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Abstract 26 

The use of wood as a sustainable biofuel results in the generation of residual wood ash. The ash 27 

contains high amounts of plant macronutrients such as phosphorus, potassium, calcium as well 28 

as several micronutrients. To explore the potential use of wood ash as a fertiliser, the growth 29 

enhancing properties of Sitka spruce (Picea sitchensis Bong.) wood ash were contrasted with 30 

the potential toxic action, using common duckweed (Lemna minor L.) as a model test species. 31 

The growth of L. minor exposed to wood bottom and fly ash solids and corresponding leachates 32 

was assessed in ultra-oligotrophic and eutrophic media. Ash solids and leachates were also 33 

tested as neutralized preparations. Suspended ash solids promoted L. minor growth up to 34 

concentrations of 2.5-5 g/L. Leachates promoted growth up to 10 g ash equivalents per litre, 35 

but for bottom ash only. Beneficial effects of wood ash were most pronounced on ultra-36 

oligotrophic medium. However, on such nutrient-deficient medium severe inhibition of L. 37 

minor biomass and frond growth was observed at relatively low concentrations of fly ash (EC50 38 

= 14 g/L). On standard, eutrophic medium, higher concentrations of fly ash (EC50 = 21 g/L), or 39 

neutralized fly ash (EC50 = 37 g/L) were required to impede growth. Bottom ash, or neutralized 40 

bottom ash retarded growth at concentrations of 51 g/L and 74 g/L (EC50), respectively, in 41 

eutrophic medium. It appears that phytotoxicity is due to the elemental composition of the ash, 42 

its alkaline character, and possible interactions between these two properties. Growth 43 

promotion was due to the substantial content of plant nutrients. This study underlines the 44 

importance of the receiving environment (nutrient status and pH) in determining the balance 45 

between toxicity and growth promotion, and shows that the margin between growth promoting 46 

and toxicity inducing concentrations can be enlarged through ash neutralization.  47 

 48 

 49 

 50 

Keywords: Wood ash, ash suspension, ash leachate, solid waste, toxicity, growth promotion, 51 

pH effect 52 
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1 Introduction 54 

The increased use of biofuels as a component of sustainable energy portfolios, results in 55 

increased ash production (Demirbas et al., 2009; James et al., 2012; Kuba et al., 2008; Thurdin 56 

et al., 2006; Vassilev et al., 2010). This ash consists mostly of inorganic mineral matter, together 57 

with smaller amounts of char and organic mineral solids, as well as fluid to gaseous inclusions 58 

of both inorganic and organic matter (Vassilev et al., 2013). In order to dispose of large amounts 59 

of wood ash, numerous potential after-use options for these complex materials have been 60 

proposed and are practised. Inter alia, these include the use of ash for soil fertilization, 61 

production of construction materials and sorbents as well as the use of ash for element/mineral 62 

recovery (Vassilev et al., 2013). Notwithstanding the valuable plant nutrient content of ash, the 63 

bulk of biomass energy ashes is still defined as waste and often disposed of in landfill. Yet, 64 

given the increasing scarcity of commercial stocks of some plant nutrients (e.g. phosphate), 65 

nutrient recovery needs to be considered. 66 

 67 

Minerals contained in ashes originate from bio-accessible sources. Thus, returning such ashes 68 

to the original ecosystem is considered by some as re-cycling. Indeed, wood ash applications 69 

to, especially, temperate forest ecosystems have been trialled, and impacts on the soil and trees 70 

have been assessed (i.e. Mandre et al., 2004; Augusto et al., 2008; Santalla et al., 2011). It has 71 

been argued that ash from untreated biofuels (as opposed to timber treated with paint and/or 72 

other preservatives) poses a comparatively low contaminant risk to the environment (Demeyer 73 

et al., 2001; Emilsson, 2006; Koppejan and van Loo, 2012). However, the chemical 74 

composition of biomass ashes can be extremely variable (Pitman, 2006; Vassilev et al., 2010), 75 

and some ashes have been shown to contain a considerable contaminant burden (Pöykiö et al., 76 

