). Endogenous level of H2O2 was measured using PO1, 

between control cells and NOX1 siRNA treated cells. The NOX1-depleted cells had 

the same level of H2O2 as the control treated cells (Figure 3.23.b). Furthermore, 

γH2AX fluorescence was not altered by NOX1 down-regulation (Figure 3.23.c).  

Effects of NOX2 siRNA knockdown on cellular H2O2 in 32D cells, transfected 

with FLT3-ITD. 

  The last p22
phox

-dependant NOX isoform expressed in 32D cells that we did 

not investigate was NOX2. This isoform has been previously implicated, along with 

NOX4, to regulate growth and migration of FLT3-ITD expressing cells (Reddy et 

al., 2011). The NOX2 siRNA knockdown was confirmed 24 h post transfection by 

Western blotting (Figure 3.24.a). Comparison of the endogenous H2O2 levels 

between control and NOX2 siRNA treated cells was carried out using PO1. The 

analysis of PO1 fluorescence revealed 20% difference between NOX2-depleted and 

untreated cells (Figure 3.24.b). In order to investigate the  
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Figure 3.23. Effects of NOX1 siRNA knockdown on cellular H2O2 in 32D cells, 

transfected with FLT3-ITD.  a) Western blotting analysis of NOX1 expression, 24 

h following the siRNA nucleofection. GAPDH was used as a loading control. b) 

Bar chart representation of  flow cytometric analysis of  relative mean PO1 

fluorescence, 24 h following the NOX1 siRNA knockdown in 32D/FLT3-ITD. c) 

Bar chart representation of  flow cytometric analysis of  relative mean γH2AX 

fluorescence, 24 h following the NOX1 siRNA knockdown in 32D/FLT3-ITD. 

Results are shown as relative geometric mean SD. Statistical analysis was 

carried out using the student t-test (p<0.005 is marked with *).
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Figure 3.24. Effects of NOX2 siRNA knockdown on cellular H2O2 in 32D cells, 

transfected with FLT3-ITD. a) Western blotting analysis of NOX2 expression, 24 

h following the siRNA nucleofection. GAPDH was used as a loading control. b) 

Bar chart representation of  flow cytometric analysis of  relative mean PO1 

fluorescence, 24 h following the NOX2 siRNA knockdown in 32D/FLT3-ITD. c) 

Bar chart representation of  flow cytometric analysis of  relative mean γH2AX 

fluorescence, 24 h following the NOX2 siRNA knockdown in 32D/FLT3-ITD. 

Results are shown as relative geometric mean SD. Statistical analysis was 
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association between NOX2 and genomic instability in FLT3-ITD mutated AML, we 

examined DNA dsbs following NOX2 knockdown. Corresponding to the number of 

DNA dsbs, γH2AX fluorescence was reduced by over 30% in the cells treated with 

NOX2 siRNA in relation to scrambled siRNA treated cells (Figure 3.24.c). 

FLT3 ligand (FL) effects on cellular and nuclear H2O2, and DNA dsbs in 

32D/FLT3-WT cells. 

 FLT3-ITD has been reported to induce differential signalling events 

compared to activated FLT3-WT. For example, in contrast to stimulated FLT3-WT, 

FLT3-ITD causes a strong activation of STAT5 (Choudhary et al., 2009). This may 

be a result of the distinct subcellular localisations of the two (Choudhary et al., 

2009). Given that constitutively active FLT3-ITD stimulates generation of ROS and 

DNA damage, we investigated if the activated FLT3-WT had a similar effect. 

Following 16 h incubation of the FL with 32D cells transfected with FLT3-WT, we 

observed an increase in p22
phox 

expression (Figure 3.25.a b). Moreover, this was 

followed by the 44% increase in the generation of H2O2, as measured by PO1. This 

suggested that activated FLT3-WT regulated ROS-generation in a similar manner to 

FLT3-ITD.  

 In order to investigate FL-driven damaging effects of H2O2 in 32D/FLT3-WT 

cells, we investigated if H2O2 affects the redox state of the nucleus in these cells. 

Nuclear H2O2 was shown to increase by 20% following 16 h of FL stimulation as 

measured by NucPE1 fluorescence (Figure 3.26.a). This was also followed by  
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Figure 3.25. Stimulation of  32D cells expressing wild type FLT3 (FLT3-WT) 

with FLT3 ligand (FL) causes an increase in p22phox expression, increase in 

cellular H2O2. a) Western blotting of analysis of expression of p22phox following 

FLT3-WT stimulation with FL for 16 h. GAPDH was used as a loading control. b) 

Flow cytometric analysis of total cellular H2O2 as measured with PO1. The bar 

charts show relative mean fluorescence of cells treated expressed as a percentage 

of control. The mean is representative of three independent experiments. The 

asterisk indicates statistically significant difference (p<0.05) as analyzed by 

Student t-test. The error bars represent  SD.
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Figure 3.26. Stimulation of 32D cells expressing wild type FLT3 (FLT3-WT) with 

FLT3 ligand (FL) causes an increase in nuclear H2O2 and in turn an increase in 

DNA dsbs. a) Bar chart representing a flow cytometric analysis of nuclear H2O2

as measured with NucPE1. b) Flow cytometric analysis of DNA dsbs, measured 

with γH2AX following the 16 h treatment with FL.The bar charts show relative 

mean fluorescence of cells treated expressed as a percentage of control. The mean 

is representative of three independent experiments. The asterisk indicates 

statistically significant difference (p<0.05) as analyzed by Student t-test. The 

error bars represent  SD.
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over 50% increase in the number of dsbs, demonstrating the DNA damaging 

properties of FLT3-induced H2O2 (Figure 3.26.b). 
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Discussion 

The aim of this work was to investigate the NOX-driven DNA damage in 

FLT3-ITD mutated AML cells. In previous chapters, we showed that FLT3-ITD 

stimulated H2O2 generation from NOX isoforms localised at the ER. It was also 

demonstrated that FLT3-ITD stimulated NOX by p22
phox

 stabilisation. Specific 

p22
phox

 siRNA knockdown resulted in the attenuation of ROS accumulation at the 

ER and in the nucleus.  

   AML is an aggressive disease that is the most common type of acute 

leukaemia in adults. Even though the number of patients responding to initial therapy 

is growing, unfortunately the disease relapses in almost all cases unless it is 

eliminated by the additional therapy (Roboz, 2012, Peloquin et al., 2013). 

FLT3-ITD is the most common mutation in AML. Patients who are 

hemizygous for FLT3-ITD mutation are often refractory to induction chemotherapy 

(Whitman et al., 2001). Moreover FLT3-ITD carrying patients relapse more often 

and quicker than patients negative for this mutation (Stirewalt and Radich, 2003). 

