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Abstract: The objectives of this study were to investigate the nutrient composition, protein pro�le,
morphology, and pasting properties of protein-rich pseudocereal ingredients (quinoa, amaranth,
and buckwheat) and compare them to the more common rice and maize �ours. Literature concerning
protein-rich pseudocereal ingredients is very limited, mainly to protein pro�ling. The concentrations
of macronutrients (i.e., ash, fat, and protein, as well as soluble, insoluble and total dietary �bre)
were signi�cantly higher for the protein-rich variants of pseudocereal-based �ours than their
regular protein content variants and the rice and maize �ours. On pro�ling the protein component
using sodium dodecyl sulfate�polyacrylamide gel electrophoresis (SDS-PAGE), all samples showed
common bands at ~50 kDa and low molecular weight bands corresponding to the globulin fraction
(~50 kDa) and albumin fraction (~10 kDa), respectively; except rice, in which the main protein was
glutelin. The morphology of the starch granules was studied using scanning electron microscopy with
quinoa and amaranth showing the smallest sized granules, while buckwheat, rice, and maize had
the largest starch granules. The pasting properties of the ingredients were generally similar, except
for buckwheat and amaranth, which showed the highest and lowest �nal viscosity, respectively.
The results obtained in this study can be used to better understand the functionality and food
applications of protein-rich pseudocereal ingredients.

Keywords: pseudocereal; cereal; protein-rich ingredients; macronutrient; protein profile; morphology;
rheological properties

1. Introduction

The global protein demand for the 7.3 billion inhabitants of the world is approximately 202 million
tonnes annually [1]. The expected continuous growth of the global population to 9.6 billion people
by 2050 is creating an ever-greater need to identify and develop sustainable solutions for provision
of high-quality food protein [2,3]. Plant-based protein ingredients are becoming more popular due
to their contribution to environmental sustainability and to food security challenges, in addition to
their cost-effectiveness, compared with animal-based proteins [4]. However, replacing animal-based
protein ingredients with plant-origin material is not easy due mainly to important differences in
composition and taste/�avour [5]. Moreover, applications of plant proteins are poorly studied
and commercially limited due mainly to their techno-functional properties (e.g., poor solubility),
anti-nutritional components, off-�avour, and colour [6,7].

Quinoa, amaranth, and buckwheat are non-conventional sources of protein that have been
the subject of limited studies in recent years, although their cultivation goes back thousands of
years [8,9]. They are gluten-free dicotyledonous grains, referred to as pseudocereals, with somewhat
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similar composition and nutritional value to cereals, such as rice and maize [10,11]. Quinoa and
amaranth are cultivated in South America, and buckwheat, originally from Central Asia, is now also
cultivated in Central and Eastern Europe [12]. Their main compositional component is starch [13] which
forms semi-crystalline structures referred to as �starch granules�, and depending on the botanical
source, these granules vary in size, shape, and amylose:amylopectin ratio [14], which consequently
in�uences the techno-functional properties of the �our ingredients [15,16]. Protein, �bre, fat, minerals,
and vitamins are the remaining macro- and micro-nutrients that constitute pseudocereals [9,17].
The protein content of amaranth, buckwheat, and quinoa, has been reported to be 12.0%�18.9% and
the concentrations of essential amino acids, particularly, cysteine and methionine, are known to be
higher than in some common cereals such as rice and maize [12].

Regarding classi�cation of pseudocereal proteins, the literature in this area is often inconsistent
and contradictory [17]. Several authors [18,19] have reported globulins and albumins to be the main
proteins in quinoa, amaranth, and buckwheat, in contrast to other cereals, such as rice, where the main
proteins are glutelin and prolamins [20]. Amaranth, quinoa, and buckwheat are also good sources
of dietary �bre, which has proven effects in promoting desirable physiological outcomes, such as
lowering blood cholesterol and increased satiety, due to its resistance to digestion and absorption in the
small intestine, followed by complete or partial fermentation in the large intestine [21�23]. In addition,
pseudocereals are rich in micro-nutrients such as calcium, magnesium, and iron and good sources of
vitamin E and ribo�avin [24].