2009; Vassilev et al., 2010). Therefore, neither the fertilising-value nor the environmental 77 

toxicity of wood ash can be assumed without case assessment. 78 

 79 

Modern biomass and solid fuel fired power plants produce two major residue fractions; bottom 80 

ash (BA) and fly ash (FA). Additional precipitation techniques (i.e. cyclone or bag filters) allow 81 

for further partitioning of the FA. Although different ash types accrue in separate parts of the 82 

furnace, the waste streams are commonly combined and both ashes are collected in a single 83 

waste bay. As a result few studies distinguish the two prime ash types (Park et al., 2012; Poykio 84 

et al., 2011; Steenari et al., 1999). Rather, the literature on wood ash composition and recycling 85 

describes either the composite material (Augusto et al., 2008; Demeyer et al., 2001; Etitgni and 86 

Campbell, 1991; Pitman, 2006; Someshwar, 1996), or just one ash fraction (Aronsson and 87 

Ekelund, 2006; Pöykiö et al., 2009; Steenari and Karlfeldt Fedje, 2010). Data on both the 88 

toxicity and growth promoting potential of these distinct types of ashes from clean (i.e. un-89 
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treated) wood fuel are scarce. Such data are important to inform policies for the recycling of 90 

clean wood ash (i.e. see Emilsson, 2006; Haglund, 2008). 91 

 92 

Standardised ecotoxicological testing of the impacts of ash on terrestrial organisms is common 93 

practice, and typically involves testing the mobile fraction, for example water based ash 94 

leachates (Barbosa et al., 2013; CEN, 2002; Jenner and Janssen-Mommen, 1993; Lapa et al., 95 

2002; Tsiridis and Samaras, 2006; Wadge and Hutton, 1987). Wood ash leachates may naturally 96 

occur following heavy rain and flooding and in a “worst case” scenario can be leached into 97 

downstream waterbodies. Similarly, suspended, solid wood ash can end up in the aquatic 98 

environment. Given the complexity of ash, leached compounds may not be the only ones 99 

determining environmental effects. Mineral, as well as organic matter from ash, have also been 100 

shown to adsorb and precipitate dissolved elements and compounds, thus potentially altering 101 

the native nutrient balance in the soil (Chirenje et al., 2006; Chojnacka and Michalak, 2009).  102 

 103 

Standard aquatic toxicological testing has been used to quantify wood ash impacts on a range 104 

of species (Barbosa et al., 2013; Stiernström et al., 2011). However, standardised testing with 105 

photoautotrophic models (i.e. plants and algae) is based on supplying non-limiting nutrient 106 

levels to a media, which will therefore mask any growth stimulating effect of ash. The 107 

additional use of a nutrient-poor medium allows the assessment of such growth stimulating (i.e. 108 

fertilizing) properties. The alkaline pH of wood ash creates a further dilemma for 109 

ecotoxicological assessments. The validity of standardised toxicological test results is typically 110 

conditional upon the pH being within the defined range of the test organism tolerance. 111 

Therefore, the pH of non-neutral waste extracts is commonly adjusted to pH 6-8 (Lapa et al., 112 

2002; OECD, 2006; Römbke et al., 2009). This practice is inadequate when assessing the 113 

toxicity of highly alkaline ash to be reintroduced to the natural environment, as any pH 114 

dependent risk will be underestimated, while pH dependent changes in solubilisation and 115 

speciation may be promoted (Barbosa et al., 2013).  116 

 117 

This study set out to assess growth stimulating and toxic effects of clean wood ash on the 118 

primary producer Lemna minor (L.). The study assesses these effects under different trophic 119 

conditions, using both native and pH neutralized solid ash and ash leachate (Figure 1), to 120 

generate a comprehensive overview of the potential impacts of ash recycling on this plant 121 

species. Results will be discussed in the context of recent wood ash recycling recommendations. 122 

 123 

 124 
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2 Material and Methods 125 

2.1 Characteristics of wood ash and corresponding leachates 126 

Origin and sampling 127 

The wood ash was collected from the conveyors of a 3.8 thermal MW rotating grate wood 128 

boiler, located at a commercial sawmill in Co. Cork, Ireland. The wood-fuel comprised a 129 

mixture of Sitka spruce sawdust, wood chips and bark shavings (sawmill wood processing 130 

residues) which was burned at 700-800°C. The wood burned in the boiler was sourced locally 131 

in south-west Ireland. Bottom ash (BA) accrues below the firing grates at the base of the boiler. 132 