This makes FLT3 an attractive target in the treatment of AML.  

 Genomic instability is an intrinsic feature of all cancers. It has been also 

proposed that genomic instability is a requirement for cancer progression (Sieber et 

al., 2003). Leukaemic oncogenes such as RAS, BCR-ABL and FLT3-ITD have been 

shown to stimulate genomic instability (Weyemi et al., 2012, Sallmyr et al., 2008b). 

However, the exact mechanism of this induction of genotoxic stress is not clear.  
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Sallmyr et al. has already shown that expression of FLT3-ITD leads to an 

increase in the ROS level (Sallmyr et al., 2008a). However, in this thesis, we 

demonstrated the specific effects of FLT3-ITD mutation on the generation of H2O2. 

It is important to distinguish between various types of ROS when studying their 

signalling/damaging effects. It is known that due to their specific oxidation 

chemistry, ROS molecules can induce different signalling events (D'Autréaux and 

Toledano, 2007). Moreover, using pharmacological inhibition of NOX or FLT3, 

H2O2 accumulation was attenuated in 32D/FLT3-ITD cells. This was not seen in 

32D/FLT3-WT cells, implying that NOX enzymes are involved in H2O2 formation 

only downstream of mutated FLT3.  

 In order for ROS to damage DNA, they must diffuse from their site of 

generation to the nucleus. Here, we showed, using NucPE1 staining that FLT3-ITD 

mutation leads to a direct alteration in the redox status of the nucleus. The difference 

in the nuclear H2O2 was substantially smaller than the difference in the total H2O2. 

This could mean that only some of the H2O2 actually reaches the nucleus. 

Alternatively, the sensitivity of the PO1 probe that was used to investigate total H2O2 

seems to be much greater than the sensitivity of NucPE1, a nuclear H2O2 probe 

(Dickinson et al., 2011b). In order to examine if mitochondria were responsible for 

the differences in H2O2 levels in transfected 32Ds, we investigated the mitochondrial 

ROS. When we compared the mitochondrial ROS levels in 32D/FLT3-ITD and 

32D/FLT3-WT, we saw no significant difference between them.  

  Following the finding of FLT3-induced H2O2 affecting the nucleus, we 

investigated if this H2O2 could lead to DNA damage and thus to genomic instability 
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in these cells. We showed using an over-expression of FLT3-WT or FLT3-ITD in 

32D cells and patient-derived HL-60 (FLT3-WT) and MV4-11 (FLT3-ITD), that 

cells carrying a mutated FLT3-ITD generate a higher level of H2O2 and DNA dsbs, 

as measured by γH2AX. The extent of FLT3-ITD induced DNA damage agrees with 

previously published work by Sallmyr et al. (Sallmyr et al., 2008a).  DNA dsbs are 

the most toxic DNA damage lesions that can lead to a variety of mutations. 

Therefore, generation of DNA dsbs is a prominent mechanism of genomic 

instability. Interestingly, pharmacological inhibition of NOX with DPI or FLT3 with 

PKC412 led to reduction in the number of DNA dsbs, suggesting that DNA damage 

can be quickly repaired following withdrawal of the damaging element. This gives 

NOX and FLT3 inhibitors a therapeutic opportunity with respect to the inhibition of 

genomic instability which could possibly slow down progression of AML.  

Although pharmacological inhibition of NOX is desirable from the 

therapeutic point of view, it carries an element of uncertainty regarding the 

specificity of the inhibitor. Even though DPI is the most commonly used NOX 

inhibitor, it has been shown to have many off-target effects (Aldieri et al., 2008). In 

order to investigate which NOX isoform is the actual molecular source of H2O2 

stimulated by FLT3-ITD, we used siRNA knockdown approach. In the previous 

chapter, we validated that inhibition of FLT3-ITD with PKC412 led to down-

regulation of p22
phox

. Therefore, NOX enzymes that are expressed in myeloid cells 

and can be activated by p22
phox

 are NOX1, 2 and 4. The siRNA knockdown of either 

p22
phox

, NOX2 or NOX4 led to the reduction of cellular H2O2, nuclear H2O2 and 

DNA damage in FLT3-ITD expressing MV4-11 and 32D cells. Since activities of 
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NOX2 and NOX4 are dependent on p22
phox

 it would be expected that the magnitude 

of the effect following p22
phox

 knockdown would result in twice as much H2O2 as 

either of the NOX knockdowns. However this was not observed in 32D cells. In fact, 

NOX4 knockdown had actually larger effects suggesting that possibly NOX4 could 

be operating independently of p22
phox

.  

Nonetheless, to our knowledge, this is the first report of NOX enzymes 

functioning as stimulants of genomic instability in AML. Subsequently to our 

results, NOX4 has been implicated in the generation of nuclear H2O2 in genomically 

unstable MDS (Guida et al., 2014). Similarly, the mechanism of NOX4-generated 

release of H2O2 in/to the nucleus has been demonstrated in different cancers and 

other diseases (Hajas et al., 2013, Kuroda et al., 2005, Spencer et al., 2011, Weyemi 

et al., 2012). For instance, in cardiomyocytes, NOX4-produced H2O2 was also 

observed to specifically oxidise nuclear proteins e.g. HDAC (Matsushima et al., 

2013). Also, NOX4, localised in the perinuclear space was also the source of nuclear 

superoxide generation in hepatocytes (Spencer et al., 2011). Interestingly, exposure 

of mice to ionising radiation (IR) increased the expression of NOX4 in the 

haematopoietic stem cells (Wang et al., 2010, Brandts et al., 2005b). The inhibition 

of NOX in the IR treated mice, attenuated the ROS and DNA damage, associated 

with the IR (Pazhanisamy et al., 2011). Alveolar epithelial cells have been reported 

to possess nuclear H2O2-generating NOX4 that was suggested to regulate 8-

oxoguanine DNA-glycosylase-1, a key enzyme in the repair of oxidatively modified 

DNA (Hajas et al., 2013). Interestingly, both of these groups suggested Rac1GTPase 

interaction with NOX4 that has been previously shown not to affect NOX4 activity. 
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Although NOX2 has been shown to have a potent mitogenic activity in AML cell 

lines and patient samples, it was quite surprising that it plays a role in genomic 

instability (Reddy et al., 2011, Hole et al., 2013). To this date, there is no clear 

evidence of NOX2 initiating DNA damage.  

 We demonstrated in the previous chapter that inhibition of FLT3-ITD 

signalling by pharmacological inhibition leads to degradation of p22
phox

 in MV4-11. 