These macro- and micro-nutrients are located in different parts of the grain (Figure 1). In amaranth
and quinoa seeds, the embryo or germ, which is circular in shape, surrounds the starch-rich perisperm,
and together with the seed coat, represent the bran fraction, which is relatively rich in fat and
protein [25]. In contrast, in buckwheat seeds, starch reserves are stored in the endosperm, as in
common cereals, and the embryo, rich in fat and protein, extends through the starchy endosperm [26].
Protein-enriched fractions can be prepared from such pseudocereal grains using two principal
approaches�dry or wet fractionation techniques [27]. Dry fractionation employs mechanical forces
(milling and air/size classi�cation) and is a more sustainable means of obtaining protein-rich
fractions, while wet fractionation techniques use large quantities of water, chemicals (e.g., for pH
adjustment), and a �nal drying step that consumes energy [4,28]. Therefore, protein-rich fractions
from pseudocereals can offer unique nutritional and technological properties that have not yet been
fully investigated or tested in food applications [29�31].
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The aim of this work was to determine systematically the nutritional composition, protein
pro�le, and physical properties of several novel protein-enriched ingredients from quinoa, amaranth,
and buckwheat and compare them to regular protein content pseudocereal and cereal �ours.
These protein-rich fractions have great potential as ingredients, not only for their nutritional value
(e.g., rich in protein and �bre) but also for their technological functionality (e.g., starch pasting
properties). Scienti�c information on pseudocereal protein-rich fractions is scarce in the literature,
thus, the results of this original and novel study can help with our understanding of the potential
applications of these plant-based protein-rich ingredients in food formulations.

2. Materials and Methods

2.1. Cereal and Pseudocereal Flour Ingredients

Ten different regular and protein-rich cereal and pseudocereal �ours/ingredients were analysed
in this study. Seven of the �ours were of pseudocereal origin: quinoa wholegrain �our (QWGF),
quinoa dehulled �our (QDF), quinoa protein-rich �our (QPRF), amaranth wholegrain �our (AWGF),
amaranth protein-rich �our (APRF), buckwheat dehulled �our (BDF), and buckwheat protein-rich
�our (BPRF). Protein enrichment in the protein-rich �ours was achieved using a dry milling approach.
In brief, the grains were milled using either an impact or a jet mill, with different screen inserts
used to produce �our and seed fragments; only buckwheat was milled using a jet mill. All grains,
except amaranth, were sourced from commercial suppliers and had been de-hulled prior to milling.
After milling, the protein-rich fractions were separated from the milled �ours using size-based dry
sieve classi�cation. Rice �our (RF), rice protein concentrate (RPC), and maize �our (MF) were included
in the study as comparator �our ingredients and were of cereal origin. All of the pseudocereal �ours
were provided by the Fraunhofer Institut (Munich, Germany) except the QWGF, which was purchased
from Ziegler & Co. (Wunsiedel, Germany). The RF and RPC ingredients were purchased from Beneo
(Tienen, Belgium) and the MF was purchased from the Quay Co-op (Cork, Ireland).

2.2. Chemical Composition

Moisture, ash, fat, and protein contents of samples were determined according to the standard
methods of the Association of Analytical Chemists [32]. Moisture was determined by oven drying
at 103 �C for 5 h (AOAC 925.10). The ash content was analysed by dry ashing in a muf�e furnace at
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500 �C for 5 h (AOAC 923.03). Fat determination was carried out following AOAC 922.06, using a
Soxtec 2055 (Foss, Ballymount, Co., Dublin, Ireland). Total nitrogen content was determined by the
Kjeldahl method (AOAC 930.29) using the following nitrogen-to-protein conversion factors: 6.25 for
quinoa, buckwheat, and maize [12,33], 5.85 for amaranth [24], and 5.95 for rice ingredients [12].
Total carbohydrate was calculated by difference (i.e., 100�sum of protein, fat, ash, and moisture).
Total starch (AOAC Methods 996.11 and AACC Method 76-13.01), damaged starch as a % of total
starch (AACC method 76-31.01 and ICC method No. 164), and soluble (SDF), insoluble (IDF), and total
dietary �bre (TDF) (AOAC Method 991.43 and AACC Method 32-07.01) contents were determined
using enzyme kits (Megazyme, Bray, Co., Wicklow, Ireland). �-glucan, casein, and high-amylose maize
starch were used as controls in dietary �bre analysis (K-TDFC; Megazyme, Wicklow, Ireland).

2.3. Electrophoretic Protein Pro�le Analysis

The protein pro�le was assessed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis
(SDS-PAGE) using precast gels (Mini-PROTEAN TGX, Bio-Rad Laboratories, Hercules, CA, USA)
under non-reducing (method I and II) and reducing conditions (method III). The sample loading
buffer contained 65.8 mM Tris-HCl (pH 6.8), 26.3% glycerol, 2.1% sodium dodecyl sulfate (SDS)
and 0.01% bromophenol blue. The running buffer (10� Tris/Glycine/SDS, Bio-Rad Laboratories,
Hercules, CA, USA) had a composition of 25 mM Tris, 192 mM glycine, and 0.1% SDS (w/v),
pH 8.3. The staining solution used was Coomassie Brilliant Blue R-250 (Bio-Rad Laboratories,
Hercules, CA, USA). The target �nal protein concentration was, in all cases, 1 mg/mL, and 10 �L of
sample solution loaded into each well of the gel. For the preparation of the samples, three different
methods were used. For method I, the approach of Abugoch et al. [34] was followed, with slight
modi�cations. Brie�y, the powder samples were mixed directly with the sample loading buffer at a
concentration of 1 mg/mL, vortexed for 1 min until the powder was fully suspended and mixed over
2 h at 20 �C and at 250 rpm. For methods II and III, the approach of Amagliani et al. [20] was followed,
with the modi�cation that the powders were mixed with the protein extracting buffer overnight,
and 1,4-dithiothreitol (DTT; 1%) was used in method III as a reducing agent.