This type of ash contains heavy, large constituents such as clinker agglomerates and chunks of 133 

char in addition to small, powderous particles. Fly ash (FA) was collected from the post-furnace 134 

filter system where it had been transported with the flue gas. In contrast to bottom ash, fly ash 135 

consists of powderous, light weight ash and small char particles. Ash samples were stored in 136 

opaque 50 L barrels (HDPE, with clamp top lid) in a sheltered area at ambient temperature.  137 

 138 

Physico-chemical analyses 139 

Particle size distribution of bottom and fly ash was analysed in the range between 63 µm and 140 

6.3 mm by dry sieving according to Deutsche Industrie Norm 18123 (DIN, 1996). Analysis of 141 

loss on ignition (LOI) at 500 °C was performed for bulk ash samples following DIN 18128 142 

(DIN, 2002). Ash sub-samples for each replication and leachate were dried at 30°C for 3-4 days 143 

until the weight remained constant, and the particle fraction > 4 mm was removed. Leachates 144 

were prepared according to the European Norm (EN) 12457-2 one stage leaching test for 145 

granular waste (CEN, 2002) at 10 l/kg water ratio, with 24 h contact time and filtering 146 

(Fisherbrand, FB 59031). Fresh leachates were applied in bioassays. Titration of ash leachates 147 

was performed with 0.02 N H2SO4 to pH 4.  148 

 149 

Chemical analyses of bulk solids (aqua regia extractable elements) and corresponding leachate 150 

(water leachable elements and nutrient compounds), biological (BOD) and chemical oxygen 151 

demand (COD) were performed by UKAS accredited (#0754) National Laboratory Services 152 

(NLS, Leeds, UK). Total metal and metalloid content was determined by ICP-OES from aqua 153 

regia digested reflux extractions. Water leachable concentrations were measured using ICP-154 

OES or MS in standard waste leachates generated according to British Standard (BS) EN 155 

12457-2 with distilled water (10 l/kg). The relative mobility of elements was calculated as the 156 

leachable proportion of an elements content in the parent solid. 157 

 158 
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Table 1 near here 159 

 160 

2.2 Growth inhibition test with Lemna minor 161 

Lemna minor (L.) (Lemnaceae) is an aquatic macrophyte with close to ubiquitous distribution. 162 

This species is commonly used in single substance phytotoxicity tests (OECD, 2006) as well as 163 

for water quality assessment of wastewaters and leachates (Jenner and Janssen-Mommen, 1993; 164 

Mackenzie et al., 2003). L. minor is described as a sentinel species for ash settling ponds of 165 

coal fired power plants (Dorman et al., 2010). L. minor has a broad pH optimum and tolerates 166 

conditions between pH 3-4 and 10.5 (McLay, 1976). L. minor single frond lifespan is reported 167 

to be 31.3 days during which period it asexually produces daughter fronds (Lemon et al., 2001).  168 

 169 

Axenic specimens were from University College Cork, School of Biological, Earth and 170 

Environmental Sciences laboratory stocks. These stocks originated in the Blarney area of 171 

southwest Ireland. The Lemna minor strain has been registered in the Rutgers Duckweed Stock 172 

Cooperative (RDSC) database as strain number 5500 “Blarney”, and been subjected to detailed 173 

genetic analysis (Horemans et al., 2015). L. minor was cultured on half-strength Hutner’s 174 

medium (Lahive et al., 2011) in 1 L crystallizing dishes (Pyrex) covered with watch glasses. 175 

Growth medium was renewed every two weeks and the laboratory culture stock was continued 176 

from a sub-sample of its precursor. Culturing and bioassays were conducted using a 16/8 h 177 

photoperiod (light intensity of 50 µmol m-² s-1) at 21 ± 2 °C. 178 

 179 

Growth inhibition assay 180 

Growth inhibition tests with L. minor were conducted following OECD guideline 221 (OECD 181 

2006) recommendations. Effects of solid ash (i.e. ash suspensions) and ash leachates (according 182 

to the EN 12457-2) on plant growth were tested, using a medium of either half-strength Hutner’s 183 

or distilled water (Figure 1). Solid ash suspension gradients of Bottom Ash (BA) or Fly Ash 184 