Thus, we concluded that p22
phox

 is a major component in the link between FLT3-

ITD and NOX signalling. We also investigated these molecular interactions in 32D 

cells transfected with WT or ITD FLT3 oncogene. As expected, FLT3-ITD 

expressing 32D cells expressed more p22
phox

 than FLT3-WT. Moreover, siRNA 

knockdown of p22
phox

 led to a decrease in H2O2 or DNA damage only in 32D/FLT3-

ITD cells. Also FLT3 inhibition in 32D/FLT3-ITD cells was followed by the 

degradation of p22
phox

, confirming the importance of p22
phox

 in FLT3 signalling in 

32D cells.   

Similarly, to what we see in FLT3-ITD expressing cells, H-RAS-induced 

increased NOX4 expression, is accompanied by the increase in nuclear H2O2 and 

DNA dsbs (Weyemi et al., 2012). Conversely, in the FLT3-ITD model, we suggest 

that the p22
phox

 expression is essential for regulation of NOX4/2-derived ROS burst 

that causes DNA damage. 

Constitutive activation of FLT3-ITD could suggest that FLT3-WT stimulated 

with FLT3 ligand (FL) should have analogous signalling to that of FLT3-ITD. This 

appears to be true for the majority of signalling events driven by phosphorylated 

FLT3. However, while FLT3-ITD stimulates phosphorylation of STAT5, activated 
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FLT3-WT does not have any effect on phosphorylation status of this potent 

transcription factor (Choudhary et al., 2009). Therefore, we examined if 

accumulation of p22
phox

 also occurs in 32D/FLT3-WT cells treated with FL. FL-

activated FLT3-WT signalling resulted in an increase in p22
phox

 expression, an 

increase in total H2O2, followed by accumulation of DNA damage. From a clinical 

point of view, this result suggests that patients expressing FLT3-WT (70-100% 

AML cases) could also stimulate NOX-generated ROS, in the presence of FL. FL 

levels have been shown to rise rapidly following FLT3-targeted chemotherapy (Sato 

et al., 2011). This increase in FL could lead to FLT3-ITD-analogous redox signalling 

effects, where a prolonged increase in p22
phox

, by activating NOX could damage 

DNA, leading to chemoresistance or relapse in FLT3-WT expressing patients.  

 While FLT3 seems an attractive target in AML, the resistance arising to 

FLT3 inhibitors remains a significant problem (Smith et al., 2012, Grunwald and 

Levis, 2013, Mizuki et al., 2000). Resistance to FLT3 inhibitors was demonstrated to 

be associated with mutations within the FLT3 gene (Mizuki et al., 2000, Piloto et al., 

2007, Heidel et al., 2006). Therefore, it is of interest to study the mechanisms that 

lead to mutagenesis. 8-OHdG is one of the most persistent and mutagenic type of 

lesions that is another marker of oxidative damage. It was shown recently that 

patients in AML relapse possessed higher levels of 8-OHdG (Zhou et al., 2010). We 

show here, that FLT3-ITD is not only associated with increased levels of DNA dsbs, 

but also increased levels of 8-OHdG. Increased levels of 8-OHdG was shown to play 

a role in self-mutagenesis of BCR-ABL that led to imatinib resistance (Koptyra et 

al., 2006). We suggest that a similar mechanism can operate in FLT3-ITD. What is 
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more, DNA dsbs were documented to arise from oxidative DNA damage in S/G2M 

phase in BCR-ABL cells (Nowicki et al., 2004). Repair of 8-OHdG results in a 

removal of the oxidised base that produces a single strand break (Kuzminov, 2001). 

When the latter one is encountered by the replication fork, it can result in a dsb (Lu 

et al., 2001). We suggest that similar phenomenon may be occurring in the FLT3-

ITD AML. 
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In the majority of AML patients, induction chemotherapy consisting of 

cytarabine and idarubicin/daunorubicin leads to a complete remission (Peloquin et 

al., 2013, Roboz, 2012). However, only 40% of patients younger than 60 years, and 

10-20% of older patients, remain in remission at 5 years following the induction 

therapy (Roboz, 2012, Peloquin et al., 2013). Although the incidence of AML is 

moderately low in comparison to other cancers (3.8 cases per 100,000 in US and 

Europe) (Showel and Levis, 2014), relapse statistics and an overall survival rate (40-

50%) are much worse for AML than for the vast majority of other tumours (Peloquin 

et al., 2013). This indicates the urgent need for the development of new treatments 

for AML. Furthermore, the high percentage of AML relapse highlights the 

requirement for investigations of the molecular sources and mechanisms of this 

phenomenon.  

Imatinib mesylate was the first small-molecule tyrosine kinase inhibitors 

(TKIs) used as a standard cancer chemotherapy in the clinic that selectively targets 

BCR-ABL, the main oncoprotein in the leukaemogenesis of chronic myeloid 

leukaemia (CML). Imatinib treatment has improved the 5 year survival rate from 

50% to around 90% of CML patients, proving the effectiveness of molecular-

targeted chemotherapy in cancer (Druker, 2009). Following the success of imatinib, 

there has been great interest in discovering more effective chemotherapeutics against 

other cancer-driving oncoproteins.  

The main genetic alterations that influence the prognosis of AML patients are 

NPM1, FLT3 and CEBPα, and these are routinely tested for following diagnosis 
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(Peloquin et al., 2013). Expression of FLT3 is normally restricted to CD34+, early 

progenitors in bone marrow (Levis and Small, 2003). However, 70-90% of AML 

cases express FLT3 without CD34-restriction (Grafone et al., 2012, Stirewalt and 

Radich, 2003). Moreover, 25-35% of adult AML patients and 10-17% of paediatric 

patients possess an activating FLT3-ITD mutation that confers a poor prognosis and 

a high incidence of relapse (Grafone et al., 2012).  

Due to the high prevalence of FLT3-ITD mutation among AML patients and 

its adverse clinical effects, FLT3 is an attractive target for novel molecular AML 

chemotherapy (Wander et al., 2014, Grunwald and Levis, 2013). However, clinical 

trials of the first assortment of FLT3 inhibitors (CEP-701, SU5416, MLN518 and 

PKC412) did not yield impressive results (Stirewalt and Radich, 2003, Ostronoff and 

Estey, 2013). A new-generation FLT3-selective inhibitor, AC-220, has shown 

favourable pharmacokinetics, potency and tolerability in AML patients (Ostronoff 

and Estey, 2013). However, the clinical outcome of remission duration from the first 

clinical trials is still suboptimal (Ostronoff and Estey, 2013, Wander et al., 2014). 