2.4. Microstructural Analysis

The powders were mounted on aluminium stubs using double-sided adhesive carbon tape,
and sputter coated with a 5 nm layer of gold/palladium (Au:Pd = 80:20) using a Quorum Q150R
ES Sputter Coating Unit (Quorum Technologies Ltd., Sussex, UK). Subsequently, the samples were
loaded into a sample tube and examined using a JSM-5510 scanning electron microscope (JEOL Ltd.,
Tokyo, Japan), operated at an accelerating voltage of 5 kV.

2.5. Pasting Behaviour

Pasting properties were studied using an AR-G2 controlled-stress rheometer equipped with a
starch pasting cell (AR-G2; TA Instruments Ltd., Waters LLC, Leatherhead, UK). The internal diameter
of the cell was 36.0 mm, the diameter of the rotor was 32.4 mm, and the gap between the two elements
at the geometry base was 0.55 mm. A heating and cooling cycle described by Li et al. [35] was applied
to 16% (w/w) suspensions of �ours ingredients at a �xed shear rate of 17 rad/s.

2.6. Statistical Analysis

All the analyses were conducted in triplicate. The data generated was subjected to one-way
analysis of variance (ANOVA) using R i386 version 3.3.1 (R foundation for statistical computing,
Vienna, Austria). A Tukey’s paired comparison test was used to determine statistically signi�cant
differences (p < 0.05) between mean values for different samples, at a 95% con�dence level.



Foods 2018, 7, 73 5 of 17

3. Results and Discussion

3.1. Chemical Composition

The dry matter that remains after moisture removal is commonly referred to as total solids [36].
Protein-rich samples had higher total solids (p < 0.05) content than their regular �our counterparts.
The higher total solids content of these protein-rich ingredients can be an advantage from a
microbiological and chemical stability perspective [37]. Ash refers to substances resulting from
the incineration of dry matter in a powder sample and is directly related to the mineral content of the
sample [38]. The protein-rich ingredients, QPRF, APRF, BPRF, and RPC showed higher ash contents
(3.6%, 6.9%, 3.0%, and 3.4%, respectively) than the regular �ours QWGF, QDF, AWGF, BDF, RF, and MF
(2.3%, 1.8%, 2.4%, 1.5%, 0.8%, and 0.7%, respectively). Protein-rich �ours are usually produced using
dry fractionation approaches [28], classifying the parts of the grain that are rich in protein (e.g., embryo
fraction) which results in a concomitant increase in other components such as minerals [5,25,39].
These pseudocereal protein-rich fractions with higher ash content would be expected to be enriched
in selected minerals such as phosphorus, magnesium, and potassium that are located in embryonic
tissues [33,40].

The fat content of the protein-rich ingredients QPRF, APRF, and BPRF (12.8%, 16.6%, and 4.8%,
respectively) was signi�cantly higher (p < 0.05) than the regular �ours (Table 1). The higher fat content
of the protein-rich ingredients was expected taking into consideration that the dry fractionation process
classi�es fractions rich in fat along with protein. Arendt and Zannini [40], reported that in quinoa,
49% of the total fat content is located in the embryo. Gamel et al. [41], reported 45% higher fat content
in amaranth protein-rich �ours, in comparison with a regular �our, and related it with the association
of fat with cell wall materials and protein bodies during the protein enrichment process. BPRF showed
the lowest value for fat (4.7%) among the protein-rich ingredients. In this study, the low fat content of
BDF is most likely due to its relatively low level of protein enrichment (20%) which suggests lower
enrichment in the embryo fraction where most of the fat is located. Also, Alvarez-Jubete et al. [26]
stated that the fat content in quinoa and amaranth is two to three times higher than in buckwheat and
common cereals. The fact that these pseudocereals have high levels of fat reduce the need for adding
fat when these protein-rich �ours are used as ingredients (e.g., baked products) where fat plays an
important role in texture and �avour [41].

The protein-rich �our ingredients, QPRF, APRF, and BPRF, had values for protein of 33.3%, 38.6%,
and 20.5%, respectively. The protein contents for pseudocereal �ours ranged from 13.1% to 15.7% which
are higher than the protein values for RF (8.2%) and MF (6.4%). These values are in accordance with
the study of Mota et al. [12], who reported a protein content for pseudocereals signi�cantly higher than
in common cereals such as rice and maize. Moreover, a recent review by Navruz et al. [42] reported
the nutritional and health bene�ts of quinoa, such as protein digestibility values similar to casein and
higher lysine levels than other grains.