(FA) were prepared by pouring medium onto the appropriate weight of dry ash sample (particles 185 

>4 mm excluded) followed by a 24 h suspension period. Bottom Ash Leachates (BAL) and Fly 186 

Ash Leachates (FAL) test solutions were obtained as dilutions of fresh ash leachate in Hutner’s 187 

medium (with appropriately reduced water content) or distilled water. Leachate concentrations 188 

are expressed as ash equivalents per litre (g aeq/L). Test suspensions and leachates compliant 189 

with the pH 6-8 guideline criterion (neutralized) were prepared by adjusting the medium to 190 

pH 6.1 ± 0.7 using H2SO4, after 24 h contact with the solid sample. Measurements of pH 191 

(resolution 0.001) in the test medium were taken at the beginning and the end of the 7 d 192 

experimental period while electrical conductivity (ElC, resolution 0.1 μS/cm) was determined 193 
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after the test (Multi 3420 SET G, WTW). Exposure vessels were 300 ml magentas (HDPE) 194 

with punctured lids and cotton wool plugs. Clean test vessels were autoclaved prior to being 195 

filled with the test dilutions and suspensions and afterwards to ensure batch sterility.  196 

 197 

Figure 1 198 

2.3 Calculations and statistics 199 

Ash NPK content ratios were calculated as %wt of elemental N and assuming all P and K were 200 

present as P2O5 and K2O respectively. Enrichment factors for solids (EFS, [FA]·[BA]-1, Pöykiö 201 

et al., 2009) were calculated as ratio between fly and bottom ash aqua regia extractable solid 202 

concentrations. Likewise, enrichment factors for leachate (EFL, [FAL]·[BAL]-1) were based on 203 

BS EN 12457-2 extract concentrations (Table 1). These measured concentrations represent a 204 

tenth of total water soluble amounts and relative element mobility was calculated as ratio of 205 

total soluble amount in 10 L to aqua regia extractable concentration per kg.  206 

 207 

Biological endpoints of the Lemna minor  exposure studies (Figure 1) were average specific 208 

growth rates (OECD, 2006) for biomass fresh weight and frond number after 7 days. 209 

Exponential growth rates (RGR) were calculated for increases in weight or frond number, using 210 

the natural logarithm (Paolacci et al., 2016). Statistical analysis was performed with Graph Pad 211 

Prism 5 (Graph Pad Software, La Jolla, USA). For plotting in Figures 3-4, L. minor growth in 212 

each replication was normalized to the average growth rates in the controls (half-strength 213 

Hutner’s medium, SD shown as grey band). In ultra-oligotrophic medium, the ash treatment 214 

exhibiting the best growth response was used for normalization and calculation of 10 and 50% 215 

growth reduction Effect Concentrations (EC10 and EC50, respectively). Significant difference to 216 

the controls for No Observed Effect Concentrations (NOEC) and Lowest Observed Effect 217 

Concentrations (LOEC) determination in each experiment were tested by one-way ANOVA 218 

with Dunnett’s post-test (* p < 0.05, ** p < 0.01, *** p < 0.001). The number of replicates per 219 

treatment was 4-5, with twice that number of control vessels.   220 

 221 

3 Results 222 

3.1 Physico-chemical characteristics of wood ash 223 

Ash solids  224 

Dried bulk samples of bottom and fly ash had similar bulk densities (BA; 0.27 ± 0.04 g/cm3 225 

and FA; 0.21 ± 0.001 g/cm3). Loss on Ignition (LOI) was twice as high for fly ash compared to 226 
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bottom ash (44.7 ± 1.84% and 25.1 ± 4.05%, respectively), indicating higher levels of 227 

combustible residue in fly ash. The average particle diameter of BA was 0.91 ± 0.08 mm, whilst 228 

FA was much finer (0.19 ± 0.01 mm). Gravel sized particles due to ash melting (>2 mm) were 229 

exclusive to BA. Removal of clinker and dross (>4 mm sized fractions, 15% of bottom ash), 230 

strictly combustion products and not ash, resulted in a rather similar particle size distribution. 231 

The sieved material was used to determine elemental content and biological impacts. 232 

