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Abstract. Bilevel optimization problems have two decision-makers: a
leader and a follower (sometimes more than one of either, or both). The
leader must solve a constrained optimization problem in which some de-
cisions are made by the follower. These problems are much harder to
solve than those with a single decision-maker, and efficient optimal algo-
rithms are known only for special cases. A recent heuristic approach is
to treat the leader as an expensive black-box function, to be estimated
by Bayesian optimization. We propose a novel approach called ConBaBo
to solve bilevel problems, using a new conditional Bayesian optimization
algorithm to condition previous decisions in the bilevel decision-making
process. This allows it to extract knowledge from earlier decisions by both
the leader and follower. We present empirical results showing that this
enhances search performance and that ConBaBo outperforms some top-
performing algorithms in the literature on two commonly used bench-
mark datasets.

Keywords: Bilevel Optimization · Conditional Bayesian Optimization
· Stackelberg Games · Gaussian Process

1 Introduction

Many real-world optimization and decision-making processes are hierarchical:
decisions taken by one decision-maker must consider the reaction of another
decision-maker with their own objective and constraints. In this work, we con-
sider non-cooperative games called Stackelberg Games [37], which are sequential
non-zero-sum games with two players. The first player is called the leader and the
second player is called the follower. We shall represent the leader decision by xu

and the follower response by x∗
l . A decision pair xu, x

∗
l represents a choice by the

leader and an optimal feasible solution of the follower. The structure of Stackel-
berg games is asymmetric: the leader has perfect knowledge about the follower’s
⋆ This publication has emanated from research conducted with the financial support

of Science Foundation Ireland under Grant number 16/RC/3918.
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objective and constraints, while the follower must first observe the leader’s de-
cisions before making its own optimal decisions. Any feasible bilevel solution
should contain an optimal solution for the follower problem. The mathematical
modelling of these games leads to nested problems called bilevel optimization
problems. In these problems, the lower-level (follower) optimization problem is a
constraint of the upper-level (leader) problem. Because the lower-level solution
must be optimal given the upper-level decisions, these optimization problems
are hard to solve. Bilevel optimization is known to be strongly NP-hard and it
is known that even evaluating a solution for optimality is NP-hard [39]. There
are several approaches proposed in the literature for solving bilevel problems.
Most focus on special cases, for example, a large set of exact methods was in-
troduced to solve small linear bilevel optimization problems. Another approach
is to replace the lower-level problem with its Karush-Kuhn-Tucker conditions,
reducing the bilevel problem to a single-level optimization problem [4]. A pop-
ular approach is to use nested evolutionary search to explore both parts of the
problem [32], but this is computationally expensive and does not scale well.

Bayesian optimization [12] is another possible approach. It is designed to solve
(single-level) optimization problems in which the calculation of the objective is
very expensive so the number of such calculations should be minimized. This
is done via an acquisition function which is learned as optimization proceeds.
This function approximates the upper-level objective with increasing accuracy
and is also used to select each upper-level decision. The solution of a lower-level
problem could be viewed as an expensive objective evaluation, making Bayesian
optimization an interesting approach to bilevel optimization.

Several kinds of applications can be modelled as bilevel optimization prob-
lems. In the toll setting problem [9] the authority acts as a leader and the network
users act as followers, and the authority aims to optimize the tolls for a network
of roads. The authority’s toll price decision can be improved by taking into
account the network users’ previous acts. In environmental economics [35], an
authority might want to tax an organization or individual that is polluting the
environment. The authority acts as the leader and the polluting entity acts as
the follower. If the authority uses the knowledge of previous acts of the polluting
entity, then the authority can better regulate its tax policy.

In this work we propose an improved Bayesian approach to bilevel optimiza-
tion, using the Gaussian process surrogate model with conditional setting. In [25]
the Conditional Bayesian Optimization (ConBO) algorithm improved the knowl-
edge gradient (KG) acquisition function by using a conditional setting. During
the bilevel optimization process, it is important to know how the follower reacts
to the leader’s decisions, and we improved the algorithm by conditioning the
follower’s decisions. If we approach the leader problem as a black box and use
previous leader decisions with the follower’s best responses and leader fitness,
conditioning makes us more likely to choose the next leader decision wisely, thus
reaching optimality more quickly. Bayesian optimization with the Gaussian pro-
cess embeds an acquisition function for determining the most promising areas to
explore during the optimization process. The benefit of the acquisition function
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is to reduce the number of function evaluations. The results show that condi-
tioning speeds up the search for the optimal region during bilevel optimization.

