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Estimates (̂a; b̂;ĉ) are based on the ROI version of (3.19). . 69

3.3 Reliability of Bootstrap Estimates of voxel Standard Devia-
tions for mapping Kinetics in 1-D based on FBP and ML re-
constructed data. Means and maxima of voxel kinetic es-
timates, averaged over replicates, are shown as�� � and �� _ .
Mean of voxel standard deviations, averaged over replicates
( �� � ), its standard error ( �SE � ) and the overall RMSE values,
see (3.20), are reported as a percentage of the maximum
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Abstract

Abstract

Positron Emission Tomography (PET) is an essential diagnostic imaging tech-

nique in clinical care settings, as well as in medical research. It plays a crucial

role in diagnosis, prognosis, treatment planning, and clinical decision-making.

PET imaging, a well-established radio-tracer imaging technique, involves in-

jecting a radio-tracer to analyze in-vivo metabolic processes. Dynamic PET

scanning provides multiple time frames, offering more detailed metabolic in-

formation. However, traditional methods like Patlak and compartmental mod-

eling are commonly used in data obtained from conventional scanners. The use

of constant or exponential residue functions may be limited in complex environ-

ments, such as diverse tissues or multiple organs. This thesis aims to develop

statistical approaches for enhancing and assessing parametric imaging from

dynamic PET scans. The Non-Parametric Residue Mapping (NPRM) procedure

is established as an entirely automatic process that integrates data-driven seg-

mentation, non-parametric residue analysis, and voxel-level kinetic mapping.

A model-based image-domain bootstrapping method is developed with the ob-

jective to generate reliable uncertainty estimates, which are crucial for accurate

data interpretation and subsequent treatment decisions. This method uses an

empirical distribution of re-scaled data and a non-parametric approach for

analysis of the spatial correlation structure. Numerical simulations using both

direct Filtered Backprojection (FBP) and iterative Maximum Likelihood (ML)

reconstructions are considered. Illustrative examples on conventional scanners

and Long Axial Field-of-View (LAFOV) PET scanners are conducted. A short-

duration dynamic scanning protocol is proposed to enhance the quantitation

of a shortened dataset speci�cally. This protocol utilizes NPRM and machine

learning techniques to aim at making short dynamic acquisition protocols clin-

ically feasible.
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1. THESIS INTRODUCTION ANDOVERVIEW

Chapter 1

Thesis Introduction and Overview

1.1 Introduction

Medical imaging, a revolutionary technology widely used in diagnostics to-

day, encompasses numerous modalities such as X-ray, computed tomogra-

phy (CT), positron emission tomography (PET), magnetic resonance imag-

ing (MRI), Single Photon Emission Computed Tomography (SPECT), and

ultrasound. These advanced technologies allow us to gain a comprehen-

sive understanding of the anatomical structure and physiological function

of the human body in vivo. Among these, molecular imaging, primarily

encompassing PET and SPECT, is a unique branch of medical imaging that

emphasizes visualizing molecular and cellular processes within the body

using speci�c imaging agents. As these techniques do not include anatom-

ical structure imaging, they are typically combined with CT and MRI for

registration and anatomical localization (Ganguly et al. 2010). In terms of

comparison, PET is considered superior to SPECT due to its �ner resolu-

tion and the shorter half-life of its radiotracer (Rahmim & Zaidi 2008). In

recent years, PET has found extensive clinical and research applications in

diverse �elds such as oncology, cardiology, and neurology (Hoh 2007, Khalil

2017). It provides valuable quantitative measurements of a diverse range of

functional and biological processes, such as tumor metabolism (Weber et al.

2000), proliferation (Peck et al. 2015), blood �ow (Kaufmann et al. 1999),

and receptor-binding (Gunn et al. 1997), depending on the administered ra-

diotracer. Given the nuanced insights offered by these measurements, PET
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1. THESIS INTRODUCTION ANDOVERVIEW 1.2 Main Contributions

imaging contributes signi�cantly to the advancement of precision medicine,

a burgeoning �eld that customizes medical treatment to individual patient

characteristics. The potential bene�ts of PET imaging to precision medicine

are profound, potentially revolutionizing our approach to disease diagnosis

and treatment (Lammertsma 2017, Mankoff et al. 2019, Zaidi & Karakat-

sanis 2017). In daily clinical practice, PET imaging is obtained at a single

time point and assessed visually or using simple indices, e.g., standard-

ized uptake value (SUV) (Thie 2004). Although these are suf�cient for

many diagnostic applications, dynamic scans with multiple time frames are

implemented in some research avenues for advanced diagnosis, response

assessment, therapy management, and tracer development (Tomasi et al.

2012, Wijngaarden et al. 2023).

This thesis primarily focuses on FDG PET dynamic imaging. We apply nu-

merous methods, such as Non-parametric Residue Mapping (NPRM) and

image domain bootstrap, to generate accurate kinetic information. We also

use machine learning to reduce dynamic scanning time. Our objective is to

explore the potential of PET imaging and advance analysis approaches to

provide more accurate clinical diagnoses and therapy management.

1.2 Main Contributions

The main contributions of this thesis are as follows:

• An overview of the current status, opportunities and challenges of

total body PET imaging.

• An overview of quanti�cation of dynamic PET imaging, including a

basic equation to model the measured tissue time activity curve, the

arterial input function estimation and kinetic modeling of dynamic

PET data.

• Non-parametric Residue Mapping (NPRM) Technique

– A non-parametric residue mapping procedure is proposed to gen-

erate parametric imaging.

– The applicability of NPRM technique to dynamic PET scanning

on the LAFOV PET scanners is assessed.

Statistical Methods for Mapping Kinetics
Together with Associated Uncertainties in
Long Field of View Dynamic PET Studies

2 Qi Wu



1. THESIS INTRODUCTION ANDOVERVIEW 1.3 Publications Related to This Thesis

• Image-Domain Bootstrap Technique

– A novel image-domain bootstrap model without the reconstruc-

tion requirement is developed. This provides a practical mecha-

nism to simulate 4D dynamic PET data ef�ciently.

– The utilization of this procedure for evaluating uncertainties of

kinetic mapping and regional summaries has been demonstrated.

– Applicability of this approach to LAFOV PET datasets is assessed.

• Exploration of shortened dynamic protocols using machine learning

techniques.

• Several peer-reviewed journals and conference proceedings have been

published and the ones relevant to this thesis are in section 1.3. The

full publications and conference presentations are listed in Appendix

A.

1.3 Publications Related to This Thesis

Related to Chapter 2

1. F Gu, Q Wu. "Quantitation of dynamic total-body PET imaging: recent

developments and future perspectives". European Journal of Nuclear

Medicine and Molecular Imaging, 50:3538-3557, 2023.

Related to Chapter 3

2. F O' Sullivan, F Gu, Q Wuand L D O'Suilleabhain. "A Generalized

Linear modeling approach to bootstrapping multi-frame PET image

data". Medical Image Analysis, 72:102-132, 2021.

3. F Gu, Q Wu, F O' Sullivan, J Huang, M Muzi and D A Mankoff. "An

illustration of the use of model-based bootstrapping for evaluation of

uncertainty in kinetic information derived from dynamic PET". IEEE

NSS& MIC Records 2019.

Related to Chapter 4

4. Q Wu, F Gu, L O'Suilleabhain, H Sari, S Xue, K Shi, A Rominger,

F O'Sullivan. "Mapping FDG Kinetics together with Patient-Speci�c

Bootstrap Assessment of Uncertainties: An Illustration with data from
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1. THESIS INTRODUCTION ANDOVERVIEW 1.4 Thesis Structure

a Long-Axial FOV PET/CT Scanner". Journal of Nuclear Medicine,

65:971-979, 2024.

5. F O' Sullivan, Q Wu, F Gu, K Shi, L O'Suilleabhain, S Xue and A

Rominger. "Mapping FDG Tracer Kinetics and their Uncertainties via

the Bootstrap using data from a Long-Axial FOV PET/CT Scanner".

Journal of Nuclear Medicine, 63(3220), 2022.

Related to Chapter 5

6. Q Wu, F O' Sullivan, M Muzi and D A Mankoff. "An exploration of the

prognostic utility of shortened dynamic imaging protocols for PET-

FDG scans". IEEE Nuclear Science Symposium and Medical Imaging

(NSS& MIC) Records 2019.

7. Z Huang, Y Wu, F Fu, N Meng, F Gu, Q Wu, Y Zhou, Y Yang, X Liu, H

Zheng, D Liang, M Wang and Z Hu, "Parametric image generation with

the uEXPLORER total-body PET/CT system through deep learning".

European Journal of Nuclear Medicine and Molecular Imaging, 49:2482-

2492, 2022.

1.4 Thesis Structure

This thesis is structured as follows:

Chapter 2 provides an overview of the recently developed Long Axial Field

of View (LAFOV) scanners, which have emerged as a signi�cant develop-

ment in the �eld of medical imaging. This chapter introduces the PET

quantitation process and traditional kinetic analysis techniques. The cur-

rent state of development, potential opportunities, and challenges associ-

ated with these innovative LAFOV scanners are discussed. The protocols for

reconstructed data, tracers, and quantitation approaches used are summa-

rized.

Chapter 3 introduces the Non-Parametric Residue Mapping (NPRM) tech-

nique and the development of a statistical linear model analysis for creat-

ing valid bootstrap samples from multi-frame PET image data, particularly

in dynamic PET studies with Fluorodeoxyglucose (FDG) and Fluorothymi-

dine (FLT) in brain and breast cancer patients. The quantitative perfor-
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1. THESIS INTRODUCTION ANDOVERVIEW 1.4 Thesis Structure

mance is assessed by 1-D and 2-D simulation. The accuracy of projection-

domain bootstraps and the novel image-domain bootstraps has been evalu-

ated. The uncertainty in kinetic information or complex regional summary

is explored.

Chapter 4 examines the NPRM technique and assesses uncertainties using

image-domain bootstraps with data obtained from the LAFOV scanner - Bio-

graph Vision Quadra. Comparisons between NPRM and standard 2C model-

ing corresponding to several key organs and tumor lesions are carefully exa-

mined. Kinetics and bootstrap-derived uncertainties are reported for voxel,

VOI, and maximum intensity projection maps. NPRM generated kinetic

maps were of good quality, well-aligned with the vascular and metabolic

patterns. A sample tracer arrival map is also shown.

Chapter 5 outlines various methods to reduce acquisition time in static or

dynamic studies, aiming to enhance ef�ciency without compromising result

quality. This chapter speci�cally focuses on a proposed abbreviated proto-

col designed to obtain full kinetics. This is accomplished using NPRM and a

machine learning scheme, which enables the generation of more precise Ki

values. The effectiveness of this protocol has been examined , demonstrat-

ing its potential to enhance ef�ciency and accuracy in clinical studies.

Chapter 6 provides a comprehensive summary of this work, highlighting key

�ndings and major contributions, as well as discussing the potential future

developments.
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2. QUANTITATION OF DYNAMIC TOTAL-BODY

PET IMAGING: RECENT DEVELOPMENTS

AND FUTURE PERSPECTIVES

Chapter 2

Quantitation of dynamic

total-body PET imaging: recent

developments and future

perspectives

Abstract

Positron emission tomography (PET) scanning is an important diagnostic

imaging technique used in disease diagnosis, therapy planning, treatment

monitoring and medical research. The standardized uptake value (SUV)

obtained at a single time frame has been widely employed in clinical prac-

tice. Well beyond this simple static measure, more detailed metabolic in-

formation can be recovered from dynamic PET scans, followed by the re-

covery of arterial input function and application of appropriate tracer ki-

netic models. Many efforts have been devoted to the development of quan-

titative techniques over the last couple of decades. The advent of new-

generation total-body PET scanners characterized by ultra-high sensitivity

and long axial �eld of view, i.e., uEXPLORER (United Imaging Healthcare),

PennPET Explorer (University of Pennsylvania) and Biograph Vision Quadra

(Siemens Healthineers), further stimulate valuable inspiration to derive ki-

netics for multiple organs simultaneously. But some emerging issues also

need to be addressed, e.g., the large-scale data size and organ-speci�c phys-
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2. QUANTITATION OF DYNAMIC TOTAL-BODY

PET IMAGING: RECENT DEVELOPMENTS

AND FUTURE PERSPECTIVES 2.1 Introduction

iology. The direct implementation of classical methods for total-body PET

imaging without proper validation may lead to less accurate results. The

published dynamic total-body PET datasets are outlined and several chal-

lenges/opportunities for quantitation of such types of studies are presented.

An overview of the basic equation, calculation of input function (based on

blood sampling, image, population or mathematical model) and kinetic

analysis encompassing parametric (compartmental model, graphical plot

and spectral analysis) and non-parametric (B-spline and piece-wise basis

elements) approaches is provided.

2.1 Introduction

In recent years, positron emission tomography (PET) has a wide range

of clinical and research applications in oncology, cardiology and neurol-

ogy (Hoh 2007, Khalil 2017). It is a unique imaging modality that en-

ables the measurements of a diverse range of functional and biological

processes (e.g., tumor metabolism (Weber et al. 2000), proliferation (Peck

et al. 2015), blood �ow (Kaufmann et al. 1999) and receptor-binding (Gunn

et al. 1997)), depending on the administrated radiotracer. In daily clinical

practice, PET imaging is obtained at a single time point and assessed visu-

ally or using simple indices, e.g., standardized uptake value (SUV) (Thie

2004). Although these are suf�cient for many diagnostic applications, dy-

namic scans with multiple time frames are implemented in some research

avenues for advanced diagnosis, response assessment, therapy management

and drug/tracer development (Tomasi et al. 2012, Wijngaarden et al. 2023).

Since the 1950s, there have been great advances with PET including the

introduction of time-of-�ight technologies (Vandenberghe et al. 2016), op-

timized detectors (Lecomte 2009, Zaidi & Alavi 2007), new radiotracers

(Lau et al. 2020), iterative reconstruction algorithms (Vardi et al. 1985,

Leahy & Qi 2000) and novel quantitative methods (Muzi et al. 2012, Wang

et al. 2020) by a variety of scientists in physics, engineering, chemistry,

mathematics and statistics (Nutt 2002, Wacholtz 2011, Jones & Townsend

2017). However, some constraints such as the limited axial coverage still

exist (Katal et al. 2022). Currently, the conventional PET/CT systems have

a short axial �eld of view (AFOV) of about 15 � 30 cm and typically only a
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2. QUANTITATION OF DYNAMIC TOTAL-BODY

PET IMAGING: RECENT DEVELOPMENTS

AND FUTURE PERSPECTIVES 2.1 Introduction

speci�c organ such as the brain is imaged. On these scanners, whole-body

(even dynamic) scanning can be performed by a multi-bed scenario, but

pitfalls like the missing early-phase data and low temporal resolution limit

its wide use (Rahmim et al. 2019).

The revolutionary total-body (TB) PET scanners (e.g., uEXPLORER (Badawi

et al. 2019a), PennPET Explorer (Pantel et al. 2020) and Siemens Biograph

Vision Quadra (Alberts et al. 2021)) have been developed to overcome these

limitations. Such devices enable the simultaneous image of the entire hu-

man body or main organs using a single-bed position. Given their ultra-high

sensitivity (10� 40 fold), extended �eld of view (1 � 2m) and enhanced tem-

poral resolution (20 � 200 time frames), the potential clinical applications

of these innovative technologies have been exploited in different ways to

provide better image quality (Spencer et al. 2021, Surti et al. 2020, Alberts

et al. 2021, Prenosil et al. 2022), reduce scan time (Liu et al. 2021c, Hu

et al. 2021, Chen et al. 2022b, Wu et al. 2022c, Viswanath et al. 2022, Sari

et al. 2022a), lower the injected dose (Liu et al. 2021a, Tan et al. 2022,

Zhao et al. 2021, Sachpekidis et al. 2022) and develop new drugs, see (Tan

et al. 2020, Slart et al. 2021, Alavi et al. 2022, Katal et al. 2022, Nadig et al.

2021, Viswanath et al. 2021, Filippi et al. 2022) for more descriptions. Next

to all the exciting opportunities that arise with TB systems, there remain

some challenges. The analysis of large-scale data, especially for dynamic

scanning, becomes one of them.

Quantitation of dynamic PET studies could be able to provide additional bi-

ological information and the potential bene�ts have been highlighted in pre-

cision medicine (Lammertsma 2017, Mankoff et al. 2019, Zaidi & Karakat-

sanis 2017). A broad family of quantitative techniques with focus on the

recovery of arterial input function and the establishment of tracer kinetic

model has been proposed to estimate the kinetic parameters of interest.

The other procedures including motion correction and denoising also have

some impacts on the estimated kinetics. Many different points of view

have been taken in extensive literature and more comprehensive referen-

ces (Gunn et al. 2001, Tomasi et al. 2012, Muzi et al. 2012, Bertoldo et al.

2014, Veronese et al. 2016, Wang et al. 2020, Dimitrakopoulou-Strauss

et al. 2021, Pantel et al. 2022b) are suggested for further readings. The aim

of this chapter is to provide an overview of the basic principles and model
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2. QUANTITATION OF DYNAMIC TOTAL-BODY

PET IMAGING: RECENT DEVELOPMENTS

AND FUTURE PERSPECTIVES 2.2 Total-Body PET Studies

formulations of the most important strategies for PET quantitation, along

with their feasibilities and recent developments for the emerging total-body

PET imaging. The future perspectives to further enhance quantitative accu-

racy are discussed as well.

2.2 Total-Body PET Studies

Since the �rst total-body human imaging was obtained on the uEXPLORER

scanner in Zhongshan hospital (Badawi et al. 2019a), the spread of uEX-

PLORER with other long axial �eld of view ( > 1m) systems has become

worldwide. Up to 2022, more than 10 total-body PET/CT scanners, includ-

ing uEXPLORER, PennPET Explorer and Biograph Vision Quadra, have been

installed in China (Lan et al. 2022), the United States (Pantel et al. 2020,

Wang et al. 2021a) and Europe (Alberts et al. 2021, van Sluis et al. 2022,

Sachpekidis et al. 2022).

Figure 2.1: Long axial �eld of view (LAFOV) PET/CT scanners. A: Biog-
raphy Vision Quadra (Siemens)1; B: uEXPLORER (United imaging Health-
care)2; C: PennPET EXPLORER (University of Pennsylvania)3.

The use of such scanners in both clinical (static mode) and research (dy-

namic mode) settings is emerging. Fig. 2.2 shows the trend for the work in

the area of total-body PET from 2019 to 2022. The proportion of dynamic

studies with the implementation of kinetic analysis in total-body PET also

steadily increases each year.

A list of reported dynamic total-body PET study cohorts along with the spe-

ci�c details is provided in Table 2.1. Several types of subjects were re-

1https://www.siemens-healthineers.com/molecular-imaging/pet-ct/
biograph-vision-quadra

2https://usa.united-imaging.com/products/molecular-imaging/uexplorer/
3https://www.med.upenn.edu/pennpetexplorer/

Statistical Methods for Mapping Kinetics
Together with Associated Uncertainties in
Long Field of View Dynamic PET Studies

9 Qi Wu

https://www.siemens-healthineers.com/molecular-imaging/pet-ct/biograph-vision-quadra
https://www.siemens-healthineers.com/molecular-imaging/pet-ct/biograph-vision-quadra
https://usa.united-imaging.com/products/molecular-imaging/uexplorer/
https://www.med.upenn.edu/pennpetexplorer/


2. QUANTITATION OF DYNAMIC TOTAL-BODY

PET IMAGING: RECENT DEVELOPMENTS

AND FUTURE PERSPECTIVES 2.2 Total-Body PET Studies

0

25

50

75

100

0

10

20

30

40

2019 2020 2021 2022

Year

N
um

be
r 

of
 P

ub
lic

at
io

ns
P

ercentage(%
)

TB Kinetic Analysis
TB PET

Figure 2.2: The number of publications (left y-axis) on the total-body (TB)
PET studies (blue) and dynamic TB scanning with the implementation of
kinetic analysis (red) for the period from 2019 to 2022. The percentage
(right y-axis) of publications relevant to the kinetic model in TB PET is
shown as the black line. The data were collected from a search on PubMed
on 08/05/2023.

cruited: healthy volunteers and patients diagnosed with cancer or infected

with COVID-19. While the most of scans were done exclusively with the ad-

ministration of �uorine-18 labeled �uorodeoxyglucose ( 18F-FDG), there are

other radiotracers of interest to be employed, such as68Ga-FAPI-04 (Chen

et al. 2022a, 2023a, Liu et al. 2023a), 15O-H2O (Andersen et al. 2022),
89Zr-Df-Crefmirlimab (Omidvari et al. 2023, 2022), 18F-Fluciclovine (Ab-

delhafez et al. 2022) and [11C]methionine (Li et al. 2023). A range of

scanning and reconstruction protocols have been applied by different hos-

pitals/institutions, but the magnitude of image voxels is generally on the

order of ten million and a more dense sequence is commonly performed at

the early time. Although these dynamic datasets may not be consistent, the

data analysis should face similar problems that will be discussed carefully

in the next section.
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2.3 Opportunities and Challenges in
Dynamic Total-Body PET Imaging

2.3 Opportunities and Challenges in Dynamic Total-

Body PET Imaging

As summarized in Table 2.2, the unique characteristics of total-body PET

studies bring a series of new challenges and opportunities for improved

quantitative accuracy. Details are presented below:

(i) Improved image-derived input function. Due to the long axial �eld of

view of total-body PET scanners, image-derived input functions can

be measured from multiple blood pools (e.g., heart ventricle, aorta

and artery). Higher temporal resolution (e.g., 1s even 0.1s per early

frame) also allows better temporal sampling of the extracted input

function (Zhang et al. 2020b,a, Viswanath et al. 2021).

(ii) Organ-dependent time delay. The arrival time of tracer to different or-

gans is signi�cantly varied, which has been an important factor for ac-

curate total-body kinetics (Feng et al. 2019, 2021, Wang et al. 2021a,

Wu et al. 2022b).

(iii) Tissue-speci�c kinetics. Each kind of tissue has its own physiological

mechanism and some tissues such as the liver, kidney and bladder

even exhibit more complex kinetics. Thus, a single kinetic model may

not be feasible for multiple organs and appropriate model selection is

necessary (Wang et al. 2021a,c, Wu et al. 2022b, Gu et al. 2022).

(iv) Capture fast kinetics. The high temporal sampling imaging provides

an opportunity for better investigation of fast kinetics such as the

blood volume or blood �ow (perfusion), which are potential biomark-

ers for the prediction of therapy response or survival (Meikle et al.

2021, Gu 2023, Mankoff et al. 2002, Dunnwald et al. 2011).

(v) High-quality dynamic PET images. The increased sensitivity enables

the generation of high signal-to-noise (SNR) images, which is greatly

bene�cial to the quantitation of dynamic imaging at the voxel level,

e.g., noise reduction and lesion enhancement. But we need to note the

sensitivity along the axial �eld of view shows the reciprocal U shape

(non-uniform) (Lin et al. 2022, Dai et al. 2023, Prenosil et al. 2022).

Thus, images have higher variances towards the axial edge, which
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needs to be considered carefully.

(vi) Huge data set. It is challenging to store and process such enormous

and complex datasets, which may be addressed by some automa-

tion forms using more comprehensive approaches (e.g., segmentation)

(O'Sullivan 1993, Pedersen et al. 1994, Ahn et al. 2000, Wong et al.

2002a, Razifar 2005, Zanderigo et al. 2015) or arti�cial intelligence

(Slart et al. 2021, Matsubara et al. 2022, Cheng et al. 2021, Apos-

tolopoulos et al. 2022, Wang et al. 2021c)

Table 2.2: Characteristics and Challenges/Opportunities of total-body PET
scanners.

Characteristics Challenges/Opportunities
Multiple organs/tissues � Tissue-speci�c kinetics

� Large blood pool in FOV
� Heterogeneity
� Delay Correction

Higher temporal resolution � Capture fast kinetics
Higher spatial resolution � Better image quality
Huge data set � High computational cost

2.4 Overview of Dynamic PET Quantitation

Dynamic PET quantitation is not a single procedure and involves several

steps such as the recovery of input function and application of tracer kinetic

modeling. The overview of this process is presented in Fig. 2.3. In the

following sections, we will introduce the basic principles and some well-

established methodologies, also their further developments for the emerg-

ing total-body PET imaging (Zhang et al. 2020b, Viswanath et al. 2021, Sari

et al. 2022b).

2.4.1 Basic Equation

Understanding the targeted biochemical pathway is critical for the inter-

pretation of dynamic PET imaging data. It can be approached using the

indicator-dilution method built on the seminal work of Meier and Zierler

(Meier & Zierler 1954). Assuming the radiotracer's interaction with tissue
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is substantially linear and time-invariant (LTI), the vascular network can

be regarded as an LTI system with an arterial input. Hence, the measured

tissue time activity curve (TAC) - CT can be expressed as a convolution be-

tween the arterial input function ( Cp) and tissue residue, also called the

impulse response function (R) as in (2.1).

CT (t) =
Z t

0
R(t � s)Cp(s)ds � R(t) 
 Cp(t) (2.1)

With the known input function, kinetic analysis is concerned with the esti-

mation of residue and associated kinetic parameters such as �ow (K ), �ux

(K i ) and volume of distribution ( VD ).

K = R(0); K i = lim
t !1

R(t); VD =
Z 1

0
R (t) dt (2.2)

When the model is applied to PET time-course data, there is typically an

adjustment for a biologically important parameter - blood volume ( VB ).

Moreover, the site to recover the input function may be remote from the

tissue, introducing a time delay. The correction is generally accomplished

by the inclusion of a delay term (� ) in the modeling procedure as (2.3).

The delay has been found to vary with different voxels/organs/tissues and

its correction is necessary (Feng et al. 2019, 2021, Wang et al. 2021a, Wu

et al. 2022b).

CT (t) = VB Cp(t � �) + (1 � VB )
Z t

0
R(t � s)Cp(s � �) ds (2.3)

Some speci�c organs (e.g., liver) receive dual blood supplies from the hep-

atic aorta and portal vein (Figure2.4) (Chen et al. 1991, Slimani et al. 2008,

Materne et al. 2000, Chen & Feng 2004). To account for such an effect, the

input function can be expressed as a weighted sum of both supplies (Keiding

2012, Wang et al. 2018, 2021b).

Cp(t) = (1 � f A )CP V (t) + f A CA (t) (2.4)

where CP V is the portal vein input and CA (t) is the aortic input. f A is the

fraction of the hepatic artery to the overall liver blood �ow.
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Figure 2.4: A diagram illustrating the dual blood supply to the liver. (Feng
et al. 2020)

2.4.2 Region of Interest Versus Voxel-level Analysis

The computation of kinetic parameters can be performed either at the re-

gional or voxel level. Due to the average of the voxel information in a re-

gion of interest (ROI), the noise can be reduced dramatically. ROI analysis

leads to more robust results, especially in the case of dynamic PET stud-

ies, but also introduces some biases when de�ning ROIs from a template,

summed or anatomic images (Bertoldo et al. 2014). An alternate approach

to regional estimates is performing analysis at the voxel level and gener-

ated parametric images can reveal the heterogeneity of tumors (Muzi et al.

2012). However, many issues need to be considered carefully , such as com-

putational ef�ciency, selection of appropriate models and noise suppression

(Wang et al. 2021a).

Total-body PET scanners have the ability to image more organs/tissues us-

ing the single-bed position, but the datasets are much bigger and more

complex than conventional studies. Multivariate statistical methods includ-

ing factor analysis (FA) (Ahn et al. 2000), singular value decomposition

(SVD) (Zanderigo et al. 2015), principal component analysis (PCA) (Peder-

sen et al. 1994, Razifar 2005) and mixture analysis (MA) (O'Sullivan 1993)

express the dynamic PET data as a weighted sum of image volumes. They

enable the identi�cation of organs and structures with different kinetic pat-

terns in a temporal sequence and reduce the temporal and spatial variations

of the noise (Svensson et al. 2011). Once the segmentation process is com-

pleted, kinetics for each segment TAC (sub-TAC) are calculated and then
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mapped back to the original spatial space. These data-driven approaches

have the great potential to ef�ciently handle the complexities and address

variable noise issues in dynamic total-body images (Wong et al. 2002a).

2.5 Arterial Input Function

For standard PET quantitation, the knowledge of the tracer arterial plasma

concentration is required as an arterial input function (AIF). The input func-

tion can be derived either from (i) arterial blood samples, (ii) the time

course of an ROI drawn on the PET image - image-derived input function

(IDIF), or (iii) based on the population-based Input Function (PBIF). Here,

we provide a brief introduction to these commonly used and model-based

approaches together with their applications in total-body PET studies. A

summarized �owchart of IDIF, PBIF and PBPM are given in Figure 2.5. For

more details, readers are referred to two recent review papers (Feng et al.

2020, van der Weijden et al. 2023).

2.5.1 Blood Sampling

Arterial blood sampling during dynamic acquisition has been considered as

the standard for input function in many references (Graham & Lewellen

1993, Chen et al. 2021a, Feng et al. 2015, Sari et al. 2018). But some con-

cerns are also raised; for example, the measured AIF may suffer from some

effects (e.g., delay, dispersion and metabolites), which need to be corrected

(van der Weijden et al. 2023). This invasive procedure also implies discom-

fort for the patient (insertion of arterial lines and increased radiation) and

additional costs for the analysis of numerous blood samples. Thus, it is typ-

ically used for research purposes and not recommended for routine clinical

practice.

Manual blood sampling or an automatic blood sampling system (ABSS)

(Napieczynska et al. 2018) is generally used to collect arterial blood. How-

ever, manual separation of plasma requires decay correction (Chen et al.

1995, Bober 2021), while longer tubing in ABSS introduces higher dis-

persion effects (Votaw & Shulman 1998) and requires consideration of the

blood-to-plasma ratio (Li et al. 2020, Berezhkovskiy et al. 2011). Another
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Figure 2.5: Flowchart of typical PBIF and IDIF strategies, along with the
PBPM methodology in 2.5.4. (Xiu et al. 2022)

issue with AIF refers to the metabolite analysis. Although there are no

blood-based metabolites for some tracers such as18F-FDG and 15O-H2O,

most tracers produce isotope-labeled metabolites that contaminate the in-

put function. These metabolites can be corrected by some mathematical

models, e.g., Hill model (Gunn et al. 1998, Asselin et al. 2007), Power

model (Watabe et al. 2000, Meyer et al. 2005) and Exponential models

(Huang et al. 1991). A review of the commonly used metabolite-correction

approaches is suggested to read for further details (Tonietto et al. 2016).

In practice, it would be more dif�cult to get the blood sampling for the

total-body PET study. For example, both the radial artery and antecubital

vein are harder to access due to the long axial �eld of view (Slart et al.

2021). The long line from the wrist to the sampling site may also cause

more serious delay and dispersion issues (van der Weijden et al. 2023).

With so many challenges, the �rst attempt was made by a Denmark group
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to get the arterial blood sample for the total-body 15O-H2O scanning with

Quadra (Andersen et al. 2022). And also some preliminary �ndings on

applications of quantitative parametric perfusion imaging shown as Figure

2.6 are reported in (Knuuti et al. 2023). Such clinical trials are expected

to be conducted more in the future. On the other hand, some non-invasive

techniques (based on image/population/mathematical models) have also

been developed as follows.