The values for starch in protein-rich samples were lower (21.4�47.3%) than those for the regular
flours (50.5�61.6%). The lower values for starch in the protein-rich ingredients were expected as
protein-rich ingredients are more enriched in the embryo fraction (rich in proteins), while the perisperm
(quinoa and amaranth) or endosperm (buckwheat) where the starch granules are located, are less
abundant. The level of starch damage is related to the process and the conditions (e.g., pressure or shear)
used to obtain the protein-rich flour ingredients [43]. Such damage changes the granular structure of
starch and influences the rheological and functional properties of the starch granules by modulating
their water sorption and swelling capacity [43]. QWGF, QDF, QPRF, AWGF, RF, and MF showed similar
levels of damaged starch (~7�12% of total starch); while APRF, BDF, and BPRF had the lowest levels
of starch damage (~2%) (Table 1). The differences in damaged starch between the samples are usually
related to the severity of the extraction process employed [20]. RPC showed the highest damaged starch
content (88.3%), which might have arisen from the use of chemicals and aggressive environmental
conditions (temperature and pH) in obtaining high protein levels in the final product [4].
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Table 1. Macronutrient composition of quinoa wholegrain �our (QWGF), quinoa dehulled �our (QDF), quinoa protein-rich �our (QPRF), amaranth wholegrain �our
(AWGF), amaranth protein-rich �our (APRF), buckwheat dehulled �our (BDF), buckwheat protein-rich �our (BPRF), rice �our (RF), rice protein concentrate (RPC),
and maize �our (MF). Total dietary �bre (TDF). Values are means � standard deviations of data from triplicate analysis.

Moisture Ash Protein (% w/w) Fat Carbohydrate Starch Damaged Starch
(% Total Starch) TDF (% w/w)

Quinoa
QWGF 9.01 � 0.10 d 2.30 � 0.00 c 13.1 � 0.10 b 6.54 � 0.07 d 69.0 � 0.27 d 60.0 � 2.58 d 10.6 � 0.47 d 11.4 � 1.10 b

QDF 8.86 � 0.25 d 1.80 � 0.10 b 15.7 � 0.30 b 5.36 � 0.61 d 68.3 � 1.26 d 50.5 � 1.40 bc 11.7 � 0.32 e 9.75 � 1.17 b

QPRF 5.25 � 0.25 a 3.60 � 0.19 e 33.3 � 1.10 d 12.8 � 0.73 e 45.0 � 2.27 b 21.4 � 0.81 a 10.4 � 0.40 d 18.8 � 0.23 c

Amaranth
AWGF 8.94 � 0.05 d 2.40 � 0.02 c 14.6 � 0.30 b 6.04 � 0.10 d 68.1 � 0.47 d 52.8 � 1.45 c 12.2 � 0.35 e 11.3 � 0.86 b

APRF 7.76 � 0.12 b 6.86 � 0.18 f 38.6 � 1.74 e 16.6 � 0.08 f 30.2 � 2.12 a 20.3 � 0.31 a 2.61 � 0.01 b 24.0 � 2.56 d

Buckwheat
BDF 8.75 � 0.11 d 1.51 � 0.31 b 14.2 � 0.06 b 2.77 � 0.05 bc 72.8 � 0.53 e 61.6 � 0.12 d 1.52 � 0.06 a 10.3 � 1.72 b

BPRF 6.86 � 0.17 c 3.05 � 0.10 d 20.5 � 0.90 c 4.76 � 0.15 cd 64.8 � 1.32 c 47.3 � 1.20 b 2.22 � 0.07 ab 19.0 � 0.48 c

Rice
RF 8.89 � 0.19 d 0.85 � 0.05 a 8.22 � 0.14 a 0.71 � 0.08 a 81.3 � 0.46 f 78.5 � 0.82 e 10.7 � 0.14 f 1.12 � 0.20 a

RPC 6.24 � 0.08 a 3.42 � 0.24 d 75.0 � 0.38 f 0.79 � 0.00 a 14.6 � 0.7 g 6.50 � 0.71 f 88.3 � 0.11 g 5.83 � 0.41 e

Maize
MF 12.2 � 0.31 e 0.74 � 0.04 a 6.42 � 0.21 a 1.66 � 0.02 ab 79.0 � 0.58 f 76.0 � 2.26 e 7.21 � 0.25 c 2.00 � 0.40 a