 233 

The N:P:K-ratios (%wt) of bottom ash (0.1:2.7:6.9) were slightly lower than those of fly ash 234 

(0.2:2.8:8.6). A higher N concentration in fly ash was noted. P, K, Ca, Mg, Na and Mn contents 235 

were similar in bottom and fly ash, and enrichment factors (EFS expressed as fly ash over bottom 236 

ash concentration) varied between 0.75 and 1.25 (Table 1). Fe and Al displayed relative 237 

enrichment in BA compared to FA. Plant micronutrients were present in both ash types although 238 

Zn, B, Mo were enriched in fly ash while Fe and Ni tended to present in higher concentrations 239 

in bottom ash. Among non-essential trace elements, Ba showed a strong enrichment in bottom 240 

ash (EFS 0.06), while the heavy metal elements Co and Cr were slightly more abundant in 241 

bottom ash. FA, in contrast, contained relatively higher amounts of Cd (EFS 5.99), Pb, As and 242 

Se (EFS 1.39).  243 

 244 

Ash leachates 245 

Bottom ash leachates (BAL) exhibited both a lower pH and conductivity (pH 10.6 ± 0.18 and 246 

3.6 ± 2.3 mS/cm, respectively) than those of fly ash (pH 11.5 ± 0.11 and 12.7 ± 6.43 mS/cm). 247 

Titration to pH 4 yielded two equivalence points for bottom ash, BAL required 248 

0.006 meq H2SO4/ml for titration to pH 7. Fly ash leachate (FAL) exhibited only one 249 

equivalence point and required 3.7-fold more sulphuric acid to neutralize. BAL had a greyish 250 

brown tint, FA aqueous eluates were clear. Biological Oxygen Demand (BOD) was <1.4 mg/L 251 

for both leachates. Chemical Oxygen Demand was very similar for the two types of ash 252 

(46.2 ± 19.6 mg/L and 49.7 ± 1.26 mg/L in BAL and FAL respectively), although variability 253 

was a magnitude higher for bottom ash leachates. 254 

 255 

No ammonical N was detected (< 0.5 mg/L) in either ash leachate. FAL contained at least 6-256 

fold more total oxidized nitrogen (TON, Nitrate and Nitrite) than leachate of bottom ash 257 

(Table 1). Orthophosphate was detectable only in BAL (2.2 mg/L). In terms of elemental 258 

composition, the difference between the leachates was striking. BAL was enriched with P (EFL 259 

0.04), Mg (EFL 0.18), V (EFL 0.25), As (EFL 0.34), B (EFL 0.39) and Cu (EFL 0.48). Fly ash 260 

leachate contained relatively more K (EFL 4.47), Ca (EFL 36.6), Zn (EFL 623) as well as 261 

Al, Sr, Ba, Se, Ti, K, Cr, Mo, Pb and Na. Finally, saliferous chloride (EFL 11.2) and sulphate 262 
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(EFL 13.9) concentrations in fly ash leachate were more than an order of magnitude greater than 263 

those in bottom ash leachate. 264 

 265 

Relative mobility of elements (Table 1) was different for the two ash types. Some 21.3 and 266 

23.1% of K and Na, respectively, were leached from BA into BAL. In comparison, 76.6 and 267 

57.4% of K and Na, respectively, leached from FA into FAL. Other particularly mobile 268 

elements in bottom ash were B, V, As, Cr, and Se. Strongly mobile elements in fly ash were 269 

Cr, Ca, V, B, Ba, Sr, Se and Zn. Mo was entirely transferred into solution in the case of both 270 

ashes. 271 

3.2 Lemna minor bioassays 272 

3.2.1 Electrical conductivity and pH conditions in the test 273 

Electrical conductivity (ElC) of native ash suspensions in distilled H2O and Hutner’s media 274 

differed due to the base electrical conductivity of the nutrient medium itself 275 

(1660 ± 160 µS/cm). However, the difference in ElC between ultra-oligotrophic and eutrophic 276 

test solutions decreased as ash concentration was increased (Figure 2A, D). The difference in 277 

pH values of ultra-oligotrophic and eutrophic medium was substantial and related to the buffer 278 

capacity and the slightly acidic pH 5.01 ± 0.28 of Hutner’s medium. The difference in pH values 279 

decreased with increasing ash concentration. Concentrated suspensions of fly ash in 280 

oligotrophic or eutrophic medium displayed higher pH and ElC than respective bottom ash 281 

suspensions. Similarly, FA leachates increased ElC and pH more than BA leachates (Fig. 3). 282 