Figure 2.6: Voxel level quantitative parametric perfusion image with radio-
tracer delay. (left). 15O-H2O dynamic images with 5s duration in each time
frame after tracer injection. (right series) (Knuuti et al. 2023)

2.5.2 Image-Derived Input Function

To obviate the need for blood sampling, input information can also be de-

rived from a region drawn at the blood pool on PET images, referred to as

image-derived input function. Due to the limited �eld of view of conven-

tional PET scanners, sometimes IDIF can only be measured from small ves-

sels such as carotids. However, total-body PET imaging provides multiple

choices encompassing the left ventricle, aorta and other big blood vessels

(Zhang et al. 2020b, Viswanath et al. 2021, Sari et al. 2022b). So far, the

IDIF recovered from an ROI over the descending aorta (DA) has been the

most popular one (Wang et al. 2020). Furthermore, the high spatial and

temporal resolutions may also lead to more accurate and less noisy IDIF.

However, the use of IDIF still needs to be investigated carefully in the total-

body setting. The whole blood activity concentration can be derived and

plasma concentration is impossible to obtain. Reliable results are only gen-

erated with radiotracers that do not produce any metabolites, such as18F-

FDG (Bertoldo et al. 2014). Additional corrections to the IDIF are also
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important for accurate kinetics (Wang et al. 2023b).

2.5.3 Population-Based Input Function

Assuming individuals have the same tracer injection protocol and similar

physiological characteristics in a cohort, the population-based input func-

tion is generally calculated by averaging and scaling this set of input func-

tions using arterial catheterization invasively (Takikawa et al. 1993). Such

a method is probably the most interesting approach for use in clinical prac-

tice with many radiotracers, but currently it has been validated almost ex-

clusively for 18F-FDG (Vriens et al. 2009). Several groups have attempted

to reduce the dynamic scanning time using the PBIF on the total-body PET

scanners (Wu et al. 2022c, Sari et al. 2022a, van Sluis et al. 2022).

2.5.4 Model-Based Input Function

Model-based descriptions of the arterial samples are usually introduced to

obtain continuous and noise-free input functions, which may be helpful to

further improve IDIF or PBIF. The most famous models are Feng's model

(Feng et al. 1993) and its variation, i.e. tri-exponential model (Parsey et al.

2000), but they both cannot describe the complex behavior of the AIF and

account for different injection protocols properly (Tonietto et al. 2015).

Simultaneous estimation of the input function (SIME) is usually used to

generate a speci�c input function by �tting regional TACs simultaneously

(Feng et al. 1997, Wong et al. 2001, 2002b). Recently, a population-based

projection model (PBPM) has been developed which combines population

pro�ling (as in a PBIF approach) with individual arterial input data mod-

eling (as in an IDIF approach). This model incorporates knowledge of in-

jection duration into the �t, allowing for varying injection protocols (Xiu

et al. 2022). Another promising model to be applied to the emerging total-

body PET imaging is the novel Markov chain model for the representation of

the whole-body tracer circulation shown in Figure 2.7 (Huang & O'Sullivan

2014).
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Figure 2.7: Markov chain model for tracer atom dynamics within the body.
Graph representation (left). Transition matrix (right). (Huang & O'Sullivan
2014)
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2.6 Kinetic Model

Many kinetic models have been well-developed for quantitative PET scan-

ning, but they differ in terms of residue form and produced information

(Bertoldo et al. 2014). A summary is shown in Table 2.3. Most of them

(e.g., compartmental model, Patlak plot and spectral analysis) are para-

metric models that generally rely on the necessary assumptions. These are

dif�cult to justify for the heterogeneous tissue region, especially the diverse-

tissue study. The non-parametric method without the assumption require-

ment should be more �exible and indeed have some substantial advantages.

Here we provide an overview of various parametric and non-parametric

strategies (see (Gu 2023) for more details of derivations) and summarize

their recent developments for total-body PET imaging (Zhang et al. 2020b,

Feng et al. 2021, Wang et al. 2021a, Li et al. 2022a, Sari et al. 2022b, Wu

et al. 2022b, Gu et al. 2022, Wu et al. 2022a, O'Sullivan et al. 2022). The

feasibility, challenge and promise of these methodologies are also discussed.

2.6.1 Compartmental Model

Compartmental modeling forms the basis for tracer kinetics of dynamic PET

data. There are two most important models used to derive physiological in-

formation in absolute measurement units as shown in Table 2.3A. One tissue

compartmental (1C) model with two rate constants ( K 1 in ml/min/cm 3 and

k2 in min � 1) was developed by Kety (Kety & Schmidt 1948) for quantitative

assessment of blood �ow (perfusion). Two tissue reversible compartmen-

tal (2Cr) model with four rate constants ( K 1 in ml/min/cm 3, k2, k3 and

k4 in min � 1) is mainly used for quantifying receptor-ligand binding studies

(Mintun et al. 1984). While k4 equals 0 (irreversible), it becomes the most

famous Sokolov-Huang model (2Ci) generally employed for the quantita-

tion of metabolic rate for glucose (Sokoloff et al. 1977, Phelps et al. 1979,

Huang et al. 1980). For more generalized compartmental models and de-

tailed underlying biochemical mechanisms, see (Gunn et al. 2001).

These models are described by a system of �rst-order time-dependent differ-

ential equations, which can be solved by a numerical procedure known as

nonlinear least squares (NLS) in order to appropriately estimate the residue
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function and associated kinetics. The advantages of compartmental model-

ing are the reliability and independency on the scanning time. When deal-

ing with very noisy data (e.g., voxel-level analysis), this method has sev-

eral shortcomings including convergence issues, long computational time

and sensitivity to initial estimates due to the nature of NLS (Bertoldo et al.

2014).

2.6.1.1 1C Model

One tissue compartmental model is given by a differential equation as (2.5):

dC1(t)
dt

= K 1Cp(t) � k2C1(t) (2.5)

where C1 represents tissue compartment andCp is the plasma compart-

ment. Solved by the integrating factor method, the solution is found to

be:

C1(t) =
Z t

0
K 1e� k2 (t � s)Cp(s)ds (2.6)

Related to the simple basic equation (2.1), the residue function can be ex-

pressed as

R(t) = K 1e� k2 t (2.7)

Hence, the parameter of interest - blood �ow (perfusion) = R(0) = K 1.

2.6.1.2 2C Model

Similar to the 1C model, two tissue compartmental model is represented by

a coupled system of differential equations as (2.8).

8
>>><

>>>:

dC1 (t )
dt = K 1Cp(t) � (k2 + k3)C1(t) + k4C2(t)

dC2 (t )
dt = k3C1(t) � k4C2(t)

(2.8)

where C2 is the tissue compartment. By the Laplace transform and its in-

version (Trench 2013), the �nal result is given by:

CT (t) = C1(t) + C2(t) = K 1(� 1e� � 1 t + � 2e� � 2 t ) 
 Cp(t) (2.9)
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where 8
>>>>>>>>>><

>>>>>>>>>>:

� 1 = k4 � � 1+ k3
� 2 � � 1

; � 2 = � 2 � k4 � k3
� 2 � � 1

� 1 = k2+ k3+ k4 �
p

(k2+ k3+ k4 )2 � 4k2k4

2

� 2 = k2+ k3+ k4+
p

(k2+ k3+ k4 )2 � 4k2k4

2

Again recall the fundamental equation (2.1), residue is a mixture of expo-

nentials as (2.10).

R(t) = K 1(� 1e� � 1 t + � 2e� � 2 t ) (2.10)

For the irreversible 2C model (k4 = 0), the metabolic �ux is focused, that is

K i = lim
t !1

R(t) = K 1k3
k2+ k3

. For the reversible tracers, volume of distribution is

calculated as: VD =
R1

0 R(t)dt = K 1
k2

(1 + k3
k4

).

2.6.1.3 Delay Effect

In the routine PET image, IDIF is usually extracted from a nearby arterial

blood pool so the time delay between IDIF and the targeted tissue is very

short and even negligible. The total-body PET scanner provides several

options for IDIF location that may be far away from some tissues. The delay

time can be up to 50 seconds and signi�cantly varied to different tissues,

which has been an important factor in affecting the kinetic quanti�cation

(Feng et al. 2019, 2021, Wang et al. 2021a, Wu et al. 2022b).

To correct this effect, the delay term is jointly estimated with other parame-

ters in compartmental models. Take 1C model as an example, replacing the

residue function in (2.3) by (2.7) gives:

CT (t) = VB Cp(t � �) + (1 � VB )
Z t

0
K 1e� k2 (t � s)Cp(s � �) ds (2.11)

In this setting, ( VB , K 1, k2, � ) are estimated. Similarly for 2C model, (VB ,

K 1, k2, k3, � ) or ( VB , K 1, k2, k3, k4, � ) are derived but the estimation

procedure is more computationally expensive. Two schemes have been pro-

posed to determine the delay by only the �rst few minutes data using 1C

model (Feng et al. 2019, 2021) or full-time data in arbitrary models (Wang

et al. 2021a). The former one has been initially demonstrated to be ef�cient

(Wu et al. 2022b).
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2.6.1.4 Model Selection

The selection of compartmental models (1C, 2Ci, 2Cr) usually depends on

the tracer property, the aim of the study, and even the organ or tissue of

interest. For example, 1C is generally adopted for15O-H2O and 2Cr is used

for 11C-Raclopride. As the most commonly used tracer -18F-FDG, the irre-

versible model (2Ci) is employed for many organs while its uptake into the

liver exhibits reversible characteristics (Keramida et al. 2014). Therefore,

we must justify each case carefully for the use of the compartmental model.

The typical quantitation for dynamic PET study is applying a single model,

which works well in organ-speci�c imaging on conventional scanners. How-

ever, it may not be suitable for total-body imaging as a single model may not

be feasible for various tissues and organs. Wang et al. have reported that

a voxel-level model selection strategy based on an Akaike information cri-

terion (AIC) leads to improved total-body parametric imaging (Wang et al.

2021a). But there is no doubt that it brings a higher computational burden.

Later on a further examination of various compartmental models for mul-

tiple organs is implemented at the ROI level (Wu et al. 2022b). This study

indicates that the applicability of compartmental models for the bladder is

questionable.

2.6.2 Patlak Plot

Graphical techniques provide simple ways to estimate the speci�c kinetic

parameters by appropriately transforming the equations of compartmental

modeling for irreversible and reversible tracers (Patlak et al. 1983, Logan

et al. 1990, Zhou et al. 2010). Here we just focus on the most popular

graphical method - Patlak model, for more details about other approaches,

we suggest a review article for further reading (Logan 2003). Patlak analy-

sis has been widely applied to dynamic PET imaging due to its simplicity

and robustness (Patlak et al. 1983), which is assumed that: (i) the trapping

of tracer in studied organs/tissues is completely irreversible; (ii) Patlak plot

results in a straight line after the time that steady-state conditions between

reversible tissue and plasma compartments are reached. If both assump-

tions are satis�ed, K i can be estimated easily as the slope of the Patlak plot

after the equilibrium time ( t � ) using linear regression. The Patlak plot is
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given by the expression below:

CT (t)
Cp(t)

= K i

Rt
0 Cp(� )d�

Cp(t)
+ constant; t � t � (2.12)

K i is computed using a few late time frames of dynamic scanning by a

non-iterative strategy - ordinary least square (OLS). Due to the nature of

linearity, it should be much faster and less sensitive to noise than NLS and

it is therefore appropriate for applications at the voxel level (Tomasi et al.

2012). On the other hand, it must be noted that this approach does not

provide any insight regarding the complete pro�le of tracer kinetics and

only a reduced set of parameters (K i ) is obtained.

When adopting the standard Patlak (sPatlak) method for dynamic total-

body imaging, many tissues and organs can be studied simultaneously. Sin-

gle t � may not be appropriate for the diverse-tissue environment as the equi-

librium conditions are probably achieved at different time points. The feasi-

bility of Patlak plot also needs to be justi�ed for certain tissues like the liver,

kidney and bladder. These limitations and possible solutions are discussed

in detail in the following.

2.6.2.1 Selection of t*

The improper t � may introduce additional errors in estimated K i (Choi et al.

1991). A rich literature has explored the choice of t � for a single organ on

short AFOV PET scanners, for example, 20 min for brain (Chen et al. 1998)

and 10 min for lung (Coello et al. 2017). Total-body Patlak images are

generated with various t � , from 10 min (Chen et al. 2021b), 15 min (Liu

et al. 2021c), 20 min (Wu et al. 2022 d) to 30 min (Zhang et al. 2020 b). But

there are no more details about the justi�cations in these studies.

Recently, an adaptive t � scheme has been proposed to determine the op-

timal options for different ROIs or voxels (Wu et al. 2022 a). It is based

on two criteria - max-error and R squared (R2). Max-error is de�ned as

the worst case error between the predicted value and the true value for all

observations on the Patlak plot. The selectedt � is the earliest one so that

the max-error is less than a threshold value. This criterion has been em-

ployed in PMOD (Z •urich; Swizerland ) and the default setting of threshold
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is 10%. R2 is a common metric to quantify the goodness of linear �t and

a value closer to 1 indicates a better �t, so optimal t � is determined by the

maximum R2. This procedure has the potential to improve the accuracy of

kinetic parameters. However, further investigations in patient cohorts and

more sophisticated techniques need to be developed.

2.6.2.2 Generalized Patlak

As described above, the standard Patlak analysis assumes an irreversible

2C model. For total-body imaging, this assumption can be broken by some

tissues (e.g., the liver where 18F-FDG may exhibit mild positive uptake re-

versibility and bladder associated with the complex tracer excretion pro-

cess) (Choi et al. 1994, Wu et al. 2022b,a) and tumors (e.g., hepatocellular

carcinoma) (Torizuka et al. 1995) so that the sPatlak plot is no longer linear.

To address these issues, a generalized Patlak (gPatlak) method (2.13) based

on the reversible 2C model was proposed in 1985 (Patlak & Blasberg 1985),

which introduced an additional exponential term characterized by the net

ef�ux ( kloss) to account for the effect of tracer dephosphorylation properly.

CT (t)
Cp(t)

= K i

Rt
0 e� k loss (t � � )Cp(� )d�

Cp(t)
+ constant; t � t � (2.13)

This model becomes non-linear due to the added exponential term, but it

can be solved by applying a basis function to linearize the estimation process

(Karakatsanis et al. 2015).

The utility of the gPatlak approach for diverse organs and tissues is �rst

examined by Karakatsanis et al. (Karakatsanis et al. 2015) in multi-bed

multi-pass whole-body PET imaging. Then the performance of both stan-

dard and generalized Patlak methods has been assessed for multiple organs

at the ROI level using a total-body PET study on uEXPLORER (Gu et al.

2022). Results show that gPatlak can bring bene�ts for the liver, kidney,

lung and especially bladder. Thus, it would be also interesting to explore

the use of the gPatlak plot for voxel-level analysis in the future.
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2.6.3 Spectral Analysis

The residue function in the compartmental model is the single exponential

(2.7) or a mixture of exponentials (2.10). It may not have suf�cient de-

grees of freedom to capture full variability in total-body PET data. Spectral

Analysis (SA) proposed by Cunningham and Jones in 1993 (Cunningham &

Jones 1993) assumes the residue to be the sum ofJ + 1 exponential terms.

R(t) =
JX

j =0

� j e� � j t ; � j � 0; � j � 0; � 0 = 0 (2.14)

Thus, the tissue time course can be expressed as

CT (t) =
JX

j =0

� j e� � j t 
 Cp(t) �
JX

j =0

� j gj (t) (2.15)

gj (t) are known with the pre-de�ned eigenvalues � j , whereas the ampli-

tudes � j are estimated by the NLS algorithm. The model structure (e.g.,

reversibility or irreversibility, number of compartments) is derived from � j ,

also called spectrum (Tomasi et al. 2012). The information of macroparam-

eters, such asK , K i and VD is obtained as:

K =
JX

j =0

� j ; K i = � 0; VD =
JX

j =1

� j

� j
(2.16)

Some relevant strategies such as rank-shaping spectral analysis (Turkheimer

et al. 2003) and spectral analysis with iterative �lter (Veronese et al. 2010)

have also been developed in recent years. The main strength of spectral

analysis is its �exibility which can be applied to reversible or irreversible

tracers, single or multiple compartmental models, and homogeneous as

well as heterogeneous systems (Veronese et al. 2016). These characteris-

tics make this method adaptable to various tracers and particularly suitable

for total-body PET imaging. But until now, it has not been implemented in

this area.
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2.6.4 Non-parametric Analysis

Typically the tissue residue is a monotone decreasing function and approx-

imated as nonnegative sums of exponential terms in the compartmental

framework. However, the strict monotonicity ( � R(t) < 0) is not always

realistic (Li et al. 1997) and the assumed exponential form may not be rea-

sonable to represent data in which in-vivo biochemistry is not clear (King

et al. 1996, Østergaard et al. 1996, 1999, Barrio et al. 2020b), especially

for the emerging total-body PET imaging (Wu et al. 2022b, Gu et al. 2022).

Unlike the methods discussed above, residue can also be estimated by the

non-parametric approaches (O'Sullivan et al. 2009, Hawe et al. 2012, O'Sullivan

et al. 2014, Chen et al. 2019) and given by:

R(t) =
JX

j =1

� j I j (t); � j � 0 (2.17)

Although it has a similar structure as (2.14), I here represents the basis

elements, which can be B-spline (O'Sullivan et al. 2009, Chen et al. 2019)

or piece-wise function (Hawe et al. 2012, O'Sullivan et al. 2014). This

procedure has the ability to adapt to monotone (even exponential) and non-

monotone forms as no unrealistic parametric restrictions are imposed.

The non-parametric residue analysis can be implemented rapidly by quadratic

programming and has the advantage of providing more accurate kinetic

quantitation in multiple tissues. An ef�cient application of this concept to

generate parametric imaging is described as follows.

The non-parametric residue mapping (NPRM) consists of a fully automatic

process incorporating data-adaptive segmentation, non-parametric residue

analysis of segment data (sub-TAC) and voxel-level kinetic mapping scheme

(Gu et al. 2021a).

Following the linear structure of mixture model (O'Sullivan 1993), the voxel-

level time course (zi ) can be expressed as a non-negative combination of

sub-TACs (� l ). The mechanism enables to address the heterogeneity of

voxel-level data.

zi (t) =
LX

l=1

� il � l (t); � il � 0; i = 1; 2; :::; N (2.18)
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where � is the coef�cient and N is the number of voxels.

For each sub-TAC, the associated residue is estimated non-parametrically

and the parameter of interest - � (e.g., K , K i or VD ) can be derived as a

function ( g) of residue.

� l (t) = Rl (t) 
 Cp(t � �) ) � l = g(Rl )

The �nal parametric imaging is obtained as

� i =
LX

l=1

� il � l ; i = 1; 2; :::; N (2.19)

The NPRM approach has some important features like the �exibility for di-

verse tissues and consideration of delays for different parts and also the abil-

ity to address issues with bladder or injection site (O'Sullivan et al. 2009,

2014, Gu et al. 2021a), which make it feasible to be applied to total-body

PET studies.

Building on (2.18), an image-domain bootstrap data generation process

can be de�ned by the spatial and temporal patterns of model residuals

(O'Sullivan et al. 2021, Gu et al. 2021b). It has been used to assess the

uncertainty (standard errors) of parametric imaging (Gu et al. 2019 b). The

practicality of simultaneous segmentation, kinetic parameter estimation and

uncertainty evaluation has also been demonstrated for a total-body breast

cancer patient study on Biograph Vision Quadra (O'Sullivan et al. 2022).

2.7 Other Approaches

All the aforementioned approaches are applied in the image domain, how-

ever, they can be incorporated into the reconstruction process to estimate

kinetic parameters by modeling projection data (sinogram or list-mode),

known as the “direct method" (Kotasidis et al. 2014). The ideas for direct

estimation could date back to the 1980s (Snyder 1984, Carson & Lange

1985) and since then many scientists have made great contributions to the

progression of this technology for more accurate kinetics than the routine

post-reconstruction procedure (Meikle et al. 1998, Kamasak et al. 2005,
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Wang et al. 2008, Tsoumpas et al. 2008, Wang & Qi 2009, Rahmim et al.

2009). We suggest a detailed technical review for further reading (Wang

& Qi 2013). It is remarkable that direct Patlak has been adopted on com-

mercial scanners and applied to total-body PET studies (Zhang et al. 2020b,

Sari et al. 2022b, Li et al. 2022c). But it suffers from similar problems like

the non-linearity for speci�c tissues as mentioned above (Karakatsanis et al.

2016, Gu et al. 2022, Wu et al. 2022a).

Another research interest in future work is the implementation of arti�cial

intelligence (AI) for the total-body PET imaging (Matsubara et al. 2022, Li

et al. 2021). As a subcategory of AI, deep learning (DL) techniques, e.g.,

convolutional neural network (CNN) (Zaidi & El Naqa 2021) and gener-

ative adversarial network (GAN) (Apostolopoulos et al. 2022), have been

extensively used in PET for solving a wide variety of problems involving im-

age reconstruction (Gong et al. 2018, Reader et al. 2020, Häggström et al.

2019), denoising (Cui et al. 2019, Lu et al. 2019), segmentation (Niyas

et al. 2021, Guo et al. 2019) as well as quantitation (Gong et al. 2021,

Zaker et al. 2022). A few initial attempts have been made to extract the

�ux ( K i ) from total-body PET studies by DL methods (Huang et al. 2022, Li

et al. 2022c, Wang et al. 2022c). More opportunities and challenges facing

the adoption of DL in total-body PET quantitation are detailedly discussed

in a recent review paper (Wang et al. 2021c).

There are a number of PET studies where dynamic scans are used and main

organs are included, e.g., whole-body human and preclinical animal imag-

ing. The data structures and characteristics are similar to total-body human

studies. Therefore, it is natural to generalize the techniques developed in

these studies for quantifying dynamic total-body imaging. For example, (i)

generalized and direct Patlak methods are both �rst examined for multiple

organs in whole-body scans (Karakatsanis et al. 2015, Yao et al. 2021, Dias

et al. 2021), then applied to total-body imaging (Gu et al. 2022, Zhang

et al. 2020b, Sari et al. 2022b); (ii) the above-mentioned NPRM procedure

is demonstrated in the whole-body pregnant macaque studies (Gu et al.

2019a) before it is employed to generate total-body parametric imaging

(O'Sullivan et al. 2022). Many other perspectives also have excellent po-

tential as tools in the future (Kuntner & Stout 2014, Rahmim et al. 2019).
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Chapter 3

A Generalized Linear Modeling

Approach to Bootstrapping

Multi-frame PET Image Data

Abstract

PET imaging is an important diagnostic tool for the management of patients

with cancer and other diseases. Medical decisions based on quantitative PET

information could potentially bene�t from the availability of tools for the eval-

uation of associated uncertainties. Raw PET data can be viewed as a sample

from an inhomogeneous Poisson process, so there is the possibility of directly

applying bootstrapping to raw projection-domainlist-mode data. Unfortu-

nately, this is computationally impractical, particularly if data reconstruction

is iterative or the acquisition protocol is dynamic. We develop a �exible statisti-

cal linear model analysis to be used with multi-frame PET image data that can

create valid bootstrap samples. The technique is illustrated using data from

dynamic PET studies with �uoro-deoxyglucose (FDG) and �uoro-thymidine

(FLT) in brain and breast cancer patients. As is often the case with dynamic

PET studies, image data have been archived without raw list-mode data. Using

the bootstrapping technique, maps of kinetic parameters and associated uncer-

tainties are obtained. The quantitative performance of the approach is assessed

by simulation. The proposed image-domain bootstrap is found to substantially

match the projection-domain alternative. Analysis of results also points to

Statistical Methods for Mapping Kinetics
Together with Associated Uncertainties in
Long Field of View Dynamic PET Studies

36 Qi Wu



3. A GENERALIZEDLINEAR MODELING

APPROACH TOBOOTSTRAPPING

MULTI-FRAME PET IMAGE DATA 3.1 Introduction

a close relation between relative uncertainty in voxel-level kinetic parameters

and local reconstruction error. This is consistent with statistical theory.

3.1 Introduction

Positron emission tomography (PET) is a well-established radio-tracer imag-

ing technique, extensively relied on in both secondary and tertiary clinical

care settings, as well as in medical research. As the role of quantitative PET

in clinical decision making evolves, it is likely that there will be an increas-

ing interest in the availability of practical methods for evaluating uncer-

tainty associated with the results reported for an individual patient. There is

already a signi�cant literature on variance assessment for PET. Much of this

work has concentrated on the development of analytic approaches based on

the linear approximations to the reconstruction process – see, for example,

(Alpert et al. 1982, Barrett et al. 1994, Carson et al. 1993, Huesman 1977,

Ibaraki et al. 2014, Maitra & O'Sullivan 1998, Qi & Leahy 2000, Tanaka &

Murayama 1982, Wang & Gindi 1997). The potential of applying Efron's

statistical bootstrap (Efron & Tibshirani 1994) in this setting was described

by (Haynor & Woods 1989). There have been a number of contributions -

see, for example, (Buvat 2002, Dahlbom 2001, Lartizien et al. 2010, Ibaraki

et al. 2014, Kucharczak et al. 2018) - that have attempted to implement

variations on this approach. The attraction of the non-parametric bootstrap

is that it does not involve detailed analytic assumptions which may be dif-

�cult to justify in a real patient study. So far, bootstrapping methods for

PET image data have concentrated on re-sampling in the raw measurement

domain. We refer to such list-mode or sinogram sampling techniques as

projection-domain methods. The work here is stimulated by (Huang et al.

2020), who used a combination of physical phantom and numerical sim-

ulations to develop an image-domain bootstrapping strategy for PET data.

The approach is based on a sub-ordinate Gaussian structure, a particular

type of Gaussian copula form (Joe 2014), with the ability to capture the

Poisson-like nature of voxel-level measurements as well as relevant spatial

and temporal covariances. In the context of standard clinical PET-FDG stud-

ies, involving imaging over a relatively short duration time frame between

45 and 60 minutes after tracer injection, (Huang et al. 2020) proposed
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sub-dividing frame data in order to obtain the near-replicate information

needed to estimate unknown parameters in a proposed image-domain sim-

ulation model. This technique was illustrated using data from a clinical

PET-FDG lung cancer study.

Our work here develops a more �exible procedure for image-domain boot-

strapping. This new approach is applicable in situations where there may be

a complex temporal structure in the measured PET data — a near-constant

temporal structure is intrinsic to the method used in (Huang et al. 2020).

In addition the latter work relied on a parametric Gamma-model form to

represent the marginal distributions of voxel-level data and a parametric

spatial auto-regressive (SAR) form to represent covariance patterns. The

method here uses the empirical distribution of re-scaled data and a non-

parametric approach for analysis of the spatial correlation structure. The

purpose of this report is to describe the modeling techniques involved in a

novel image-domain bootstrapping method and to numerically demonstrate

its performance relative to the standard projection-domain bootstrapping

technique. Similar to (Huang et al. 2020) the proposed approach is only

applicable to situations where the PET data have a temporal extent —e:g:

dynamic PET studies. In this setting suitable modeling of the dynamic data

enables us to identify an associated set of residuals that can be manipulated

to construct a viable model-based image-domain bootstrapping procedure.

The technical framework for the methodology is set out section 3.2 with

some illustrative examples presented in section 3.3. The examples come

from dynamic studies with PET-FDG and PET-FLT in brain and breast-cancer

patients. Apart from the distinctive temporal patterns arising in these data,

the studies come from different scanners one using a traditional analytic

�ltered-backprojection (FBP) reconstruction method and the other an itera-

tive maximum likelihood (ML) approach. Residual diagnostics demonstrate

how the generalized linear modeling adapts to the varying nature of these

studies. A kinetic mapping technique is applied to the bootstrap-simulated

datasets in order to produce parametric images of metabolism and associ-

ated voxel-by-voxel standard errors. Section 3.4 presents numerical sim-

ulation studies, matched to the real data. These studies explore the per-

formance of this novel model-based bootstrapping technique relative to the

projection-domain list-mode bootstrapping approach. In addition we ex-
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amine if performance is impacted by the nature of the data reconstruction

process used. The results are very promising, demonstrating that the ef�-

cient model-based image-domain bootstrapping substantially matches the

performance of the projection-domain approach, regardless of what data

reconstructed scheme is used. The paper concludes with some discussion in

Section 3.5.

3.2 Methods: Basic Models and Analysis Tech-

niques

The input data for the approach is a 4-D dynamic PET dataset represented

by an N � T array, f zij ; i = 1; ::; N; j = 1; :::; Tg. Here N represents the

number of voxels in the �eld of view and T is the number of time-frames

in the PET acquisition. zij is the reconstructed PET-measured tracer con-

centration value at the 3-D voxel co-ordinate, x i , at a time t j corresponding

to the mid-point of the j 'th time-frame of scanning. We begin by providing

a formal mathematical description of the model, highlighting the various

unknowns that must be estimated before it can be used for bootstrapping.

3.2.1 Statistical Modeling of the Image-Domain Data

Let the true mean and variance of the PET measurementzij be denoted � ij

and � 2
ij , respectively. The proposed approximation of measurements has the

structure of a general linear model in which the error process, while allowed

to be non-Gaussian and non-stationary, is linked to a sub-ordinate Gaussian

process. The starting point for the speci�cation is a set of data-dependent

basis vectors, denotedX = f � k ; k = 1; 2; :::; K g, that have the ability to

approximate local mean values,� ij . The method used to identify X is de-

scribed in section 3.2.3 below. The statistical model forzij is expressed as a

sum of systematic and random terms. The basic version is given by

zij = � ij + � ij � ij ; � ij = Q(� ij ) with � ij � N (0; 1)

� ij = x0
j � i ; � ij = � i � j ;

TX

j =1

� 2
j = T (3.1)
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Here x j is the j 'th row of X and � i is a vector of unknown coef�cients.

Note that the systematic part of zij , here � ij , is approximated by a linear

form. The model is referred to as ageneralized linear modelbecause errors

are allowed to be non-Gaussian and the scale factors,� ij , are not assumed

constant (Seber 2015). In (3.1), � ij is a product of spatial (� i ) and temporal

(� j ) factors. The constraint on � is required for identi�ability. A key part of

(3.1) is that the error term � ij is related to a sub-ordinate Gaussian variable,

� ij , by a (unknown) Q-transform. In statistical parlance, the inverse of Q

de�nes the normal-quantile plot for the collection of measurement errors

(R Core Team 2021). We assumeQ is strictly monotone and, for identi-

�ability, scaled so that var(� ij ) = 1 . Monotonicity of Q is a requirement

for the distribution of the measurement errors to be well-de�ned; it does

not restrict the �exibility of the model to adapt to arbitrary distributional

forms for the error. Strict monotonicity implies that the quantile mapping is

invertible. If the model errors have a continuous distribution - a very plau-

sible approximation for PET and many other types of medical imaging data

- then Q must be strictly monotone. The sub-ordinate Gaussian� -process,

� = f � ij ; i = 1; 2; :::; N; j = 1; 2; :::; Tg, is assumed to have independent

temporal components, matching the formal Poisson structure of PET (Vardi

et al. 1985), and a common stationary spatial auto-correlation, consistent

with physical phantom measurements and simulations, see, for example,

(Huang et al. 2020). Note that the concept of using a simple sub-ordinate

stationary process, like� here, to describe dependency in multivariate data

is well established. (Joe 2014) provides a treatment of many instances

which has proved useful in applied statistical work.

While the model in (3.1) can capture non-stationarity (in mean and vari-

ance) and rather general correlation patterns, it has limited ability to adapt

to the local skewness of PET data. Such skewness is particularly important

for iteratively reconstructed PET data. Thus, a more elaborate form of the

model is needed for our proposed image-domain bootstrapping procedure.