The rest of the paper is organized as follows. Section 2 surveys related work
on solution methods for bilevel optimization problems. The preliminaries for
the proposed ConBaBo algorithm are discussed in Section 3 The algorithm is
explained in Section 4. In Section 5, we present the experimental details and
results and compare them with the state-of-the-art. Finally, Section 6 is devoted
to conclusions and future directions of research.

2 Background

A bilevel optimization problem is a sequential nested optimization process in
which each level is controlled by a different decision-maker. In the context of
Game Theory, bilevel problems are Stackelberg games [37]. They were introduced
by J. Bracked and J. McGill, and a defence application was published by the same
authors in the following year [7]. Bilevel problems were modelled as mathematical
programs at this time.

A considerable number of exact approaches have been applied to bilevel prob-
lems. Karush-Kuhn-Tucker conditions [4] can be used to reformulate a bilevel
problem to a single-level problem. Penalty functions compute the stationary
points and local optima. Vertex enumeration has been used with a version of
a Simplex method [6]. Gradient information for the follower problem can be
extracted for use by the leader objective function [28]. In terms of integer and
mixed integer bilevel problems, branch-and-bound [5] and parametric program-
ming approaches have been applied to solve bilevel problems [19]. Because of the
inefficiency of exact methods on complex bilevel problems, meta-heuristics have
been considered solvers.

Several kinds of meta-heuristics have been applied to bilevel problems in
the literature. Four existing categories have been published in [38]: the nested
sequential approach [18], the single-level transformation approach, the multi-
objective approach [27], and the co-evolutionary approach [21]. An algorithm
based on a human evolutionary model for non-linear bilevel problems [23], and
the Bilevel Evolutionary Algorithm based on Quadratic approximations (BLEAQ),
have been proposed by [33]. This is another work that attempts to reduce the
number of follower optimizations. The algorithm approximates the inducible
region of the upper-level problem through the feasible region of the bilevel prob-
lem. In [26] they consider a single optimization problem at both levels. They
proposed the Sequential Averaging Method (SAM) algorithm. In different recent
works [29] they used a truncated back-propagation approach for approximating
the (stochastic) gradient of the upper-level problem. Basically, they use a dy-
namical system to model an optimization algorithm that solves the lower-level
problem and replaces the lower-level optimal solution. Another work [13] devel-
oped a two-timescale stochastic approximation algorithm (TTSA) for solving a
bilevel problem, assuming the follower problem is unconstrained and strongly
convex, and the leader is a smooth objective function.
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Bayesian Optimization for Bilevel Problems (BOBP) [16] uses Bayesian op-
timization to approximate the inducible region. Multi-objective acquisition ap-
proach is presented in [11]. In this work, bilevel programming problems have been
solved by using priors in Gaussian processes to approximate the upper-level ob-
jective functions. Gaussian processes in Bayesian optimization make it possible
to choose the next point wisely and use the previous iterations as knowledge
to guide the optimization process. We use a conditional Bayesian optimization
algorithm for bilevel optimization. We show empirically that conditioning can
dramatically reduce the number of function evaluations for the upper-level prob-
lem. Many practical problems can be modelled and solved as Stackelberg games.
In the field of economics [35] these include principal agency problems and policy
decisions. Hierarchical decision-making in management [3] and engineering and
optimal structure design [17] are other practical applications. Network design
and toll setting problems are the most popular applications in the field of trans-
portation [24]. Finding optimal chemical equilibria, planning the pre-positioning
of defensive missile interceptors to counter an attacking threat, and interdicting
nuclear weapons are further applications [8].

3 Preliminaries

The description of the algorithm will be divided into three parts. Firstly, we ex-
plain bilevel programming problems and structure. Secondly, we discuss condi-
tional Bayesian optimization and Gaussian process settings. Thirdly, we explain
the proposed ConBaBo algorithm.