To determine potential pH effects on toxicity, another approach was instigated whereby 283 

medium was neutralised at the start of the experiment. ElC of neutralized suspensions and 284 

dilutions of neutralized leachates in Hutner’s medium (Figure 4A, D) displayed the same ash 285 

dose dependent increase as their respective native counterparts. 286 

 287 

3.2.2 Lemna minor growth on native ash solids and leachates under 288 

differing trophic conditions 289 

Suspended bottom ash solids 290 

When suspended in Hutner’s medium, bottom ash concentrations of 1.25, 2.5 and 5 g/L neither 291 

impaired nor benefitted the growth of the test organism relative to the corresponding control 292 

(Figure 2B, C). However, BA concentrations of 40 g/L (p < 0.05, LOEC) and above (p < 0.001) 293 

significantly decreased biomass growth rates. EC10 and EC50 for biomass growth rate were 294 

10.1 g/L and 50.9 g/L (95% CI: 33 to 78.5 g/L, Table 2), respectively. The LOEC for frond 295 
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growth was lower than for biomass growth (20 g/L, p < 0.05) but EC10 and EC50 values were 296 

similar.  297 

 298 

When cultured under conditions of extreme nutrient scarcity (ultra-oligotrophic medium), 299 

L. minor biomass average growth rates were just 38.5 ± 19.2% of those achieved in Hutner’s 300 

medium (lower dotted line in figure 2B). However, under these conditions the addition of solid 301 

BA at concentrations of 1.25 and 2.5 g/L strongly stimulated biomass growth (p < 0.01). In fact, 302 

the addition of these low concentrations of BA to the ultra-oligotrophic medium resulted in 303 

biomass growth responses that were similar (79.5 ± 19.2%) to those achieved on the Hutner’s 304 

control medium. Frond growth rates (Figure 2C) were significantly stimulated at 1.25 g/L BA 305 

(p < 0.05) only. 306 

 307 

Higher concentrations of BA added to ultra-oligotrophic medium impaired the growth of plants 308 

(Figure 2B, C). Up to BA concentrations of 40 g/L biomass and frond growth rates decreased 309 

gradually, however at a concentration of 80 g/L BA both growth rates declined markedly 310 

(p < 0.05). Compared to Hutner’s medium, the biomass EC10 was higher on ultra-oligotrophic 311 

medium.  312 

 313 

Figure 2 near here 314 

 315 

Suspended Fly ash solids 316 

High concentrations of fly ash suspensions added to Hutner’s medium caused negative effects 317 

on plant growth (Figure 2E, F). These inhibitory effects occurred at lower concentrations than 318 

observed for bottom ash, the plateau stage of the dose-response relationship in Hutner’s 319 

medium spanned the FA concentrations from 0.625 to 2.5 g/L. Significant reductions of 320 

biomass growth occurred at 20 g/L (p < 0.05) and 40 g/L (p < 0.01) FA. The biomass growth 321 

EC10 and EC50 in Hutner’s medium were 8.6 g/L and 20.5 g/L (95% CI: 15.6 to 27.1 g/L, 322 

Table 4), respectively. Again the LOEC for frond growth (10 g/L, p < 0.05) was lower but the 323 

EC10 and EC50 values were the same as for biomass growth.  324 

 325 

When low concentrations of solid FA were added to an ultra-oligotrophic medium growth was 326 

stimulated (Figure 2E). Compared to the control, a significantly stronger growth response was 327 

observed in medium with 0.625 and 1.25 g/L added FA (p < 0.01). Biomass of plants grown on 328 

medium with 2.5 and 5 g/L fly ash also increased faster than the corresponding control 329 

(p < 0.05). A significant reduction of biomass growth occurred at 40 g/L FA (p < 0.05, LOEC). 330 

Biomass EC10 and EC50 for FA suspensions in ultra-oligotrophic medium were both slightly 331 
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lower than in Hutner’s medium. The stimulation of frond growth was not significant. The 332 