(Scheuermann et al. 2013, Mou et al. 2017) used Gamma-distributions to

model the local skewness of iteratively reconstructed PET measurements

of scanned physical phantoms. In a Gamma-distribution, the ratio of the

mean to the standard deviation is the square-root of the shape parameter.

This quantity is inversely proportional to the skewness of the distribution.
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As the shape parameter increases, skewness diminishes and the Gamma-

distribution formally converges to a Gaussian form. Using the �t of the basic

model in (3.1) to de�ne ~� ij , ~� i and ~� j , we let � ij = ~� ij

~� i ~� j
. The re�ned sta-

tistical modeling approach uses� ij as a surrogate variable for representing

deviations from the product form of the variance and the assumed distribu-

tional structure. This leads to the generalized linear model

zij = � ij + � ij � ij ; � ij = Q(� ij j� ij ) ; � ij � N (0; 1)

� ij = x0
j � i ; � ij = � i � j ;

TX

j =1

� 2
j = T (3.2)

where Q(�j � ) is strictly monotone for each �xed � -value and is assumed to

be slowly varying as a function of � . For identi�ability, a scaling constraint

involving Q is also required. For this with h2(� ) = var(Q(� j� )) , we require
P

ij h2(� ij ) = NT . Obviously, model (3.2) reduces to model (3.1), when

the transform Q does not vary with � . If Q(�j � ) corresponded to a scaled

Gamma distribution then, based on (Mou et al. 2017), � would increase

with dose or sensitivity. And with increasing � , Q becomes linear. Indeed

model (3.2) will converge to model (3.1), with Q � 1, as these factors

increase. This is in line with the results reported by (Mou et al. 2017).

Thus the structure in (3.2) gives the ability to adapt to distributions that

vary from being highly skewed to ones that are substantially Gaussian. In

light of this, the model gives the ability to accommodate both the skewed

nature of iteratively reconstructed (ML) PET data and the Gaussian nature

of analytically reconstructed (FBP) PET scans (Scheuermann et al. 2013,

Mou et al. 2017). Regardless ofQ, the variance structure speci�ed in the

model ensures that with particular choices for � , � and h, the speci�cation

in (3.2) accommodates the situation where variance is directly proportional

to the mean - similar to what (Huesman 1977) proposed for PET ROI data.

For this, let h(� )2 be proportional to j� j, � j = ~� j and choose� i proportional

to ~� i . In this situation, the model in (3.2) could also be viewed within

the Gaussian copula framework used by (Lennon & Yuan 2019) to model

time-series of count data.

Since the temporal components of the sub-ordinate Gaussian are assumed

independent with a common stationary spatial structure, the covariance of

� can be written in the form of a tensor product, � N 
 I T , where � N is
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a N � N matrix representing the spatial correlation pattern and I T is an

T-dimensional identity matrix. Spatial stationarity implies that the covari-

ance can be diagonalized using the Fourier transform (Brockwell & Davis

1991), i:e: � N = F t
N � N FN where FN is the matrix mapping an N -vector to

its 3-D sine and cosine Fourier coef�cients. The action of FN is of course

computed using the standard 3D fast Fourier transform (FFT). The matrix

� N is diagonal with elements, � = f � i ; i = 1; :::; Ng. � , which will need

to be estimated, has elements corresponding to the discretely sampled 3-D

spectral density or power spectrum of� (Brockwell & Davis 1991). While �

has a stationary spatial structure, the measurement error in either (3.1) or

(3.2) is neither �rst nor second order stationary in a spatial sense.

It is important to appreciate that even though the model speci�cation in

(3.2) has substantial �exibility, it should only be viewed as a device for ob-

taining reasonable inferences - here the computation of approximate vari-

ances of imaging biomarkers. The general context of modelling in science

is worth keeping in mind - approximate models, such as (3.2), may not be

correct to arbitrary precision but in a practical environment they are still

often very useful (Box 1976). Before providing details of how the various

unknowns in (3.2) are speci�ed, we describe bootstrapping procedures for

PET based on our model and also based on a non-parametric model-free

approach.

3.2.2 Bootstrapping Techniques

Bootstrapping is a general statistical technique that may be used to eval-

uate the sampling distribution of any summary statistic, e:g: a relevant

biomarker, that might be of interest. In particular, the bootstrap sample can

be used to obtain bias and variance characteristics of the computed sum-

mary, and also to formally access associated hypotheses that might be of in-

terest (Efron & Tibshirani 1994). Here we consider two possibilities for cre-

ating bootstrap samples for PET data: a well-established Projection-Domain

approach and a novel Image-Domain approach developed here. The Image-

Domain method uses equations (3.1) and (3.2); the Projection-Domain is

based on the raw count data before it has been reconstructed. It is helpful

to record the steps involved in bootstrap simulation using these techniques.

This is provided below. We also describe a simple recycling scheme that
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would be important where it is not practical to retain a large number of

bootstrap replications.

3.2.2.1 Projection-Domain Bootstrap

This approach involves random sampling (with replacement) from the num-

ber (Ne) of detected events. If events are binned into count arrays, this

is equivalent to drawing a random sample from a multinomial distribu-

tion with Ne trials and probabilities proportional to the observed counts

in a binned array. Each simulated count array is processed to produce a

bootstrap reconstruction, z� . Repeating the processNB times leads to a

projection-domain bootstrap sample, BP = f zb; b = 1; 2; :::; NB g. If raw

data are binned count arrays before reconstruction, there would also be

the possibility to sample bootstrap counts using an inhomogeneous Poisson

process with mean values proportional to the observed array counts. While

this ensures that the simulated data is fully Poisson and more variable than

the multinomial, because such sampling would not correspond to list-mode

re-sampling, we do not use it here. Note that as the count-rate increases,

there will be little percentage difference between counts produced by either

sampling method.

3.2.2.2 Image-Domain Bootstrap: Model-based Approach

Let X̂ , �̂ , �̂ , �̂ , �̂ , Q̂ and �̂ be the estimated values of the various unknowns

in (3.2). Bootstrap simulated data, z�
ij , are generated by �rst creating an

array � � = f � �
ij ; i = 1; :::; N; j = 1; 2::; Tg with elements corresponding to

a random sample of sizeNT from a standard Gaussian distribution with

mean zero and unit variance. With FN representing the normalized 3-D

mixed sine and cosine transform (computed by the standard 3-D FFT) and

�̂ ij = �̂ i �̂ j , the simulated data are

z�
ij = x̂0

j �̂ i + �̂ ij Q̂(� �
ij j �̂ ij ) where � �

�j = F t
N (�̂ 1=2� �

�j ) (3.3)

where � �
�j and � �

�j are the j 'th columns of the N � T-dimensional arrays

corresponding to � � and � � . Repeating the processNB times gives an image-

domain bootstrap sample, BI = f zb; b = 1; 2; :::; NB g where zb is the b'th

realization of z� in equation (3.3).
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3.2.2.3 Approximate Image-Domain Bootstrap by Recycling

In practical clinical settings, data retention protocols can mean that raw

list-mode data are not routinely archived especially for dynamic studies. In

such environments, it is also unlikely that there would be a willingness to

retain extensive bootstrap datasets. Hence a simpli�ed alternative to the

full image-domain bootstrap is of interest. The proposal here is to retain

a set of �tted model � -coef�cients for a small number of image-domain

bootstrap samples (N �
B � NB ) and to base further bootstrap inferences on

that dataset - B�
I = f � b; b = 1; 2; :::; N �

B g. To justify this, it is important that

the coef�cients retained are suf�cient for the proposed inferences and also

that the size of N �
B is adequate. Under either of the models in (3.1,3.2), any

target parameter, � , associated with the measurable tracer concentration

signal (� i � � x0� i ) is readily expressed in terms of the associated model

coef�cient - i:e: � i = f (� i �) = f (x0� i ) � g(� i ). Recall that a basic property

of maximum likelihood is that if �̂ i is an optimal estimator of � i then �̂ i =

g(�̂ i ) is optimal for � i , c:f: (Rao 1973). Thus if the errors in (3.1) are

Gaussian and a corresponding weighted least squares procedure is used for

the estimation of coef�cients, the � -coef�cient data can be expected to be

suf�cient in a statistical sense.

We propose a novelrecyclingprocedure to help enhance the value of the

retained limited data B�
I . In the approach samples are generated by sam-

pling from B�
I a set of say ~NB values at each voxel and then, by appli-

cation of a spatial �ltering process, create a recycled bootstrap dataset
~B�

I = f ~zb; b = 1; 2; :::; ~NB g where ~zb
ij = x0

j ~� b
i . Importantly, the recycled

~B�
I data is only created at the time that inferences are being considered

– so there is no need to retain extensive bootstrap samples. This recy-

cling scheme can be motivated by the fact that the sampling distribution

of � -coef�cient estimates is approximately Gaussian. Note that since the er-

ror terms in (3.1) are independent, Gaussian approximation of the natural

weighted least squares estimates of coef�cients follows by application of a

multivariate version of Lineberg's central limit theorem - see in Theorem 1

(Bardet et al. 2008). The approximation implies a common Gaussian distri-

bution for the deviations D i = ( �̂ i � � i )=� i = [ X 0WX ]� 1X 0W � 1=2� i � where

W is the diagonal matrix with elements wj / � � 2
i for j = 1; 2; :::; T. Under

model (3.1), D i is mean zero with covariancevar(D i ) = � K = [ X 0WX ]� 1.
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D i is a spatially invariant transformation of the error process and also of

the underlying sub-ordinate Gaussian process� . Thus for (3.1) the N � K

array, D, with rows D i 's, is strictly stationary in a spatial sense. Now if the

error in (3.1) is exactly Gaussian the covariance ofD has the tensor-product

form � N 
 � K , where � N is the spatial covariance of� . Thus simulated re-

alizations of D can be produced by creating aN � K array whose rows are

independent samples from aK -dimensional Gaussian with zero mean vec-

tor and covariance � K and then transforming the columns of the array by

multiplication by the matrix F t
N �̂ 1=2

N as in (3.3). So when Gaussian approx-

imation of �̂ -coef�cients is reasonable, bootstrap samples can be produced

by

~� b
i = �̂ i + �̂ i

~D b
i ; i = 1; 2; :::; N ; b = 1; 2; :::; ~NB (3.4)

where ~D b is obtained by �rst sampling, independently for each row, from

the distribution of (�̂ i � � i )=� i and then �ltering, column-by-column, the

resulting N � K dimensional array using F t
N �̂ 1=2

N . Recycling follows this

process but uses the empirical distribution of the bootstrap datasetD �
i =

f (� b
i � �̂ i )=�̂ i ; b = 1; 2; :::; N �

B g for the sampling from the i 'th row. An

obvious modi�cation of this would be to use the full set of D �
i 's, D =

f (� b
i � �̂ i )=�̂ i ; b = 1; 2; :::; N �

B ; i = 1; 2:::; N g, for row-wise simulation. This

approach would rely more heavily on the accuracy of the Gaussian approx-

imation for its justi�cation.

3.2.3 Speci�cation of Unknowns in the Image-Domain Model

As indicated earlier, the model in (3.2) has a number of unknowns all of

which need to be de�ned before image-domain bootstrapping is possible.

We begin by describing how the basis set,X , is speci�ed and after that

consider the other elements.

The goal in basis selection is to choose a con�guration that is physiologically

interpretable and has the ability to approximate the measured time-course

data at all voxels in the volume. A clustering scheme is used to identify clus-

ters of time-courses that have self-similar shapes. If a basis can be found to

represent the average time-course in such clusters, then it can be expected

that a simple scaling of the representation for the average will �t individual

time-course data in the cluster. In light of this, the basis selection is opti-
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mized so that the set of cluster means are well represented. But because

the number of clusters is quite small (typically on the order of 100-200)

relative to the number of voxels, evaluation of the objective function for as-

sessment of any candidate basis set based on the reduced cluster-mean data

is computationally ef�cient. A generalized cross-validation criterion is used

as an objective function for basis set assessment. Backward elimination,

a well-established type of greedy algorithm in statistical model selection

(Friedman et al. 2001), is used for the optimization of the basis. In general

the initial basis is taken to be the cluster means. However, in the case that

the time-course information is well-sampled in time, a physiologically-based

modeling process is used so that instead of raw cluster means being used as

the initial basis, a set of model-based predictions of the cluster mean time-

courses are used. As some clusters may contain a relatively small number

of voxels and as a result may be noisy, the modeling step acts as a well-

grounded noise suppression scheme. Modeling also enhances the physio-

logic interpretability of the �nal set of basis elements selected.

Detailed implementation of the above basis selection scheme substantially

follows (O'Sullivan 1993, O'Sullivan et al. 2014). The process is imple-

mented in two steps. The �rst step applies recursive hierarchical clustering

to partition the data into a large set of clusters, f Cl ; l = 1; 2; :::Lg, with the

property that the data in each cluster has a similar shape pattern: i:e: if

i 2 Cl then for a suitable constant ai , zij � ai � jl where ~� jl = 1
jCl j

P
i 2 Cl

zij

for j = 1; 2; :::; T is the mean time-course for the l 'th cluster. Step 2 takes

the collection of mean time-course patterns associated with each of these

clusters as an initial set of basis elementsX L = f ~� 1; :::; ~� L g and applies a

cross-validation guided backwards elimination procedure to construct a �-

nal subset X K = f � 1; :::; � K g � X̂ with the property that voxel-level data

can be adequately represented by a non-negative linear combination of the

columns of X̂ . In the case that well-sampled time-course of PET-measured

data is acquired and we have access to the time-course of the tracer in the

arterial blood, the second step is modi�ed by replacing each of the cluster

mean time-courses by a modeled time-course. A non-parametric residue

modeling process is used for that. This is reviewed in Section 3.3.1 below.

Modeling helps to ensure that the �nal set of basis vectors satis�es physi-

ological constraints linked to the basic principles of blood-tissue exchange
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(Meier & Zierler 1954).

Speci�cation of the Unknowns, apart from X

With X �xed, an unconstrained weighted least squares procedure, with a

simple �xed temporal weighting scheme, is used for the estimation of � i 's

in (3.1). The simple weighting scheme and associated� -values are

w0
j = e� t j � dtj =�� �

j ; � 0
j / 1=

q
w0

j for j = 1; 2; ::; T (3.5)

Here �� �
j = max(�� j ; m) where �� j is average of the reconstructed concentra-

tion values over the j 'th time-frame and m is taken to be a fraction (0:1)

of the maximum of these �� j values. The duration of the scan time-frame is

dtj and e� t j � , with � the decay constant for the radio-tracer isotope, is the

standard tracer decay factor. While the estimates of� i based on these sim-

ple weights may not be optimal, under general conditions weighted least

squares estimates are unbiased and also consistent, as the scale of the error

diminishes (Seber 2015). In addition the Gauss-Markov theorem tells us

that if weighting is inversely proportional to the variance of the measure-

ment error, least squares will have minimum variance among all unbiased

estimators (Seber 2015). In practice, unless there is a substantial discrep-

ancy between optimal weights and simplistic weights, the latter will typi-

cally be highly ef�cient – see (Romano & Wolf 2017). In the bootstrapping

setting the unbiasedness property of weighted least squares is important

as it ensures that the data simulation process is also unbiased. The use

of weighted least squares is also helpful in simply justifying the Gaussian

approximation underlying the proposed bootstrap recycling procedure.

Residuals from the least squares �t are used to estimate the other unknowns

in (3.2). The motivation for this comes from

r ij � zij � x0
j �̂ i � zij � x0

j � i = � ij � ij � � i � j � ij

so r ij � � i � j hij eij with h2
ij = V ar(� ij ) (3.6)

and eij = � ij =hij has mean zero and unit variance. From (3.6), natural
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conditional estimates of � and � are

�̂ 2
j =

1
N

NX

i =1

wij (�; h )r 2
ij and �̂ 2

i =
1
T

TX

j =1

wij (�; h )r 2
ij (3.7)

where wij (�; h ) = � � 2
i h� 2

ij and wij (�; h ) = � � 2
j h� 2

ij . �̂ 2
j values are scaled so

that
P

j �̂ 2
j = T. For any speci�ed h, (3.7) can be iterated, starting with �

constant, to obtain converged values ~� (h) and ~� (h). These are maximum

likelihood estimates when eij is standard Gaussian. Withhij = 1, the con-

verged values in (3.7), denoted ~� and ~� , are used as estimates of� and �

in model ( 3.1). This is important for speci�cation of � . The set of �̂ -values

are de�ned by �̂ ij = ẑij

~� i ~� j
where ẑij = x0

j �̂ i .

For estimation of Q, we restrict to piecewise constant approximation as a

function of the � variable. With � (0) = �1 and � (l ) the l
L � 100%'th per-

centile of the �̂ ij values, let I l be the interval (� (l � 1); � (l ) ], for l = 1; 2; :::; L.

Piecewise constant approximation meansQ(�j �̂ ) = Q̂(�j l ) for �̂ 2 I l . Our

experience is that Q is a smooth function of �̂ so that a modest value for

L (in the 50 to 100 range) seems to be quite adequate. AsQ is piecewise

constant, its variance is also piecewise constant -V ar(Q(� j�̂ )) = h(�̂ )2 = h2
l

for �̂ 2 I l . This implies hij = hl for �̂ ij 2 I l . Similar to (3.7), a conditional

estimate of hl given � and � is

ĥ2
l =

1
jI l j

X

�̂ ij 2 I l

wij (�; � )r 2
ij with wij (�; � ) = � � 2

i � � 2
j (3.8)

normalized so that
P

l ĥ2
l = L. Combining (3.7) and (3.8), provides an

iteration for joint estimation of � , � and h. This de�nes �̂ and �̂ . The

converged �̂ values are in�ated by multiplication by T
T � K where K is the

number of columns of X . This is to ensure there is adjustment for the bias

arising from �tting the � -coef�cients at each voxel. Such adjustments are

standard in most parametric model �tting settings - see (Kutner et al. 2013,

Seber 2015) for its use in linear regression.

The converged values of �̂ and �̂ are used to compute scaled residuals

�̂ ij = r ij =�̂ i �̂ j . The empirical distribution of these scaled residuals, E l =

f �̂ ij ; �̂ ij 2 I lg, is used to evaluateQ̂(�j l ). Here we match order statistics

of E l to the corresponding quantiles of a standard normal distribution -
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N l = f �̂ ij ; �̂ ij 2 I lg. This is simply the standard normal quantile-quantile

plot procedure – c:f: (R Core Team 2021). The inverse map allows arbitrary

quantiles of the standard normal to be mapped to quantiles of E l .

For estimation of � , the full set of normalized residuals, �̂ , are mapped to

the imaging domain and using the 3-D FFT their 3-D periodogram is evalu-

ated for each time-frame. Averaging these periodograms over time-frames,

with weights �̂ � 2
j , produces the �nal estimate of the required power spec-

trum, �̂ . Using the Weiner-Khinchine theorem (Brockwell & Davis 1991),

the inverse 3-D FFT of the power spectrum provides the corresponding of

the 3-D spatial auto-correlation function �̂ . This completes the speci�cation

of all unknowns in the image-domain bootstrapping model. Before inves-

tigating the reliability of the bootstrapping method, we �rst present some

illustrations of the technique with real data. Model diagnostics are an es-

sential part of any statistical modeling process, particularly if model-based

bootstrapping is of interest. This aspect is highlighted in the illustrative

examples.

3.3 Applications to Parametric Imaging

We present two dynamic PET imaging studies of cancer patients. One is

from a series reported in (Spence et al. 1998) and involves brain tumor

scanning with 18F-labeled Fluorodeoxyglucose (FDG); the second comes

from a more recent breast cancer imaging trial with 18F-labeled Fluorothymi-

dine (FLT) (Kostakoglu et al. 2015). The studies are chosen in part because

they represent data with different imaging challenges. The brain FDG study

is from an early generation PET scanner using direct FBP reconstruction.

The scanner in the FLT study is more recent and uses an ML reconstruction

technique. Raw projection data are not available for either study. Thus

only image-domain bootstrapping is practical. In each case the bootstrap

generated dataset,BI , is processed to map metabolic parameters and their

associated standard errors. Before presenting the examples, we provide

some background on the approach used for mapping voxel-level kinetic pa-

rameters. This material draws on (O'Sullivan 1993, O'Sullivan et al. 2014).
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3.3.1 Non-Parametric Residue Mapping (NPRM) of Kinet-

ics

The basic principle of most tracer imaging studies with PET is that the

tracer's interaction with the local tissue is linear and time-invariant. While

there are situations where this assumption is not valid, it is very reasonable

for FDG and FLT. The arterial supply is the primary system for transport of

tracer to tissue, so linearity and time-invariance implies that the true tissue

concentration, C(x; t ), can be described by a convolution between the lo-

cal arterial blood concentration supplied by the output of the left-ventricle

(LV) of the heart, Cp, and the corresponding impulse-response, or so-called

tissue residue function R. Thus

C(x; t ) =
Z t

0
R(x; t � s)Cp(x; s)ds (3.9)

Typically arterial dispersion effects are below the resolution of the PET scan-

ner and the arterial concentration can be well-described by a suitable shift

of the LV signal – Cp(x; s) = Cp(s � � x ) where Cp(t) is the LV blood con-

centration and � x is a suitable delay. From basic principles of blood-tissue

exchange (Meier & Zierler 1954), the residue is a monotone-decreasing

non-negative function - a life-table for the travel-times of tracer atoms in-

troduced to tissue at time zero (O'Sullivan et al. 2009). While most tissue

in a typical volume of interest behaves in the above manner, some excep-

tions may need to be kept in mind. For example, there may areas between

the (venous) injection site and the corresponding pathway to the LV where

the arterial pattern is irrelevant. Similarly, if the bladder is in the �eld of

view, its time-course will not follow the pattern in (3.9). It is appropriate to

describe it in terms of the out�ow for a whole-body blood-tissue exchange

process (Meier & Zierler 1954).

There is a substantial literature on modeling techniques for PET time-course

data. Most of this focuses on the analysis of region of interest data; see,

for example, (Huang et al. 1986, Vicini & Bassingthwaighte 2014, Mankoff

et al. 2006). But there are also a number of techniques for voxel-level

analysis. Spectral techniques use a positive linear combination of exponen-

tials to approximate the voxel-level residue (Cunningham & Jones 1993,

Veronese et al. 2016, Wang et al. 2020). The NPRM approach models
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voxel-level time-course data by a positive linear combination of basis vec-

tors, f � k ; k = 1; :::; K g – referred to a sub-TACs (TAC stands for time-activity

curve). This is a version of the form used in equations (3.1,3.2) in which

the � -coef�cients are constrained to be non-negative. In the NPRM setting,

the backwards elimination scheme in Section 3.2.3 is modi�ed by replacing

the initial cluster-mean vectors in X L by elements based on non-parametric

residue modeling of the cluster mean data –i:e: ~� l is replaced by the approx-

imation � l (t) =
Rt

0 Rl (t � s)Cp(s � � l )ds. In addition, the basis in NPRM is

required to always include components corresponding to the time-courses

for the arterial input function (AIF) and its cumulative integral. The lat-

ter is referred to as the Patlak basis element because an analysis that only

used that term would be substantially equivalent to the Patlak approach to

evaluation of tracer �ux (Patlak & Blasberg 1985).

As the basis elements are represented in terms of residue functions,� k(t) =
Rt

0 Rk(t � s)Cp(s � � k)ds, the linear model representation of the PET data

leads to the approximation of the voxel-level residue as a linear combination

of the basis residuesf Rk ; k = 1; :::; K g, i:e:

zij �
KX

k=1

� ik � k(t j ) ! R(x i ; t) �
X

k

� ik Rk(t) (3.10)

Here a very short duration (less than 5 seconds) spiked residue is used to

represent the AIF and a constant residue is used for the Patlak term.

In the NPRM approach, decomposition of the voxel-level residue is used

to create summaries variables for mapping tracer kinetics. SupposeTE is

the study duration and let TB for 0 < T B < T E represent a realistic upper-

bound for large-vessel travel-time – for human PET studies with FLT and

FDG, a valueTB of around 5 to 10seconds is reasonable physiologically. The

residue over the observed time-frame of the study,[0; TE ], is decomposed in

terms of vascular (Rb), in-distribution ( Rd) and extraction ( Re) components

as

R(t; x ) = Rb(t; x ) + Rd(t; x ) + Re(t; x ) (3.11)

Statistical Methods for Mapping Kinetics
Together with Associated Uncertainties in
Long Field of View Dynamic PET Studies

51 Qi Wu



3. A GENERALIZEDLINEAR MODELING

APPROACH TOBOOTSTRAPPING

MULTI-FRAME PET IMAGE DATA 3.3 Applications to Parametric Imaging

where

Re(t; x ) = R(TE ; x) � K i (x)

Rb(t; x ) =

8
<

:
R(t; x ) � R(TB ; x) ; 0 � t � TB

0 ; elsewhere

Rd(t; x ) = R(t; x ) � Rb(t; x ) � Re(t; x )

The apparent rate of extraction of tracer atoms by the tissue is measured

by K i (x). This is a measure of �ux (see further discussion below). Given

the residue decomposition, the vascular (large vessel) blood volume,Vb(x),

as well as the in-distribution �ow, K d(x), and volume, Vd(x), are recovered

from Rb and Rd as

Vb(x) =
Z TB

0
Rb(t; x )dt (3.12)

K d(x) = Rd(0) ; Vd(x) =
Z TE

0
Rd(t; x )dt

By the central volume theorem (Meier & Zierler 1954), the mean transit

time (MTT) is de�ned as the ratio volume to �ow – Vd(x)=Kd(x). However

this does not take account of variation in the time of arrival of the tracer to

the local tissue. To address this we use a �ow-weighted average of mean

transit-times associated individual sub-TACs –i:e: MTT(x i ) =
P

k wik MTTk

where MTTk = � k + VDk =KDk with K Dk and VDk obtained from k'th compo-

nent residue (Rk). Here the weights, which are normalized to sum to unity,

are proportional to the �ow contributions from the different component tis-

sues represented at thei 'th voxel, i:e wik / � ik K Dk for k = 1; 2; :::K . Thus

MTT is written as

MTT(x i ) = � w(x i ) + VD (x i )=KD (x i ) (3.13)

= � w(x i ) +
P K

k=1 � ik VDk
P K

k=1 � ik K Dk

� w(x i ) =
P

k wik � k . In the case that the individual delays are all the same,

� w(x i ) will constant across voxels.

While a non-parametric approach is used for speci�cation of sub-TAC residues,

it is useful to record what the above summary parameters correspond to in

the 2-compartmental model of Huang and Sokoloff, see (Huang et al. 1986).
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This model is very widely used in PET data analysis. In this model there are

four kinetic constants - (k1; k2; k3; k4). The impulse response function (a:k:a

tissue residue) for the model is a mixture of exponentials

I C (t) = k1(1 � � )e� t� 1 + k1�e � t� 2 (3.14)

where � 1(2) = 1
2(k2 + k3 + k4 �

q
(k2 + k3 + k4)2 � 4k2k4) and � = k3+ k4 � � 2

� 1 � � 2
.

When the model is applied to PET time-course data, there is typically an

adjustment for the fractional blood volume ( f b), which gives rise to a model

representation of the tissue time-course (CT ) as

CT (t) � f bCp(t) + (1 � f b)
Z t

0
I C (t � s)Cp(s)ds (3.15)

Suppose we introduce a simple linear residueRo de�ned over the interval

[0; TB ] by

Ro(t) =

8
<

:
2 f b

TB
( TB � t

TB
) ; 0 � t � TB

0 ; elsewhere

Note
RTB

0 Ro(t)dt = f b. As TB ! 0, Ro becomes very spiked at0. For small

TB and the convolution of Ro with the AIF is approximately f bCp(t). As a

result, for suf�ciently small TB , the 2-compartmental model can be given a

residue representation

CT (t) � f bCp(t) + (1 � f b)
Z t

0
I C (t � s)Cp(s)ds

=
Z T

0
RC (t � s)Cp(s)ds (3.16)

with RC (t) = Ro(t)+(1 � f b)I C (t). DecomposingRC as described in equation

(3.11) and evaluating the residue summary measures gives

K i = K 1(1 � � )e� � 1TE + K 1� + O(� 2)

Vb = f b + O(TB ) (3.17)

K d = K 1 � K i + O(TB )

Vd =
K 1(1 � � )(1 � e� � 1TE )

� 1
+ O(� 2) + O(TB )

where K 1 = (1 � f b)k1 and O(x) indicates that corresponding terms vanish

asx ! 0. If k4 = 0 then � 2 = 0. Here asTB ! 0 with TE large (so e� � 1TE is
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negligible) the residue summaries for the 2-C model become

K i = K 1� =
K 1k3

k2 + k3

Vb = f b (3.18)

K d = K 1(1 � � ) =
K 1k2

k2 + k3

Vd =
K 1

k2 + k3
(1 � � ) =

K 1k2

(k2 + k3)2

When both k3 and k4 are zero, the 2-compartment model reduces to the 1-

compartment Kety-Schmidt model (Kety & Schmidt 1945). Here the param-

eters become:K i = 0 (no retention), Vb = f b, K d = K 1 and Vd = K 1
k2

. The

latter two quantities are the familiar �ow and distribution volume terms as-

sociated with the Kety-Schmidt approach to the quantitation of PET studies

with 15O-labeled water.

In the two applications, the basis functions used for the generation of boot-

strap data are the same as those used for NPRM kinetic analysis of the

original image data (z). Individual bootstrap realizations ( zb 2 B I ) are pro-

cessed in the same way as the original data using the NPRM procedure. If

an alternative kinetic or other analysis method was of interest, it would be

applied to the original data and to the realizations in BI . In this way the

bootstrapping technique could also be used to generate assessments of un-

certainties for alternative approaches to mapping kinetics,e:g:such as those

reviewed in (Wang et al. 2020).

3.3.2 FDG Brain tumor Study

PET studies with FDG play a major role in the diagnosis and management

of many cancers (Barrio et al. 2020a). (Spence et al. 1998) reported on a

series of NIH-supported studies, conducted at the University of Washington

(Seattle), evaluating the ability to measure the metabolic rate of glucose

consumption in glioma patients, post-surgery. We use data from one of

these cases. Details of the study protocol, which also included direct arte-

rial blood sampling, are provided in (Spence et al. 1998). Brie�y, imaging

was conducted a 35-plane scanner using a 2-D acquisition plane-by-plane

process and a direct (FBP) reconstruction methodology. The 4-D PET data is
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an array with N = 128� 128� 35voxels (2:25� 2:25� 4:25mm3) and T = 31

time-frames extending over a 90-minute period. The time-frame sequence

is: 1(1 min) pre-injection, 4(20 sec), 4(40 sec), 4(1 min), 4(3 min) and

8(5 min). Main bootstrapping technique to evaluate sampling variation in

computed metabolic images.

Results of analysis are presented in Figure 3.1 and Figure 3.2 & 3.3. NPRM

metabolic images and associated bootstrap estimates of voxel-level stan-

dard errors are in Figure 3.1. Note that while the full data set is analyzed

to produce a full volume of metabolic information, Figure 3.1 only shows

a single transverse slice in which the tumor is most apparent. The results

demonstrate a pattern of altered FDG kinetics, particularly in FDG-based

glucose �ux ( K i ) and extraction ( K i =K1), in the tumor region. Standard

errors demonstrate that variability is very much related to the scale of

the metabolic variable. This pattern is likely a consequence of the over-

all pseudo-Poisson characteristic of PET data, so areas with high metabolic

values (high �ow, volume, etc.) also have greater absolute variance. We

examine this more formally in Section 3.4.2. The typical percent error, mea-

sured by the standard deviation relative to the metabolic parameter value,

is on the order of 10-20% for most metabolic variables, even for the non-

linear MTT and extraction ( K i =K1) values. As described in (Spence et al.