 Although the clinical outcome of these trials has not matched the success of 

Imatinib treatment, one should consider that even though both AML and CML 

originate in myeloid precursors, they have diverse dynamics of the malignant 

progression. Indeed, AML is more genetically heterogeneous and far more 

aggressive than CML, which generally reduces the effectiveness of single 

chemotherapies (Stirewalt and Radich, 2003). In addition, the levels of genomic 

variability may be further exacerbated in patients harbouring FLT3-ITD (Sallmyr et 

al., 2008b). This heterogeneity of AML suggests that FLT3 inhibition as a 
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monotherapy may not be sufficiently efficacious. Leukaemic blasts and/or leukaemic 

stem cells (LSCs) may not be solely FLT3-ITD-addicted, and most likely possess 

additional malignant mutations such as NPM1 (Gilliland and Griffin, 2002). 

Therefore, FLT3 inhibitors could be more effective in combination with other 

chemotherapeutics. In fact, AC-220, a new generation FLT3 inhibitor, is currently 

being clinically tested in combination with induction and consolidation 

chemotherapies in newly diagnosed AML patients , which has been shown to be safe 

in a phase 1 clinical trial (Ostronoff and Estey, 2013, Wander et al., 2014).  

Although FLT3 inhibition in combination with standard AML chemotherapy 

seems promising, this therapeutic strategy as a general AML treatment carries certain 

shortcomings. As learnt from clinical studies on imatinib, TKIs-based therapies often 

lead to chemoresistance (Branford et al., 2002, Jabbour and Kantarjian, 2014). For 

instance, additional secondary mutations in FLT3 kinase may occur that could 

reduce patients’ responsiveness to the therapy (Grunwald and Levis, 2013). Indeed, 

these genetic alterations have already been demonstrated in relapsing AC-220-

treated patients (Moore et al., 2012, Smith et al., 2012, Wander et al., 2014). 

Furthermore, FLT3 inhibitors were demonstrated to induce expression and release of 

FLT3 ligand (FL) (Sato et al., 2011). It has also been reported in vitro that FL 

interferes with the effectiveness of FLT3 inhibitors, reducing their inhibitory activity 

to 50% (Sato et al., 2011). This could lead to stimulation of relapse and/or 

chemoresistance (Sato et al., 2011). The limitations discussed above are important 

considerations in the search for new AML chemotherapies. 



Chapter 6: General Discussion 

 

 

166 

 

We and others have demonstrated that patient AML blasts generate increased 

levels of ROS (Hole et al., 2013), which are known to damage biomolecules and 

cellular structures (Schieber and Chandel, 2014). However, growing evidence in the 

literature indicates that these reactive molecules can also act as signalling molecules 

in a wide array of processes regulating proliferation, growth, survival and 

differentiation (Clerkin et al., 2008, Gough and Cotter, 2011, Schieber and Chandel, 

2014, D'Autreaux and Toledano, 2007). Cancer cells appear to up-regulate and/or 

activate the sources of ROS, such as NOX enzymes, to stimulate these tumourigenic 

processes (Block and Gorin, 2012). The alteration in the redox state of cancer cells 

requires adaptation to the damaging effects of ROS.  For example, to prevent an 

accumulation of excessive concentrations of ROS, cancer cells induce expression of 

antioxidant enzymes, which neutralise ROS (Pelicano et al., 2004). Furthermore, in 

order to cope with the oxidative cellular damage, tumour cells up-regulate repair 

systems, for instance DNA dsb repair (Popp and Bohlander, 2010, Pelicano et al., 

2004). It is thought that through redox-driven adaptations, tumour cells maintain a 

high, stimulating level of ROS without extensive intracellular damage that could lead 

to cell death. From a clinical point of view, adaptations to increased concentrations 

of ROS can make cancer cells less responsive to cytotoxic chemotherapy, which 

often operates through severe oxidative stress (Schumacker, 2006, Pelicano et al., 

2004, Trachootham et al., 2009). Therefore, delineation of sources and mechanisms 

of ROS production could disclose novel protein targets in cancer, which when 

combined with standard chemotherapy, could increase and prolong response to 

chemotherapeutics.  
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This work demonstrated that mutated FLT3 stimulated H2O2 formation in 

human patient-derived and mouse cell lines. This H2O2 production was readily 

reduced by the inhibition of FLT3. Furthermore, activation of FLT3-WT with FL led 

to a great increase in endogenous H2O2 levels. The phenomenon of FLT3-ITD 

driving total ROS has already been reported (Sallmyr et al., 2008b, Sallmyr et al., 

2008a). However, ROS consist of a diverse family of reactive molecules of different 

kinetics and oxidative properties. Indeed, different types of ROS have previously 

been shown to exert distinct biochemical reactions (D'Autreaux and Toledano, 

2007). Therefore, it is important to investigate the type of ROS implicated in the 

redox effect, particularly when studying signalling biology. 

 Dickinson et al. have recently developed H2O2-detecting fluorescent probes 

that have allowed us to specifically detect changes in intracellular H2O2 levels 

(Dickinson et al., 2010a, Dickinson et al., 2010b, Dickinson et al., 2011a, Dickinson 

et al., 2011b, Lippert et al., 2011, Woolley et al., 2013b). The H2O2-specificity of 

these sensors is achieved by chemically unique conversion of a boronate moiety into 

phenol group upon reaction with H2O2 (Dickinson et al., 2010a, Lippert et al., 2011). 

Furthermore, high sensitivity of the probes has previously allowed the detection of 

physiological changes in H2O2 (Dickinson et al., 2010a).  

Another important aspect of ROS signalling is its intracellular localisation. 

The specificity of ROS signal transduction largely originates in the close localisation 

of ROS source and its target (D'Autreaux and Toledano, 2007). This is particularly 

evident in NOX-generated ROS, as distinct subcellular localisations of NOX 

isoforms in the same cells, induced different signalling phenomena (Hilenski et al., 
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2004). This is not surprising considering their extreme reactivity and much shorter 

half-life than other signalling molecules. It also unclear how molecular targets of 

H2O2, which have a rate constant ranging from 10 to 10
3 

M
-1

 s
-1

, can compete with 

antioxidant enzymes with rate constants up to 2×10
7
 M

-1
 s

-1 
(Mishina et al., 2011). 

These figures suggest that only highly co-localised ROS source and its target are 

capable of inducing an oxidation reaction, leading to signal transduction. In support 

of this theory, it was demonstrated, using live imaging, that diffusion of H2O2 across 

the cytoplasm of HeLa-Kyoto and NIH-3T3 cells is strongly limited  (Mishina et al., 

2011). Taken together, these findings highlight the importance of the intracellular 

localisation of redox processes.   