Bilevel Optimization Problems. For the upper-level objective function F :
Rn × Rm → R and lower-level objective function f : Rn × Rm → R, bilevel
optimization problem can be defined as;

Minimize
xu,xl

F (xu, xl)

s.t. xl ∈ argmin
xl

{f(xu, xl) : gj(xu, xl) ≤ 0, j = 1, 2, . . . , J}

Gk(xu, xl) ≤ 0, k = 1, 2, . . . , K

(1)

where xu ∈ XU , xl ∈ XL are vector-valued upper-level and lower-level decision
variables in decision spaces. Gk and gj represent the constraints of the bilevel
problem. Because the lower-level decision maker depends on the upper-level vari-
ables, for every decision xu there is a follower-optimal decision x∗

l [34]. In bilevel
optimization, a decision point x∗ = (xu, x

∗
l ) is feasible for the upper-level only if

it satisfies all the upper-level constraints and the vector x∗ is an optimal solution
to the lower-level problem with the upper-level decision as a parameter.

Bayesian Optimization and Gaussian Process. Bayesian optimization [15]
is a method used to optimize black-box functions that are expensive to evaluate.
BO uses a probabilistic surrogate model, commonly Gaussian Process [36], to
obtain a posterior distribution P(f |D) over the objective function f given the
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observed data D = {(xi, yi)}ni=1 where n represents the number of observed
data. The surrogate model is assisted by an acquisition function to choose the
next candidate or set of candidates X = {xj}qj=1 where q is the batch size of
promising points found during optimization. The objective function is expensive
but the surrogate-based acquisition function is not, so it can be optimized much
more quickly than the true function to yield X . Let us assume that we have a
set of collection points {x1, . . . , xn} ∈ Rd and objective function values of these
points {f(x1), . . . , f(xn)}. After we observe n points, the mean vector is obtained
by evaluating a mean function µ0 at each decision point x and the covariance
matrix by evaluating a covariance function or kernel Σ0 at each pair of point xi

and xj . The resulting prior distribution on {f(x1), . . . , f(xn)} is,

f(x1:n) ∼ N (µ0(x1:n), Σ0(x1:n, x1:n)) (2)

where x1:n indicates the sequence x1, . . . , xn, f(x1:n) = {f(x1), . . . , f(xn)},
µ0(x1:n) = {µ0(x1), . . . , µ0(xn)} and Σ0(x1:n, x1:n) = {Σ0(x1, x1), . . . , Σ0(x1, xk)
; . . . ;Σ0(xn, x1), . . . , Σ0(xn, xn)}. Let us suppose we wish to find a value of f(X)
at some new point X. Then we can compute the conditional distribution of f(X)
given the observations

f(X)|f(x1:n) ∼ N (µn(X), σ
2
n(X)) (3)

µn(X) = Σ0(X, x1:n)Σ0(x1:n, x1:n)
−1

(f(x1:n) − µ0(x1:n)) + µ0(X) (4)

σ
2
n(X) = Σ0(X,X) − Σ0(X, x1:n)Σ0(x1:n, x1:n)

−1
Σ0(x1:n, X) (5)

where µn(X) is the posterior mean and can be viewed as the prediction of the
function value. σ2

n(X) is the posterior variance, and a measure of uncertainty
of the prediction. The conditional distribution is called the posterior probabil-
ity distribution in Bayesian statistics. It is very important during the Bayesian
optimization and Gaussian process to carefully choose the next point to evalu-
ate. During the likelihood optimization, acquisition functions are used to guide
the search to a promising next point. Several acquisition functions have been
published in the literature and nice categorization can be found in [30].

4 Method

Bilevel problems have two levels of optimization task, such that the lower-level
problem is a constraint of the upper-level problem. In general bilevel problems,
the follower depends on the leader’s decisions xu. The leader has no control
over the follower’s decision xl. As declared in [34], for every leader’s decision,
there is an optimal follower decision, such that those members are considered
feasible and also satisfy the upper-level constraints. Because the follower problem
is a parametric optimization problem that depends on the leader decision xu, it
is very time-consuming to adopt a nested strategy approach that sequentially
solves both levels. In the continuous domain, the computational cost is very high.
During the optimization process, it is important to choose wisely the next leader
decision xu, to speed up the search. So the question is: How to choose the next
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leader decision x∗
u? Treating the leader problem as a black box, and fitting the

previous leader’s decisions and best follower reactions to the Gaussian process
model makes it possible to estimate the next point to evaluate wisely.