1998), volumes of interest (VOIs) for tumor and normal grey matter were

identi�ed using co-registered MRI scans. For the present case, the tumor

VOI consists of 759 voxels of which 133 are on the slice shown in Figure

3.1; the normal VOI has 1979 voxels but none of these are on the slice

shown in Figure 3.1. Histograms of the bootstrap-estimated sampling dis-

tributions for the 95'th percentile of the metabolic parameters in the VOIs

are shown in Figure 3.1. These histograms demonstrate the ability of the

bootstrap analysis to support inferences for comparisons between complex

imaging biomarkers (here the 95'th percentile statistic) for VOIs. The differ-

ences between tumor and normal grey matter VOIs are quite dramatic for

�ux, MTT and extraction. By standard bootstrap analysis (Efron & Tibshi-

rani 1994) these differences are readily con�rmed to be highly signi�cant

in statistical terms.

Residual diagnostics associated with the image-domain bootstrap are shown

in Figure 3.2 & 3.3. A set of seven vectors is identi�ed by the basis selec-
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tion procedure. As described in 3.3.1, in the NPRM setting, two of these

basis elements are constrained to correspond to the time-courses for the

arterial input function (AIF) and its cumulative integral (Patlak element).

The cluster mean data de�ning each of the �ve other basis vectors and their

corresponding non-parametric residue model �ts are shown in Figure 3.2(i)

& 3.3(i). The �tted residues for these basis elements are in Figure 3.2(ii)

& 3.3(ii). The �tted time-courses as used in the image domain model - see

(3.2). Temporal boxplots of the fully standardized residuals, (zij � �̂ ij )=�̂ ij ,

are shown in Figure 3.2(iii) & 3.3(iii). These boxplots are highly symmetric.

Estimates of optimized and initial temporal scaling factors, �̂ j and � 0
j (see

section 3.2.3) are also displayed. Apart from the initial 3-4 time-frames we

see that these are remarkably similar to each other. Boxplots of residuals

scaled by temporal (�̂ j ) and spatial ( �̂ i ) factors and binned by values of

�̂ (= ẑij =~� i
~� j ) are in Figure 3.2(iv) & 3.3(iv). These boxplots show little

or no variation for different � -bins. In particular, there is little indication

of variation in the scale of these boxplots. This is con�rmed by the es-

timate of h is practically constant. The distributions of the standardized

residuals are shown in Figure 3.2(v) & 3.3(v). The overall distribution is

substantially Gaussian in appearance. Perhaps the proportion of more ex-

treme values is somewhat less than what one would expect for the Gaussian

- this is apparent from the quantile plots. The substantially Gaussian struc-

ture agrees with results reported in (Mou et al. 2017) for PET data recon-

structed by FBP techniques. Sample transverse and axial auto-correlations

of the sub-ordinate residual process (̂� ) as a function of spatial distance are

shown in Figure 3.2(vi) & 3.3(vi). This is evaluated by inversion of the 3-D

periodogram, i:e: via the Wiener–Khintchine theorem (Brockwell & Davis

1991). The axial pattern shows little plane-to-plane auto-correlation. This

is consistent with the 2D nature of data acquisition. The transverse pat-

tern shows longer range dependence in the long-axis of brain cross-section

– perpendicular to the scanning bed. This is fully consistent with results

from elliptical phantom simulations reported in the literature (Huang et al.

2020, Razifar et al. 2005).
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3.3.3 FLT Breast tumor Study

Cellular DNA is replicated during cell division so that its concentration in

rapidly proliferating tumor tissues can be expected to be higher than in

normal tissue. PET FLT imaging has the potential to provide an approxi-

mate measure of DNA concentration and for this reason FLT imaging may

be helpful for diagnosis and treatment planning with certain cancers. Our

data is from a multi-center American College of Radiology Imaging Net-

work clinical imaging trial (ACRIN 6688) which conducted dynamic PET-

FLT imaging of breast tumors before and during neo-adjuvant chemother-

apy. The goal was to see if PET-FLT imaging could give an early indi-

cation of the tumor response – trial results are reported in (Kostakoglu

et al. 2015). The ACRIN data are part of an anonymized cancer imag-

ing archive developed and maintained by the National Cancer Institute

(https://www.cancerimagingarchive.net ). The data considered here are

from a patient studied at baseline (before chemotherapy). The study was

conducted on a 74-plane scanner using a 3-D acquisition process and ML

reconstruction. The 4-D PET data set consists of an imaging volume with

N = 168 � 168� 74voxels (2:97� 2:97� 2:01mm3) and T = 45 time-frames

of acquisition over one hour. The time-frame binning sequence was: 16(5

sec), 7(10 sec), 5(30 sec), 5(1 min), 5(3 min) and 7(5 min). Note that

more than half of the temporal sampling is focused on the �rst 2.5 minutes

of the 1-hour acquisition. This is in part because the kinetics of FLT (a small

molecule) are faster than those of FDG. The left-ventricle of the heart was

used to directly recover a blood time-course, which after approximate ad-

justment for metabolites provided an arterial input function, Cp, used for

kinetic analysis.

Data were processed using the same methods as used for the brain study.

NB = 500 image-domain bootstrap replicates were used for the evaluation

of sampling variation in computed metabolic images. Metabolic images

and associated bootstrap estimates of their voxel-level standard errors are

in Figure 3.1. Metabolic images shown are for a transverse slice through

the tumor region (indicated by an arrow on the �ux image). Volume of

distribution( Vd), �ow( K d) and �ux ( K i ) show signi�cant enhancement in

the tumor region. In a compartmental modeling framework, all three pa-

rameters have been suggested as appropriate ways to quantify FLT time-
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Figure 3.1: Metabolic Images with image-domain bootstrap assessment of
standard errors: Rows 1-3 show the Brain tumor FDG data; 4-6 for the
Breast tumor FLT data. The mapped parameters are shown on rows 1&4 –
the location of tumor volume of interest (VOI) on the slice is indicated with
an arrow. Columns correspond to different metabolic parameters (labeled
in yellow) with color bars indicating units - see section 3.3.1 for de�ni-
tions. Computed standard errors (SE) are on rows 2&5. Rows 3&6 show
histograms of the bootstrap sampling distributions of the 95'th percentile of
the metabolic parameter in the normal [black] and tumor [red] VOIs.

Statistical Methods for Mapping Kinetics
Together with Associated Uncertainties in
Long Field of View Dynamic PET Studies

58 Qi Wu



3. A GENERALIZEDLINEAR MODELING

APPROACH TOBOOTSTRAPPING

MULTI-FRAME PET IMAGE DATA 3.3 Applications to Parametric Imaging

Figure 3.2: Diagnostics associated with the Image-Domain Bootstrapping
Model (3.2) using the FDG-Brain data. Six plots, labeled (i) to (vi), are
shown for each dataset: (i) raw sub-TACs (dots) and �tted models (lines)
for the selected basis set - columns ofX . (ii) Non-parametric residues cor-
responding to the �tted model - c.f. (3.10). (iii) Boxplots by time-frame of
standardized residuals from the unconstrained least squares �t,r ij =�̂ i �̂ j ĥij .
The simple, �̂ 0

j in (3.5), and optimized, �̂ j , standard deviations are shown as
green and red dots. (iv) Boxplots of scaled residuals,̂� ij = r ij =�̂ i �̂ j , for each
� -bin (each containing roughly 10000 data points). ĥl -values are shown
as red points; the red line is for comparison with unity (zero skewness of
bin data). (v) Histogram of the overall distribution of the standardized
residuals and its relation to a Gaussian �t (purple curve). Super-imposed
are points showing quantiles of standardized residuals from different � -bins
(colored from red to dark blue according to bin order) versus correspond-
ing quantiles of the Gaussian (right y-axis). The quantile pattern for the
overall histogram and the Gaussian �t are shown with dashed black and
purple lines. (vi) Directional auto-correlation patterns of the normalized
residuals, �̂ , as a function of distance in millimeters. X-Y are transverse with
Y perpendicular to the scanning bed; Z is the axial direction.
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Figure 3.3: Diagnostics associated with the Image-Domain Bootstrapping
Model (3.2) using the FLT-Breast data. Six plots, labeled (i) to (vi), are
shown for each dataset: (i) raw sub-TACs (dots) and �tted models (lines)
for the selected basis set - columns ofX . (ii) Non-parametric residues cor-
responding to the �tted model - c.f. (3.10). (iii) Boxplots by time-frame of
standardized residuals from the unconstrained least squares �t,r ij =�̂ i �̂ j ĥij .
The simple, �̂ 0

j in (3.5), and optimized, �̂ j , standard deviations are shown as
green and red dots. (iv) Boxplots of scaled residuals,̂� ij = r ij =�̂ i �̂ j , for each
� -bin (each containing roughly 10000 data points). ĥl -values are shown
as red points; the red line is for comparison with unity (zero skewness of
bin data). (v) Histogram of the overall distribution of the standardized
residuals and its relation to a Gaussian �t (purple curve). Super-imposed
are points showing quantiles of standardized residuals from different � -bins
(colored from red to dark blue according to bin order) versus correspond-
ing quantiles of the Gaussian (right y-axis). The quantile pattern for the
overall histogram and the Gaussian �t are shown with dashed black and
purple lines. (vi) Directional auto-correlation patterns of the normalized
residuals, �̂ , as a function of distance in millimeters. X-Y are transverse with
Y perpendicular to the scanning bed; Z is the axial direction.
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course data (Kostakoglu et al. 2015). Standard errors again demonstrate a

pseudo-Poisson characteristic — variability is higher in regions with higher

values. The typical percent error, measured by the standard deviation rel-

ative to metabolic parameter value, is on the order of 10-20% for most of

the metabolic variables displayed. It is again notable that the mean transit

time (MTT) and extraction ( K i =K1) appear quite stable as in the associated

uncertainty measure. VOIs for tumor and contra-lateral normal breast were

also accessed. The tumor region had 1280 voxels extending over 16 slices

(3.2cm in axial extent); the normal VOI is not quite as large - 1054 voxels

- but with a very similar shape. The bootstrap estimated histograms of the

sampling distribution of the 95'th percentile of the metabolic parameters in

the VOIs are shown in Figure 3.1. Similar to the FDG data, differences be-

tween tumor and normal VOIs are quite dramatic for all parameters, except

for the vascular blood volume measure (Vb). These differences are highly

signi�cant when formally assessed via the bootstrap information.

Residual diagnostics for the analysis are shown in Figure 3.2 & 3.3. The

presentation facilitates qualitative comparisons with the FDG brain results.

Eight vectors are identi�ed by the basis selection procedure. The cluster

mean data de�ning the six non-AIF and Patlak basis vectors and their cor-

responding non-parametric residue model �ts are again shown in Figure

3.2(i) & 3.3(i). Temporal boxplots of the fully standardized residuals are

shown in Figure 3.2(iii) & 3.3(iii). These show more variability than the

corresponding pattern for the FDG data. It is worth noting that the model

(3.2) does not imply a common form for these distributions. Similar to

the FDG data, the optimized and initial temporal scaling factors, �̂ j and � 0
j

match each other quite closely, apart from the �rst few time-frames. Box-

plots of residuals scaled by temporal (̂� j ) and spatial ( �̂ i ) factors and binned

by values of �̂ ij (= ẑij =~� i
~� j ) are in Figure 3.2(iv) & 3.3(iv). These are quite

different from the pattern for the FBP-reconstructed FDG data. Apart from

the very �rst bin, the distributions show variation increasing with increasing

values of �̂ - this is con�rmed by ĥ which is substantially linear as a func-

tion of the quantiles of �̂ . The distribution of the standardized residuals,

(zij � �̂ ij )=�̂ ij , show a marked skewness. The pattern deviates substantially

from the Gaussian – Figure 3.2(v) & 3.3(v). Detailed evaluation of the dis-

tributions across � -bins shows that as� -increases, there is increasing confor-
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mity to the Gaussian. As discussed in section 3.2, in a Gamma distribution

� is proportional to the shape parameter and as that parameter increases

the Gamma distribution formally converges to a Gaussian. Thus the data

are in line with (Mou et al. 2017) who showed that a Gamma-form was

a good approximation for ML-reconstructed data. The directional spatial

auto-correlation patterns of the scaled residuals are given in Figure 3.2(vi)

& 3.3(vi). Here it can be seen that there is much less distinction between

the auto-correlations in the X and Y directions. This may be due to the more

circular nature of the source (see Figure 3.1). Axial auto-correlation is much

more persistent than in the FDG data. This is consistent with the 3D nature

of data acquisition and its reconstruction. Interestingly, the full-width-at-

half-maximum (FWHM) of X-Y auto-correlations (5mm) are quite close to

that seen in the FDG brain data. However the longer range persistence in

auto-correlation is clearly more pronounced in the FLT case. Qualitatively

the images for the FDG data in Figure 3.1 seem rougher than those for FLT.

Thus the more persistent auto-correlation may in part be associated with

the details of the reconstruction used. But of course, it would be inap-

propriate to draw any inference about the relative resolution properties of

these scanners on the basis of the auto-correlation patterns in Figure 3.2(iv)

& 3.3(iv) for the FDG and FLT data. Such comparisons would require data

from similar objects being imaged in both instruments under similar condi-

tions – ideally using a suitable physical phantom study (Scheuermann et al.

2013).

3.4 Assessment of Performance

The purpose here is to evaluate the performance of the novel image-domain

bootstrapping technique for PET and make comparisons with the more

computationally intensive, but fully non-parametric, projection-domain ap-

proach. Assessment of variance estimators is somewhat complicated be-

cause we do not have an analytic formula for the true target variance.

Hence a number of replicate simulations (NS) are needed to evaluate the

true target variance with reasonable accuracy. Bootstrapping techniques in-

volve simulation and the number of such simulations (NB ) also needs to

be considered. Apart from the computation, in practice the storage require-
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ments associated with retention of bootstrap samples may also be a factor.

We will report studies in which both modest and large numbers of boot-

straps are examined.

In mathematical terms, PET has the structure of a linear inverse problem.

The raw list mode data is a realization of an inhomogeneous Poisson pro-

cess in which the rate is linearly related to the target source. Our studies

use a simpli�ed representation of PET scanning. This enables us to conduct

a more detailed set of studies. We assume that critical performance differ-

ences between image-domain and projection-domain bootstrapping meth-

ods for real PET scanners should be apparent in a simpli�ed simulation

setting, provided of course that the mathematical complexity of the sim-

pli�cation is substantially similar to PET. We report on experiments with

2-D and 1-D PET scanning models. The 2-D studies are focused on analytic

(FBP) reconstruction only, but iterative ML and analytic reconstruction are

considered in the 1-D case. Dynamic aspects of both 1-D and 2-D studies

are based on results obtained for the FDG brain and FLT breast cancer data

presented in section 3.3.

Table 3.1: Reliability of Bootstrap Estimates of voxel Standard Deviations
for mapped Kinetics in 2-D. Means and maxima of voxel kinetic estimates,
averaged over replicates, are shown as�� � and �� _ . Mean of voxel standard
deviations, averaged over replicates (�� � ) its standard error ( �SE � ) and the
overall RMSE values, see (3.20), are reported as a percentage of the maxi-
mum ( �� _ ). Estimates (â; b̂;ĉ) correspond to (3.19).

Brain FDG Breast FLT

Parameters Vb Vd Kd Ki MTT Ki/K1 Vb Vd Kd Ki MTT Ki/K1

Mean (�� � ) 0.04 0.50 0.23 0.01 4.19 0.02 0.22 0.23 0.04 0.01 4.58 0.12

Max ( �� _ ) 0.12 1.11 0.56 0.02 8.71 0.17 1.96 1.54 0.19 0.07 8.36 0.59

�� � 20.00 11.17 14.59 5.47 10.41 7.22 2.61 3.81 11.14 1.52 22.73 12.52
�SE � 1.50 0.73 1.12 0.33 0.57 0.71 0.19 0.26 0.87 0.10 1.38 1.00

â 1.11 1.08 1.08 1.16 1.14 1.12 1.04 1.08 1.12 1.07 1.20 1.18

b̂ 0.95 0.95 0.92 1.10 1.04 1.00 0.90 0.98 1.00 0.98 1.14 1.08

ĉ 0.97 0.97 0.94 1.12 1.06 1.04 0.91 0.99 1.03 0.99 1.16 1.11

RMSEy
� 6.17 2.38 4.33 1.50 2.89 3.69 0.69 1.00 4.14 0.35 8.43 5.13

RMSEz
� 7.10 2.95 5.29 1.41 2.79 4.04 0.91 1.11 4.35 0.40 8.04 5.09

RMSEz�
� 8.31 3.65 6.13 1.76 3.41 4.55 1.08 1.35 5.08 0.50 9.40 5.88
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Figure 3.4: Source distribution, � xt =
P

k=1 � k(x)� k(t), for the 2-D simu-
lation experiments. Rows correspond to the FDG-Brain data (A) and FLT-
Breast data (B). � k(x) patterns and attenuation in (i), time-courses for each
component, � k(t) (normalized), are in (ii). Flux parameters are in (iii).

Figure 3.5: Dynamic image-domain source leads to a corresponding pro-
jection domain array. Simulated counts are reconstructed and computed
metabolic images. Each replicate of the simulation has both non-parametric
(projection-domain) and model-based (image-domain) bootstrapping.
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Figure 3.6: Voxel estimates of average standard deviations of �ux. The
true values are estimated by direct replication, these values are compared
to image and projection domain bootstraps for a single replicate.

The 2-D setup focuses on central slice containing the tumor. The dynamic

source for the selected slice, Figure 3.4 corresponds to the models �tted in

NPRM mapping of kinetics — see (3.10). Temporal sampling and tissue

attenuation are also matched to the real data. A simple scanning model in-

volving Poisson sampling of a discretized (attenuated) parallel-beam Radon

transform of the source is used (Kak et al. 2002, Natterer 2001). The imag-

ing domain is the unit square, discretized to an array of dimension128� 128,

and the projection domain is the region [�
p

2;
p

2] � [0; � ], discretized to a

183� 181sinogram array of distances and angles. Note the� -periodicity of

the parallel beam Radon transform restricts the angular extent of the pro-

jection domain. As shown in Figure 3.5, the discretized dynamic source is

projected to produce the corresponding dynamic sinogram array of suitably

attenuated rates. The scale of the rate array is adjusted by a factor corre-

sponding to study dose, � R . This dose is speci�ed so that the voxel-level

noise in the reconstructed data matches the apparent voxel-level noise level

of the real data. Independent Poisson count simulation from each element

of the scaled sinogram array yields the synthetic projection-domain data

(y). Each frame of the sinogram data is reconstructed analytically using a
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standard �ltered backpojection (FBP) procedure with the raw ramp-�lter

result smoothed by convolution with a Gaussian resolution �lter. The res-

olution �lter bandwidth is required to be common across all time frames

and by grid-search its value is selected in order to minimize the average

squared error difference between the estimated and true activity summed

over frames. This choice of bandwidth is to ensure that the uptake image

is objectively adapted to the study dose (O'Sullivan 1995). Simulated data

are processed using the NPRM procedure in section 3.3, to produce a set of

metabolic maps.

In addition data sets for the projection-domain (non-parametric), the image-

domain and the approximate image-domain bootstraps are acquired.NB =

25 bootstrap samples are used for the projection and image-domain boot-

straps; a set of,N �
B = 10, samples were used with the approximate image-

domain method, with ~NB = 200 samples used in recyclying - see Section

3.2.2.3. Note these numbers of bootstrap samples would be viewed as

quite small relative to what might be used in standard statistical applica-

tion (Efron & Tibshirani 1994), however, they are likely to be realistic for

practical use in most clinical imaging settings. The bootstrap datasets were

used to evaluate a set of voxel-by-voxel standard deviations in estimated

metabolic parameters. These values are compared to the true values esti-

mated by direct replication. This is indicated in Figure 3.6.

Quantitative comparisons between the estimated and true standard devi-

ations were assessed on a voxel-by-voxel basis using a simple linear re-

gression analysis and also in terms of an overall root mean square error

(RMSE) measure. Regression analysis considered the relation between the

true standard deviation, estimated by replication, with the corresponding

values evaluated by the bootstrap methods. These regression analysis mod-

els are expressed as

� ip � ap � y
ip ; � ip � bp � z

ip ; � ip � cp � z�
ip (3.19)

for i = 1; 2; :::; N . Here � ip is the true standard deviation of the p'th metabolic

parameter estimate for the i 'th voxel; � y
ip ; � z

ip and � z�

ip , are the values for the

projection-domain, image-domain and recycled image-domain bootstraps.

In all cases, the simple linear regression analysis models are found to de-
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scribe the relation between the true and bootstrap estimated standard de-

viation very well. The model R2 exceeds 0.9 for all metabolic parameters

and for both FDG and FLT simulations – values for �ux (K i ) are shown in

Figure 3.6.

The regression parameters,(a; b; c), in (3.19) summarize the average bias in

the bootstrap estimate. If the regression parameter is close to unity, it indi-

cates that the bootstrap estimated standard deviations are well aligned with

the true; a value less/greater than unity indicates over/under-estimation

of standard deviation by the bootstrapping method. Table 3.1 reports the

values of these regression coef�cients estimated from the simulation data.

There is little indication of signi�cant bias with any of the bootstrapping

methods - the non-parametric projection domain approach generally tends

to under-estimate the true standard deviation by an average of 9-10% in

both the FDG and FLT settings. In contrast the image-domain procedures

tend to over-estimate the standard-deviation, typically by around 1-3%.

RMSE evaluates the mean square deviation between the estimated and true

standard deviation at each voxel, with these values then averaged over all

voxels. If �̂ ips is the standard deviation in the p'th metabolic parameter es-

timate at voxel i for the s'th replicate data for the bootstrap estimate, the

RMSE is given by

RMSE�̂
p� =

vu
u
t 1

NN S

NX

i =1

NSX

s=1

[�̂ ips � � ip ]2 (3.20)

The RMSE values for projection-domain and image-domain methods are de-

noted RMSEy
p� ; RMSEz

p� and RMSEz�
p� . These values are reported in percent-

age terms in Table 3.1. There is little difference between the alternative

bootstraps procedures with the image-domain technique out-performing

the projection-domain method for some parameters (K i ; MTT, and K i =K1)

but not for other parameters (Vb; Vd, and K d). RMSE values for the ap-

proximate image-domain bootstrap are consistently the largest. However,

it needs to be appreciated that in light of the typical standard error of the

true standard deviation, the signi�cance of any of these differences is small.

Standard errors are reported as �SEp� in Table 3.1. Note that the correspond-

ing standard errors for averaged bootstrap estimates of standard deviations
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Figure 3.7: Schematic for 2-D investigation of Bootstrapping ROI averages.
A total of 696 and 676 ROIs are de�ned for Brain and Breast, respectively.
(A) Grids of rectangular ROIs and their size distributions. Estimates of av-
erage ROI standard deviations of �ux are shown on rows B and C - colors
correspond to different ROI sizes.
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are very similar - these are not reported in the table. Further 2D studies

with higher are lower count rates were also conducted and gave results

very much in line with those reported in Table 3.1.

Bootstrapping ROI Averages

Table 3.2: Reliability of Bootstrap Estimates of Standard Deviations for ROI
means of mapped Kinetics. Note approximately 700 ROIs are considered in
each case, see Fig 3.7. Means and maxima of ROI-averaged kinetic parame-
ters, averaged over replicates, are shown as�� � and �� _ . Mean ROI standard
deviation, averaged over replicates (�� � ), its standard error ( �SE � ) and the
overall RMSE values, computed by ROI version of (3.20), are reported as a
percentage of the maximum (�� _ ). Estimates (â; b̂;ĉ) are based on the ROI
version of (3.19).

Brain FDG Breast FLT

Parameters Vb Vd Kd Ki MTT Ki/K1 Vb Vd Kd Ki MTT Ki/K1

Mean (�� � ) 0.04 0.60 0.26 0.01 4.56 0.04 0.27 0.26 0.04 0.01 4.24 0.14

Max ( �� _ ) 0.09 1.08 0.49 0.02 8.58 0.18 1.63 1.30 0.17 0.07 8.04 0.52

�� � 19.93 8.97 12.04 4.21 6.47 5.54 1.82 2.54 7.00 0.85 11.58 7.24
�SE � 1.48 0.61 0.91 0.27 0.40 0.46 0.12 0.17 0.50 0.06 0.76 0.52

â 1.18 1.14 1.14 1.22 1.22 1.18 1.27 1.18 1.23 1.10 1.24 1.23

b̂ 1.12 1.08 1.08 1.21 1.18 1.14 1.04 1.08 1.11 1.07 1.20 1.16

ĉ 0.73 0.82 0.70 0.77 0.98 0.53 0.71 0.63 0.58 0.57 0.87 0.55

RMSEy
� 5.55 1.80 3.25 1.12 1.62 2.25 0.38 0.54 1.92 0.17 3.36 2.27

RMSEz
� 5.99 2.08 3.47 1.16 1.77 2.32 0.54 0.64 2.23 0.19 3.51 2.44

RMSEz�
� 12.39 4.17 8.21 2.36 3.13 7.91 1.22 2.04 6.83 0.85 7.35 8.08

For this analysis a nested sequence of grids was used to construct a range

of ROIs with different sizes and tissue heterogeneity characteristics. Figure

3.7 gives a schematic of the ROI generation scheme as well as summary

information about ROI size distributions. Comparison between bootstrap

estimates of standard deviations of ROI averages of �ux (K i ) is also shown

in Figure 3.7. There is no indication that the alignment of the bootstrap

estimates with the true standard deviations varies by ROI size. Detailed

assessments of the reliability of the bootstrap estimates is provided in Ta-

ble 3.2. These are based on an ROI version of (3.19) and (3.20) -i:e: the

voxel indicator ( i ) is replaced by an indicator of the ROI. Similar to the
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voxel case, bootstrap estimates perform very well. There is no evidence

that these results are substantially impacted by the size-distribution or po-

sitioning of ROIs. The non-parametric and image-domain method (with

NB = 25 replicates) have very similar RMSE reliabilities both for FDG and

FLT. Both bootstraps tend to under-estimate the true ROI mean standard

deviation. However, the amount of bias is small - on the order of 10-14%

across the different kinetic parameters. Recycling is found to lead to more

unreliable values - largely due to a greater systematic over-estimation of

the true ROI standard deviation - on the order of 20% for most parameters.

But the overall indication from the 2-D experiments is that image-domain

bootstrapping scheme is very well aligned with the non-parametric projec-

tion domain approach and provides a viable mechanism for assessments of

uncertainties at both the voxel and ROI level.

3.4.1 1-D Experiments

These studies have a similar temporal structure to the 2-D simulations but a

more simpli�ed 1-dimensional Poisson deconvolution scanning model from

(O'Sullivan & Roy Choudhury 2001) is used. The simpli�ed structure al-

lows a detailed investigation of bootstrapping when the input data used for

kinetic analysis has been reconstructed by methods analogous to the direct

FBP and iterative maximum likelihood (ML) procedures used in PET. The

scanning model is de�ned as follows: we observe a discretized Poisson pro-

cess whose intensity is of the form xt = ax [R � ]xt for x = 1; 2; ::; N (even)

and t = 1; 2; :::; T. Here 0 < a x � 1 is a known attenuation factor and the

matrix R is given by R = I T 
 K � where K � : RN ! RN and K � has the

form of a discrete convolution. Letting F be the discrete Fourier transform,

for any vector x 2 RN , [F K � x]� = j� j � � [F x]� � bx � for � = � 1; � 2; :::; N=2.

With � > 0, the action of K � is to smooth the vector x. If y is a realization of

a Poisson with mean�  , then an unbiased estimate of the underlying source

distribution � is obtained by adjusting for the y-data by the attenuation fac-

tor and applying a least squares (LS) inversion procedure. This result is

then smoothed to achieve consistent mean square error performance. As

FBP is essentially equivalent to LS in the 2-D setting (O'Sullivan 1995), we

refer to LS as FBP in our 1-D model.

Letting Sh be a smoothing matrix with bandwidth h > 0 the smoothed
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estimate is

z = I T 
 Shz(fbp) with z(fbp) =
1
�

I T 
 [K 0
� K � ]� 1K 0

� (y=a) (3.21)

where (y=a)xt = yxt =ax .

Figure 3.8: Scaled spatial patterns (� j ) for source distribution in 1-D exper-
iments (dotted lines); projection domain patterns ( K � � j ) are also shown
(solid lines). Left - FDG studies; Right - FLT studies. Source sub-TACs (� j )
are in Figure 3.4 A(ii) (FDG) and Figure 3.4 B(ii) (FLT). Colors of � j 's here
match the colors of corresponding sub-TACs in Figure 3.8. The solid black
line is the attenuation pattern.

If Sh has a discrete Fourier representation,z(fbp) and z are ef�ciently com-

puted using the 1-D FFT. Adapting (Vardi et al. 1985), the EM algorithm

can be used to evaluate a maximum likelihood (ML) estimate, z(ml ) , and a

corresponding smoothed valuez+ = Shz(ml ) . The ML estimator is asymp-

totically ef�cient, as � ! 1 , as indeed is the FBP estimator. In estimation

terms, 1-D scanning model shares some of the essential complexity of PET.

In PET, K � is replaced by the line-integral Radon transform, K. FBP es-

timation is known as �ltered backprojection (FBP). Similar to K
0

� K � , the

operation K0K is Toeplitz (Natterer 2001). In d-dimensions, the eigenval-

ues of K0K are proportional to j� j � d=2; while the eigenvalues of K 0
� K � are

proportional to j� j � 2� . Studies reported in (Gu 2023) show that with a

choice of � = 1:35, there is a good agreement between the bandwidth op-

timized mean square error (MSE) estimation characteristic as a function of

dose for the 1-D Poisson deconvolution model, and the corresponding MSE
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characteristic of 2-D PET reconstruction.

Table 3.3: Reliability of Bootstrap Estimates of voxel Standard Deviations
for mapping Kinetics in 1-D based on FBP and ML reconstructed data.
Means and maxima of voxel kinetic estimates, averaged over replicates,
are shown as �� � and �� _ . Mean of voxel standard deviations, averaged
over replicates (�� � ), its standard error ( �SE � ) and the overall RMSE values,
see (3.20), are reported as a percentage of the maximum (�� _ ). Estimates
(â; b̂;ĉ) correspond to (3.19).