Recent advances in the fluorescent probes and genetic ROS detection systems 

have provided novel tools to localise ROS accumulation/generation in cells, tissues 

and even live animals (Woolley et al., 2012). Due to varying emission wavelengths, 

the novel boronate-probes can be co-stained with either additional ROS probes to 

monitor changes in different types of ROS or with organelle trackers, to monitor the 

localisation of ROS within cells (Dickinson et al., 2010a, Woolley et al., 2012). 

FLT3-ITD has previously been associated with higher ROS levels (Sallmyr et al., 

2008a). However, this work not only revealed the type of ROS formed, but also 

localised the accumulated ROS in FLT3-ITD expressing cells to the endoplasmic 

reticulum (ER). To our knowledge, this is the first report of ROS localisation in 

leukaemic cells. This H2O2 localisation could be explained by NOX4 and p22
phox

 

localisation in the ER of these cells, as demonstrated in this and other reports 

(Woolley et al., 2012, Lee et al., 2010). ER-localisation of ROS is particularly 
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important in FLT3-ITD-expressing cells, as the immature form of FLT3-ITD itself 

localises to the ER (Choudhary et al., 2009). ER-residing FLT3-ITD aberrantly 

activates STAT5, which is recognised as a key regulator of the myeloid 

transformation (Choudhary et al., 2009, Schmidt-Arras et al., 2009, Spiekermann et 

al., 2003, Choudhary et al., 2007). One of the phosphatases, which has been shown 

to regulate the mislocalised FLT3-ITD, is the ER-resident protein tyrosine 

phosphatase 1 B (PTP1B) (Stuible and Tremblay, 2010, Schmidt-Arras et al., 2005). 

PTP1B-deficient fibroblasts showed elevated levels of auto-phosphorylated FLT3-

ITD (Schmidt-Arras et al., 2005). Interestingly, NOX4/p22
phox

 complex has been 

previously demonstrated to specifically oxidise ER-localised PTP1B, leading to its 

inactivation (Mahadev et al., 2004, Mondol et al., 2014, Chen et al., 2008, Hiraga et 

al., 2013). This indicates that through activation of NOX4/p22
phox

 in the ER, FLT3-

ITD could provide an ROS source to inactivate PTP1B, resulting in a maintenance of 

the autophosphorylation status of FLT3-ITD. Moreover, active PTP1B was also 

found to promote FLT3-ITD maturation and surface localisation, suggesting that 

inactivation of PTP1B by oxidation could cause an ER-retention of FLT3-ITD in 

AML (Schmidt-Arras et al., 2005). If this was true, NOX-generated ROS, stimulated 

by FLT3-ITD, could potentially regulate the oncogene activity and localisation itself. 

In fact, NOX-generated ROS have also been shown to inactivate a density-enhanced 

phosphatase-1, DEP-1 in AML cells (Godfrey et al., 2012). DEP-1 is a tumour 

suppressor phosphatase, as it negatively regulates autophosphorylation and 

signalling of wild type FLT3 kinase (Arora et al., 2011). Overproduction of ROS 
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from NOXs led to the oxidation of redox-sensitive cysteines of DEP-1, which in turn 

sustained phosphorylation of FLT3-ITD.(Godfrey et al., 2012). 

 In this work, we demonstrated that FLT3-ITD regulates NOX activity by 

stabilisation of p22
phox

, its small membrane component (Figure 6.1). Our group has 

shown that this stabilisation was achieved through phosphorylation of Glycogen 

Synthase Kinase 3 β (GSK3- β), which caused its inactivation (Woolley et al., 2012). 

GSK3-β is a serine/threonine kinase downstream of AKT, a crucial regulator of 

survival and proliferation in FLT3-ITD signalling (Altomare and Testa, 2005, Fresno 

Vara et al., 2004). It has been found that AKT is activated by the mature, 

glycosylated plasma membrane (PM)-bound FLT3-ITD. This suggests that p22
phox

 

stabilisation is accomplished by the activation of AKT through PM-operating FLT3-

ITD. Therefore, it could be possible that PM-bound FLT3-ITD inactivates PTP1B at 

the ER, by the activation of the NOX4/p22
phox

 complex. In addition, it has 

demonstrated that PTPs’ inactivation, including PTP1B, leads to incorrect folding of 

FLT3-ITD, resulting in its ER retention (Schmidt-Arras et al., 2009). Therefore, 

through the maintenance of inactive PTP1B, FLT3-ITD could operate in a 

phosphorylated, misfolded state at the ER. This in turn could additionally stimulate 

aberrant P-STAT5 signalling, providing these AML cells with an evolutionary 

advantage. In this potential mechanism, NOX4-generated ROS may be de facto 

inducing FLT3-ITD retention and STAT5 signalling. In support of this theory, our 

group has reported that siRNA knockdown of p22
phox

, led to the abolishment of 

STAT5 phosphorylation in FLT3-ITD expressing cells (Woolley et al., 2012).  
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Figure 6.1. Proposed schematic of FLT3-ITD-induced activation of NOX enzymes 

and the intracellular consequences of NOX-generates ROS. (1-2) PM-bound FLT3-

ITD stimulates phosphorylation of AKT, which in turn, phosphorylates GSK3-β that 

causes its inactivation. (3-4) This leads to p22
phox

 stabilisation, which results in an 

activation of NOX4 complex at the ER. (5-6) NOX4/p22
phox

 generated H2O2 

oxidatively inactivates ER-residing PTP1B, leading to an increase in phospho-FLT3-

ITD. (7) The hyper-phosphorylation of FLT3-ITD in the ER reduces the receptor’s 

maturation and thus its translocation to PM. (8-9) ER-bound FLT3-ITD aberrantly 

activates STAT5, which moves to the nucleus to induce transcription of its target 

genes, including PIM-1/2. (10-12) P-STAT5 also binds and activates Rac1 GTPase, 

which stimulates NOX2 to produce ROS at the ER and the PM. (13-14) PM-bound 

NOX2 oxidises DEP-1, which results in the maintenance of the phosphorylation of 

FLT3-ITD/PM. (15) ER-localised NOX4/p22
phox

 generates more ROS at the ER to 

inactivate other PTPs that negatively regulate P-STAT5. (16-17) NOX2 and 

NOX4/p22
phox

 complex (bound to Rac1?) at the nuclear membrane produces 

oxidative DNA damage. (18) p22
phox

-independent NOX4D generates H2O2 that also 

damages DNA. (19-20) FLT3-ITD (localised at the PM and/or the ER) causes an 

increase in the production of NADPH oxidase substrate, NADPH.  
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Along with few other reports, this work presents an insight into FLT3-ITD-

achieved elevation of cellular ROS (Woolley et al., 2012, Sallmyr et al., 2008a). 