Recently an algorithm has been proposed based on Bayesian optimization
(BOBP) [16], using differential evolution to optimize the acquisition function.
It has been shown to perform better than an evolutionary algorithm based on
quadratic approximations (BLEAQ) [32]. In this work, we further improve the
algorithm by using the previous iterations, including followers as priors and
updating the acquisition function with conditioning on the follower’s decisions
to improve performance. Moreover, we investigated the contribution of follower
decisions for optimizing the overall bilevel problem. The follower can observe
the leader’s decisions, but if we treat leader fitness as a black box then has
been proposed then we also have available the best follower reactions to the
leader’s decisions during the optimization process. Using this data and extract-
ing knowledge from previous iterations of the optimization process is the main
idea of ConBaBo. The other question is: Can the leader learn from the follower’s
decisions and use this knowledge for its own decision-making process? Because
of the structure of bilevel problems, the leader has no idea about the follower’s
reaction at the beginning of the optimization process. But in the following iter-
ations, it can observe the optimum reaction of the follower without knowing the
follower’s objective.

Problem Statement. Following the idea above, let us assume that we have
an expensive black-box function that takes leader decisions in leader decision
space xu ∈ Xu and the optimal follower’s response x∗

l ∈ Xl as input. The upper-
level function returns a scalar fitness score, F (xu, x

∗
l ) : Xu × Xl → R. Given a

budget of N , the leader makes a decision and the follower responds to the leader
accordingly. The leader can observe this information during the optimization
process, learn how the follower reacts to the leader’s decisions in every iteration,
and choose the next leader’s decision to optimize the fitness score.

Algorithm Description First, we discuss fitting the decision data to the Gaus-
sian process model, then the motivation behind conditioning. After observing n
data points, that is leader decisions, follower responses, and leader’s fitness score,
{(xui

, x∗
li
, yi)}ni=1 where yi = F (xui

, x∗
li
) upper-level objective, we fit the Gaus-

sian process from Xu × Xl to y ∈ R. After we have the vector-valued dataset
x1:n = {(xu1

, x∗
l1
), ..., (xun

, x∗
ln
)} and y1:n = {y1, ..., yn}, then we construct the

Gaussian process by a prior mean µ0 and prior covariance function Σ0. Let
us suppose to find a value of F (x) at some vector-valued decision x. So, the
conditional distribution of F (x) for given observations is,

F (x)|F (x1:n) ∼ N (µn(x), σ
2
n(x)) (6)

µn(x) = Σ0(x,x1:n)Σ(x,x)
−1

(y1:n − µ0(x1:n)) + µ0(x) (7)

σ
2
n(x) = Σ0(x,x) − Σ0(x,x1:n)Σ0(x1:n,x1:n)

−1
Σ0(x1:n,x) (8)
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Algorithm 1 ConBaBo: Conditional Bayesian Optimization for Bilevel Opti-
mization
Input: Random starting upper-level decisions with size of n
xu1:n : {xu1 , . . . , xun}
1: Find the best lower-level responses

x∗
l1:n

: {x∗
l1
, . . . , x∗

ln
} regarding xu1:n

with SLSQP algorithm [20]
2: Evaluate upper-level fitness values : y1:n = {F(xu1 , x

∗
l1

), . . . , F(xun , x∗
ln

)}
3: Initialize Gaussian process (GP) model and fit the observed data :

GP(xu1:n
,x∗

l1:n
,y1:n)

4: Update the GP model
5: for i = 0 : Budget do
6: Evaluate the conditional LCB acquisition function value by using the Equation 9
7: Suggest the next candidate xun+i+1

by optimizing acquisition function
8: Evaluate the best lower-level response (x∗

ln+i+1
) regarding xun+i+1

using SLSQP
9: Calculate the upper-level fitness:

F (xun+i+1
, x∗

ln+i+1
)

10: Update the GP model with new observations
11: end for
12: return the best decision values (xu, x

∗
l ) with upper-level fitness value F (xu, x

∗
l )

Note that there is an interaction between decision-makers in bilevel problems
because of their hierarchical structure. Thus, it is important not to violate the
upper-level constraints during lower-level optimization. In this paper, we follow
the bilevel definition in [34] to avoid violating the upper-level constraints. As
declared in the paper, the optimal lower-level decision satisfies the upper-level
constraints. Every optimal follower’s decision is a reaction to the leader’s deci-
sion, which makes possible the use of conditional settings.