LOEC for frond growth was 40 g/L (p < 0.01) and EC10 and EC50 values were very similar to 333 

the values found in FA supplemented Hutner’s medium.  334 

 335 

Bottom ash leachates 336 

Bottom ash leachate added to Hutner’s medium (Figure 3B), and diluted to 0.625 and 1.25 g 337 

aeq/L, did not alter the biomass growth rate of L. minor. Higher concentrations of 2.5 to 338 

20 g aeq/L BAL improved biomass growth compared to the control, but not significantly. A 339 

significant reduction of biomass growth (p < 0.001) was observed at 40 g aeq/L (LOEC). Plants 340 

exposed to 80 g aeq/L were necrotic. The calculated biomass EC10 was 25 g aeq/L, while the 341 

EC50 for BAL was 33.1 g aeq/L (95% CI: 20.2 to 54.2 g aeq/L). The frond growth LOEC was 342 

also 40 g aeq/L, while the EC10 and EC50 for BAL were 14.8 g aeq/L and 36.9 g aeq/L, 343 

respectively.  344 

 345 

Figure 3 near here 346 

 347 

Plants grown on ultra-oligotrophic medium supplemented with BAL (Figure 3B) exhibited 348 

significantly higher biomass growth rates in the concentration range between 0.625 to 10 g 349 

aeq/L, when compared to the corresponding control. The fastest growth was observed on 350 

medium with 2.5 g aeq/L BAL added. The biomass growth EC10 for BAL was calculated to be 351 

25.9 g aeq/L. The EC50 was 43.9 g aeq/L (95% CI: 34.3 to 56.3 g aeq/L). In contrast, the frond 352 

growth rate did not respond to increasing BAL doses in the nutrient deficient medium up to 353 

40 g aeq/L. Plants were found to be necrotic at 80 g aeq/L.  354 

 355 

Fly ash leachates 356 

Fly ash leachate diluted in Hutner’s growth medium (Figure 3B) did not significantly affect the 357 

biomass or frond growth rates in the concentration range between 0.625 and 5 g aeq/L. 358 

However, a significant reduction of biomass growth, compared with the control, was observed 359 

at 20 (LOEC) and 40 g aeq/L (p < 0.001). The EC10 and EC50 were 6.92 g aeq/L and 17.8 g aeq/L 360 

(95% CI: 13.2 to 24.1 g aeq/L), respectively. The LOEC for frond growth was lower 361 

(10 g aeq/L, p < 0.05) than the one for biomass growth, but EC10 and EC50 values were very 362 

similar.  363 

 364 

When ultra-oligotrophic medium was supplemented with fly ash leachate, no significant plant 365 

growth stimulation was observed, neither of biomass nor frond growth. Significant decreases 366 

(p < 0.001) in biomass and frond growth rate were observed for the 20 (LOEC) and 40 g aeq/L 367 
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FAL treatments. In fact, plants were necrotic. The biomass EC10 was slightly higher and the 368 

EC50 was lower compared to the equivalent values using Hutner’s medium. Frond growth EC10 369 

and EC50 were >10 g aeq/L and <20 g aeq/L FAL, respectively.  370 

 371 

3.2.3 Neutralized suspensions and leachate dilutions 372 

Lemna minor exposed to the neutralized suspensions of either bottom or fly ash solids in 373 

Hutner’s medium (Figure 4B, C) maintained biomass and frond growth up to relatively high 374 

concentrations. Growth could be observed on Hutner’s medium supplemented with 160 g/L 375 

bottom ash solids or 80 g/L fly ash solids. Thus, dose-inhibition curves for bottom and fly ash 376 

solids were stretched and quite flat, compared to those observed with non-neutralised ash 377 

suspensions. For bottom ash suspensions, the biomass EC10 and EC50 were 9.7 g/L and 74.4 g/L 378 

(95% CI: 56.7 to 97.6 g/L), respectively. For fly ash suspensions, the biomass EC10 and EC50 379 

were 4.49 g/L and 37.1 g/L (95% CI: 25.9 to 53.3 g/L), respectively. Despite the lack of growth 380 

inhibition at lower bottom ash concentrations, increasing chlorosis at frond edges could be 381 

observed in plants on bottom or fly ash suspensions exceeding 10 g/L. Necrosis was not 382 

observed with either of the two neutralized ash suspensions.  383 

 384 

Figure 4 near here 385 

 386 

Low concentrations of neutralized ash leachates added to Hutner’s growth medium (Figure 4E, 387 