FBP ML

Tracer Parameters Vb Vd Kd Ki MTT Ki/K1 Vb Vd Kd Ki MTT Ki/K1

Mean (�� � ) 0.05 0.49 0.26 0.01 3.03 0.02 0.05 0.49 0.26 0.01 3.06 0.02

Max ( �� _ ) 0.26 0.95 1.07 0.02 4.36 0.07 0.26 0.95 1.07 0.02 4.36 0.07

�� � 4.68 7.11 4.38 2.57 14.16 7.56 3.68 6.79 3.63 2.39 12.04 6.66
�SE � 0.20 0.22 0.18 0.09 0.41 0.28 0.15 0.21 0.14 0.09 0.37 0.22

FDG â 1.06 1.16 1.07 1.03 1.19 1.12 1.09 1.17 1.11 1.04 1.18 1.15

b̂ 1.12 1.20 1.13 1.04 1.22 1.16 1.06 1.20 1.10 1.04 1.22 1.15

ĉ 1.16 1.23 1.16 1.07 1.25 1.19 1.09 1.23 1.13 1.07 1.26 1.18

RMSEy
� 29.7 31.4 26.9 17.9 31.3 29.2 28.0 32.5 25.9 17.2 29.1 26.7

RMSEz
� 33.1 34.3 30.6 23.7 33.7 32.9 34.2 35.9 30.9 24.7 34.6 31.4

RMSEz�
� 41.9 42.3 39.5 34.2 42.2 42.3 44.3 44.5 40.5 36.0 42.9 41.6

Mean (�� � ) 0.18 0.71 0.16 0.02 3.46 0.12 0.18 0.71 0.16 0.02 3.47 0.12

Max ( �� _ ) 1.04 2.17 0.36 0.05 7.50 0.61 1.04 2.17 0.36 0.05 7.57 0.61

�� � 2.01 1.93 4.26 1.72 9.69 2.93 1.62 1.83 3.65 1.66 9.23 2.45
�SE � 0.08 0.08 0.17 0.08 0.46 0.15 0.06 0.08 0.15 0.07 0.44 0.11

FLT â 1.02 0.98 1.01 0.99 1.11 1.08 1.05 1.01 1.06 1.03 1.13 1.14

b̂ 1.20 0.98 1.05 0.98 1.12 1.11 1.22 0.97 1.03 0.99 1.13 1.13

ĉ 1.23 1.01 1.08 1.02 1.18 1.17 1.25 1.01 1.06 1.03 1.20 1.18

RMSEy
� 25.4 31.6 27.2 37.8 44.4 56.0 22.2 30.6 24.9 33.7 44.2 50.2

RMSEz
� 33.3 34.7 29.3 41.3 46.0 59.0 34.6 35.0 28.8 39.2 47.5 58.0

RMSEz�
� 41.3 45.6 38.7 51.2 57.6 72.7 42.6 44.8 38.4 48.8 59.3 71.4

In the 1-D case simulations were conducted both for FDG and FLT using

source distributions consisting of a mixture of six temporal components,

� xt =
P 6

j =1 � j (x)� j (t). The number of voxels was set atN = 128. The tem-

poral patterns are matched to those arising in the 2-D simulations. Spatial

patterns are indicated in Figure 3.8, together with the transformed pro�les,

K � � j 's, and the attenuation pattern. Reference dose-values� R were again
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chosen so that the qualitative variability of simulated 1-D data matched

that seen at the voxel-level in the real FDG and FLT data. Five dose levels,

� = � R=5; � R=2:5; � R ; 2:5� R ; 5� R were examined with FDG and FLT. In the 1-

D setting a more extensive bootstrapping process was used (NB ; ~NB = 200

with N �
B = 10) and the number of replicates was also increased (NS = 400).

Simulated data were reconstructed using FBP and iterative ML techniques.

Raw frame-by-frame reconstructions were smoothed by convolution with a

Gaussian kernel. Similar to the 2-D case, bandwidth was common across

all frames, and its value was optimized according to the mean square devi-

ation of the estimated total uptake from the true known source. Due to the

implicit regularization associated with raw ML reconstruction (O'Sullivan

1995, O'Sullivan & Roy Choudhury 2001) bandwidths were separately op-

timized for the FBP and ML reconstructions. Results for the middle dose

are presented in Table 3.3. Very similar results were found at other doses.

Regression analysis again �nds a strong alignment between the bootstrap

generated standard deviations and the true values. Generally there is a ten-

dency for the methods to underestimate the true standard deviation by on

the order of 14% for FDG and 7% for FLT. The approximate image-domain

bootstrap is 2-4% higher than the others. There is little or no difference

between the pattern for FBP and ML reconstructed data. Raw RMSE values,

computed by (3.20), are typically 16% smaller for ML reconstructed than

FBP reconstructed data. However this is undoubtedly a re�ection of the

fact that the metabolic parameter standard deviations, summarized by �� �

in Table 3.3, are on the order of 14% lower for data reconstructed by ML

versus the FBP. In light of this, Table 3.3 reports RMSE values as a percent

of the average true standard deviation. The adjusted RMSE values are very

similar for FBP and ML. In the case of FDG RMSE values are 0.2% lower

for FBP; they are 1.1% higher for FLT. In practical terms these differences

are inconsequential. Results demonstrate the ability of the methodology to

adapt to the characteristics of the ML data. Overall, the RMSE is 4.5% lower

for the projection-domain bootstrap than the image-domain approach; the

approximate method is 9.3% higher again. A similar calculation for the

RMSE values reported in the 2-D simulation but expressed as a percentage

of �� � , gives values that are remarkably similar to this: The image-domain

method is 2.8% higher than the projection-domain with the RMSE for the

approximate method a further 6.3% higher again.
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3.4.2 Statistical Interpretation of Simulation Data

Table 3.4 reports on a number of further analyses applied to all the simula-

tion data generated in 2-D and 1-D experiments. These analyses are applied

separately in 1-D and 2-D so the table gives the ability to see similarities

across the various con�gurations explored and appreciate overall patterns.

The focus is on two analyses, (i) the direct systematic relation between the

projection-domain and image-domain bootstrapping methods, and (ii), the

relation between relative uncertainty in voxel-level kinetic parameters and

data reconstruction error. For the �rst analysis we conducted regression

analyses, similar to (3.19), relating the voxel-level projection-domain boot-

strap standard deviation to the values from the image-domain approaches,

i:e:

� y
ip � � p� z

ip ; � y
ip � � p� z�

ip for i = 1; 2; :::; N (3.22)

The estimates of the � and � coef�cients are in Table 3.4. Across all the

simulation settings we see a very similar pattern. Apart from blood vol-

ume (Vb), whose standard deviation by the image-domain methods are con-

sistently lower than reported by the projection-domain bootstrap, there is

remarkably close alignment between the methods.

The relation between voxel-level parameter standard deviation and recon-

struction error was also examined. Our analysis is motivated by the approx-

imation used in constructing the recycling process for the simpli�ed image-

domain bootstrap in (3.4). The covariance of unconstrained � -coef�cients

should be approximately � 2
i [X 0WX ]� 1, where � 2

i is the average voxel-level

measurement variance in (3.1) or (3.2) and W is the diagonal matrix with

elements � � 2
j for j = 1; 2:::; T. The NPRM kinetic analysis procedure in-

volves �tting the model (3.2) but subject to the constraint that the � -coef�cients

are non-negative. By (3.10), the true kinetic parameters, � = ( Vb , Vd , K d ,

K i , MTT , K i =K1), are simple functions of the constrained � -coef�cients.

Assuming the unconstrained� -coef�cients are suf�cient for the constrained

values, � can also be regarded as a function of the unconstrained coef�-

cients. Hence we can consider the the estimated kinetic parameters as

functions of the unconstrained � -coef�cients ( �̂ ): i:e: �̂ = g(�̂ ) where

g : RK ! RP (P = 6). By application of the delta method, e:g: (Kutner

et al. 2013, Rao 1973), the covariance of kinetic parameters can be ap-
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Table 3.4: Analysis of Voxel-level Error Characteristics across all Simula-
tions. The coef�cients are for the models in (3.22) and (3.23). The R2-
values only reported for (3.23). Corresponding values for (3.22), are uni-
formly high (in excess of 90%)

FDG FLT

Vb Vd Kd Ki MTT Ki/K1 Vb Vd Kd Ki MTT Ki/K1

�̂ 0.86 0.88 0.86 0.94 0.92 0.90 0.86 0.91 0.90 0.92 0.95 0.92

FBP �̂ 0.88 0.89 0.87 0.95 0.93 0.93 0.88 0.93 0.92 0.93 0.97 0.94

(2D) ̂ 1 0.58 0.63 0.65 0.59 0.55 0.48 0.79 0.63 0.59 0.63 0.90 0.75

R2 0.93 0.94 0.94 0.90 0.33 0.61 0.97 0.94 0.85 0.94 0.97 0.91

�̂ 1.06 1.03 1.05 1.01 1.03 1.03 1.18 1.00 1.03 0.99 1.01 1.03

FBP �̂ 1.10 1.06 1.09 1.04 1.06 1.07 1.21 1.04 1.07 1.03 1.06 1.08

(1D) ̂ 1 0.73 0.65 0.70 0.85 0.65 0.47 0.77 0.92 0.86 0.85 1.11 0.56

R2 0.91 0.69 0.91 0.98 0.15 0.72 0.97 0.91 0.94 0.89 0.83 0.37

�̂ 0.97 1.02 0.99 1.00 1.03 1.00 1.16 0.96 0.97 0.96 1.00 0.99

ML �̂ 1.01 1.05 1.02 1.03 1.07 1.03 1.19 1.00 1.00 1.00 1.05 1.04

(1D) ̂ 1 0.64 0.67 0.57 0.83 0.07 0.43 0.65 0.92 0.83 0.85 1.11 0.55

R2 0.89 0.55 0.83 0.98 0.00 0.73 0.90 0.92 0.92 0.88 0.81 0.40

proximated by `0
� V(�̂ )` � , where ` � is the K � P matrix whose columns

are the gradients of the components of � w:r:t: the � -coef�cients. But

as discussed in section 3.2.3,V(�̂ ) � � 2
i [X 0WX ]� 1, so we are lead to

V(�̂ ) � � 2
i `0

� [X 0WX ]� 1`0
� . In general, since the mapping g takes uncon-

strained � -coef�cients and maps them to kinetic parameters, g may well be

non-linear even for the components (Vb; Vd; K d; K i ) that have a linear de-

pendence on the constrained� -coef�cients. Hence ` � may depend on the

local � -value. In spite of this, the analysis suggests a relation between the

voxel-level parameter standard deviation and the standard deviation of the

measurement. In the simulation setting, the square-root of the weighted

mean square reconstruction error can be used as an assessment of measure-

ment error: � R
i =

q P T
j =1 w0

j [zij � � ij ]2=T � � i . Motivated by these theoret-

ical considerations, we examined the relation between the relative error in

kinetic parameters and a scaled reconstruction error, by �tting regression

models in the form

log(� ip =� ip ) =  0p +  1p log(� R
i =� ip ) + error (3.23)
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to each of the simulation datasets.

Table 3.4 1 shows estimates of 1p as well as the quality of �t of the model

measured by theR2 statistic. The model �ts are remarkably good (most in

excess of 80% ) particularly for (Vb; Vd; K d; K i ). With MTT the model pat-

tern is continues to be remarkably accurate for FLT; but not for FDG. On the

other hand the model variance pattern for extraction ( K i =K1) is still very

reasonable for FDG but not for FLT. While these analyses give an under-

standing of the behaviour of voxel-level kinetic parameter variability, they

also help to provide some underpinning for the basic theoretical heuris-

tic for the approximation used to recycle the image-domain bootstrapping.

Further studies were conducted in 1-D in order to evaluate the accuracy of

the bootstrapping techniques as a function of the size of the imaging domain

(Badawi et al. 2019a). Remarkably, our analysis �nds that the dependence

is very limited. Based on linear regression theory (Seber 2015), the primary

factor impacting the RMSE of uncertainty estimation relative to the scale of

the noise, i:e:
q

var(�̂ )=� , is the dimension of the model basis in relation

to the number of data points (K=T ). But in PET, dose constraints mean

that reconstruction error will increase with temporal sampling. So the abil-

ity to manipulate relative RMSE performance merely by increased temporal

sampling would be unrealistic.

3.5 Discussion

The work has presented a novel image-domain approach to bootstrapping

PET data having a dynamic component. The method is based on a novel

general linear model approximation of the dynamic source distribution in

which the error is described in terms of a sub-ordinate Gaussian process

that is assumed independent across time-frames and stationary in the imag-

ing space. In addition the distribution of error is allowed to adapt to the

local skewness of the data. Thus there is no requirement for the method

to be modi�ed depending on whether an analytic or iterative data recon-

struction process is used. This removes a number of potentially limiting

assumptions used in (Huang et al. 2020). The bootstrapping scheme in

(Huang et al. 2020) also made essential use of the near-replicate nature of

1The logarithmic transform is used for variance stabilization in �tting.
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re-binned time-frame data. But this is not required here. In essence, the

generalized linear modeling of the dynamic PET data used here creates an

approximate replicate residual process that provides information for data

simulation. Conceptually this is similar to information provided by time-

frame re-binning in (Huang et al. 2020).

Our methodology is illustrated by application to real examples involving the

use of dynamic PET imaging for the purpose of mapping metabolic param-

eters of tissues in the �eld of view. The general linear modelling analysis

technique enables us to create bootstrap replicate data sets for analysis. Ap-

plication of the NPRM kinetic mapping technique to the bootstrap data pro-

vides voxel-level estimates of metabolic parameters and their associated un-

certainties (SEs). Numerical studies motivated by these examples compare

the image-domain bootstrapping approach to the more computationally de-

manding but fully non-parametric projection-domain approach (Haynor &

Woods 1989). Image-domain bootstrapping is found to substantially match

the RMSE performance characteristics of projection-domain bootstrapping.

The current analysis is implemented in (R Core Team 2021) - an open-

source statistical programming platform. An R-package is currently under

development and is expected to be available on the CRAN network (https:

//cran.r-project.org ) in the near future. In comparison to projection-

domain bootstrapping, in which each bootstrap replicate requires recon-

struction of simulated list-mode data; computation of image-domain boot-

strap replicates are negligible. But of course signi�cant computation is re-

quired to setup the image-domain bootstrapping model. For the 3-D data

sets analyzed in section 3.3, the computation of the image-domain model

took 1-1.5 hours on a small desktop computer con�gured with a single 3.2

GHz Intel Core i7 processor and 16 GB 2667 MHz DDR4 memory. Based on

our 2-D numerical studies, the computation of the image-domain bootstrap-

ping model is less than what would be required for a single ML reconstruc-

tion of a list-mode time-course data set. In light of this, with iteratively re-

constructed PET data - the norm in most PET scanners now - image-domain

bootstrapping will always be faster than the projection-based approach; the

difference between them becoming more extreme as temporal sampling or

the number of bootstrap replicates required increases.

Of course as computing capabilities grow and it becomes standard to re-
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tain list-mode data for dynamic PET studies, non-parametric projection-

domain bootstrapping may become practical as well. Indeed, this would be

an ideal circumstance because the theory underpinning the non-parametric

approach is very well developed (Efron & Tibshirani 1994). However, cur-

rent PET scanning technology is very far from that. In addition, current

archives of well-curated cancer clinical trial PET imaging data combined

with associated patient outcomes, e:g: National Cancer Institute (https:

//www.cancerimagingarchive.net ), do not to our knowledge include any

list-mode information. Thus the analysis of image uncertainty using data

from such archives can only be based on a suitable image-domain boot-

strapping approach, as we have described here.

For situations where retention of extensive bootstrap samples is prohibitive,

we have proposed a novel recycling process as an approximate image-domain

bootstrapping approach. While the RMSE performance of this approxima-

tion is not as good as a full bootstrap, the results are still quite reasonable.

Importantly our studies indicate that the performance of the image-domain

simulation techniques are not impacted by whether or not the reconstruc-

tion methodology is analytic (FBP) or iterative (ML).

It would be interesting to use the methods here to examine multiple studies

with similar anatomy on the same scanner in order to develop a practical

scanner-speci�c understanding of the study-to-study stability of the image-

domain model estimates. If list-mode data were available, it would also

be possible to use the projection-domain bootstrap to gain some insight

into this. Speci�cally such a bootstrap could be used to create replicate

projection-domain scanning data that could be used to estimate image-

domain model parameters. The collection of model parameters obtained

across bootstrap replicates would then provide a direct assessment of their

sampling characteristics.

There are a number of other medical imaging modalities where subject-

speci�c assessment of uncertainty in quantitated imaging measurements

are not currently available and the techniques here might be useful. For

example, dynamic imaging with MR (DCE,DSC) or CT are routine in the

clinical management of cancer and stroke and the structure of datasets is

substantially similar to dynamic PET. This will be a focus for future work.
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Chapter 4

Mapping 18F-FDG Kinetics

together with Patient-Speci�c

Bootstrap Assessment of

Uncertainties: An Illustration

with data from a Long-Axial FOV

PET/CT Scanner

Abstract

Purpose: Examine a non-parametric approach to mapping kinetic param-

eters and their uncertainties with data from the emerging generation of

dynamic whole-body PET/CT scanners. Methods: Dynamic PET18F-FDG

data from a set of twenty-four cancer patients studied on a long-axial �eld-

of-view (LAFOV) Biograph Vision Quadra PET/CT scanner at Bern Hospi-

tal were considered. Kinetics were mapped using a non-parametric residue

modelling (NPRM) technique.Uncertainties were evaluated using an image-

based bootstrapping methodology. Kinetics and bootstrap-derived uncer-

tainties are reported for voxels, maximum intensity projections and volumes

of interest (VOIs) corresponding to several key organs and tumor lesions.

Comparisons between NPRM and standard 2C modelling of VOI kinetics are
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carefully examied. Results: NPRM generated kinetic maps were of good

quality, well-aligned with the vascular and metabolic 18F-FDG patterns, rea-

sonable for the range of VOIs considered. On a single 3.2 GHz processor,

speci�cation of the bootstrapping model took 140 minutes; individual boot-

strap replicates required 80 minutes each. VOI time-course data were much

more accurately represented, particularly in the early time-course, by NPRM

than by 2C modelling constructs - improvements in �t were highly signif-

icant, statistically. While 18F-FDG �ux values evaluated by NPRM and 2C

were generally similar, signi�cant deviations between vascular blood and

distribution volumes estimates were found. The bootstrap enables assess-

ment of quite complex summaries of mapped kinetics. This is illustrated

with maximum intensity maps of kinetics and their uncertainties. Conclu-

sion: NPRM kinetic mapping combined with image-domain bootstrapping

is practical with large whole-body dynamic FDG data sets. The informa-

tion provided by bootstrapping could support more sophisticated use of PET

biomarkers used in clinical decision-making for the individual patient.

4.1 Introduction

High resolution dynamic whole body positron emission tomography (PET)

scanning enhances the opportunities for mapping metabolic characteristics

of tissue, particularly in the context of cancer. The current focus has been on

dynamic PET studies with18F-FDG (18F-�uorodeoxyglucose), using the well-

established Huang-Sokoloff two compartment (2C) modelling framework

(Feng et al. 2021, Sari et al. 2022b, Wang et al. 2021a). While 2C mod-

elling has had widespread application in PET, far beyond the brain setting in

which it was developed, the biochemical understanding of the transporters

involved in metabolism of 18F-FDG and indeed their distribution across nor-

mal and cancerous tissues has evolved in the years since the Huang-Sokoloff

construct was proposed (Spence et al. 1998, Muzi et al. 2006, Barrio et al.

2020a, Gu & Wu 2023). The temporal and spatial resolution of emerging

scanners has transformed the ability to objectively assess the accuracy of

the 2C framework to represent 18F-FDG time-course data across the diverse

tissues encountered in the human body. In this context, the assessment of
18F-FDG kinetics based on more �exible nonparametric analysis approaches
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(Cunningham & Jones 1993, O'Sullivan 1993) may be necessary. The most

recent implementation of the non-parametric voxel level analysis scheme

in (O'Sullivan 1993) is particularly ef�cient - largely due to an extensive

reliance on quadratic programming techniques - and its non-parametric as-

pect gives an ability to apply an image-domain bootstrapping process for

evaluation of statistical uncertainties in derived kinetic maps and associ-

ated biomarkers (O'Sullivan et al. 2021, Gu et al. 2021b). Uncertainties

in diagnostic information recovered from PET scans could augment deci-

sion making about individual patients that are based on complex non-linear

radiomic metrics derived from a kinetic map.

The volume of data produced by a dynamic PET-FDG study on a state-of-

the-art long-axial �eld of view (LAFOV) scanner is a practical computational

challenge for voxel-level analysis of kinetics. The bootstrap uncertainty as-

sessment requires that comprehensive voxel-level analyses be applied to

multiple simulated data sets, each created to match the full character and

extent of the original data. This signi�cantly adds to the computational

challenge involved.

The work here uses a series of dynamic18F-FDG data acquired on the LAFOV

scanner (Sari et al. 2022b) to investigate the approach. Apart from the

demonstration of the practical feasibility of kinetic mapping with uncer-

tainty evaluation, the analysis allows regional comparisons between non-

parametric and 2C modelling results both in terms of derived kinetics and

in terms of the accuracy of data representation.

4.2 Materials and Methods

4.2.1 Patient Scans and Volumes of Interest (VOIs)

The data considered arise from a set of twenty-four patients with differ-

ent types of cancer who participated in an institutionally approved 18F-FDG

PET/CT study at Bern University Hospital (KEK 2019–02,193). Details of

the study are reported in (Sari et al. 2022b). In summary, PET scanning

was conducted on a Biograph Vision Quadra device - a scanner with 106

cm axial FOV and nominal in-plane resolution of 3.3 mm full-width at half-

maximum (FWHM) (Prenosil et al. 2022). Data were acquired in list-mode
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starting 15 s before the intravenous bolus injection of 18F-FDG (with activity

of approximately 3 MBq per kg of patient weight) to the left or right arm;

followed by �ushing with 50 mL saline solution. The �rst 20 seconds are

empty frames until the tracer starts to arrive to the body. This explains why

the �rst few frames have 10 second duration - see (Sari et al. 2022b). The

plasma glucose level was measured for each patient. Emission data were

acquired for 65 min and binned into 62 contiguous time-frames with dura-

tions: 2� 10s;30� 2s;4� 10s;8� 30s;4� 60s;5� 120s;and 9� 300s. Images

were reconstructed with a voxel size of1:65� 1:65� 1:65mm3 using the full

acceptance angle of the scanner but reconstructed using the high sensitivity

mode with limited acceptance angle (MRD85). The PSF-TOF iterative re-

construction with 4 iterations 5 subsets and a 2 mm FWHM Gaussian �lter

is used (Sari et al. 2022b). Standard uptake value (SUV) images were gen-

erated by normalizing late-time images (55–65 min, p.i.) to body weight

and injected dose. Low-dose CT scans (voltage: 120 kV, tube current 25

mA, CareDose4D, CarekV) were acquired as part of the examinations. The

CT images were reconstructed with a voxel size of1:52� 1:52� 1:65 mm3.

Automated segmentation algorithms based on CT and PET were used to

de�ne VOIs corresponding to a number of tissue structures including grey

and white matter in the brain, liver, lungs, kidneys, spleen, and bones. A

further set of 49 VOIs corresponding to tumor tissue were identi�ed by

an experienced nuclear medicine physician. In (Sari et al. 2022b) both

the ascending aorta and descending aorta were considered and gave very

comparable results. Finally, a VOI placed in the descending aorta was used

to de�ne the whole blood arterial input function (AIF) for kinetic analyses.

4.2.2 Parametric Imaging Techniques

4.2.2.1 Tissue Residue

Following Meier-Zierler (Meier & Zierler 1954), the analysis assumes the

PET measured time-course for a tissue region is represented as a convolu-

tion between the local arterial input function (AIF), Cp, and the regional

tissue residue function, R. Kinetic parameters are de�ned in terms of the

residue - see Figure 4.1. The material is developed in detail in (O'Sullivan

et al. 2009, 2014, 2021).
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Figure 4.1: Meier-Zierler tissue residue (R) and a decomposition into vas-
cular (Rb), based on consideration of atoms with travel-times less than 15
seconds in the tissue), in-distribution (Rd) and extracted (Re) components.
These are used to de�neassociated metabolic parameters indicated.

4.2.2.2 Summary Kinetic Parameters

Our methodology uses the Meier-Zierler tissue residue function form to de-

�ne the summary kinetic variables (Vb; Vd; K d; K i ). Large vessel vascular

blood and distribution volumes ( Vb and Vd) are evaluated as areas under

the tissue residue. The apparent rate of retention or �ux ( K i ) of the tracer,

measurable by the PET, is height of this residue at the end of the acquisi-

tion period. Also the mean transit time (MTT) of the tracer in tissue and

extraction fraction (Ext) are de�ned as ratios of amplitude and integral

measurements.

A variety of approaches might be used to approximate the residue: A non-

parametric (NP) method used here. Patlak analysis uses a constant residue

(Patlak et al. 1983). Compartmental model forms, e.g. one compartment

(1C) Kety-Schmidt (Kety & Schmidt 1945) model for water the two com-

partment (2C) Huang-Sokoloff (Phelps et al. 1979) model for 18F-FDG in

brain, represent residues by positive linear combination of exponentials.

In the 6-parameter 2C model there is additive adjustment for arterial sig-

nal. By adding a very sharp residue element to the two exponential form,

a Meier-Zierler residue is also available for this model. This allows residue
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de�ned metabolic parameters for the extended compartmental model to

be evaluated via the decomposition shown in Figure 4.1, (O'Sullivan et al.

2014). In the case of the 2-compartmental model, relation between these

variables and underlying compartmental model parameters(f b; K 1; k2; k3; k4)

is described in (O'Sullivan et al. 2009) - Tables 1-3 of (O'Sullivan et al.

2009). Further discussion of this is provided in (O'Sullivan et al. 2014,

2021). Note that the K 1 parameter in the 2C model is often referred to as

a �ow. But this �ow is focused on transport of FDG atoms across the cap-

illary and cellular membranes on route to the cellular space. In contrast,

by choice of t � the �ow variable - Blood Flow ( BF ) here is focuses on �ow

within the vasculature supply network. As such the BF , a simple scale of

blood volume parameter (Vb), is more comparable to the �ow that would

normally be ideally assessed using a PET-H2O study. Note that in Figure 4.1,

the time scale t � = 15s is used to identify tracer atoms whose transit time

duration of stay is considered to be in vascular transport, i.e. negligible

crossing of capillary membranes and incorporation into a cellular environ-

ment. Physiologically this might be considered reasonable given that mean

cerebral vascular transit time in the brain (a very well studied case) is typi-

cally on the order of 6 seconds. From equation 3.18, ast � in Figure 4.1 and

k4 tends to zero and the duration for the dynamic scan ( Te) increases, we

have

Vb = f b ; Vd = (1 � f b)
K 1

k2 + k3
; K d = (1 � f b)

K 1k2

k2 + k3
; K i = (1 � f b)

K 1k3

k2 + k3
(4.1)

4.2.2.3 Compartmental Model Kinetic Analysis

The well-established 2-compartmental Sokoloff-Huang model for FDG, in-

cluding delay and fraction blood volume, has 4 rate constant(K 1; k2; k3; k4),

a delay (� ) and a fractional blood volume term f b. As discussed in (Phelps

et al. 1979) the sum of 18F activity in the extra-vascular tissue compart-

ments of the 2C model ( CM ) is a convolution between local arterial blood

signal, and a bi-exponential form i:e:

CM (tjK 1; k2; k3; k4) = RM 
 Cp(t) with RM (t) = K 1(1 � � )e� t� 1 + K 1�e � t� 2

(4.2)
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with � 1(2) = (1 =2)
�
(k2 + k3 + k4) �

q
(k2 + k3 + k4)2 � 4k2k4

�
and � = ( k3+

k4 � � 2)=(� 1 � � 2): Note 0 < � 2 < � 1, so the second exponential inRM rep-

resents the slower component of the kinetics. Following the development in

Chapter 3, the resolution of a discretely sampledCp function is limited, so it

is possible to represented it, to any computationally meaningful numerical

precision, as the convolution betweenCp and a sharp triangular residue of

suf�ciently short duration (O'Sullivan et al. 2021)

R� (t) =

8
<

:

2
� (1 � t=d) ; 0 � t � �

0 ; otherwise
(4.3)

In formal terms, the sharp residue, R� , behaves as a �nite resolution ana-

logue of Dirac's delta-function. With this, the 6-parameter, � = ( � , f b ,K 1

, k2 , k3 , k4), compartment model prediction of the tissue time-course ac-

tivity ( CT (tj� )) is equivalently expressed in terms of a Meier-Zierler tissue

residue function.

CT (tj� ) = f bCp(t� �)+(1 � f b)CM (t� � jK 1; k2; k3; k4) �
Z t

0
RC (t� s)Cp(s� �) ds

(4.4)

where RC (t) = � 0R� (t) + � 1e� t� 1 + � 2e� t� 2 with � < 1 second and� 0 = f b,

� 1 = (1 � f b)K 1(1 � � ) and � 2 = (1 � f b)K 1� .

The Broyden-Fletcher-Goldfarb-Shanno algorithm as implemented in the

optim function in R (R Core Team 2021) is used for optimization of the 2C

model. For �xed delay, the numerical optimimization. is focused on the two

intrinsically non-linear rate parameters (� 2; � 1), de�ning the bi-exponential

impulse-response of the 2C - see equation (4.2). Letf z(t j ); j = 1; :::; Jg be

the data time-course. Using the parameterization in equation (4.4) and �

�xed, the objective function, g(�; �j �) , for model optimization of the rates is

g(� 1; � 2j�) = Min f � 0 � 0;� 1 � 0;� 2 � 0g

8
<

:

JX

j =1

wj [z(t j ) � CT (t j j(� ; � 0; � 1; � 2; � 1; � 2)]2

9
=

;

(4.5)

where the weight, wj , is proportional to the product of frame duration and

the decay correction factor used to convert raw counts to decay-corrected

tracer activity. The evaluation of g for any (� 1; � 2), uses quadratic program-

ming for determination of (� 0; � 1; � 2). This is similar to the method used
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for determination of the � -coef�cients in the NP model in equation (1).

Although g(� 1; � 2j�) is not guaranteed to be convex in (� 1; � 2), it is in-

�nitely differentiable. In our experience it is also typically quasi-convex. As

such, it is a very good candidate for application of the Broyden-Fletcher-

Goldfarb-Shanno algorithm. Figure 4.7 demonstrates the well-behaved na-

ture of the objective function and the reliability of the Broyden-Fletcher-

Goldfarb-Shanno algorithm for the 2C modelling results presented in Figure

4.3 of the paper and also for a randomly chosen voxel in each of the VOIs

in that data set. This supports the reliability of choice of optimizer used.

4.2.2.4 Non-parametric Residue Mapping (NPRM) of Kinetics

This method approximates the voxel-level residue by positive linear sum of

basis elements that have been selected by a cross-validation guided analysis

of a comprehensive collection of time-courses produced by segmentation

of all the available dataset in the study (O'Sullivan et al. 2014, 2021). In-

dividual basis elements are of the form � k(t) =
Rt

0 Rk(s)Cp(s � � k)ds for

k = 1; :::; K . Here Cp is the arterial input function (AIF), Rk is the basis

element residue and� k is its associated delay factor. Note cross-validation

is used to select the number (K ) (O'Sullivan et al. 2021). Given the basis

set, PET-measured voxel-level time-course data over the available set ofJ

time-frames, f z(t j ); j = 1; 2; :::; Jg, is expressed as

z(t j ) = � 1� 1(t j � � ) + ::: + � K � K (t j � � ) + � (t j ) (4.6)

Here � and (� 1; � 2; :::; � K ) are the unknown voxel-level delay and basis am-

plitude parameters and � (t) represents (random) model error. A weighted

least squares criterion, with weights proportional to the product of frame

duration and the decay correction factor used to convert raw counts to

decay-corrected tracer activity, is used for optimization of the unknown

parameters. For any delay, the optimal set of � -coef�cients is found by

quadratic programming. A crude grid-search is used to optimize delay

(O'Sullivan et al. 2021).
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4.2.2.5 Bootstrap Assessment of Uncertainty

Model residuals across (N ) voxels and (J ) time-frames, f zi (t j ) � ẑi (t j ); i =

1; :::; N ; j = 1; :::; Jg, are used to construct an image-domain data genera-

tion process (DGP) for bootstrapping. The DGP generates data according

to

z� (t j ) = ẑ(t j ) + � � (t j ) (4.7)

where ẑ(t j ) = �̂ 1� 1(t j � �̂ ) + ::: + �̂ K � K (t j � �̂ ) and the simulated error pro-

cess,� � , mimics the stochastic character of analysis residuals. Analysis of

bootstrapped data sets arising from the DGP leads to a set of bootstrapped

kinetic parameter values at each voxel. The standard deviation of these val-

ues estimates the voxel-level standard error (SE) of the kinetic parameter.