However, the levels of ROS following the FL activation of 32D/FLT3-WT cells 

have not been previously investigated. We showed here that FL stimulation led to an 

increase in the levels of endogenous ROS, which corresponded to an increase in 

steady protein levels of p22
phox

. Based on the GSK3-β function in p22
phox

 

degradation, it can be expected that the increase in p22
phox

 levels may also be 

induced by AKT activation downstream of PM-bound wild type FLT3 signalling.  

 In line with our results, stabilisation of p22
phox

 as a mechanism of NOX 

activation was also found in BCR-ABL harbouring CML cell line (Landry et al., 

2013). Similarly to PKC412, imatinib treatment resulted in the post-translational 

down-regulation of p22
phox

. Upon oncogene inhibition, in both AML and CML cell 

line models, GSK3-β became activated, promoting p22
phox

 ubiquitination and 

subsequently its proteasomal degradation (Landry et al., 2013, Woolley et al., 2012).  

Although not through protein stabilisation, but as a consequence of 

transcriptional induction, p22
phox

 has also been found to act as a mediator of NOX4 

activation in pancreatic cancer cells (Edderkaoui et al., 2011). IGF-1 and FBS have 

been shown to induce p22
phox

 mRNA through AKT kinase signalling, which in turn 

elevated the levels of active NOX4/ p22
phox

 complex. An increase in p22
phox

 mRNA 

has also led to an increase in NADPH NOX activity in aortas from hypertensive rats 

(Fukui et al., 1997). In agreement with this work, these findings demonstrated that 

the amount of active NOX4 may be modulated by an increase in p22
phox

 expression, 

rather than through a rise in the expression of NOX4 catalytic subunit itself.  
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AKT kinase is a central node of signalling pathways stimulated by various 

oncogenes and growth factors (Altomare and Testa, 2005) . It is thus possible that 

AKT/GSK-3β-mediated p22
phox

 stabilisation, which causes NOX-activation in 

FLT3-ITD cells, may potentially be a universal phenomenon, occurring downstream 

of many oncogenes and growth factors. It has been demonstrated previously that 

ROS regulate growth factor signalling through inactivation of phosphatases (Miki 

and Funato, 2012). Therefore, it could be hypothesised that growth factors and 

oncogenes switch off negative regulation of their signalling by activation of AKT 

which, through regulation of p22
phox

 levels, activates NOX.  

In addition to p22
phox

 stabilisation, there are other mechanisms reported of 

NOX activation downstream of FLT3-ITD signalling (Sallmyr et al., 2008a, Reddy 

et al., 2011). Reddy et al. have demonstrated an increase in NOX substrate, NADPH,  

in FLT-ITD-expressing AML cells (Reddy et al., 2011). On the other hand, another 

study reported that FLT3-ITD activated NOXs through direct interaction of Rac1-

GTP with P-STAT5 (Sallmyr et al., 2008a). As 32D cells without mutated FLT3 do 

not stimulate STAT5 phosphorylation, NOX activation only occurred in FLT3-ITD 

expressing cells (Sallmyr et al., 2008a). Rac-1-mediated NOX activation by FLT3-

ITD suggests that NOX1 and/or NOX2 isoforms were activated. However, some 

reports have suggested that Rac1 could also potentially activate NOX4 (Guida et al., 

2014, Hajas et al., 2013, Gorin et al., 2003). Interestingly, Rac1 has been shown to 

mediate an increase in nuclear ROS via NOX4, residing in the nuclear membrane 

(Hajas et al., 2013). In summary, these findings indicate that, due to the increasing 
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importance of ROS effects on growth, migration and genomic instability, FLT3-ITD 

employs various mechanisms to activate NOX complexes.  

Based on our ROS localisation studies and siRNA knockdowns, we suspect 

that the aforementioned FLT3-ITD-stimulated stabilisation of p22
phox

 leads to NOX2 

and NOX4, but not NOX1 activation in the ER. NOX4-originated redox signalling in 

the ER was investigated in several reports (Hilenski et al., 2004, Petry et al., 2006, 

Lee et al., 2010, Bedard and Krause, 2007, Chen et al., 2008). However, the concept 

of NOX2 operating in the ER is still in its infancy. Both isoforms were observed in 

the ER from where, through generation of ROS under basal conditions, they 

stimulated endothelial cells’ proliferation (Petry et al., 2006). Furthermore, in 

support of our findings, NOX1 depletion did not alter ROS levels and hence the 

proliferation of these cells. 

 In support of the importance of NOX2 and NOX4 in AML, depletion of 

NOX2, NOX4 or p22
phox

 siRNA led to approximately 50% decrease in growth and 

migration in FLT3-ITD-expressing MOLM-13 cells (Reddy et al., 2011). 

Furthermore, it has also been demonstrated that either inhibition or knockdown of a 

RAC1 GTPase attenuated 50% of ROS formation in 32D cells transfected with 

FLT3-ITD (Sallmyr et al., 2008a). Similarly to our work, the reduction in ROS upon 

NOX inhibition was not observed in 32D expressing FLT3-WT.  

NOX2 has also been implicated in the c-KIT activation and survival of AML 

M07e cells (Maraldi et al., 2009). Importantly, NOX2 was identified as a source of 

the overproduction of superoxide in AML patient samples, where patients expressing 
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higher levels of NOX2 possessed elevated amounts of endogenous ROS (Hole et al., 

2013). The study also suggested that the proliferation-promoting ROS generation in 

AML originated from NOX2 and NOX4 complexes.  

Taken together, we propose that NOX2 and NOX4 are the main source of the 

oncogene driven-ROS in the 32D cells expressing FLT3-ITD. However, both NOX 

enzymes and mitochondria have been implicated as an ROS source in AML studies 

(Sallmyr et al., 2008a, Sallmyr et al., 2008b, Reddy et al., 2011, Godfrey et al., 

2012). In this work, we found that the analysis of mitochondrial ROS levels of cells 

expressing FLT3-WT and FLT3-ITD revealed no significant difference. 

Furthermore, inhibition of FLT3-ITD did not result in any changes in mitochondrial 

H2O2, as measured with MitoPY1, a mitochondrial H2O2-sensing probe.  In light of 

this finding, Hole et al. have demonstrated that while patient AML blasts produced 

more superoxide than their healthy counterparts, they possessed less mitochondrial 

ROS (Reddy et al., 2011).  

In addition to the ER-localisation of p22
phox

-dependent NOX, we 

demonstrated that NOX4/p22
phox

 complex is bound to the nuclear membrane. This is 

not surprising as the nuclear membrane is continuous with the ER membrane system. 