After fitting the data to the model, we choose the next leader decision xun+1 .
Then we find the optimal reaction x∗

ln+1
and the fitness score of the leader

function yn+1 = F (xun+1
, x∗

ln+1
). We update the Gaussian process model with

new data. Then we update the predicted optimal decisions for every iteration.
After updating the model with the new follower optimal point at each iteration,
we calculate the conditional acquisition values. For each follower optimal point
x∗
l there is a global optimization problem over xu ∈ Xu. The lower confidence

bound (LCB) acquisition function by [10] is used to choose the next point. We
choose the exploration weight w = 2 for the LCB acquisition function, as it is the
default setting. Acquisition function by conditioning on the follower’s decision is
defined as follows:

αLCB(xu|x∗
l ) = µ̂(xu|x∗

l ) − wσ̂(xu|x∗
l ) (9)

where w is a parameter that balances exploration and exploitation during op-
timization. µ̂ represents the conditional mean and σ̂ represents the standard
deviation. The conditional mean is calculated as follows:

µ̂(xu|x∗
l ) = µ(xu) + Σ(xu, x

∗
l )Σ(x

∗
l , x

∗
l )

−1
(x

∗
l − µ(x

∗
l )) (10)

where µ(·) is mean function and Σ(·) is covariance function. In Equation 10
we can see that correlation between the conditioned data set and the leader
decision data set affects the mean function which represents the prediction. This
change in posterior distribution is vital for the prediction of the Gaussian process.



8 Vedat Dogan

0 2 4 6 8 10

Upper-Level Decision Set

−3.0

−2.5

−2.0

−1.5

−1.0

Ac
qu
isi
tio
n 
Va
lu
e

Acquisition Graph for Each Opti al Lower-Level Decision

Iteration: 1
Iteration: 9
Iteration: 10

0 2 4 6 8 10

Upper-Level Decisions
0

2

4

6

8

10

Lo
we

r-L
ev

el
 D
ec

isi
on

s

Decision Graph for Each Iteration

0 2 4 6 8 10 12 14

Iteration

50

100

150

200

250

300

350

Fi
tn
es

s

Upper-Level Fitness Graph

0 2 4 6 8 10 12 14

Iteration

−70

−60

−50

−40

−30

−20

−10

0

Fi
tn
es
s

Lower-Level Fitness Graph

0 2 4 6 8 10

Upper-Level Decision Set

−6

−5

−4

−3

−2

Ac
qu

isi
tio

n 
Va

lu
e

Acquisition Graph for Each Optimal Lower-Level Decision

Iteration: 1
Iteration: 9
Iteration: 10

0 2 4 6 8 10

Upper-Level Decisions
0

2

4

6

8

10

Lo
we

r-L
ev
el
 D
ec
isi
on

s

Decision Graph for Each Iteration

0 2 4 6 8 10 12 14

Iteration

50

100

150

200

Fi
tn
es
s

Upper-Level Fitness Graph

0 2 4 6 8 10 12 14

Iteration

−60

−50

−40

−30

−20

−10

0

Fi
tn
es
s

Lower-Level Fitness Graph

Fig. 1. Three graphs at the top show the results for the ConBaBo algorithm, and
the three graphs at the bottom show the results without conditioning the lower-level
decisions. Left: Acquisition function graph with and without conditioning on lower-
level decisions LCBxu|xl=x∗

l
(xun+1) during upper-level optimization. The line’s colour

changes from light grey to dark grey in each iteration, and the red line is the shape of
the acquisition function at the end. Middle: Decision space for upper-level decisions and
best lower-level reaction at each iteration. Vertical lines show the upper-level decisions
and black dots show the decision pair (xu, x

∗
l ). The red line shows the last decision

pair after 10 iterations with 5 training points. Right: Fitness graphs show ConBaBo
converges even after 10 iterations while not conditioning the lower-level decisions still
searching for the optimal bilevel solution.

In this way, we used conditional setting on bilevel problems by improving the
optimization with the follower’s decisions.