Similarly, the SEs for more complex quantities such as the maximum inten-

sity projection (MIP) for a kinetic map is created as the standard deviation

of the bootstrapped MIPs of the kinetic parameter - an example is shown in

Figure 4.2. Numerical studies in (O'Sullivan et al. 2021, Gu et al. 2021b)

have shown that image-domain DGP bootstrapping matches the accuracy of

the much more computationally intensive list-mode bootstrapping approach

of Haynor and Woods (Haynor & Woods 1989). The number of bootstrap

simulations impacts the accuracy of SEs it produces (Efron & Tibshirani

1994), this is discussed in 4.4.

4.2.2.6 Analysis of Fitting VOI Time-Course Data

Suppose the time course isf z(t j ); j = 1; :::; Jg and the model predicted

time-course for a given set of model parameters,� , is denoted f m(t j j� ); j =

1; :::; Jg. As a function of � , weighted residual sum of squares is de�ned as

WRSS(� ) =
JX

j =1

wj [z(t j ) � m(t j j� )]2 (4.8)

�̂ is the optimized parameter vector and the corresponding model-predicted

time-course is demotedẑ(t j ) = f m(t j j �̂ ) for j = 1; :::; Jg. The tissue residue

function associated with the model, m(�j �̂ ), is used to recover a correspond-

ing set of kinetic parameters, (V̂b; V̂d; K̂ d; K̂ i ; [MTT; dExt) - c.f. Figure 4.1,.

The mean time-course for a VOI is the average of the time-courses for all
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voxels in that VOI, i:e:

z(t) =
1

# VOI

X

i 2 V OI

zi (t) (4.9)

where # VOI denotes the number of voxels in the VOI. Analysis of the

VOI time-course using a non-parametric (NP) or two-compartment (2C)

involves minimization of the weighted residual sum of squares difference

between the VOI time-course are either the NP or 2C model. The result-

ing model predicted time-courses are referred to as VOI-NP and VOI-2C, re-

spectively - see Figure 4.3 and Tables 4.1 and 4.2. When a voxel-level times-

course,f zi (t j ); j = 1; :::; Jg, is analyzed, the resulting model-predicted time-

course is denotedf ẑi (t j ); j = 1; :::; Jg. Averaging these voxel-level predic-

tions over the VOI provides an alternative �t to the VOI time-course

ẑ(t) =
1

# VOI

X

i 2 V OI

ẑi (t) (4.10)

Voxel-NP and Voxel-2C in Figure 4.3 and Tables 4.1 and 4.2. The additional

�exibility in voxel-wise �tting would generally lead to improved �tting of

the overall VOI. However, a cruder grid-search procedure is used for opti-

misation of delay at the voxel-level and this may occasionally lead to VOI

data being better �t by analysis of the VOI time-course.

4.2.3 Statistical Analysis

NPRM kinetic analysis with 25 bootstrapped simulations was evaluated for

each of the studies in the series. Results were examined in four separate

ways.

4.2.3.1 Representation of VOI Time-Course Data

VOI-mean time-course data were compared to the corresponding VOI-mean

of the �tted (NPRM) voxel-level time-courses - ẑ(t i ) in equation (4.7). Mean

VOI time-course data were also analyzed using the non-parametric model

as well as with the Huang-Sokoloff two-compartment (2C) including a frac-

tional blood volume and delay of the AIF. To facilitate �tting, a wide range

of delays - � 5 minutes - were allowed in the NPRM and 2C analysis of the

VOI time course data. The Broyden-Fletcher-Goldfarb-Shanno algorithm as
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implemented in the optim function in R (R Core Team 2021) is used for

optimization of the 2C model.

Results of alternative analyses for a sample case are presented graphically.

Formal comparisons are focused on the weighted residual sums of squares

(WRSS) mis�t achieved with alternative analyses. The mean relative dif-

ference between alternative representations of VOI time-course data and

associated standard deviation is evaluated for each VOI type. For a given

VOI type, the scale of WRSS values vary with dose. As a result comparisons

between alternative �ts of VOI time course are based on the percent rela-

tive deviations in the WRSS criterion. For a particular VOI type, the percent

relative differences VOI-NP vs Voxel-NP and VOI-2C vs Voxel-NP on thek'th

VOI data set are calculated as follows

D1k = VOI-NP vs Voxel-NP= (
WRSSVOI-NP

WRSSVoxel-NP
� 1) � 100% (4.11)

D2k = VOI-2C vs Voxel-NP = (
WRSSVOI-2C

WRSSVoxel-NP
� 1) � 100% (4.12)

For k = 1; :::; nK . Here nK is the number of VOIs (typically 24) of the given

type. There is substantial variation in relative deviation values. Statistical

inference is based on the mean deviations and associated standard devia-

tion.

4.2.3.2 VOI Kinetics

Means and standard deviations of VOI-averaged NPRM kinetics are reported

for each VOI type. Quantitative statistical analysis is based on direct paired

comparison between values produced by alternative methods. Kinetics based

on non-parametric and 2C analysis of VOI mean time-course data are sim-

ilarly summarized in Table 4.2. Given the non-Gaussian character of the

paired differences, deviations between alternative VOI kinetic values are

summarized and their statistical signi�cance evaluated using the paired

Wilcox test.
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4.2.3.3 DGP Model

The bootstrap DGP is expressed in more detail as

z�
i (t j ) = ẑi (t j ) + �̂ e ̂ i �̂ j � �

i (t j ) (4.13)

where the random errors, � �
i (t), have unit standard deviation and �̂ e is an

overall noise scale of the model error. In equation (4.13), the factors  ̂ i and

�̂ j are scale-free quantities representing the relative uncertainty across vox-

els (i ) and time-frames (j ). The random errors, � �
i (t j ) are produced using

quantile-based transformation of a stationary Gaussian process. The sta-

tionary Gaussian process is independent across time-frames (j ) with com-

mon spatial auto-covariance whose associated 3-D spectral density is esti-

mated from analysis of transformed model residuals. As the PET-measured

activity scales with dose, the DGP error scale (̂� e) should also scale with

dose - this is examined graphically. The overall axial pattern variation

is described by the spatial scale factor ̂ i . In a uniform cylindrical phan-

tom this has a familiar U-shaped pattern related to scanner sensitivity - e.g.

(O'Sullivan et al. 2021). With a patient in the scanner, the distribution of

activity and attenuation is far from uniform. Physiologic patient motions,

such as breathing, may also impact axial variation. Skewness is a key fea-

ture of iteratively reconstructed PET data. A histogram of scaled resdiuals

shows how the DGP captures this aspect. After adjustment for spatial scale-

factors, the 3-D power spectrum of the normalized residual process provides

insight into the effective resolution of the scanning. Co-ordinate-wise auto-

correlation functions (ACF) associated with the spectrum, give insight into

the actual resolution of the scanner. Again, physiologic movements may

well lead to the actual resolution deviating from what might be predicted

based on static phantom measurements.

4.2.3.4 Log-Linear Modelling of VOI SEs

A standard multivariate linear regression model in which N -dimensional

data y is expressed as a linear combination of columns of anN � K dimen-

sional matrix X subject to weighted errors can be expressed as

y = X� + w� 1=2� (4.14)
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where the errors are independent with mean zero and constant variance

(� 2). The weighted least squares estimates of the unknown coef�cients� ,

are given by �̂ = [ X 0WX ]� 1X 0Wy and the variance-covariance matrix of

these coef�cients is � 2[X 0WX ]� 1. A derived parameter, such asc0� - a linear

combination of � , is estimated by c0̂� and its standard error is estimated by

�̂
q

c0[X 0WX ]� 1c, where �̂ 2 is the weighted residual sum of squares (WRSS)

difference between the data and the weighted least squares model �t ŷ -

WRSS= 1
N

P
i wi [yi � ŷi ]2. Thus

log(SE) = :5 log(WRSS) + :5 log(c0[X 0WX ]� 1c) (4.15)

While NP-voxel �tting of PET VOI data is more complex than the standard

multivariate linear model, analogy with the linear model motivates an ap-

proach to empirical modelling of the bootstrap-estimated standard errors

for VOI kinetics. Standard errors for VOI kinetics are represented by the

dataset f SErjp for r = 1; :::; nj ; j = 1; :::; 9 and p = 1; :::; Pg. Here p rep-

resents a parameter -i:e: on of (Vb; Vd; K d; K i ; MTT; Ext), j is the VOI type

- (GM, WM, Lung, Liver, Spleen, Kidney, Bladder, Bones, Tumor) andr is

an instance for the VOI type - mostlynj = 24 but for Tumor VOIs there are

more instances when than one lesion VOI is acquired within a given patient.

In modelling the VOI SE the kinetic pro�le for the VOI is summarised using

the variables: (K 1 = K d + K i ; K i ; Vb
Vb+ Vd

; Ext = K i
K 1

). Our log-linear model

expresses the logarithm of the SE as a linear combination of these variables

on a logarithmic scale.

log(SErjp ) � � j + � 1p log(WRSSrj ) + � 2p log(K rj
1 ) + � 3p log(K rj

i )

+ � 4p log(
Vb

rj

Vb
rj + Vd

rj )) + � 5p log(Extrj )
(4.16)

Here the � 1 captures the impact of VOI the kinetic analysis modelling error

- WRSSrj ; � 2p � � 5p model the effect of the VOI kinetic pro�le of the SE for

each of kinetic parameters (p). Overall adjustment for each VOI type is cap-

tured by � j . The �tted log-linear model produces predictions, cSErjp . These

predictions are compared to the measured values SErjp , both directly and

also on a logarithmic scale. The quality of the predictions are summarized
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by correlation values.

Figure 4.2: MIP maps of NPRM kinetic parameters including associated
SEs. SEs are based on the standard deviation of MIP results for each of
25 bootstrap replications. Top-row: CT images for a selected cross-sections
through the volume and PET MIP maps at indicted times.

4.3 Results

4.3.1 Illustration

Sample kinetic maximum intensity projection (MIP) maps with associated

SEs obtained using the NPRM technique and bootstrapping are shown in

Figure 4.2, a video of rotation MIP maps is provided at (https://doi.org/

10.2967/jnumed.123.266686). Note the data set is the same as that used

in (Sari et al. 2022b). The results are of high quality, well aligned with the

vascular and metabolic 18F-FDG patterns expected for key organ structures

like the brain, liver, kidneys, spleen etc - c.f. (Sari et al. 2022b). It is clear

that the uncertainties of Vb, Vd, K d and K i are generally higher for regions
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with larger magnitudes for the kinetic variable. This is perhaps related to

the fact that these parameters, which linear functions of the �tted voxel-

level residue, ultimately scale with the magnitude of the time-course data.

MTT and Ext deviate somewhat from this pattern. This is likely to be related

to the fact that both MTT and Ext are de�ned in terms of ratios of the Vd,

K d and K i variables and as a result do not necessarily scale with the voxel

time-course. The large blood vessels are seen to impact the structure of the

MIP uncertainty for several parameters. The algorithms developed allowed

kinetic mapping, including the bootstrapping process to be achieved in a

timely fashion. On a single 3.2 GHz processor the compute-time for the

NPRM kinetic analysis including de�nition of the DGP was 140 mins; each

bootstrap replicate took 80 mins.

Figure 4.3: Results of four �tting procedures to the VOI time-course data in
Figure 4.2. Data are points, line-colors correspond to methods used [top-
left]. Full time course on the left; �rst minute on the right.

4.3.2 Representation of VOI Time-Course Data

The full time-course as well as the time-course over the �rst minute of data

acquisition are shown in Figure 4.3. Average VOI time-course data are �t di-

rectly using the NP and 2C models; averages of voxel-level �ts are also pro-

vided. This gives a reference to the results reported in (Sari et al. 2022b).

Although the 2C �tting of some VOIs are reasonable, e:g: grey and white
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Table 4.1: VOI time-course �tting across all 24 studies. Mean and standard
deviations of the WRSS deviations between the VOI time-course and the
VOI average of voxel-wise (Voxel-NP) and direct NP (VOI-NP) and 2C (VOI-
2C) �ts of the VOI time-course are shown. Last two columns summarize
mean and standard deviation of percent deviations between WRSS values
of Voxel-NP and VOI-NP �ts, and between Voxel-NP and VOI-2C values.

Region(VOI)
Size (� 103 voxels)

1 voxel = 1 :65 � 1:65 � 1:65mm 3
Voxel-NP VOI-NP VOI-2C Voxel-NPvsVOI-NP Voxel-NPvsVOI-2C

GM 122.5� 23.3 0.02� 0.06 0.04� 0.14 0.09� 0.26 35� 50 161� 216

WM 18.8� 7.0 0.02� 0.04 0.02� 0.02 0.06� 0.20 25� 32 141� 117

Lung 434.5� 124.2 0.06� 0.27 0.08� 0.69 0.10� 0.29 70� 76 448� 690

Liver 233.0� 66.1 0.08� 0.08 0.07� 0.08 0.55� 0.30 46� 39 865� 453

Spleen 42.8� 48.5 0.10� 0.11 0.11� 0.16 0.13� 0.09 69� 40 64� 87

Kidney 40.5� 10.7 0.27� 0.26 0.35� 0.56 1.83� 1.29 83� 45 880� 576

Bladder 234.9� 81.6 0.04� 0.10 0.07� 0.77 3.25� 3.04 887� 783 18266� 14809

Bones 306.2� 82.7 0.002� 0.003 0.002� 0.003 0.007� 0.01 35� 23 327� 206

Tumour 2.5� 7.4 0.21� 0.25 0.23� 0.51 0.67� 3.77 28� 31 231� 250

matter, there are clearly some VOIs where 2C modelling is substantially in-

ferior -e.g. kidney, liver, bone and bladder. The data �t achieved by the

VOI averaging of the voxel-level NP �t is quite good, overall and especially

over the �rst 1-minute of acquisition. But it is important to appreciate that

almost half the total number of frames occur in the �rst 80 seconds. For

this example, over the �rst minute differences between the VOI average of

the voxel-wise 2C �ts and the �t of the 2C model to the mean of the VOI

time-course data are quite pronounced. In contrast, differences between

the corresponding NP �ts are much smaller.

Quantitative summaries of the NP �tting of VOI time-course data and com-

parisons with direct analysis of the mean VOI time-course data using NP

and 2C analysis are presented in Table 4.1. While WRSS �t values for VOIs

are similar based on the VOI average of voxel-level NP �ts or by direct �t-

ting of the VOI time-course data, there is a marked increase in WRSS �ts

when the VOI time-course is approximated using the best �tting 2C model.

VOI time-course �tting by the NP model is consistently improved by aver-

aging voxel-level NP �ts, the percent improvement is a modest 50%. VOI
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time-course �tting by the 2C model is substantially worse than NP �tting.

The mean percent improvement here is almost 390%.

Table 4.2: VOI Kinetics (mean� standard deviation) recovered using differ-
ent methodologies. VOI averaged voxel kinetics are in the top panel; ki-
netics obtained by analysis of the VOI time-course using the NP model and
2C model are shown in the middle (VOI-NP) and bottom (VOI-2C) panel.
Signi�cance of deviations from Voxel-NP values, evaluated by the paired
Wilcoxon test, are indicated by � ; �� and � � � for p-values less than0:05,
0:01 and 0:001, respectively.

Method Region(VOI)
Vb

mL=g

Vd

mL=g

K d

mL=min=g

K i

mL=min= 100g

MTT
min

Ext
%

GM 0.05� 0.01 0.88� 0.26 0.16� 0.03 3.01� 0.81 5.80� 1.64 18.38� 5.18

WM 0.03� 0.01 0.64� 0.27 0.10� 0.03 1.09� 0.33 6.61� 2.04 12.30� 4.12

Lung 0.18� 0.04 0.09� 0.03 0.03� 0.01 0.07� 0.04 3.17� 0.77 3.17� 1.82

Liver 0.09� 0.04 0.86� 0.08 0.54� 0.11 0.23� 0.08 1.77� 0.41 0.57� 0.38

Voxel-NP Spleen 0.21� 0.09 0.42� 0.09 0.41� 0.14 0.23� 0.16 1.39� 0.54 1.14� 2.09

Kidney 0.25� 0.07 1.20� 0.34 0.49� 0.11 0.42� 0.25 2.62� 0.60 1.22� 0.97

Bladder 0.00� 0.01 0.54� 0.32 0.04� 0.03 1.46� 1.13 6.73� 2.85 19.11� 11.36

Bones 0.03� 0.02 0.22� 0.07 0.08� 0.02 0.27� 0.08 3.54� 0.79 4.66� 1.32

Tumour 0.08� 0.05 0.65� 0.38 0.19� 0.08 2.33� 1.59 3.62� 1.57 12.93� 6.44

GM 0.04� 0.01*** 0.58� 0.16*** 0.13� 0.03*** 3.25� 0.89*** 4.53� 1.19*** 20.13� 5.42

WM 0.02� 0.01*** 0.58� 0.31** 0.09� 0.03 1.10� 0.38 5.99� 2.25** 10.96� 4.37

Lung 0.17� 0.04** 0.08� 0.03* 0.03� 0.02 0.08� 0.04** 2.43� 0.65*** 2.66� 1.48

Liver 0.05� 0.04*** 0.83� 0.07* 0.53� 0.13 0.28� 0.08*** 1.64� 0.39*** 0.57� 0.24

VOI-NP Spleen 0.18� 0.09** 0.39� 0.11* 0.46� 0.17* 0.29� 0.19*** 0.91� 0.22*** 0.86� 1.38*

Kidney 0.23� 0.08 1.19� 0.37 0.51� 0.15 0.30� 0.26* 2.46� 0.82 0.62� 0.51***

Bladder 0.00� 0.01*** 0.44� 0.29** 0.03� 0.03*** 1.61� 1.21** 13.85� 11.15*** 33.87� 26.48***

Bones 0.01� 0.01*** 0.17� 0.08*** 0.08� 0.03 0.29� 0.07*** 2.24� 0.50*** 3.80� 0.90**

Tumour 0.07� 0.04*** 0.45� 0.34*** 0.18� 0.09* 2.48� 1.62*** 2.62� 1.59*** 13.27� 7.68

GM 0.03� 0.01*** 0.56� 0.23 0.09� 0.02*** 3.12� 0.87** 5.91� 1.71* 26.41� 6.41***

WM 0.02� 0.01*** 0.55� 0.16 0.05� 0.01*** 1.13� 0.32 11.00� 3.23*** 18.65� 4.48***

Lung 0.15� 0.04*** 0.09� 0.03* 0.04� 0.01** 0.07� 0.04* 1.18� 1.44*** 1.70� 0.83***

Liver 0.02� 0.01*** 0.88� 0.09*** 0.53� 0.13 0.23� 0.08*** 1.68� 0.33 0.45� 0.21***

VOI-2C Spleen 0.11� 0.05*** 0.49� 0.12*** 0.61� 0.18*** 0.21� 0.21*** 0.73� 0.32*** 0.69� 1.97***

Kidney 0.15� 0.05*** 1.25� 0.36* 0.42� 0.11** 0.21� 0.22* 2.81� 1.18* 0.52� 0.54

Bladder 0.00� 0.00 0.05� 0.10*** 0.01� 0.02*** 1.63� 0.95 1.66� 5.36*** 86.89� 29.33***

Bones 0.00� 0.00*** 0.20� 0.06** 0.08� 0.03 0.26� 0.07*** 2.65� 0.65*** 3.53� 0.94*

Tumour 0.05� 0.05*** 0.34� 0.19 0.17� 0.10 2.38� 1.50* 1.80� 1.26** 16.83� 18.38
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4.3.3 VOI Kinetics

VOI kinetics are reported in Table 4.2. Statistically signi�cant deviations

between the kinetics recovered by alternative methods are largely linked to

early time-course parameters - c.f. Figure 4.1 - particularly blood volume.

Deviations between voxel-averaged parameters and values recovered from

NP and 2C analysis of the VOI time-course are much smaller for NP than

with 2C. But it is noteworthy that for most VOIs �ux values ( K i ) are quite

similar in magnitude across all three analyses. This might be because �ux

is a late time-course parameter- c.f. Figure 4.1 - and alternative methods �t

the late time-course quite similarly - c.f. Figure 4.3.

4.3.4 DGP Model

Figure 4.4 shows an expected linear relation between the scale of the DGP

and study dose - the linear correlation of 0.68 and is highly signi�cant.

The axially averaged spatial scale of the DGP increases towards the top and

bottom of the patient in the FOV. As expected the increased scale is not just a

function of the nominal sensitivity but is clearly impacted by patient-speci�c

factors including the varying uptake, attenuation and perhaps any impacts

of small patient movements. The skewed nature of random �uctuations in

the DGP model, which vary based on the data coef�cient of variation, are

fully consistent with patterns for iteratively reconstructed PET data - c.f.

(Mou et al. 2017, O'Sullivan et al. 2021).

As reviewed in (Gu et al. 2021a) error characteristics of reconstructed PET

data have been shown to have a skewness pattern that tends to vary de-

pending on the data coef�cient of variation (COV). (Mou et al. 2017) used

a Gamma-distribution to describe this type of behaviour. In the bootstrap

DGP, the error distributions are varied according to the inverse of a COV

measurement (̂� ij ). For a given voxel (i ) and time-frame ( j ), the COV mea-

sure is de�ned as, �̂ ij = ẑi (t j )
 ̂ i �̂ j

, the data expected value divided by the data

standard deviation. The value of �̂ ij determines the distribution for the

simulated error value by a quantile transform. The transform converts the

Gaussian variable,� �
ij , produced as part of the simulation of the underlying

stationary Gaussian process,f � �
ij ; i = 1; :::; N; j = 1; :::; Jg, using a nor-

mal quantile function that will produce a value, � �
i (t j ), whose distribution
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Figure 4.4: Elements of Bootstrap DGP - equation (4.7). (a) DGP scale,̂� e,
versus injected dose per unit tissue voxel, (b) Axially averaged scale, (c)
The histogram is the overall residual distribution - pooling residuals regard-
less of �̂ values. The y-axis is in density units. The solid purple line is a
standard Gaussian to this histogram. The linear quantile for the standard
Gaussian is shown with the dashed purple line. Normal quantile functions
(coloured lines) for used in the bootstrap DGP to map simulated Gaussian
process variables,� �

ij to the values � �
ij in equation (4.13). Different solid

coloured lines (NIH colors from black to red) correspond to quantile trans-
forms over different ranges for the COV measurê� - black for lowest �̂ and
red for the largest �̂ range. The higher �̂ range have quantiles that are lin-
ear (Gaussian) on the left and quite �at on the right - this corresponds to
a right-skewed error distribution pattern; lower �̂ values are more heavy-
tailed than a standard Gaussian on the left and right. (d) Boxplot of direc-
tional (x-perpendicualar to scan table,z-axial) Spatial Correlation Patterns
(ACF) across all studies.
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matches the observed characteristics associated with residuals correspond-

ing to COV values like �̂ ij . If the quantile transform is linear, the simulated

data will also be Gaussian. Non-linearity in quantile transforms generates

distributions can be highly non-Gaussian in form. In particular, skewness

patterns in distributions associated with iteratively reconstructed data in

low-count regions e:g: short time-frames or areas with low detector sensi-

tivity, are readily accommodated with this approach. Figure 4.4 shows a

collections of quantile functions used in a DGP.

If the scanner data is viewed as the result of a convolution between an ef-

fective Gaussian resolution kernel and the underlying true image-domain

signal. The Wiener-Khinchine theorem would predict the output ACF for

an input white noise signal would have a Gaussian form with full-width at

half-maximum (FWHM) equal to
p

2 times the FWHM of the effective res-

olution kernel. Thus the ACF FWHM divided by
p

2 is an overall measure

of the effective FWHM resolution of the scanner. This calculation applied

to the ACFs of the DGPs from patient data gives median x-,y-,z- direction

resolutions of 5.32mm,4.35mm, and 3.67mm. The co-ordinate-wise ACF

shows greater spatial persistence in thex (perpendicular to scanning bed)

and z (axially) directions - c.f. Figure 4.5. These values are in reason-

able agreement with the values reported in (Prenosil et al. 2022) based on

measurement of a static phantom. The physiologic movements and activity

variation in variation in a human study would may well lead to the actual

resolution deviating from what might be predicted based on static phantom

measurements.

4.3.5 SEs of VOI Kinetics

Standard errors of VOI kinetics (voxel-NP) are well approximated using a

log-linear model that accounts for the VOI type, the VOI mean kinetics and

the residual weighted RMSE of the voxel-NP �t of the VOI time-course -

Figure 4.6. The overall correlation between the bootstrap-measured SE and

the SE values predicted by log-linear modelling is 0.96 and are also seen

to be quite high for individual kinetic parameters. In theory, uncertainty in

parameters recovered by kinetic model �tting should be proportional to the

scale of the residual model error but it may also be a function of the rele-
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Figure 4.5: ACF-based measure of Scanner FWHM Resolution. Note this
measure takes account of patient speci�c factors - activity distribution, po-
sitioning and movements associated with breathing etc - which may impact
the 3-D resolution of data.

vant sensitivity matrix for the model. We examine the relation between the

bootstrap assessment of VOI-mean kinetic standard errors (SE) and suitable

explanatory factors including the WRSS �t of the VOI and the VOI-mean ki-

netic values. For each kinetic parameter linear regression analysis on a log-

arithmic SE scale is applied. Adjustment of this regression analysis based on

the VOI-type and the kinetics are explored. Regression predictions of SEs

are compared to the true, graphically and correlation values summarized.

4.4 Discussion

This work demonstrates the practicality of using image-domain bootstrap-

ping for construction of patient-speci�c uncertainty assessment in kinetics

variables for voxel, VOI and more complex derived quantities such as MIPs,

from a whole-body dynamic PET-FDG study. This development creates a op-

portunity to incorporate uncertainty about a PET-guided kinetic biomarker

that might be used to guide a clinical decisions for a patient. This could be

particularly helpful in case where the biomarker value is close to a boundary
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Figure 4.6: Prediction of VOI kinetic standard errors (SE - vertical axes)
via a log-linear model prediction ( ŜE - horizontal axes) - formula indicated.
Correlations in black are for logarithmic SE values; red for the raw scale.

between alternative treatment options.

Bootstrap reliability depends both on number of bootstrap simulations (NB )

used and on the accuracy of the representation of the data used in the

DGP used (Efron & Tibshirani 1994). Computational resources dictate the

choice of NB . The results here are based on justNB = 25 but for the data

in Figure 4.2, a four fold increase in the number of bootstrap simulations

leads to little difference in resulting voxel-level bootstrap standard errors.

This is demonstrated in Figure 4.8. From (Efron & Tibshirani 1994), error

in bootstrap is viewed as a sum of the DGP error and the sampling error
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Figure 4.7: Contoured images of the reduced objective function in 2C-VOI
analysis,g(� 2; � 1j�) in equation(4.5) with � �xed at the optimal value, over
a �ne grid of values for (� 2; � 1). Darker colors correspond to large values for
the objective function. The minimum value of the objective function over
the grid is the red point; the value determined by the Broyden-Fletcher-
Goldfarb-Shanno algorithm is in blue. Two panels of results for 9 VOIs are
shown. The left set is for the VOI data in Figure 4.3; the right set is for a
time-course corresponding to a randomly selected voxel in each VOI. Note
the colors in each image ranges from the minimum (bright yellow) to a
maximum (dark red). In all cases the value of the objective function at the
blue point is no bigger than its value at the red point, demonstrating the
reliability of the algorithm.

associated with the number of simulations used -NB . As sampling error

behaves as 1p
NB

so a 4-fold increase inNB would cut this component of the

error in half.

Figure 4.3 and Table 4.1 clearly demonstrate bene�t of using a non-parametric

(NP) methodology in the DGP. Relative to the well-established 2C18F-FDG

model, substantial and highly signi�cant improvements in data representa-

tion are achieved using the NP approach. These bene�ts are mostly asso-

ciated with the ability of the NP technique to capture the highly resolved

early time-course pattern of data from the current generation of PET scan-

ners. The generally more modest deviations between NP and 2C �ts beyond

the very early time-period, say after 1 minute, suggests that the de�ciencies

in the 2C model may primarily relate to the lack of sophistication in the rep-

resentation of the vascular components of blood-tissue exchange (Li et al.

1997). The high temporal resolution of the scans here as well as the use

of a bolus injection, contributes to the ability to scrutinize the 2C model

ways that have likely not been possible in the past. The VOIs here are
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Figure 4.8: Comparison of bootstrap generated voxel-level SEs based on 25
and 100 bootstrap samples -SE25 and SE100. Points correspond to 5000
voxels randomly sampled from each VOI. The boxplot shows the relative
deviations betweenSE25 and SE100. The mean absolute deviation is on the
order of 10% for all parameters.

large and heterogeneous - far from the assumption of homogenous well-

mixed compartments which underly the 2C model. But it is notable that

(O'Sullivan et al. 2009) reported signi�cant discrepancies between 2C and

NP representation of dynamic 18F-FDG brain data in normal subjects using

much smaller and highly homogeneous VOIs. Similar to what is reported

in Table 4.2 for grey matter and white matter, the discrepancies primar-

ily impact the accuracy of the initial phase of the 18F-FDG tissue residue -

blood volume especially - but have must less impact on several other vari-

ables including �ux and distribution volume. But statistically signi�cant

differences between voxel-NP and VOI-2C parameters does not imply that

parameters are unrelated. For example, Figure 4.9 shows pairwise plots and

summary correlations for the 18F-FDG metabolic rateMR F DG - �ux scaled

Statistical Methods for Mapping Kinetics
Together with Associated Uncertainties in
Long Field of View Dynamic PET Studies

102 Qi Wu



4. MAPPING18F-FDG KINETICS TOGETHER

WITH PATIENT-SPECIFICBOOTSTRAP

ASSESSMENT OFUNCERTAINTIES: AN

ILLUSTRATION WITH DATA FROM A

LONG-AXIAL FOV PET/CT SCANNER 4.4 Discussion

by the plasma glucose see equation (4.4). The strong linear dependence

in this �gure, emphasises the importance of differentiating statistical and

practical signi�cance. Calculated �ux values based on NP or 2C analysis

would likely yield similarly effective diagnostic values. Indeed it is well ap-

preciated that even simpler assessments of18F-FDG �ux by Patlak and SUV

are also highly effective too (Barrio et al. 2020a).

Figure 4.9: Pairwise plots for each VOI type of the relation between18F-FDG
�ux values (MR FDG) computed using the NP-voxel (vertical-axis) and 2C
(horizontal) analysis. Correlation (indicated by: r = �� ) values and best
�tting linear regression (solid line) are shown.

The NP technique here uses a linear basis but the structure and number of

elements involved is are adapted to the full 4-D dynamic data, and guided

by cross-validation to prevent over�tting (O'Sullivan et al. 2021). The accu-

racy and stability of a kinetic mapping procedure is best evaluated numer-

ically. Some work of this type is reported in Studies in (Gu et al. 2021a),

based on a 2-minute constant infusion injection of 18F-FDG and a tempo-

ral sampling protocol in which the shortest time-frames were 20 seconds in

duration, provide mean square error (MSE) performance characteristics of

NPRM and 2C kinetic mapping of PET-FDG data as a function of study dose

and also as function of whether the underlying ground-truth is governed by

a compartmental model or not. In this study the accuracy of �ux is largely

unaffected by whether a 2C or NPRM mapping technique is used. Across

other kinetic variables, when the ground truth is not-compartmental, the
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NPRM approach is much better. Remarkably, when the ground truth is a

2C model, the NPRM continues to outperform the 2C approach especially

for variables like Vb and Vd. Further study of the mean square performance

would clearly be useful, particularly in the settings where the ground truth,

study protocol and scanning methods are similar to those encountered with

current generation of whole body PET-FDG studies.