Values followed by different superscript letters (a�f) in the same column are signi�cantly different (p < 0.05).
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Dietary �bre denotes carbohydrate polymers which are not hydrolysed by the endogenous
enzymes in the small intestine of humans [21,22]. Total dietary �bre (TDF) is divided into two
categories, based on differences in solubility in water: soluble (SDF) and insoluble (IDF) dietary �bre.
Protein-rich cereal ingredients showed signi�cantly higher levels (19�24%) (p < 0.05) of TDF than the
regular protein containing ingredients (1.1�11.5%) (Table 1 and Figure 2). Among the pseudocereal
�ours there were no signi�cant differences (p < 0.05) in TDF, but they showed higher contents of
TDF (p < 0.05) in comparison with RF and MF. These results were expected on comparison with
literature data: Nascimento et al. [33], reported that pseudocereals can have seven times more �bre
than common grains such as rice. The TDF values were similar to those found in other studies
for quinoa [33,44,45] where values for TDF of 10.4%, 11.7%, and 12.7%, respectively, were reported,
whereas Alvarez-Jubete et al. [26] reported slightly higher values for TDF (14.2%). The value for
AWGF is in line with Nascimento et al. [33] who reported a TDF content of 11.3% for amaranth.
Other authors, such as Repo-Carrasco et al. [46], reported slightly higher values (ranging from 14% to
16%) for amaranth (Amaranthus caudatus) �ours. Regarding the soluble and insoluble dietary �bre
fractions, the IDF fraction was higher than the SDF fraction in all the ingredients except for RF. This is
in accordance with values reported in the literature for quinoa [47,48] and amaranth [19]. However,
the IDF content of AWGF was slightly lower than that reported previously by Repo-Carrasco et al. [46]
for the varieties Oscar Blanco (12.15%) and Centenario (13.92%). RPC had the lowest values for
TDF, SDF, and IDF, which might be explained by the higher protein enrichment levels for this
sample, which was in turn, associated with lower levels of other components such as starch, fat,
and dietary �bre.
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) dietary �bre content (% w/w) of quinoa wholegrain �our
(QWGF), quinoa dehulled �our (QDF), quinoa protein-rich �our (QPRF), amaranth wholegrain �our
(AWGF), amaranth protein-rich �our (APRF), buckwheat dehulled �our (BDF), buckwheat protein-rich
�our (BPRF), rice �our (RF), rice protein concentrate (RPC), and maize �our (MF).

3.2. Protein Pro�le by SDS-PAGE Electrophoresis

SDS-PAGE analyses under non-reducing conditions (Figure 3a,b) and reducing conditions
(Figure 3c) were performed using methods I, II, and III, respectively, as outlined in Section 2.3.
All samples, except maize, showed common protein bands at ~50 kDa under non-reducing conditions
(Figure 3a,b). This band corresponds to the globulin and glutelin fraction in pseudocereals and rice,
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respectively. For quinoa samples (QWGF, QDF, and QPRF), bands at ~50 kDa (Figure 3a,b) correspond
to the 11S globulin fraction, also commonly referred to as chenopodin. Chenopodin consists of ~49 and
57 kDa subunits that are associated into a hexamer by non-covalent interactions [18,49]. When quinoa
proteins are treated directly with the sample loading buffer (Figure 3a), two bands with molecular
weight (MW) lower and higher than ~50 kDa can be observed. The higher intensity of the lower
MW band (Figure 3a,b), suggests that this subunit is predominant in chenopodin protein. When the
sample was treated with the protein extracting buffer containing SDS, urea, and thiourea (i.e., under
non-reducing conditions; method II and Figure 3b), the chenopodin (~50 kDa) did not dissociate into
bands of lower MW suggesting that disulphide bonds are the principal linkage between the subunits.
In a similar manner to quinoa, the amaranth samples (AWGF and APRF), showed a band at ~50 kDa
(Figure 3a,b), which corresponds to the hexameric 11S globulin or amarantin [17]. This major band
might also be attributed to another glutelin-type protein which has similar molecular characteristics to
those of amaranth 11S globulin [50]. Buckwheat samples, showed a main band at ~50 kDa, which may
correspond to the major storage protein of buckwheat, the 13S legume-like globulin, and the minor
storage protein, the trimer 8S vicilin-like globulin [51]. Rice samples also showed a major band at
~50 kDa (Figure 3a,b) which corresponds to the glutelin precursor [20].
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Figure 3. Representative sodium dodecyl sulphate�polyacrylamide gel electrophoresis (SDS-PAGE)
patterns of quinoa wholegrain �our (1), quinoa dehulled �our (2), quinoa protein-rich �our (3),
buckwheat dehulled �our (4), buckwheat protein-rich �our (5), amaranth wholegrain �our (6),
amaranth protein-rich �our (7), rice �our (8), rice protein concentrate (9), and maize �our (10). The �rst
lane of each gel contains the molecular weight marker. Samples were prepared according to methods I,
II, and III for gel (a�c), respectively, as explained in Section 2.3.