We can see the observation for the first 10 iterations for the acquisition graph
and how conditioning affects the optimization process in Figure 1. In the figure,
there are three different graphs. The left graph shows the acquisition function
shape over 10 iterations. The light grey colour represents the previous acquisition
graph and the red one represents the 10th iteration. During the Gaussian process,
the acquisition function is the key point to select the next iteration and it is being
done by optimizing the acquisition function. This is the reason for the importance
of acquisition function during optimization. As we can observe from the 1, the
conditional acquisition function shape (top-left in Figure 1) is becoming convex
even after 8 iterations while the standard acquisition function shape (bottom-
left in Figure 1) is maintaining non-convexity. Having convexity in acquisition
optimization is vital in Bayesian optimization for improving the optimization
performance in terms of computational cost. It shows the importance of gaining
the lower-level optimal decision information for the upper-level decision makers.
The graphs in the middle show the upper- and lower-level decision space. The
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Without Conditioning With Conditioning
iteration 1 iteration 2 iteration 3 iteration 1 iteration 2 iteration 3

iteration 4 iteration 5 iteration 6 iteration 4 iteration 5 iteration 6

iteration 7 iteration 8 iteration 9 iteration 7 iteration 8 iteration 9

Fig. 2. First 9 iterations of the acquisition function graph with and without condition-
ing the follower’s decision.

vertical lines show the upper-level decisions and the stars show the lower-level
responses to the upper-level decision-makers. We shared these graphs because of
observing the behaviour of searching during the optimization process. We can see
clearly that conditioning the lower-level decisions affects the choice of decisions at
both levels and trying to converge at global optima even in 8 iterations while the
standard acquisition function tries to minimize the uncertainty at different points
in the search space. Practical problems in the bilevel structure are extremely hard
and need time and consume computational power in most cases. So, we believe
the improvement of ConBaBo algorithm and the technique proposed provides
a good technique for applying it to several practical problems.

We shared more acquisition graphs in a detailed way in Figure 2. It shows
the acquisition graph for each iteration for 9 iteration. As we can see from Figure
2, the standard acquisition function behaves more explorative and tries different
points at each step while trying to obtain a global optimal decision. As we can
see from the graphs, the conditional acquisition function reached the near global
optima even in 6 iterations. This fact makes us save lots of function evaluation
during the bilevel optimization process. The acquisition function shape with
conditioning becomes convex around global optima over the iterations quicker
compared with the non-conditional setting. The ConBaBo algorithm details
are shown in Algorithm 1.

5 Numerical Experiments and Results

We evaluate ConBaBo on two test benchmarks including linear, non-linear, con-
strained, and unconstrained minimization test problems containing multiple di-
mensional decision variables.

Test Problems. The first benchmark is standard test problems, called TP prob-
lems, and contains 10 bilevel problems. Each problem has different interaction
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between upper-level and lower-level decision-makers. The benchmark includes 1
three-dimensional, 6 four-dimensional, 1 five-dimensional, and 2 ten-dimensional
bilevel problems. Each problem has different complexity in terms of interaction
between decision-makers. The benchmark includes mostly constrained problems
and is created for testing the efficiency of proposed methods by the researchers.
Mostly the efficiency is determined by function evaluations and obtained fit-
nesses. More details is can be found in [32]. The second is called SMD problems
and it has 6 unconstrained problems. These are unconstrained problems with
controllable complexities. Each problem has a different difficulty level in terms
of convergence, the complexity of interaction, and lower-level multimodality.
They are also scalable in terms of dimensionality. We set the dimensions of all
problems as 4 for all experiments. The termination criteria is selected as the
same as TP problems. More details about this benchmark can be found in [31].

Parameters. All experiments were conducted on a single core of 1.4 GHz Quad
Core i5, 8Gb 2133 Mhz LPDDR3 RAM. The algorithm is executed 31 times for
each test function and the results shown are medians. The termination crite-
rion is selected as ϵ = 10−6 representing the difference between the obtained
result and the best result of compared algorithms. Bayesian optimization and
Gaussian processes are implemented in Python via the GPyOpt library [2] and
optimize_restarts selected as 10 with the parameters of verbose=False, and ex-
act_feval=True. The method initialized 5 Sobol points to construct the initial
GP model. The LCB acquisition function has been selected for Gaussian Pro-
cess and the Radial Basis Function (RBF) kernel is used. For optimizing the
acquisition function, the L-BFGS method [22] has been used. The exploration-
exploitation parameter for LCB, w is set to 2. After we set up the upper-level
optimization method by conditional acquisition function, we used Sequential
Least Squares Programming (SLSQP) [20] for solving the lower-level problem in
Python programming language. For evaluating the ConBaBo performance and
making the comparison with the other selected algorithms, we set the termina-
tion criteria considering the best-obtained result of the other algorithms. The
number of function evaluations is shared considering the Bayesian optimization
iteration and compared with the selected algorithms median of 31 runs. We run
the algorithm with different random seeds for making the comparison fair.