We propose that H2O2 generated on the nuclear membrane, diffuses to the nucleus, 

leading to genotoxic stress in FLT3-ITD-expressing cells. In line with this 

hypothesis, FL-ligand-activated FLT3-WT, which caused an increase in steady 

p22
phox

 protein levels, also resulted in an increase in nuclear ROS. In analogy to this, 

we found that pharmacological inhibition of FLT3-ITD or NOX caused a decrease in 

H2O2 levels in the nucleus. Furthermore, specific NOX4 or p22
phox

 knockdown 
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resulted in a depletion of nuclear H2O2. This result was recently confirmed in THP-1, 

an AML cell line, where NOX4 knockdown largely abolished levels of nuclear H2O2 

(Guida et al., 2014). Furthermore, the same study showed that nuclear fractions of 

THP-1 and MOLM-13 cells possessed NOX4, p22
phox

 and Rac1 proteins. This 

contradicts the immunofluorescence images of MV4-11 cells, which did not reveal 

any NOX4 foci in the nucleus. The high content of hydrophobic residues in 70-75 

kDa NOX4 may not allow this splice variant to operate inside the nucleus. However, 

a 28 kDa NOX4 splice form (NOX4D), that lacks putative transmembrane domains, 

formed a functional soluble protein in vascular smooth muscle cells (VSMCs) 

(Anilkumar et al., 2013). In fact, NOX4D has been specifically localised to the 

inside of the nucleus in various cell lines, while NOX4D siRNA knockdown 

abolished its intranuclear staining. Interestingly, although largely truncated, over-

expressed NOX4D has been shown to generate ROS and γH2AX, suggesting that 

this isoform could play a role in genomic instability.  

In this work we demonstrated in MV4-11 cells that NOX4 knockdown, when 

compared to p22
phox

 knockdown, resulted in a larger decrease in the nuclear H2O2 

levels. Furthermore, in 32D cells, NOX4 siRNA treated cells possessed less DNA 

dsbs than the same cells treated with p22
phox

 siRNA. This is surprising as in order for 

the full length NOX4 to form a functional ROS-producing enzyme, the protein needs 

to be stabilised at the membrane by binding to p22
phox

 ((Ambasta et al., 2004)). The 

differences between NOX4 and p22
phox

 knockdowns suggest that NOX4D may play 

a role in the nuclear H2O2 production, independently of p22
phox

. This hypothesis is 

supported by the structural differences between 70-75 kDa and 28 kDa NOX4 splice 
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variants, with NOX4D is missing the D loop which is responsible for the p22
phox

 

interaction (Anilkumar et al., 2013).  

The presence of NOX4-generated H2O2 in the nucleus was demonstrated to 

promote redox regulation of nuclear proteins. For example, nuclear membrane-

bound NOX4 induced expression of monocyte chemoattractant protein-1 (MCP-1), a 

key regulator of haemangioendothelioma (Gordillo et al., 2010). It has been 

suggested that this occurred through oxidative activation of nuclear factor kappa-

light-chain-enhancer of activated B cells (NF-κB) or Activator Protein 1 (AP-1) 

transcription factors. NOX4-derived H2O2 was also shown to oxidise cysteines of 

histone deacetylase 4 (HDAC4) that led to cardiac hypertrophy in cardiomyocytes 

(Matsushima et al., 2013). These examples demonstrate that, as observed in this 

work, NOX4 localisation in the nucleus/the nuclear membrane could expand the 

array of redox-controlled signalling on nuclear targets.  

In addition to stimulation of the aforementioned signalling pathways, 

deregulated redox metabolism also results in oxidative DNA damage. 8-OHdG, a 

product of such DNA oxidation, is widely used as a biomarker of oxidative stress 

(Valavanidis et al., 2009, Wu et al., 2004). It has been demonstrated that AML 

patients at relapse possess higher levels of 8-OHdG (Zhou et al., 2010). This 

indicates that redox reactions could play a role in AML relapse, which remains a 

significant issue in the clinic. In this case, manipulation of ROS generation may have 

a therapeutic potential in preventing or postponing AML relapse. We demonstrated 

that the presence of FLT3-ITD mutation is associated with elevated 8-OHdG levels. 

Interestingly, this oxidative damage could easily be reversed by inhibition of FLT3 
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or NOX, or p22
phox

 knockdown. In support of this finding, nuclear membrane-bound 

NOX4 was shown to directly deliver H2O2 to the nuclei of haemangioendothelioma 

cells, which led to an accumulation of 8-OHdG (Gordillo et al., 2010). We propose 

that oxidative DNA damage may accelerate the onset of AML relapse, which could 

be potentially prevented by chemotherapy involving FLT3 and/or NOX inhibition.  

The endogenous oxidative DNA damage may provide a machinery for 

promotion of chemoresistance, as cells with advantageous new mutations could be 

selected for growth. Although, FLT3 and NOX inhibition prevented accumulation of 

damaged DNA, the removal of an inhibitory agent led to the return of DNA damage. 

This suggests that both 8-OHdG formation and its repair are dynamic processes, 

strictly dependent on the presence of FLT3-ITD redox signalling. Therefore, in order 

to prevent the reoccurrence of oxidative damage, when used as chemotherapeutics in 

the clinic, plasma concentrations of FLT3 inhibitors should be sufficiently high to 

provide a maximal FLT3 inhibition.  

Genomic instability can be defined as the mechanisms of acquiring genetic 

alterations and it has been recently reviewed as an enabling hallmark of cancer, as it 

allows other hallmarks of cancer to occur (Burrell et al., 2013, Popp and Bohlander, 

2010, Sallmyr et al., 2008b, Hanahan and Weinberg, 2011). Cells evolved extensive 

network of faithful DNA repair pathways which ensure the DNA stability (Fan et al., 

2010, Popp and Bohlander, 2010).Therefore, it has been proposed that due to the 

requirement of several mutations, cancer cells must possess some form of inherent 

genomic instability. Genomic instability originates from processes resulting in the 

generation of mutations and their subsequent unfaithful repair. ROS-produced 
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oxidative DNA damage can lead to a variety of mutations (Schieber and Chandel, 

2014, Cooke et al., 2003). These in turn could cause activation of oncogenes or 

deactivation of tumour suppressors. DNA dsbs are one of the most toxic genetic 

lesions because they can result in genome rearrangements (Khanna and Jackson, 

2001). These alterations can cause enhancement of tumourigenic processes as well as 

chemoresistance. Through elevating endogenous ROS and altering DNA repair, 

FLT3-ITD mutation renders genome of AML cells highly unstable. This could be the 

cause of the earlier relapse onset in FLT3-ITD-expressing patients. This work 

demonstrated that inhibition or siRNA knockdown of NOX isoforms attenuated ROS 

production and, thus, DNA dsbs formation in FLT3-ITD expressing cell lines. 