When the samples were treated with a reducing protein extracting buffer (Figure 3c), the 50 kDa
band was disrupted into several bands of lower MW and two of those bands were predominantly
around 25�30 kDa and 15�20 kDa, corresponding to the subunits (�- or acidic and �- or basic) that form
the globulins for pseudocereals or the glutelins for rice. For quinoa samples treated with the extracting
buffer containing DTT as the reducing agent (Figure 3c), it was observed that the disulphide bonds
that link the acidic or �- (MW ~28 and 34 kDa) and basic or �- (MW ~17 and 19 kDa) subunits were
disrupted, leading to the dissociation of chenopodin into lower MW constituent proteins [28]. The same
was observed for amaranth, whereby the acidic or �- (34�36 kDa) and basic or �- (22�24 kDa) subunits
of amarantin linked by disulphide bonds are resolved under reducing conditions [17]. Buckwheat 13S
legume-like globulin also consists of a small basic subunit (16�29 kDa) linked by a disulphide bond to
a large acidic (30�38 kDa) subunit (Figure 3c) [52]. In the case of rice proteins, when the samples are
treated with the reducing agent (Figure 3c), the glutelin precursor is disrupted into two main bands
with MW ~30 and 20 kDa corresponding to the acidic (�-glutelin) and basic (�-glutelin) subunits that
are linked by disulphide bonds. For maize proteins, when the sample was treated with the reducing
extracting buffer (Figure 3c), two main protein bands were resolved around 20 kDa that may be related
to the main maize protein, zein, a prolamin-like protein that accounts for 60% of the total protein [53].

Bands corresponding to low MW proteins (~10�15 kDa) could be observed in the three gels
(Figure 3a�c) for all quinoa, amaranth, and buckwheat samples, which might be related to the albumin
fraction, which is abundant in pseudocereals [54�56]. For rice samples the band evident at 13 kDa was
reported previously as the prolamin fraction [20]. Besides globulin and albumin proteins, amaranth
showed high MW proteins (~250 kDa; Figure 3a,b) which were resolved into bands of lower MW
under reducing conditions (Figure 3c). Abugoch et al. [34], reported that amaranth glutelin contained
an appreciable proportion of aggregated polypeptides of MW greater than 60 kDa. It is possible that
the band evident on the gels at ~37 kDa for AWGF sample, and which is not disrupted under reducing
conditions, might be the albumin-1 fraction, reported previously to have a MW of 34 kDa [17,55].

3.3. Starch Granules: Shape and Size

Different sizes, shapes, and structures were observed for �our and ingredient powder morphology
and ultra-structure using scanning electron microscopy (SEM) analysis (Figure 4). Quinoa samples
presented the smallest sized granules (1�1.20 �m) among all samples and had a polygonal shape.
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The protein-rich �our (QPRF) showed granules covered and linked to other types of substances.
This embryo-rich fraction is rich in protein, �bre, and fat which suggests that the starch granules
are embedded in a matrix formed by these compounds. Li and Zhu [57] observed that some starch
aggregates appeared to be coated with a �lm-like substance surrounded by a protein matrix. Amaranth
samples, AWGF and APRF, showed circular granules with a size of ~2.5�3 �m. Amaranth seed is one of
the few sources of small-granule starch, typically 1 to 3 �m in diameter, with a regular granule size [19].
The starch granules in APRF also appeared to be embedded within a matrix as observed for QPRF.
Buckwheat starch granules showed the largest size (5 to 7.5 �m) among the pseudocereal samples
with a mixture of spherical and polygonal structures. Christa et al. [58], also observed spherical, oval,
and polygonal granules with a size distribution from 2 to 6 �m for buckwheat starch. Analysis of the
granule structure and matrix positioning showed other components attached which may be protein
and fat [59]. The BPRF samples, similar to that observed for QPRF and APRF, also had starch granules
embedded in a matrix of other components. Analysis of RF ultrastructure showed starch granules
with diameter between 4 and 5 �m, with an angular shape, while maize �our exhibited the largest
starch granules (15 �m) with both circular and rod-shapes. These results are in agreement with
Nienke et al. [60], who categorized starch granules into different sizes and de�ned the starch granules
for amaranth and quinoa as very small, rice and buckwheat as small, and maize as generally having
relatively large granules. The small size of the starch granules of some pseudocereals, such as quinoa,
can offer advantages (e.g., altered emulsion stabilisation properties) in respect of incorporation into
product formulations [57,61].
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Figure 4. Scanning electron micrographs of quinoa wholegrain �our (QWGF), quinoa dehulled �our
(QDF), quinoa protein-rich �our (QPRF), buckwheat dehulled �our (BDF), buckwheat protein-rich
�our (BPRF), amaranth wholegrain �our (AWGF), amaranth protein-rich �our (APRF), rice �our (RF),
rice protein concentrate (RPC), and maize �our (MF). Magni�cation row (a) �3500; (b) �8500. Scale bars
row (a) 5 �m; (b) 2 �m.
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3.4. Pasting Properties