5.1 Results and the Discussion

We compared the experimental results with some state-of-art algorithms in the
literature. To show the effectiveness of ConBaBo we compare it with the results
in [32, 16]. Sinha et al. present an improved evolutionary algorithm in [33] based
on quadratic approximations of the lower-level problem, called BLEAQ. [16]
propose an algorithm called BOBP with a Bayesian approach. Table 1 shows
the median fitness values at both upper and lower-level for ConBaBo and other
algorithms. We also show the median function evaluations for upper-level and
lower-level optimization in Table 2. We did not share the standard deviation
over multiple runs because we could not compare it with the other algorithms
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as there is no information presented about the confidence interval. The primary
purpose of bilevel optimization is to solve the leader problem, so in comparing
the algorithms we focus on leader fitness and function evaluations at each level.

Table 1. Median Upper-level and lower-level fitness scores of ConBaBo, BOBP,
BLEAQ algorithms for TP1-TP10.

Median Upper-level (UL) and Lower-level (LL) Fitness Scores

ConBaBo BOBP BLEAQ

UL LL UL LL UL LL

TP1 226.0223 98.0075 253.6155 70.3817 224.9989 99.9994
TP2 0.0000 200.0000 0.0007 183.871 2.4352 93.5484
TP3 -18.0155 -1.0155 -18.5579 -0.9493 -18.6787 -1.0156
TP4 -30.9680 3.1472 -27.6225 3.3012 -29.2 3.2
TP5 -4.3105 -1.5547 -3.8516 -2.2314 -3.4861 -2.569
TP6 -1.2223 7.6751 -1.2097 7.6168 -1.2099 7.6173
TP7 -1.9001 1.9001 -1.6747 1.6747 -1.9538 1.9538
TP8 0.0000 200.0000 0.0008 180.6452 1.1463 132.5594
TP9 0.00003 1.0000 0.0012 1.0000 1.2642 1.0000

TP10 0.000285 1.0000 0.0049 1.000 0.0001 1.0000

Table 2. Median function upper-level and lower-level function evaluations for Con-
BaBo and other known algorithms for TP1-TP10

Median Upper-level (UL) and Lower-level (LL) Function Evaluations

ConBaBo BOBP BLEAQ

UL LL UL LL UL LL

TP1 18.1333 190.6646 211.1333 1,558.8667 588.6129 1543.6129
TP2 17.6772 148.2746 35.2581 383.0645 366.8387 1,396.1935
TP3 10.1836 111.1374 89.6774 1,128.7097 290.6452 973.0000
TP4 14.6129 1,063.901 16.9677 334.6774 560.6452 2,937.3871
TP5 23.5164 222.2308 57.2258 319.7742 403.6452 1,605.9355
TP6 8.3333 323.1333 12.1935 182.3871 555.3226 1,689.5484
TP7 13.7092 274.9229 72.9615 320.2308 494.6129 26,682.4194
TP8 14.6066 114.9942 37.7097 413.7742 372.3226 1,418.1935
TP9 8.9215 1,020.8618 16.6875 396.3125 1,512.5161 141,303.7097

TP10 15.1935 3,689.6452 21.3226 974.0000 1,847.1000 245,157.9000

As can be seen in Table 1, ConBaBo achieved better upper-level results for
7 problems TP2, TP4, TP5, TP6, TP7, TP8, and TP9 in terms of fitness scores
obtained. Moreover, the number of function calls by the leader decreases signif-
icantly as we encounter near-optimal solutions at both levels as we can see in
Table 2. The test benchmark has constraint problems with various dimensional
decision variables. The ConBaBo results are promising when we consider the
complexity of the problems in the benchmark. We can see that ConBaBo per-
forms well on this standard test set.
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Table 3. ConBaBo, CGA-BS [1], BLMA [14], NBLE [14], BIDE [14] and BLEAQ [33]
upper-level fitness for SMD1-SMD6.