VOI values of three variables -18F-FDG metabolic rate (MR F DG ), distribu-

tion volume (DV) and vascular blood �ow (BF) - are compared with liter-

ature reports. Each variable is directly obtained by simple scaling of our

summary kinetic values -K i , Vd and Vb.

MRFDG= � glcK i : DV = Vd : BF =
Vb

t � =2
(4.17)

Here � glc is the plasma glucose concentration andt � is the value used to

de�ne the vascular component in the decomposition of the Meier-Zierler

residue in Figure 4.1. In a cancer setting,MR F DG is by far the most clin-

ically important of these variables. Note we do not try to use 18F-FDG as

a means to evaluate the glucose metabolic rate, MRGlc, as described in

Phelps et al (Phelps et al. 1979). The recent article (Barrio et al. 2020a)

expresses considerable doubt on the ability to do this in the context of can-

cer applications. Consideration of the BF variable is motivated by interest

in deriving potentially useful additional diagnostic information related to

tissue vascularity from on 18F-FDG - see (Feng et al. 2021, Pouzot et al.

2013), for example. There is no intention of questioning PET 15O-H2O as

the gold-standard for blood �ow determination. Our BF formula is an ap-

plication of the central volume theorem (Meier & Zierler 1954) based on an

assumed mean transit time of tracer atoms in the vasculature oft � =2 - here

7.5 seconds.

Table 4.3 compares the VOI-averages of three variables to literature reports

c.f. (Huang et al. 1983, Liu et al. 2021b, Sari et al. 2022b, Dias et al. 2022,

Matsunaga et al. 2017, Lauritsen et al. 2020, Oguro et al. 1993, Slimani

et al. 2008, Lauritsen et al. 2020, Kahn et al. 1994, HS 2000, Materne et al.

2000, HS 2000, Schuster et al. 1995, Kudomi et al. 2008, Piert et al. 2002).

For MR F DG and DV values are seen to be very much in the range reported

using 2C analysis and Patlak analysis (Dias et al. 2022). Blood �ow values
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are compared to reports based on PET15O-H2O and dynamic susceptibility

contrast (DSC) � MR techniques. The results for the NPRM approach are

remarkably similar to those in the literature, particularly given that study

group here is older and unhealthy (Wu et al. 2016). Further examination

of the BF variable could be merited. Viability of conducting PET 15O-H2O

on this scanner is demonstrated in (Knuuti et al. 2023)

While our focus has been on parameters that have traditionally been used

to quantify PET-FDG dynamics, the NP technique gives a possibility to also

evaluate a summary of the arrival pattern of 18F-FDG at the voxel level as

an additional parameter. A sample amplitude-weighted average of voxel-

level basis element delays - c.f. equation (4.6) - is shown in Figure 4.10.

The result shows early arrival of signal to the lung and much more delayed

arrival to the bladder and more peripheral regions - c,f, Table 4.1 in equa-

tion (4.6). This result motivates more detailed consideration of the 18F-FDG

arrival pattern as a further summary of the full information yielded by this

scanning technology.

Figure 4.10: Voxel mapping of arrival of 18F-FDG signal. Mapped values are
the amplitude-weighted delay values, f � + � k ; k = 1; 2; :::; K g in equation
4.6. Data are centered so that the mean delay in the LV is zero. Left: Image
of coronal scan corresponding to the CT slice in Figure 4.2. The boxplot on
the right shows the distribution of mapped delay values by VOI.
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5. SHORTENEDDYNAMIC IMAGING

PROTOCOLS FOR18F-FDG PET SCANS

Chapter 5

Shortened Dynamic Imaging

Protocols for 18F-FDG PET Scans

Abstract

Positron emission tomography-FDG scanning, a technique that has become

an integral tool in the management of various types of cancers, is gaining

more attention in recent years. This is largely due to the signi�cant im-

provements in the spatial and temporal resolution of PET scanners, which

have substantially increased the interest in mapping kinetic parameters

from shorter scans. Several protocols have been put forward in an attempt

to generate K i at both the voxel level and ROI level. The main challenge,

however, is the absence of imaging data immediately after the tracer injec-

tion, which limits the ability to recover information from the early phase.

In order to address this challenge, three different approaches have been

evaluated for the feasibility of this protocol. Utilizing the non-parametric

residue mapping (NPRM), along with machine learning adjustments, we

are able to produce K i image. This image is created using either 15 or 30

minutes of data collected immediately after the administration. This pro-

cess is carefully evaluated within the context of a series of breast tumor

studies with dynamic FDG PET scans. Two methods have been evaluated

in the region of interest (ROI) domain: the Population Residue basis and

the Exponential extension of the non-parametric Residue. Both of these

methods have undergone thorough examination at the ROI level to ensure
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accuracy and reliability. The raw correlation of Flow between the Residue

extension method with the �rst 15 minutes of data and the full data set

with NPRM is found to be 0.81. Impressively, the overall correlations for

�ux are generally found to be around 0.9 when combined with Machine

learning correction. The high correlation values may suggest that the short

scan is a feasible method, given that the early kinetics Flow can be readily

obtained. Furthermore, it implies that the K i value from the full scan can

be accurately estimated, providing valuable insights for further studies and

applications.

5.1 Introduction

Positron emission tomography (PET) scanning with the radiotracer18F-FDG

is an established and commonly used medical imaging tool in the diag-

nosis and management of several types of cancers. Typically, a standard

whole-body clinical PET-FDG scan, which involves imaging approximately

60-90 minutes post-injection of the radiotracer (Delbeke et al. 2006, Dun-

nwald et al. 2011, Pantel et al. 2022a, Spence et al. 2002). The standard

uptake value (SUV), a semi-quantitative measure that is derived from a sin-

gle imaging acquisition time, is frequently employed in the clinical setting.

SUVs are suf�cient for many diagnostic applications in clinical practice, in-

cluding tumor grading (Bansal et al. 2011). A standard dynamic acquisition

protocol requires more than 60 minutes of acquisition after tracer injection.

This longer scanning protocol limit the patient throughput and comfort. In

the realm of research, dynamic scans with multiple time frames are used

for more advanced diagnosis, response assessment, therapy management,

and tracer development. These techniques allow a more comprehensive un-

derstanding of tumor behavior and metabolism, and they have signi�cant

potential to enhance clinical decision-making and patient outcomes (Tomasi

et al. 2012, Wijngaarden et al. 2023). Net in�ux rate K i , which is a fully

quantitative parameter that can be derived from dynamic scans, was found

to outperform SUV in terms of lesion detectability (Wu et al. 2024 b). More-

over, the prediction of the outcome was also more accurate when using the

net in�ux rate K i compared to SUV. (Dunnwald et al. 2011).

The next generation of PET total-body scanners, which will have full cov-
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erage of blood pools (Badawi et al. 2019b), offer a unique potential for

dynamic acquisitions. These could yield more detailed information about

FDG delivery and metabolism. They may also have the potential to re�ne

the acquisition of clinical scan data, enabling the extraction of useful kinetic

information and optimizing the amount of tracer administration. One of the

primary bene�ts of these advancements is the potential for dosimetry, which

can reduce the amount of radiation patients are exposed to. This is par-

ticularly bene�cial for populations that are sensitive to radiation, thereby

improving patient safety during diagnostic procedures (Chen et al. 2024).

Image noise level in PET imaging is often characterized by the Signal-to-

noise ratio (SNR). The SNR in a reconstructed image can be approximated

asSNR � k
p

S � A � T, where k is a constant, S is the effective sensitivity

of scanner, A is the administered activity and T stands for the acquisition

time (Cherry et al. 2017, Tan et al. 2020, Alberts et al. 2021). With the

much increased sensitivity in Long axial �eld of view scanner, the lower

dose administration, shorter acquisition time, improved image quality and

better lesion detectability becomes clinically feasible (Alberts et al. 2021,

Chen et al. 2023b, Cherry et al. 2017, Tan et al. 2020, Chen et al. 2024).

Fused with the prior anatomical information, the use of multimodal arti�-

cial intelligence techniques has shown promising results in improving the

quality of PET images. A mere 60 seconds of scanning data could poten-

tially produce images of quality comparable to that of the full 10-minute

data (Zhang et al. 2024). In terms of optimizing the scanning process for

clinical diagnosis, a 1-minute scan with a full dose and a 2-minute scan with

a half dose have been identi�ed as the ideal protocol when employing the

new Bayesian penalized-likelihood iterative PET reconstruction technique

(HYPER iterative). A 2-minute scan with a full dose and a 3-minute scan

with a half dose are recommended for the ordered subset expectation max-

imization (OSEM) reconstruction (Hu et al. 2023). Due to the arti�cial

intelligence techniques and new algorithms being developed in conjunc-

tion with the high-performance capabilities of the Long Axial Field of View

(LAFOV) scanner, the improvements could be dramatic. Similar types of

research have also been conducted on a digital Biograph Vision PET/CT

system (Siemens Healthcare; Erlangen, Germany), an axial �eld of view

26.3cm scanner. Under this system, the clinical standard scan was acquired

approximately after 15 minutes. Using an approximate threefold reduction
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of the time, all de�ned regions were correctly classi�ed and no changes in

staging were observed (Weber et al. 2021).

Numerous studies have established that the information derived from early

dynamic (ED) PET data could be bene�cial in various medical applications.

This has been particularly noted in the analysis of FDG uptake in the ini-

tial 10-minute imaging phase. The signi�cant increase in FDG uptake ob-

served in clear cell carcinoma compared to non-clear cell carcinoma in renal

cell carcinoma (Nakajima et al. 2015). The maximal standardized uptake

value (SUVmax) and the mean standardized uptake value (SUVmean) were

notably higher in tumor tissue compared to non-tumor tissue in the �rst

4-minute data. This �nding effectively highlights the detection of hyper-

perfusion in hepatocellular carcinoma(HCC) (Schierz et al. 2013). Blood

�ow(BF) can be estimated from the �rst-pass of 18F-FDG data as suggested

by multiple studies (Mullani & Gould 1983, Mullani et al. 2008, Zhang et al.

2023) Blood �ow estimated from the �rst 2 min data has been found to

have a high correlation coef�cient (r=0.86) relative to 15O-water BF (Mul-

lani et al. 2008), similar �ndings have been observed in LAFOV scanner in

multiple organ studies, as presented in table 4.4. Several parameters can

be calculated from �rst-pass data. e.g. BF, time to peak(TTP), hepatic per-

fusion index (HPI) can be derived. (Zhang et al. 2023) shows higher HPI

in liver cirrhosis compared to non-liver cirrhosis patients. Utilising kinetic

analysis with traditional compartmental model, early kinetics like K1, k2, Vb

and delay time can be estimated. Combining with SUV can differentiate be-

nign from malignant pulmonary lesions and squamous cell carcinoma from

adenocarcinoma. SUVmax and K1 were also found to correlate with Ki-67

(Meng et al. 2023). K1 and Vb have been found to have a high correlation

coef�cient of more than 0.95 between a 90-second early dynamic scan us-

ing a one-compartmental model and 1-hour data using an irreversible two-

compartmental model on the total body scanner uEXPLORER (Feng et al.

2021).

The concept of generatingK i images directly from SUV images using the

sophisticated methods of deep learning has been proposed. TheK i is often

seen as a more accurate parameter than the SUV in measuring metabolic

information. The primary goal of this approach is to reduce the acquisition

time, eliminate the dependence on the input function and improve the SNR
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Figure 5.1: Schematic representation of an overview of short-duration dy-
namic FDG PET scanning protocols.

(Wang et al. 2022c, Huang et al. 2022, Li et al. 2022c)Comprehensive study

was conducted involving 200 patients. The study utilized a 3D U-Net con-

volutional neural network (CNN) where data spanning 50-60 minutes were

acquired and used as the static SUV image. This image was then employed

to predict the K i image which had been generated using 20-60 minute data

with the Patlak analysis. The predicted images were then compared to refer-

ence parametricK i images. The structural similarity index measure (SSIM)

between the predicted images and the reference ones was found to be above

0.9 for all the test patients. The median SSIM exceeded 0.94 at six different

sites. These sites included the brain, neck, lung, abdomen, pelvis, and leg

(Huang et al. 2022). Another study was carried out with 203 participants.

In this case, a 50-60 minute static image was used to predict a 10-50 minute

K i image. This was accomplished by using an improved 3D cycle genera-

tive adversarial network (cycleGAN). In each of the training, validation, and

testing groups, a similar proportion of malignant, benign, and healthy con-

trol subjects were included. The synthesizedK i images were found to have

a signi�cant correlation (Pearson correlation coef�cient of 0.93) with the

Patlak K i images, while the SSIM exceeding 0.89 (Wang et al. 2022c). In

a separate study, a convolutional encoder-decoder CNN network was used

to predict the Patlak K i using data collected between 40 to 65 minutes.This

study involved 20 patients and covered 11 lesions. The results were quite

promising, with a high SSIM of 0.98 and a high correlation ( R2=0.8382)

(Li et al. 2022c).
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Patlak analysis to generatingK i requires a data collection span of approx-

imately 40 to 50 minutes, according to recent studies (Huang et al. 2022,

Wang et al. 2022c). This is a signi�cant amount of time compared to the

semi-quantitative approach. Further research has been conducted on the

Siemens Biograph Vision Quadra PET/CT system to shorten the duration of

the study that can produce Patlak generatedK i . The research involved a

cohort of 12 patients with lung malignancy. By using an scaled population-

averaged input function, the scan time could be reduced to 20 or 30 min-

utes. Importantly, this reduced scan time did not signi�cantly impact the

accuracy of the results, with a bias of less than 7.38 (van Sluis et al. 2022).

A study found that a 20-minute dynamic scan using Population Based Input

Function (PBIF) and a Non-Local Means (NLM) �lter could still maintain

acceptable quality. The results were promising; even a shorter 16-minute

scan was found to be suf�ciently effective in detecting all lesions (Wu et al.

2022c).Patlak K i can also be calculated as short as 10 minutes through a

dual-time-point protocol, the �rst scan 20 to 25 minutes and the second be-

tween 80 to 85 or 85 to 90 minutes. A substantial correlation was noticed

between the conventional K i and the dual-time-point K i . This correspon-

dence was measured byR2 values of 0.994, 0.980, 0.971, and 0.925 for

various regions such as the nodule, tumor, cerebellum, and bone marrow

(Wu et al. 2021).

The dual-time-window (DTW) protocol has been proposed as a promising

method for enhancing the ef�ciency of dynamic imaging protocols. This

protocol involves a single injection followed by dual scans, a short dynamic

scan that is performed immediately after the injection to capture early in-

formation, and a second scan is then conducted at a later stage to gather

metabolism information. In this approach, a 5-minute dynamic PET scan

is conducted immediately after the injection. This scan is then followed

by a 3-minute per bed static PET scan at 60 minutes post-injection. This

gives a bias of less than 10% in both simulation and patient studies in 2C

parameters. The study focused on 15 liver lesions from 9 patients, the

early frame sampling revealed that maintaining a rate of 10 seconds per

frame minimized the bias and standard deviation in the kinetic parame-

ters (Samimi et al. 2020). In the 21 patient studies, high correlations were

observed betweenMR F DG generated from 75-minute dynamic data and a
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two short dynamic scan protocol utilizing data from two time frames (0-6

and 60-75 minutes) (Wang et al. 2022b). Further studies were conducted

using 5-minute dynamic data supplemented with 1-minute static data at 60

minutes post-injection. The results showed that K1,k2, k3, andVb values

were high correlated between the protocols (Wang et al. 2023a). Addi-

tional research was done on 28 patient scans performed on a uEXPLORER

PET/CT. The results showed thatK i and K1 derived from the DTW proto-

col showed overall good consistency with the reference from the 60-minute

dynamic scan with a 10-minute early scan and a 5-minute late scan. High

correlations were observed in the cerebral cortex, muscle, and tumor lesion

respectively (K i : 0.971, 0.990, and 0.990; K1: 0.820, 0.940, and 0.975)

(Wang et al. 2022e). Interestingly, similar research indicates that the to-

tal scan time could potentially be reduced to 10 minutes (0-4 and 54-60

minutes), with results that are comparable to the full scan times (Wu et al.

2022d). However, the DTW protocol has some limitations. It requires addi-

tional image registration, which could potentially introduce image artifacts.

A second CT may be required in the second scan for accurate image reg-

istration and attenuation correction. The impact of these potential issues

was not modeled in the study mentioned above. As a result, another proto-

col considered as a dual injection protocol that includes a single scan with

the help of a dual injection scheme is being studied, and it shows promis-

ing results (Wu et al. 2022d). The full dynamic scanning protocol typically

requires an acquisition time of more than 60 minutes. Whether the total

scanning time can be reduced while still generating reliable kinetic param-

eters has been examined. This was done in three injected dose groups: full

activity (3.7 MBq/kg), half activity (1.85 MBq/kg), and ultra-low activity

(0.37 MBq/kg) of 18F-FDG. Signi�cant correlations in tumor kinetic met-

rics were identi�ed between the 30/45 minute group and the group with

60-minute scanning time (Liu et al. 2023b).

The concepts of machine learning and deep learning were proposed several

decades ago and have extensive applications in PET. Deep learning, in par-

ticular, has been employed for a multitude of tasks in the �eld of medical

imaging. These tasks include noise reduction, image segmentation, image

generation, and image reconstruction etc. (Wang et al. 2021c, Huang et al.

2022, Wang et al. 2022c, Li et al. 2022c, Liang et al. 2023, Lu et al. 2019,
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Guo et al. 2019, Häggström et al. 2019, Cui et al. 2019, Reader et al. 2020,

Zaidi & El Naqa 2021, Apostolopoulos et al. 2022, Niyas et al. 2021, Gong

et al. 2021, Zaker et al. 2022). This technique can also be applied to pre-

dict K i , while simultaneously preserving early information (Wu et al. 2019).

This predictive ability of deep learning could signi�cantly enhance the ac-

curacy and ef�ciency. To examine this, we undertook a study to evaluate

the value of the kinetic information that could potentially be retrieved from

short dynamic scans, acquired immediately after the FDG tracer injection.

5.2 Materials and Methods

5.2.1 Materials

This study considers two data sets: brain tumor patients and breast tumor

patients. Both groups underwent dynamic scanning for 60-90 minutes.

5.2.1.1 FDG Brain tumor Study

Data from a brain tumor study conducted at the University of Washing-

ton, as reported by (Spence et al. 1998, 2002), were used. The study in-

cluded thirty-three patients, aged between 30 and 65, who were diagnosed

with supratentorial malignant Glioma. Patients had dynamic PET-FDG scans

within two weeks before and/or 1-3 weeks after radiation treatment (RT). A

total of forty-eight scans are available in this study. The General Electric Ad-

vance whole body positron emission tomograph was used, which provides

35 image planes of data over a 15 cm axial �eld of view. It includes 18 rings

of Bismuth germanium oxide (BGO) detectors with 672 crystals per ring.

The system's sensitivity in two-dimensional mode is 135 kcps/mCi/ml, with

a limiting transaxial resolution of 4.1 mm, a slice thickness of 4 mm, and a

direct (FBP) reconstruction methodology.

The typical scan duration was 90 minutes, with some patients' scans lasting

70 minutes or less. Patients were typically injected with 7–10 mCi of FDG in

10 ml of normal saline over 2 minutes. All studies included frequent arterial

sampling, similar to the dynamic image acquisition. The 1-ml blood samples

were centrifuged, with 0.5 ml of plasma pipetted and counted for total

plasma radioactivity using a Cobra multichannel gamma counter (Packard
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Figure 5.2: Diagram of resampled PET-FDG scan data in brain tumour se-
ries. First 15 minutes(green), 0-30 minutes(navy) and clinical setting 60-75
minutes(purple). A similar resampling approach was used for the breast se-
ries.

Corp., Chicago, IL). The 4-D PET data comprises an array withN = 128 �

128� 35voxels andT = 31 time-frames extending over a 90-minute period.

The time-frame sequence is:1 � 1 min (pre-injection), 4 � 20 s, 4 � 40 s,

4 � 1 min, 4 � 3 min, and 14 � 5 min. Time-course data for grey matter,

white matter, and brain tumor regions were available for analysis.

5.2.1.2 FDG Breast tumor Study

Fifty-three female patients, aged between 32-76, with primary Locally Ad-

vanced Breast Cancer (LABC), underwent dynamic FDG PET scans before

and at the midpoint of neoadjuvant chemotherapy (Mankoff et al. 2003,

Dunnwald et al. 2008, 2011). Doses ranging from 218 to 396 MBq were ad-

ministered over 2 minutes in a volume of 7-10 mL using a constant infusion

pump. Dynamic imaging was then conducted for 60 minutes post-infusion.

Data was collected on a GE-Advance scanner following the same procedure

as the brain dataset. Corrections for attenuation, scatter, deadtime, and

random events were made using a plane-by-plane FBP reconstruction al-

gorithm. The 4-D PET data comprises an array withN = 128 � 128� 35

voxels and T = 25 time-frames that extend over a 60-minute period. The

time-frame sequence is as follows:1� 1 min (pre-injection), 4� 20s, 4� 40

s, 4 � 1 min, 4 � 3 min, and 8 � 5 min. Arterial input functions were re-

covered from the left ventricle (LV) of the heart (O'Sullivan et al. 2017).

Time-course data for tumor regions and contralateral normal regions were

available for analysis.
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5.2.2 Kinetic Analysis

The total tissue concentration, CT (t) is expressed as a convolution between

the tissue response( Residue ) and the arterial input function, c:f: Meier

and Zierler (Meier & Zierler 1954).

CT (t) = K
Z t

0
R(t � s)CP (s)ds = R 
 CP (t) (5.1)

where CT (t) is the concentration of radiolabeled tracer in a tissue region,

measured as activity per unit volume (KBq=cm3). CP (t) is the time-course

of the tracer the arterial blood as activity per millilitre(ml) of blood. And

R the tissue residue can be regarded as a life-table for tracer atoms in a

tissue region. Where Residue can be calculated based on TAC and plasma

data CP (t). Decomposition of the residue (Figure 4.1) can be used to de�ne

a set of metabolic variables. Vascular �ow and volume (K b,Vb), distribu-

tion �ow and volume ( K d,Vd), �ux ( K i ), overall �ow ( K 1) and extraction

(E= K i / K 1). These variables represent metabolic features of residue. An

example of the inputs and outputs when using the NPRM is shown in Fig-

ure 5.3. Our initial focus is on mapping the �ux ( K i ) based on the short

scan data. More details about the non-parametric residue mapping ap-

proach used to recover voxel-level kinetics are presented in sections 3.3.1

and 4.2.2.

Figure 5.3: Diagram of the use of NPRM to convert 4D dynamic PET data
into a set of 3D metabolic images.

5.2.3 Machine Learning Methods

Data from the full-time course were resampled to simulate series that might

result from shorter imaging sessions. We considered series corresponding
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to the �rst 15 minutes, �rst 30 minutes and 60-75 minutes. A diagram of

these series is shown in Figure 5.2. By re-sampling the dynamic scanning

data we were able to study the ability to evaluate/predict late FDG retention

from early dynamic scans information. Data from each potential acquisition

were evaluated using the NPRM in order to recover estimates of the kinetic

parameters. The Patlak method was used to derived a �ux estimates from

45-60 and 60-75 minute data.

Machine learning methods can be applied to Voxel-level and ROI data in the

Metabolic Parameter Domain. Several techniques including Multiple Linear

Regression, Generalized Additive Models, Random Forests and Neural Net-

works were applied (Wu et al. 2019). The results are found to be quite

promising. The Generalized Linear Model (GLM) is a �exible extension of

ordinary linear regression. GLM expands upon linear regression by using a

link function to connect the linear model to the response variable.

g(E(Y)) = � 0 +
MX

1

� mxm (5.2)

The Generalized Linear Model (GLM) was formulated to unify various sta-

tistical models (Nelder & Wedderburn 1972). In Chapter 3, we discuss

the Model-based Image Domain Bootstrap, which uses a data generation

process (DGP) based on a GLM representation for the 4-D PET data. This

model accommodates non-Gaussian errors and does not assume constant

scale factors � ij (Seber 2015). Generalized Additive Models (GAM) are

an extension of GLM. Unlike GLM, the linear predictor in GAM is the sum

of smoothing functions applied to the predictor variables. Statistically, a

GAM is a model in which the linear response variable linearly depends on

unknown smooth functions of the predictor variables. GAMs offer several

advantages, including �exibility, interpretability, non-linearity, regulariza-

tion, and visualization. these features could enhance data interpretation

and improve prediction accuracy.

g(E(Y)) = � 0 +
MX

1

f m (xm ) (5.3)

Note if we take f m (xm ) = � mxm , the formula will become equation 5.2.
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However, over�tting can be a problem with GAMs. To reduce this, cross-

validation can be used. Speci�cally, in this chapter, we've used the Leave-

One-Out Cross-Validation (LOOCV) method to overcome over�tting.

Figure 5.4: The diagram includes models such as regression trees, random
forests, and neural networks.

5.2.4 Population Residue Basis

The analysis procedure in this section is used to develop a population of

full-time course residues for mapping FDG kinetics. In this analysis each

residue is de�ned in terms of a set of coef�cients for a �xed set of basis

residues so a residue function,R, is associated with a �nite set of vector

Bk(t) of non-negative parameters�

R(t) =
KX

k=1

� kBk(t) (5.4)

Assuming each data can contributem basis residues. A population ofN data

sets yields a set of residuef Rnm ; nm = 1; 2; :::; Nmg Clustering partitions

the entire set of Rnm ; into L clusters with self-similar characteristics, where

k < L < Nm . The mean within each cluster be denoted B l (t) for l =

1; 2; :::; L.

B l (t) =
JX

j =1

� j B j (t) (5.5)

Let a subset ofB l (t) be the �nal residue basis B j (t) and constrained to be

unity at time zero. The coef�cient � j are constrained to be non-negative.
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WRSS(J ) =
X

t

wt [B l (t) �
JX

j =1

� j B j (t)]2 (5.6)

where WRSS(J ) is the weighted residual sum of squares when J basis

residues has been selected. A cross-validated backwards elimination scheme

is applied to estimate the number of J . The elimination starts with J = L,

where L is a large number of clusters obtained in the previous step. A se-

quence indexed byJ for J = L; L � 1; L � 2; :::; 2 to eliminate the most basis

element in B l (t).

GCV =
WRSS
DFE 2

(5.7)

where DFE is the effective degrees of freedom for error. Simplistic models

often have a large degrees of freedom for error and may not �t the data well.

Conversely, complex models may �t the data accurately but often result in

a small margin for error. In both of these extremes, the prediction error

and the Generalized Cross-Validation (GCV) statistic can be high. Usually,

the model with the lowest GCV value also has the smallest prediction error

(Wahba 1990, O'Sullivan 1993, 2005).

The residue basisB j (t) are further constrained to contain two �xed ele-

ments: a pure vascular term, R1, and a pure retention term, RP . For ob-

vious reasons the latter is referred to as the Patlak residue. Thus the �nal

residue basis setBk(t) has been constructed as described in equation 5.4.

Assuming the full length arterial input function CP are available for each

patient scan in shorter dynamic scanning protocol. The� K (t) in equation

4.6 could be generated � k(t) =
Rt

0 Bk(t � s)Cp(s)ds. The optimal set of

� -coef�cients can be found using quadratic programming when the dura-

tion of concentration CT (t) is shortened. TheR(t) for shortened protocol

can still be obtained to generate a set of metabolic variables using residue

decomposition (Figure 4.1).

5.2.5 Exponential Extension of Non-parametric Residue

The residue function can be viewed as the life table for the transit time of

radiotracer atoms (O'Sullivan et al. 2014, Hawe 2016). In a compartmental
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Figure 5.5: Population residue basisB j (t) and a sample basis elements� j (t)
in a brain tumor study.

model, the residue functions are one or a combination of several exponen-

tial curves. In contrast, the NPRM presents the residue in a simple piecewise

constant form, as shown in Table 2.3. The bene�t of presenting the residue

in a piecewise constant form is that it only assumes a non increasing pat-

tern.

When R(t) is calculated in a shortened protocol study, the duration of

residue is also determined by the scan durationTs. In kinetic analysis,

both the distribution volume (Vd) and retention (K i ) are signi�cantly in�u-

enced by Ts. To obtain the complete residue in a shortened protocol, the

residue can be exponentially extended by using the proportionality of the

data in [ t � ; Ts] to determine the  .

R(t) =

8
<

:
piecewise constant ; 0 < t � t �

R(t � ) + e�  (t � t � ) ; t � < t � T
(5.8)

where t � represents a certain time point and T denotes the length of a

typical dynamic scan.
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5.3 Results

Full image data were resampled to simulate the series that might result

from shorter duration imaging sessions. Series corresponding to the �rst

15 minutes only and 0-30 minutes for breast data. Figure 5.6 shows the

result of the analysis of data from one breast cancer subject. We used Neu-

Figure 5.6: Row 1: Attenuation and voxel-level mapping of K i acquired
from the full dynamic data. Rows 2 & 3: Predicted voxel-level metabolic
parameter K i using metabolic information generated from shorter dynamic
scans, with acquisition times of 15 and 30 minutes respectively. A neu-
ral network and Generalized Additive Model (GAM) are used in the image
generation of a breast tumor study.

ral network and Generalized additive model to train the model with �ux

required from full dynamic scan as response variable and several kinetic

parameters recovered from shorter duration scans, corresponding to �rst

15 minutes and �rst 30 minutes. And use separate patient's dynamic PET

data for validation. Lower four images give the estimated �ux image. The

tumor region can be easily identi�ed on these images and 30 minutes early

scan can also shows the tumor characteristics which could has prognostic

value in treatment planning. Results for the brain tumor data are less good

but a more re�ned implementation that incorporates information about the

speci�c range of tissues involved and different types of tumor may enhance

performance (Wu et al. 2019).

Results for section 5.2.4 are reported in Figure 5.7 & 5.8. The distributions
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Figure 5.7: The boxplot shows the distribution of Flux recovered from a
full scan using NPRM, the application of population residue, and the use of
population residue with a short acquisition time of 15 minutes. The colors
refer to different regions: red for tumor, blue for the whole brain, grey for
grey matter, and yellow for white matter.

Figure 5.8: The comparison of �ux values at the regional level. Left column:
direct comparison of �ux recovered from different methods. Right column:
prediction of Flux as described in Section 5.2.4, using GAM and LOOCV.
The colors refer to different regions: red for the tumor, blue for the whole
brain, grey for grey matter, and yellow for white matter. The correlations
shown in black represent overall correlations, the others correspond to their
respective colors.
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of ROI-level Flux values, obtained from a full scan using NPRM and the

population residue for brain studies, are shown in Figure 5.7. The distribu-

tions of the population residue and true values appear visually comparable.

Figure 5.8 presents pairwise plots and correlations for the overall and each

region corresponding to Figure 5.7. A weaker correlation can be observed

when comparing the true �ux directly with the prediction from the �rst

15 minutes of data using population residue. The results of using GAM and

LOOCV are also displayed. Although there is some variation across different

regions, the correlations are above 0.8 for each region. The raw correlation

of Flow is generally better than the Flux, as early information is obtained in

a short scan session. The correlations for �ux, calculated using population

residue methods from full data and data from the �rst 15 minutes, are 0.72

and 0.71 respectively. With the correction, the correlation could generally

exceed 0.85.