The mean values for the initial, peak and �nal viscosity at the end of the holding stage at 95 �C,
on completion of cooling to 50 �C, and at the end of the �nal holding period at 50 �C were recorded
during pasting and are presented in Table 2. The shape of the pasting curves differed depending on
the type of �our/ingredient (Figure 5a,b). Among the regular protein content �our samples, BDF and
RF had the highest viscosity and AWGF the lowest. QWGF and QDF showed slight differences, with
QDF having the lowest viscosity; this may be explained by the lower content of starch (50.5%) in QDF
than in QWGF (60%). The peak time was very similar for all the �ours (~12 min) tested, except MF and
BDF which required a shorter time (~10.5 min) to reach peak viscosity, most likely due to the lower
extent of absorption and swelling of their starch granules [62]. During the holding period at 95 �C,
the material slurries were subjected to high temperature and mechanical shear stress, which further
disrupted the starch granules, resulting in the leaching out from starch granules, and alignment,
of amylose. It was observed that all the samples displayed a decrease in viscosity, especially so for
BDF, RF, and MF, which had the more pronounced decreases in viscosity during the holding period
at 95 �C (Figure 5a). The decrease in viscosity during the holding period is often correlated with
high peak viscosity: it can be seen how BDF, RF and MF had the highest peak viscosities (Figure 5a).
During cooling, re-association between starch molecules, especially amylose chains, will result in the
formation of a gel structure and, therefore, viscosity will increase due to retrogradation and reordering
of starch molecules. BDF (13.0 Pa�s) and AWGF (1.72 Pa�s) showed the highest and lowest �nal
viscosity, respectively, while QWGF, QDF, RF, and MF showed broadly similar �nal viscosity values
(5.83, 4.40, 4.31, and 5.07 Pa�s, respectively). Regarding the rheological pro�le of the protein-rich
ingredients (Figure 5b), a similar pattern was observed as for the regular protein-content �ours in
respect of the initial, peak and �nal viscosities, but with considerably lower viscosity values observed
overall. This can be explained by the lower content of starch and the higher content of dietary �bre in
the protein-rich samples (Table 2). The water binding capacity of dietary �bre is greatly increased by
the presence of high amounts of hydroxyl groups and can be related to a reduction in water availability,
which could impact viscosity and pasting properties [63]. Also, the protein-rich �our ingredients are
rich in ash, protein, and fat, which have been shown previously to in�uence the functionality of starch
and impact on rheological behaviour of starch dispersions during pasting [59].

Foods 2018, 7, x FOR PEER REVIEW  11 of 17 

��

3.4. Pasting Properties 

The mean values for the initial, peak and final viscosity at the end of the holding stage at 95 °C, 
on completion of cooling to 50 °C, and at the end of the final holding period at 50 °C were recorded 
during pasting and are presented in Table 2. The shape of the pasting curves differed depending on 
the type of flour/ingredient (Figure 5a,b). Among the regular protein content flour samples, BDF and 
RF had the highest viscosity and AWGF the lowest. QWGF and QDF showed slight differences, with 
QDF having the lowest viscosity; this may be explained by the lower content of starch (50.5%) in QDF 
than in QWGF (60%). The peak time was very similar for all the flours (~12 min) tested, except MF 
and BDF which required a shorter time (~10.5 min) to reach peak viscosity, most likely due to the 
lower extent of absorption and swelling of their star ch granules [62]. During the holding period at 95 °C, 
the material slurries were subjected to high temperature and mechanical shear stress, which further 
disrupted the starch granules, resulting in the leaching out from starch granules, and alignment, of 
amylose. It was observed that all the samples displayed a decrease in viscosity, especially so for BDF, 
RF, and MF, which had the more pronounced decreases in viscosity during the holding period at 95 °C 
(Figure 5a). The decrease in viscosity during the holding period is often correlated with high peak 
viscosity: it can be seen how BDF, RF and MF had the highest peak viscosities (Figure 5a). During 
cooling, re-association between starch molecules, especially amylose chains, will result in the 
formation of a gel structure and, therefore, viscosity will increase due to retrogradation and 
reordering of starch molecules. BDF (13.0 Pa�	s) and AWGF (1.72 Pa�	s) showed the highest and lowest 
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in respect of the initial, peak and final viscosities, but with considerably lower viscosity values 
observed overall. This can be explained by the lower content of starch and the higher content of 
dietary fibre in the protein-rich samples (Table 2) . The water binding capacity of dietary fibre is 
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pasting [59]. 
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Of particular interest, were the high and low viscosity values recorded during pasting for
buckwheat and amaranth, respectively. These differences can be related to several factors associated
with the starch component of the ingredients, namely the proportion and type of crystalline
organization (amylose:amylopectin ratio), size and ultra-structure of the starch granule and extent of
starch damage. The amylose content of amaranth and quinoa starch, a component which is related
to a stronger and more cohesive gel with higher �nal paste viscosity [62,64], has been reported to be
much lower than that found in buckwheat, rice, or maize [9]. In the case of quinoa starch, the amylose
content ranges from 3.5% to 19.6% of total starch, while in amaranth seeds amylose levels have been
reported to be lower than 8% [26]. In contrast, the amylose content of buckwheat has been reported
to be as high as 57% [58]. Therefore, for buckwheat a higher �nal viscosity would be expected than
for quinoa or amaranth. The starch granule size also in�uences the pasting temperature, whereby
smaller granules have been associated with lower pasting temperatures [60]. BDF had the largest
starch granules among the pseudocereal samples analysed in this study (Figure 4) while quinoa and
amaranth had the smallest. Yoshimoto et al. [65], reported a higher granule swelling and gelling
capacity for buckwheat starches compared with cereal starches. Another factor that can impact the
pasting properties is the resistance of starch to digestion by �-amylase during the heating process;
Izydorczyk et al. [66] associated the ability of buckwheat to form strong gels with the high resistance of
the starch component to digestion by �-amylase. In addition, Lu et al. [67] associated reduced enzyme
digestibility of cooked buckwheat groats with retrogradation and formation of resistant starch.