Consequently, in addition to reducing survival and proliferation, an inhibition of 

ROS source may also potentially prevent accumulation of new genomic alterations 

in the clinic. Interestingly, these results may not be solely relevant for FLT3-ITD-

expressing cases (20-30% of AML). FL-achieved activation of FLT3-WT, present in 

70-100% of AML cases, also resulted in a significant increase in the number of DNA 

dsbs. As FL ligand levels rise during the course of chemotherapy treatment, this 

DNA damage may play a role in relapse and/or chemoresistance of both FLT3-WT 

and FLT3-ITD expressing patients (Sato et al., 2011).  

In support of these results, an increasing number of studies have identified 

NOX4 as a source of ROS and DNA damage in various tumour cell lines (Weyemi 

and Dupuy, 2012, Anilkumar et al., 2013, Guida et al., 2014, Weyemi et al., 2012). 

In line with FLT3-ITD, H-RAS oncogene has been shown to activate NOX4 to 

produce ROS and DNA damage (Weyemi et al., 2012). Similarly to AML cells, 
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NOX4 was detected in the ER, nuclear membrane and the nuclear compartment of 

H-RAS-expressing thyrocytes (Weyemi et al., 2012). However, while FLT3-ITD 

activates NOX4 by stabilisation of p22
phox

, H-RAS induces expression of NOX4 and 

p22
phox

. Interestingly, this study has suggested that NOX4-generated ROS could 

stimulate the process of senescence in thyroid cells, potentially assigning NOX4 

with a novel function in tumour suppression. 

As discussed above, the role of NOX4 in causing DNA damage has been 

previously addressed (Anilkumar et al., 2013, Weyemi and Dupuy, 2012, Guida et 

al., 2014, Weyemi et al., 2012). However, the contribution of NOX2 to this process 

has not been yet greatly characterised. In support of this work, it has been 

demonstrated that the Epstein–Barr virus (EBV) nuclear antigen-1 (EBVNA-1) 

stimulated NOX2-generated ROS that caused genomic instability in EBV expressing 

cells (Gruhne et al., 2009).  

All of the above findings present the extent of NOX-induced tumourigenic 

signalling in FLT3 expressing AML cells. Various mechanisms of NOX activation 

by FLT3-ITD demonstrate how important these enzymes are in the network of 

activated FLT3 signalling. As outlined in this report, other oncogenes implicated in 

various cancers have also been shown to induce redox-signalling via NOXs. It was 

recently hypothesised that the pleiotropic nature of NOX-generated ROS provides 

cancer cells with an evolutionary advantage in survival and growth (Block and 

Gorin, 2012). Therefore, NOXs are becoming recognised as attractive targets in 

cancer therapy. The differential expression of NOX between healthy and cancer 

patients could give NOX inhibitors some selectivity towards tumour cells, which 
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could minimise the possible side effects. However, due to the lack of specific 

inhibitors, the therapeutic potential of NOX inhibitors is still in its infancy. In this 

study, we achieved NOX inhibition using DPI and VAS-2870 treatments. DPI is a 

flavin protein inhibitor, and while its non-specific effects are well known, it is the 

most commonly used NOX inhibitor (Li and Trush, 1998, Wind et al., 2010). VAS-

2870 and VAS-3947, novel pan-NOX inhibitors, belong to triazolo pyrimidines 

family of compounds. Although their mechanism of NOX inhibition is still 

unknown, they do not interfere with xanthine oxidase or nitric oxidase activities 

(Wind et al., 2010). We demonstrated that both VAS-2870 and DPI treatments 

resulted in a decline of both cellular and nuclear levels of H2O2 in AML cells. We 

also showed that VAS-2870 did not inhibit H2O2 formation in mitochondria, 

measured with MitoPY1, suggesting that this drug does not affect mitochondrial 

electron transport. These results indicate that pharmacological inhibition of NOX 

resembles siRNA knockdowns of p22
phox

 or NOX2 or NOX4 proteins, highlighting 

the potential of NOX inhibitors for AML chemotherapy (Figure 2.). 

Interestingly, following this work, DPI and VAS-2870 were recently 

proposed as chemotherapies in BCR-ABL- harbouring CML (Sanchez-Sanchez et 

al., 2014, Landry et al., 2013). When used in combination with Imatinib, DPI and 

VAS-2870 demonstrated highly synergistic apoptotic effects (Sanchez-Sanchez et 

al., 2014). The authors showed that NOX inhibition attenuated BCR-ABL signalling, 

resulting in a pronounced cell-cycle arrest. Imatinib/ DPI combination caused 

dephosphorylation of BCR-ABL, STAT5 and ERK1/2 that led to reduction in 

proliferation and cell viability of CML cells. Importantly, 2 mouse models and 
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CD34+ patient samples confirmed synergistic effects of this drug combination for 

targeting CML. Due to the similarities of BCR-ABL and FLT3-ITD signalling, we 

suspect that simultaneous inhibition of FLT3-ITD and NOX could lead to analogous 

results. In fact, according to the aforementioned study, a combination of PKC412 

and DPI resulted in a synergistic increase in cell death of FLT3-ITD expressing 

MV4-11 cells.   

In summary, this study has demonstrated a novel mechanism of NOX 

activation downstream of the activated FLT3 receptor tyrosine kinase. p22
phox

-

dependent NOX2 and NOX4 have been found to be an important ROS sources in 

FLT3-ITD signalling. This work has also presented an additional function of NOXs 

in AML, which is generation of genomic instability. All of these results were 

consistent in human and mouse cell lines models of AML. These findings confirm 

the importance of NOX-originated ROS in leukaemia, which may be considered as 

novel target in AML chemotherapy.  

Future work  

 The work described in this thesis demonstrated the important function of 

ROS in the AML phenotype. The current model of the FLT3-ITD-induced activation 

of NOX enzymes and the subsequent signalling effects is presented in the Figure 1. 

|The model combines the published literature with the novel data presented in this 

thesis. While this work depicts the mechanism of the NOX-activation and its effects 

in leukaemia, the details of it are still unclear. For example, while it is plausible that 

NOX4 generates ROS in the ER, the phosphatases/proteins affected by this ROS 
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signalling are not known. Based on the literature, the important candidates to 

investigate are the aforementioned PTP1B and DEP-1. Furthermore, due to the 

differential ER and PM signalling downstream of mutated FLT3 it would also be 

beneficial to examine how FLT3 localisation affects the activation of NOX.  

 This work has demonstrated that NOX4 contributes to genomic instability in 

AML cell lines. In light of recent reports, the contribution of the aforementioned in 

general discussion, NOX4D to this process should be investigated.  
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