Results for section 5.2.5 are reported in Figure 5.9 & 5.10 The distributions

of Flow and Flux values, obtained from a full scan using NPRM and the

Exponential Extension of Non-parametric Residue, with short acquisition

times of 15 and 30 minutes 5.9. The methods of Exponential Extension

of a Non-parametric Residue with acquisition times of 15 and 30 minutes

are referred to as RE015 and RE030 respectively. The distributions for each

method are visually comparable, with clear differences between grey matter

and white matter. Figure 5.10 presents pairwise plots and correlations for

the overall and each region, corresponding to Figure 5.9. There is a strong

correlation observed when comparing the true �ux directly with the predic-

tion from the �rst 15 or 30 minutes of data using Residue extension, with

correlations generally above 0.7.The results of using GAM and LOOCV are

also presented. The raw correlation of Flow between the true and RE015 or

RE030 values are 0.81 and 0.84, respectively. These high values may indi-

cate that the short scan is feasible, as the early kinetics Flow can be readily

obtained. The overall correlations for �ux between the true and RE015 or

RE030 values, with GAM and LOOCV, are 0.877 and 0.905. Root mean

square errors (RMSE) for Flux estimates across different regions and meth-

ods compare to true, the �ux values calculated from full data using NPRM

are summarized in Table 5.1.
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Figure 5.9: The boxplot shows the distribution of Flow and Flux recovered
from a full scan using NPRM, and the use of residue extension with short
acquisition times of 15 and 30 minutes. The colors refer to different regions:
red for tumors, blue for the whole brain, grey for grey matter, and yellow
for white matter.

5.4 Discussion

This work presents a shorter scanning protocol using NPRM and machine

learning to recover �ux comparable to that from full dynamic PET data.

There is substantial agreement between the �ux values recovered from the

most alternative protocols. However, voxel level results are mixed, with bet-

ter performance in breast cancer settings. Adjusting shortened voxel level

data with machine learning produces a �ux image quite comparable to that

from full dynamic scanning. Overall, the results from this series are promis-

ing and merit further, more detailed evaluation. However, results for the

brain tumor data are less satisfactory (Wu et al. 2019). More in-depth re-

search has been conducted at the ROI level for the brain series. While the
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Figure 5.10: The comparison of �ux values at the regional level. Left col-
umn: direct comparison of �ux recovered from different methods. Right
column: prediction of Flux as described in Section 5.2.5, using GAM and
LOOCV. The colors refer to different regions: red for the tumor, blue for the
whole brain, grey for grey matter, and yellow for white matter. The corre-
lations shown in black represent overall correlations, the others correspond
to their respective colors.

Table 5.1: RMSE for Flux estimates across different regions and methods
compare to true.

Overall Tumor Brain
Grey
Matter

White
Matter

PR 0.147 0.136 0.107 0.166 0.172

PR* 0.111 0.059 0.072 0.130 0.153

PR015 0.730 0.641 0.745 0.889 0.611

PR015* 0.194 0.237 0.154 0.200 0.178

RE030 0.228 0.235 0.189 0.251 0.233

RE030* 0.188 0.209 0.147 0.182 0.208

RE015 0.276 0.321 0.224 0.269 0.281

RE015* 0.213 0.257 0.156 0.207 0.218

* represents for predictions using GAM with LOOCV

PR = Population Residue

RE = Residue Extension
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short scanning protocol, which acquires data immediately after the tracer

injection, provides an opportunity to assess tissue perfusion (K1) character-

istics, this series does not �nd that such information compensates for the

decreased reliability of the FDG �ux value. The parameters derived from

the methods described in sections 5.2.4 and 5.2.5 suggest the feasibility of

the proposed protocol, as demonstrated in Figures 5.8 and 5.10.

The non-parametric form provides more accurate estimates than a single

or a combination of the exponential form when constructing Residue to

produce kinetic parameters, as shown in Table 4.1. While the exponential

form has been extensively used in compartmental modeling and model-

based input function, as cited in (Kety & Schmidt 1948, Huang et al. 1980,

Gunn et al. 2001, Feng et al. 1993). When the Arterial Input Function

(AIF) is shortened or missing, the exponential curve can also be used to

complete the data (Wu et al. 2022d). This is particularly useful when the

complexity of the Residue decreases, especially when the tracer stabilizes in

the late phase or after steady-state conditions between reversible tissue and

plasma compartments are reached. In Non-Parametric Residue Modelling

(NPRM), the Residue basis must be constructed individually for each study.

Similar to the use of a Population-Based Input Function (PBIF), if a group of

patients shares certain similarities, a Population Residue basis could also be

generated to reduce computational requirements and the compution time.

Figure 5.8 shows a direct comparison, illustrating that the �ux using the

Population Residue basis is quite comparable to the NPRM.

In general, this study suggest that the utilization of a shorter dynamic imag-

ing protocol, when combined with the application of machine learning ad-

justments, has the potential to effectively extract kinetic information from

Positron Emission Tomography (PET) imaging studies. However, it's impor-

tant to note that a more thorough evaluation is necessary to fully con�rm

these �ndings. In addition, the development of scanner technology itself

could also play a signi�cant role in making this approach more clinically

viable. Improvements in scanner sensitivity and enhanced temporal resolu-

tion may have the capacity to further optimize this method. The accuracy

of the generated kinetic parameters could be signi�cantly improved.
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Chapter 6

Discussion and Conclusions

6.1 Discussion

Chapter 2 reviews the dynamic PET quantitation process, as shown in Fig-

ure 2.3. Kinetic modelling, including parametric and non-parametric ap-

proaches, is summarized in Table 2.3. Parametric models, such as the com-

partmental model, Patlak plot, and spectral analysis, generally rely on nec-

essary assumptions. These assumptions can be challenging to justify for

heterogeneous tissue regions, especially in LAFOV studies. Non-parametric

methods like methods like B-spline and piece-wise linear approximation,

which don't require assumptions, are more �exible and offer signi�cant ad-

vantages. The feasibility, challenges, and potential of these methods are

also discussed and summarized in Table 2.2. Their further developments

for emerging total-body PET imaging are also reviewed (Zhang et al. 2020b,

Viswanath et al. 2021, Sari et al. 2022b, Wu et al. 2024a). PET quantitation

involves the use of an input function, which could be derived from arterial

blood samples, image-derived input function (IDIF), population-based In-

put Function (PBIF), or a model-based input function. A brief introduction

and their applications are reviewed. A summarized �owchart of IDIF, PBIF,

and the population-based projection model (PBPM) is provided in Figure

2.5.

A list of reported dynamic total-body PET study cohorts, along with spe-

ci�c details, is provided in Table 2.1. While most scans were conducted

exclusively with �uorine-18 labeled �uorodeoxyglucose ( 18F-FDG), other
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radiotracers of interest, such as68Ga-FAPI-04 (Chen et al. 2022a, 2023a,

Liu et al. 2023a), 15O-H2O (Andersen et al. 2022), 89Zr-Df-Crefmirlimab

(Omidvari et al. 2023, 2022), 18F-Fluciclovine (Abdelhafez et al. 2022),

and [ 11C]methionine (Li et al. 2023), have also been used. Different in-

stitutions have applied a range of scanning and reconstruction protocols,

but the image voxels are generally on the order of ten million, and a denser

sequence is commonly performed at the early time. Although these dynamic

datasets may not be identical, the data analysis will face similar problems,

which are also discussed in detail. In addition to the quantitative proce-

dures addressed in Chapter 2, basic challenges such as motion, spillover,

and partial volume can limit the reliability of estimated kinetics during

the pre-processing stage. Patient movement, respiration motion, and car-

diac motion are unavoidable during the PET acquisition, particularly for

dynamic scanning with longer durations. Hence, a shorter dynamic scan-

ning protocol was proposed in Chapter 5. Numerous motion correction

methods have been examined, most of which rely on image registration al-

gorithms or hardware motion tracking using an external device (Bertoldo

et al. 2014). To the best of our knowledge, there's no universal solution for

all organs, even though it's well-studied in brain images. However, we ap-

preciate that some researchers have investigated this in total-body studies

(Sun et al. 2022). Denoising is another way often used to ensure accurate

results. Typically, a selected �lter, such as Gaussian or non-local mean, is

applied to lower the noise in PET images before the formal quantitation

(Dutta et al. 2013).

While the emergence of total-body PET scanners brings several bene�ts,

concerns about the adoption of dynamic studies in clinical practice remain

and even more serious. For example, more static scans can be completed

in a speci�c time interval (e.g., 1h) as they can be acquired faster on uEX-

PLORER (Hu et al. 2021). It could be argued that the cost of dynamic stud-

ies would be substantially higher. Therefore, some protocol designs, like

the dual-injection scheme (Wu et al. 2022d), have been explored to reduce

dynamic scanning time. There is a more comprehensive review in Chapter

5. Simultaneously, parameter estimation procedures including non-invasive

input functions and improved kinetic models, are developed to make dy-

namic imaging more feasible and valuable in routine use (Kotasidis et al.
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2014). Regardless of these challenges, the additional information recovered

from dynamic PET scans has proven useful in predicting therapy response

or survival (Mankoff et al. 2002, Dunnwald et al. 2011), which is valuable

in precision medicine to improve individualized treatment by maximizing

therapeutic effect and minimizing toxicity (Mankoff et al. 2019). From

these perspectives, the role of dynamic PET imaging may not change in the

short term, but we are con�dent in its bright future in clinics. In the past

few years, more than 20 groups from nuclear medicine, physics, biomedical

engineering, and statistics have been involved in total-body PET data acqui-

sition and analysis. The early adopters have generously shared their insights

into this new technology. Hicks provided an installation guide, including

many aspects like �nancing, space, and power, for total-body PET/CT be-

ginners (Hicks 2023). Vandenberghe et al. proposed a few design options

to reduce the cost for total-body PET (Vandenberghe et al. 2023). The

Bern group shared their experience obtained from 7,000 patient studies on

Quadra (Alberts et al. 2023). An expert consensus was also proposed for

the oncological use of uEXPLORER with18F-FDG based on the experience of

imaging 40,000 cases (Yu et al. 2023). These reports greatly improve our

understanding of the clinical use of advanced total-body systems.

Chapter 3 presents an image-domain bootstrapping strategy for dynamic

PET data, inspired by (Huang et al. 2020). The model is applicable when

the PET measurement has a complex temporal structure. It uses a paramet-

ric Gamma-model form for the marginal distributions of voxel-level data,

and a parametric spatial auto-regressive (SAR) form for covariance pat-

terns. The method employs the empirical distribution of rescaled data and a

non-parametric approach for analyzing the spatial correlation structure. A

straightforward recycling procedure is proposed to minimize computational

demand and storage needs.

Illustrative examples are drawn from dynamic studies with PET-FDG and

PET-FLT in brain and breast-cancer patients. These studies use a �ltered-

backprojection (FBP) reconstruction method and an iterative maximum like-

lihood (ML) approach. Numerical simulation studies with 2-D and 1-D

simulations were conducted. Temporal sampling and tissue attenuation

were matched to the real data. The RMSE performance of the model-

based image-domain bootstrapping aligns with the performance of the well-
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established projection-domain approach, regardless of the reconstruction

method used. The model's utility in providing voxel-level and regional sum-

maries, including maximum and coef�cient of variation, has been demon-

strated in the metabolic parameters domain.

Chapter 4 focuses on the non-parametric approach to mapping kinetic pa-

rameters and assessing their uncertainties with data from a long-axial �eld-

of-view (LAFOV) Biograph Vision Quadra PET/CT scanner are evaluated

using the model-based image-domain bootstrapping methodology. The con-

struction of patient-speci�c uncertainties through image-domain bootstrap-

ping and kinetics is reported for voxels, maximum intensity projections, and

volumes of interest (VOIs). These correspond to several key organs and

tumor lesions. Uncertainty measurements could be particularly bene�cial

when the biomarker value is close to a boundary between alternative treat-

ment options. Sample kinetic maximum intensity projection (MIP) maps,

along with their associated standard errors (SEs) obtained using the NPRM

technique and image-domain bootstrap, are illustrated in Figure 4.2.

Figure 4.3 and Table 4.1 highlight the advantages of using the NPRM method.

Compared to the well-established 2C model, signi�cant improvements in

data representation are achieved with the NP approach. These bene�ts are

primarily associated with the NP technique's ability to capture the highly

resolved early time-course pattern. The mean and standard deviations of

the weighted residuals sum of squares (WRSS) deviations between the 2C

and NP models are shown in Table 4.1. VOI time-course �tting by the 2C

model is substantially inferior to that of the NP model, with a mean percent

improvement of almost 390%. The full time-course and the time-course

over the �rst minute of data are displayed in Figure 4.3. While the 2-

compartment model �tting of some VOIs, such as grey and white matter, is

reasonable, it is clearly inferior for certain VOIs like the kidney, liver, bone,

and bladder. Table 4.3 compares the VOI averages of three variables to lit-

erature reports. MR F DG and DV values align with those reported using the

2-compartment analysis and Patlak analysis (Dias et al. 2022). Blood �ow

values are compared to reports based on PET15O-H2O and dynamic suscep-

tibility contrast (DSC)-MR techniques. The results for the NPRM approach

align remarkably with those in the literature. Further examination of the

blood �ow (BF) could be justi�ed. The viability of conducting PET 15O-H2O
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on this scanner is demonstrated in (Knuuti et al. 2023).

Chapter 5 provides an in-depth introduction to various protocols that have

been proposed with the primary objective of generatingK i both at the voxel

level and the region of interest (ROI) level. One of the main challenges as-

sociated with the previously proposed short duration dynamic scanning pro-

tocols lies in the absence of imaging data immediately after the tracer injec-

tion. This lack of immediate data necessitates a separate scan, which might

require additional image registration. This limitation impedes the ability to

recover critical information from the early phase of the scan, thereby poten-

tially affecting the accuracy of the recovered parameters. We have adopted

the use of the NPRM, supplemented with machine learning adjustments.

This allows us to generateK i images and make ROI predictions, improving

the accuracy and reliability of analysis. The analysis utilizes either a 15-

minute or 30-minute data, collected immediately post-injection. We have

thoroughly examined this approach through a series of studies on breast

and brain tumor patients. In addition, we have evaluated two other meth-

ods within the region of interest (ROI) domain: the Population Residue

basis and the Exponential extension of the non-parametric Residue. Both of

these methods have been thoroughly assessed at the ROI level. Figures 5.8

and 5.10 present a direct comparison, clearly demonstrating that the �ux

derived from these methods is quite comparable to theK i obtained from a

full scan. The raw correlation of Flow is found to be 0.81 using a 15-minute

data. The potential of these methods and protocols to effectively extract

kinetic information from PET imaging studies is highly promising.

6.2 Conclusions

Overall, this thesis presents a comprehensive study of the non-parametric

residue mapping approach with an aim to enhance the accuracy of quanti-

tation in dynamic whole-body PET imaging. This approach forms the cor-

nerstone of the research, paving the way for reliable kinetic analysis on a

large-scale dataset, which was a signi�cant challenge in whole-body imag-

ing with �ner resolution. Image-domain bootstrap has been developed with

the intention to generate reliable uncertainty estimates, which are crucial

for the accurate interpretation of data and subsequent treatment decisions.
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The robustness of this technique greatly contributes to the reliability and

generalizability of the results derived from the kinetic analysis. A short-

duration dynamic scanning protocol has been proposed. This simple pro-

tocol has been designed to speci�cally enhance the quantitation of a short-

ened dataset. This method has the potential to signi�cantly minimize the

time required for data acquisition without compromising the accuracy of

results. These techniques could signi�cantly contribute to the accuracy of

diagnosis and consequently, impact the effectiveness of treatment decisions.
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tracting physiological parameters and the required input function simul-

taneously from pet image measurements: Theory and simulation study',

IEEE transactions on information technology in biomedicine1(4), 243–254.

Feng, T., Tsui, B. M., Li, X., Vranesic, M., Lodge, M. A., Gulaldi, N. C. &

Szabo, Z. (2015), `Image-derived and arterial blood sampled input func-

Statistical Methods for Mapping Kinetics
Together with Associated Uncertainties in
Long Field of View Dynamic PET Studies

B7 Qi Wu



BIBLIOGRAPHY

tions for quantitative pet imaging of the angiotensin ii subtype 1 receptor

in the kidney', Medical physics42(11), 6736–6744.

Feng, T., Zhao, Y., Shi, H., Li, H., Zhang, X., Wang, G., Badawi, R. D.,

Price, P. M., Jones, T. & Cherry, S. R. (2019), The effects of delay on the

input function for early dynamics in total body parametric imaging, in

`2019 IEEE Nuclear Science Symposium and Medical Imaging Conference

(NSS/MIC)', IEEE, pp. 1–6.

Feng, T., Zhao, Y., Shi, H., Li, H., Zhang, X., Wang, G., Price, P. M., Badawi,

R. D., Cherry, S. R. & Jones, T. (2021), `Total-body quantitative paramet-

ric imaging of early kinetics of 18F-FDG',J Nucl Med62(5), 738–744.

Filippi, L., Dimitrakopoulou-Strauss, A., Evangelista, L. & Schillaci, O.

(2022), `Long axial �eld-of-view pet/ct devices: are we ready for the

technological revolution?'.

Friedman, J., Hastie, T. & Tibshirani, R. (2001), The elements of statistical

learning, Springer series in statistics New York.

Ganguly, D., Chakraborty, S., Balitanas, M. & Kim, T.-h. (2010), Medical

Imaging: A Review, Springer Berlin Heidelberg, pp. 504–516.

Gong, K., Catana, C., Qi, J. & Li, Q. (2021), `Direct reconstruction of linear

parametric images from dynamic pet using nonlocal deep image prior',

IEEE Transactions on Medical Imaging41(3), 680–689.

Gong, K., Guan, J., Kim, K., Zhang, X., Yang, J., Seo, Y., El Fakhri, G.,

Qi, J. & Li, Q. (2018), `Iterative pet image reconstruction using convolu-

tional neural network representation', IEEE transactions on medical imag-

ing 38(3), 675–685.

Graham, M. M. & Lewellen, B. L. (1993), `High-speed automated discrete

blood sampling for positron emission tomography', Journal of Nuclear

Medicine34(8), 1357–1360.

Gu, F. (2023), Improved Statistical Quantitation of Dynamic PET Scans,

PhD thesis, University College Cork.

Gu, F., Hernandez, F., O'Sullivan, F., Muzi, M., Eyal, S., Unadkat, J. &

Mankoff, D. (2019a), Whole-body metabolic imaging of p-glycoprotein

activity in pregnant macaques, in `European Molecular Imaging Meeting'.

Statistical Methods for Mapping Kinetics
Together with Associated Uncertainties in
Long Field of View Dynamic PET Studies

B8 Qi Wu



BIBLIOGRAPHY

Gu, F., O'Sullivan, F., Muzi, M. & Mankoff, D. A. (2021a), `Quantitation

of multiple injection dynamic pet scans: an investigation of the bene�ts

of pooling data from separate scans when mapping kinetics',Physics in

Medicine & Biology66(13), 135010.

Gu, F. & Wu, Q. (2023), `Quantitation of dynamic total-body pet imaging:

recent developments and future perspectives',Eur J Nucl Med Mol Imaging

.

Gu, F., Wu, Q. & O'Sullivan, F. (2021b), Image-domain bootstrapping of

pet time-course data for assessment of uncertainty in complex regional

summaries of mapped kinetics,in `2021 IEEE Nuclear Science Symposium

and Medical Imaging Conference (NSS/MIC)', IEEE, pp. 1–3.

Gu, F., Wu, Q., O'Sullivan, F., Huang, J., Muzi, M. & Mankoff, D. A.

(2019b), An illustration of the use of model-based bootstrapping for eval-

uation of uncertainty in kinetic information derived from dynamic pet, in

`2019 IEEE Nuclear Science Symposium and Medical Imaging Conference

(NSS/MIC)', IEEE, pp. 1–3.

Gu, F., Wu, Q., Wu, J., Hu, D., Xu, T., Cao, S., Zhou, Y. & Shi, H. (2022),

`Feasibility of standard and generalized patlak models for dynamic imag-

ing of multiple organs using the uexplorer pet scanner', Journal of Nuclear

Medicine63(Supplement 2), 3185–3185.

Gunn, R. N., Gunn, S. R. & Cunningham, V. J. (2001), `Positron emission

tomography compartmental models', Journal of Cerebral Blood Flow &

Metabolism21(6), 635–652.

Gunn, R. N., Lammertsma, A. A., Hume, S. P. & Cunningham, V. J. (1997),

`Parametric imaging of ligand-receptor binding in pet using a simpli�ed

reference region model',Neuroimage6(4), 279–287.

Gunn, R. N., Sargent, P. A., Bench, C. J., Rabiner, E. A., Osman, S., Pike,

V. W., Hume, S. P., Grasby, P. M. & Lammertsma, A. A. (1998), `Tracer ki-

netic modeling of the 5-ht1areceptor ligand [carbonyl-11c] way-100635

for pet', Neuroimage8(4), 426–440.

Guo, Z., Li, X., Huang, H., Guo, N. & Li, Q. (2019), `Deep learning-based

image segmentation on multimodal medical imaging', IEEE Transactions

on Radiation and Plasma Medical Sciences3(2), 162–169.

Statistical Methods for Mapping Kinetics
Together with Associated Uncertainties in
Long Field of View Dynamic PET Studies

B9 Qi Wu



BIBLIOGRAPHY

Häggström, I., Schmidtlein, C. R., Campanella, G. & Fuchs, T. J. (2019),

`Deeppet: A deep encoder–decoder network for directly solving the pet

image reconstruction inverse problem', Medical image analysis54, 253–

262.

Hawe, D. (2016), Statistical considerations in the kinetic analysis of PET-

FDG brain tumour studies, PhD thesis, University College Cork.

Hawe, D., Hernández Fernández, F. R., O'Suilleabháin, L., Huang, J., Wol-

sztynski, E. & O'Sullivan, F. (2012), `Kinetic analysis of dynamic positron

emission tomography data using open-source image processing and sta-

tistical inference tools', Wiley Interdisciplinary Reviews: Computational

Statistics4(3), 316–322.

Haynor, D. R. & Woods, S. D. (1989), `Resampling estimates of precision in

emission tomography', IEEE Transactions on Medical Imaging8(4), 337–

343.

Hicks, R. J. (2023), `So, you want to get into “total-body” pet/ct scanning?

an installation guide for beginners!', Cancer Imaging23(1), 35.

Hoh, C. K. (2007), `Clinical use of fdg pet', Nuclear medicine and biology

34(7), 737–742.

HS, M. (2000), `Reduced cerebral blood �ow in white matter in ischaemic

leukoaraiosis demonstrated using quantitative exogenous contrast based

perfusion MRI', J Neurol Neurosurg Psychiatry69(1), 48–53.

Hu, H., Huang, Y., Sun, H., Zhou, K., Jiang, L., Zhong, J., Chen, L., Wang, L.,
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partmental models and delay estimation schemes for dynamic total-body

pet imaging using uexplorer', Journal of Nuclear Medicine63(Supplement

2), 3186–3186.

Wu, Q., O'Sullivan, F., Muzi, M. & Mankoff, D. A. (2019), An exploration of

the prognostic utility of shortened dynamic imaging protocols for pet-fdg

scans, in `2019 IEEE Nuclear Science Symposium and Medical Imaging

Conference (NSS/MIC)', IEEE, pp. 1–3.

Wu, Y., Feng, T., Shen, Y., Fu, F., Meng, N., Li, X., Xu, T., Sun, T., Gu, F. &

Wu, Q. (2022c), `Total-body parametric imaging using the patlak model:

Feasibility of reduced scan time',Medical Physics.

Statistical Methods for Mapping Kinetics
Together with Associated Uncertainties in
Long Field of View Dynamic PET Studies

B32 Qi Wu



BIBLIOGRAPHY

Wu, Y., Feng, T., Zhao, Y., Xu, T., Fu, F., Huang, Z., Meng, N., Li, H., Shao,

F. & Wang, M. (2022d), `Whole-body parametric imaging of 18f-fdg pet

using uexplorer with reduced scanning time', Journal of Nuclear Medicine

63(4), 622–628.

Wu, Y., Fu, F., Meng, N., Wang, Z., Li, X., Bai, Y., Zhou, Y., Liang, D.,

Zheng, H., Yang, Y. et al. (2024b), `The role of dynamic, static, and de-

layed total-body pet imaging in the detection and differential diagnosis

of oncological lesions',Cancer Imaging24(1), 2.

Xiu, Z., Muzi, M., Huang, J. & Wolsztynski, E. (2022), `Patient-adaptive

population-based modeling of arterial input functions', IEEE Transactions

on Medical Imaging.

Yao, S., Feng, T., Zhao, Y., Wu, R., Wang, R., Wu, S., Li, C. & Xu, B. (2021),

`Simpli�ed protocol for whole-body patlak parametric imaging with 18f-

fdg pet/ct: Feasibility and error analysis', Medical physics48(5), 2160–

2169.

Yin, H., Liu, G., Hu, Y., Xiao, J., Mao, W., Lv, J., Yu, H., Lin, Q., Cheng, D. &

Shi, H. (2023), `Dynamic total-body pet/ct imaging reveals kinetic distri-

bution of 68 ga-dotatate in normal organs', Contrast Media & Molecular

Imaging 2023.

Yu, H., Gu, Y., Fan, W., Gao, Y., Wang, M., Zhu, X., Wu, Z., Liu, J., Li, B.

& Wu, H. (2023), `Expert consensus on oncological [18f] fdg total-body

pet/ct imaging (version 1)', European Radiology33(1), 615–626.

Zaidi, H. & Alavi, A. (2007), `Current trends in pet and combined (pet/ct

and pet/mr) systems design', PET clinics2(2), 109–123.

Zaidi, H. & El Naqa, I. (2021), `Quantitative molecular positron emission

tomography imaging using advanced deep learning techniques',Annual

Review of Biomedical Engineering23, 249–276.

Zaidi, H. & Karakatsanis, N. (2017), `Towards enhanced pet quan-

ti�cation in clinical oncology', The British Journal of Radiology

91(1081), 20170508.

Zaker, N., Haddad, K., Faghihi, R., Arabi, H. & Zaidi, H. (2022), `Direct

inference of patlak parametric images in whole-body pet/ct imaging using

Statistical Methods for Mapping Kinetics
Together with Associated Uncertainties in
Long Field of View Dynamic PET Studies

B33 Qi Wu



BIBLIOGRAPHY

convolutional neural networks', European journal of nuclear medicine and

molecular imaging49(12), 4048–4063.

Zanderigo, F., Parsey, R. V. & Ogden, R. T. (2015), `Model-free quanti�ca-

tion of dynamic pet data using nonparametric deconvolution', Journal of

Cerebral Blood Flow & Metabolism35(8), 1368–1379.

Zhang, Q., Hu, Y., Zhou, C., Zhao, Y., Zhang, N., Zhou, Y., Yang, Y., Zheng,

H., Fan, W., Liang, D. & Hu, Z. (2024), `Reducing pediatric total-body

pet/ct imaging scan time with multimodal arti�cial intelligence techno-

logy', EJNMMI Physics11(1).

Zhang, X., Cherry, S. R., Xie, Z., Shi, H., Badawi, R. D. & Qi, J. (2020a),

`Subsecond total-body imaging using ultrasensitive positron emission to-

mography', Proceedings of the National Academy of Sciences117(5), 2265–

2267.

Zhang, X., Xie, Z., Berg, E., Judenhofer, M. S., Liu, W., Xu, T., Ding, Y.,

Lv, Y., Dong, Y. & Deng, Z. (2020b), `Total-body dynamic reconstruction

and parametric imaging on the uexplorer', Journal of Nuclear Medicine

61(2), 285–291.

Zhang, Y., Dong, Y., Yu, W., Chen, S., Yu, H., Li, B. & Shi, H. (2023), `Com-

bined early dynamic 18f-fdg pet/ct and conventional whole-body 18f-fdg

pet/ct in hepatocellular carcinoma', Abdominal Radiology48(10), 3127–

3134.

Zhao, Y.-M., Li, Y.-H., Chen, T., Zhang, W.-G., Wang, L.-H., Feng, J., Li,

C., Zhang, X., Fan, W. & Hu, Y.-Y. (2021), `Image quality and lesion de-

tectability in low-dose pediatric 18f-fdg scans using total-body pet/ct', Eu-

ropean journal of nuclear medicine and molecular imaging48(11), 3378–

3385.

Zhou, Y., Ye, W., Brašíc, J. R. & Wong, D. F. (2010), `Multi-graphical analysis

of dynamic pet', Neuroimage49(4), 2947–2957.

Statistical Methods for Mapping Kinetics
Together with Associated Uncertainties in
Long Field of View Dynamic PET Studies

B34 Qi Wu



NOMENCLATURE

Nomenclature

� Delay

15O Oxygen-15

18F Fluorine-18

Cp Arterial Input Function

CT Tissue Activity

iid Independent Identically Distributed

K 1 Overall Flow

K b Blood Flow

K d In-Distribution Flow

K i Flux

K trans Transfer Constant

R Residue Function

Vb Blood Volume

Vd In-Distribution Volume

1C One Compartmental Model/Modeling

1D One Dimension/Dimensional

2C Two Compartmental Model/Modeling

2Ci Two Irreversible Compartmental Model/Modeling

2Cr Two Reversible Compartmental Model/Modeling
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NOMENCLATURE

2D Two Dimension/Dimensional

3D Three Dimension/Dimensional

4D Four Dimension/Dimensional

ACF Auto-correlation Function

AIF Arterial Input Function

BBB Blood Brain Barrier

BGO Bismuth Germanium Oxide

CI Con�dence Interval

COV or CV Coef�cient of Variation

CT Computed Tomography

DCE Dynamic Contrast Enhanced

DGP Data Generation Process

DSC Dynamic Susceptibility Contrast

EM Expectation Maximization

FA Factor Analysis

FBP Filtered Backprojection

FDG Fluorodeoxyglucose

FFT Fast Fourier Transform

FLT Fluorothymidine

FOV Field of View

FWHM Full Width at Half Maximum

GAM Generalized Additive Model

GE General Electric

GLM Generalized Linear Model

IDIF Image-Derived Input Function

LABC Locally Advanced Breast Cancer
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NOMENCLATURE

LAFOV Long Axial Field of View

LSO Lutetium Oxyorthosilicate

LYSO Lutetium-Yttrium Oxyorthosilicate

MBIF Model-Based Input Function

ML Maximum Likelihood

MR Magnetic Resonance

MRI Magnetic Resonance Imaging

MSE Mean Square Error

MTT Mean Transit Time

NPRM Non-Parametric Residue Mapping

OLS Ordinary Least Square

OSEM Ordered Subset Expectation Maximization

PBIF Population-Based Input Function

PBPM Population-Based Projection Model

PCA Principal Component Analysis

PET Positron Emission Tomography

QP Quadratic Programming

RMSE Root Mean Square Error

ROI Region of Interest

RSS Residual Sum of Squares

SA Spectral Analysis

SAFOV Short Axial Field of View

SAR Spatial Autoregressive

SD Standard Deviation

SE Standard Error

SNMMI Society of Nuclear Medicine and Molecular Imaging
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NOMENCLATURE

SNR Signal-to-noise Ratio

SUV Standardized Uptake Value

SVD Singular Value Decomposition

TAC Time Activity Curve

TB Total-body

TOF Time of Flight

UCC University College Cork

UIH United Imaging Healthcare

VOI Volume of Interest

WLS Weighted Least Square

WRSS Weighted Residual Sum of Squares
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