The understanding of the heat-induced rheological behaviour of these protein-rich ingredients
is of great importance for the development of tailored nutritional products (e.g., low viscosity in
plant-based milk substitutes or high viscosity in yogurt-type products).
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Table 2. Viscosity of quinoa wholegrain �our (QWGF), quinoa dehulled �our (QDF), quinoa protein-rich �our (QPRF), amaranth wholegrain �our (AWGF), amaranth
protein-rich �our (APRF), buckwheat dehulled �our (BDF), buckwheat protein-rich �our (BPRF), rice �our (RF), rice protein concentrate (RPC), and maize �our (MF)
dispersions at various stages of the pasting regime. Values are means � standard deviations of data from triplicate analysis.

Stage of Pasting

Initial Viscosity (mPa�s) Peak Viscosity (Pa�s) Peak Time (min) End of Holding at 95 � C (Pa�s) End of Cooling to 50 � C (Pa�s) Final Paste at 50 � C (Pa�s)

Quinoa
QWGF 18.4 � 0.76 a,b 6.25 � 0.18 e 12.5 2.74 � 0.34 e 6.07 � 0.30 e 5.83 � 0.43 e

QDF 24.8 � 1.05 b,c 4.39 � 0.16 d 12.5 2.41 � 0.24 c 4.68 � 0.19 c 4.40 � 0.22 c

QPRF 24.1 � 0.12 b,c 0.91 � 0.03 ab 12.5 0.63 � 0.01 a 0.75 � 0.01 a 0.67 � 0.01 a

Amaranth
AWGF 29.1 � 1.32 c 1.92 � 0.07 b,c 10.3 0.98 � 0.03 b 1.64 � 0.06 b 1.72 � 0.07 b

APRF 26.4 � 0.84 c 0.29 � 0.03 a 12.5 0.13 � 0.01 a 0.19 � 0.01 a 0.19 � 0.01 a

Buckwheat
BDF 48.4 � 2.64 e 9.60 � 0.46 f 12.1 4.84 � 0.90 f 12.5 � 0.47 f 13.0 � 0.35 f

BPRF 37.5 � 2.21 d 2.81 � 0.10 c 12.5 2.23 � 0.07 d 5.35 � 0.24 d 5.92 � 0.24 e

Rice
RF 15.5 � 0.06 a 9.37 � 1.43 f 11.2 2.28 � 0.23 c 4.24 � 0.15 c 4.31 � 0.13 c

RPC 17.9 � 0.13 a n.d. n.d. 0.02 � 0.00 g 0.02 � 0.00 g 0.02 � 0.00 g

Maize
MF 16.4 � 0.02 a 7.11 � 0.20 e 10.6 1.54 � 0.15 cd 4.67 � 0.30 cd 5.07 � 0.33 d

Values followed by different superscript letters (a�g) in the same column are signi�cantly different (p < 0.05). n.d. = not detected.
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4. Conclusions

In this study, the nutrient composition, protein pro�le, and rheological properties of a range
of novel protein-rich pseudocereal �our ingredients were studied and compared to regular protein
content pseudocereal, maize, and rice �ours. The protein-rich �our ingredients had higher levels of ash,
fat, and dietary �bre, and lower levels of starch. An integrated proteomic approach was implemented
to gain enhanced clarity on the ingredient’s protein pro�les, with two strong protein extracting buffers
being used for the �rst time, to allow the complete solubilization and characterization of the proteins
in the pseudocereal ingredients. The results showed common bands under non-reducing and reducing
conditions that corresponded to the globulin and albumin fractions. The predominance of globulins
and albumins in pseudocereals is technologically signi�cant since they are highly soluble in water
and dilute salt solutions, which can be an advantage for food formulation purposes, in particular for
the production of plant-based beverages. Buckwheat and amaranth had the highest and lowest �nal
viscosity, respectively; while the protein-rich �ours had considerably lower viscosity than their regular
protein content counterparts. This study provides essential and much-needed new fundamental
and applied knowledge on the compositional, structural, and functional properties of protein-rich
pseudocereal ingredients to assist in further developing their utilisation in nutritious, functional,
and stable food formulations.
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