Median Upper-level Fitness Scores

ConBaBo CGA-BS BLMA NBLE BIDE BLEAQ

SMD1 1.8×10−6 0 1.0×10−6 5.03×10−6 3.41×10−6 1.0×10−6

SMD2 9.09×10−6 2.22×10−6 1.0×10−6 3.17×10−6 1.29×10−6 5.44×10−6

SMD3 1.6×10−6 0 1.0×10−6 1.37×10−6 4.1×10−6 7.55×10−6

SMD4 6.2×10−6 3.41×10−11 1.0×10−6 9.29×10−6 2.3×10−6 1.0×10−6

SMD5 1.49×10−6 1.13×10−9 1.0×10−6 1.0×10−6 1.58×10−6 1.0×10−6

SMD6 2.36×10−6 9.34×10−11 1.0×10−6 1.0×10−6 3.47×10−6 1.0×10−6

Table 4. Median function upper-level function evaluations for ConBaBo and other
known algorithms for SMD1-SMD6

Median Upper-level Function Evaluations

ConBaBo CGA-BS BLMA NBLE BIDE BLEAQ

SMD1 1.1×101 1.01×104 1.19×103 1.52×103 6.0×103 1.19×103

SMD2 1.4×101 5.0×104 1.20×103 1.56×103 6.0×103 1.20×103

SMD3 2.3×101 1.0×104 1.29×103 1.56×103 6.0×103 1.29×103

SMD4 1.01×101 1.25×105 1.31×103 1.53×103 6.0×103 1.31×103

SMD5 2.37×101 1.0×105 2.06×103 3.40×103 6.0×103 2.06×103

SMD6 2.41×101 1.37×105 4.08×103 4.06×103 6.0×103 4.08×103

Table 5. Median function lower-level function evaluations for ConBaBo and other
known algorithms for SMD1-SMD6

Median Lower-level Function Evaluations

ConBaBo CGA-BS BLMA NBLE BIDE BLEAQ

SMD1 3.8×102 1.5×104 2.37×105 9.520×105 1.8×107 2.37×105

SMD2 3.81×102 1.5×105 4.08×105 9.63×105 1.8×107 4.08×105

SMD3 7.7×102 2.0×104 3.02×105 1.04×106 1.8×107 3.02×105

SMD4 2.58×102 2.58×105 3.07×105 8.33×105 1.8×107 3.07×105

SMD5 9.05×102 2.58×105 8.42×105 2.22×106 1.8×107 8.42×105

SMD6 7.69×102 3.39×105 1.98×104 1.11×105 1.8×107 1.98×104

SMD problems are scalable in terms of the number of decision variables.
We compared our results with CGA-BS, BLMA [14], NBLE [14], BIDE [14], and
BLEAQ algorithms. We could not compare it with the BOBP algorithm because
lack if information in the reference paper. Table 3 shows the upper-level fitness
comparison with the other algorithms. We shared the upper-level and lower-level
median function evaluations at Table 4 and Table 5 to show the effectiveness of
the ConBabo algorithm. Also for SMD problems, we did not share the standard
deviation over multiple runs because of the same reason with TP problems. We
can observe that from Tables 4 and 5 that the upper- and lower-level function
evaluations decrease significantly. These results show that ConBaBo can manage
the difficulties resulting from the proposed SMD benchmark by [31]. Moreover,
it converges faster to optimal solutions compared to other algorithms in the
literature. The problems in the benchmark are scalable and have different dif-
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ficulties in terms of the interaction between decision-makers. Considering this,
ConBaBo performs well on this unconstrained bilevel benchmark problem.

6 Conclusion

Bilevel optimization problems are a specific kind of problem that feature two de-
cision makers, with a mathematical representation called “Stackelberg Games”
in Game Theory. There are two optimization problems in these problems called
the “upper-level” and “lower-level”. Decisions in each level are affected by those
made in the other, so the bilevel optimization scheme is time-consuming in terms
of performance. We propose ConBaBo, a conditional Bayesian optimization al-
gorithm for bilevel optimization problems. The conditional Bayesian approach
allows us to extract knowledge from previous upper- and lower-level decisions,
leading to smarter choices and therefore fewer function evaluations. ConBaBo
increases algorithm performance quality and dramatically accelerates the search
for an optimal solution. We evaluate our method on two common benchmark
sets from the bilevel literature, comparing results with those for top-performing
algorithms in the literature. The ConBaBo algorithm can be considered a pow-
erful global technique for solving bilevel problems, which can handle the diffi-
culties of non-linearity and conflict between decision-makers. Moreover, it can
deal with constrained and unconstrained problems with multi-dimensional deci-
sion variables. In future work, the practical applications of bilevel problems and
multi-objective bilevel problem adaptations will be researched.
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