F) had very little impact on biomass and frond growth rates. The shape of the dose-response 388 

curve for plants exposed to neutralized BAL displayed an abrupt increase in effect severity 389 

above 40 g aeq/L. The biomass growth rate EC10 and EC50 for neutralised BAL were 51.6 g 390 

aeq/L and 87.9 g aeq/L (95% CI: 69 to 112 g/L), respectively. The shape of the dose-response 391 

curve for plants exposed to neutralized FAL displayed a slightly more gradual decrease in 392 

biomass and frond number growth, and EC10 and EC50 values were both markedly increased 393 

compared to the equivalent values for neutralised BAL. 394 

4 Discussion 395 

4.1 Wood ash solids and corresponding leachates 396 

Wood ash solids 397 

Fast growing, and commercially important Sitka spruce (Picea sitchensis Dong.) is considered 398 

to be a promising biofuel species for parts of western Europe. Combustion of this species 399 

generates >2% w/w of ash (Owens and Cooley, 2013). Biomass ashes from grate fired boilers 400 
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contain substantial amounts of charred organic fuel residuals (Emilsson, 2006; Tollin, 2000). 401 

In this study, highest levels of organic combustible residues were found in fly ash (44.7%), and 402 

this value is within the commonly reported range of 7 to 50% (Someshwar, 1996). The average 403 

particle diameter for FA is also similar to a reported FA particle size of 0.23 mm (Etitgni and 404 

Campbell, 1991). BA generated in an industrial size furnace is coarser due to its clinker and 405 

dross content. However, the removal of large molten agglomerates minimised the difference in 406 

particle size distribution between FA and BA. 407 

 408 

Contents of plant macronutrients in the two types of ashes differ only slightly. Bottom and fly 409 

ash thus appear equally suited as sources of these essential elements. Levels of P and K found 410 

in this study are above median concentrations reported for generic wood ash (Augusto et al., 411 

2008) and exceed cited literature values in Park et al. (2012) markedly. Minimum limit 412 

concentrations are set for plant nutrients in wood ash as a prerequisite for ash application in 413 

forests (Emilsson, 2006; Haglund, 2008; Pitman, 2006). Nutrients P, K and Mg in both bottom 414 

and fly ash exceed required minimal concentrations of these plant nutrients. Thus, based solely 415 

on plant nutrient contents, both ashes could be considered for land application. Nevertheless, 416 

we note that wood ashes used in this study contain only about half as much Ca as expected from 417 

medians reported in a meta-study of wood ashes by Augusto et al. (2008), and do not fully meet 418 

the Swedish Ca requirements for wood ash of 125 g/kg (Haglund, 2008). 419 

 420 

Our data show that the micronutrient and trace element concentrations in BA and FA are 421 

distinct, likely implying distinct hazards. Relative enrichment of Fe and Al in bottom ash in this 422 

study is higher than reported in Park et al. (2012) and Pöykiö et al. (2009) but matches earlier 423 

findings (Narodoslawsky and Obernberger, 1996). B, Cu, Mn and Zn are present in both ashes 424 

at levels that were previously reported (Augusto et al., 2008). Mo and Ni contents in the tested 425 

Sitka spruce ashes are slightly lower than commonly reported. Among micronutrients, a 426 

minimum nutrient content for ash spreading (Haglund, 2008) has been defined for Zn (0.5 g/kg) 427 

only. BA supplies 65% of required Zn content, while FA exceeds the requirement by 3.6-fold. 428 

Elements of concern, defined in 86/278/EEC (Council of the European Union, 1986), such as 429 

Cd, Pb and Zn are enriched in fly ash, as was found by others (Park et al., 2012; Pöykiö et al., 430 

2009). As and Se are also enriched in fly ash, but the partitioning between FA and BA is less 431 

pronounced than that reported by Park et al. (2012) and the opposite of what was described for 432 

As by Pöykiö et al. (2009). Enrichment prevalence is commonly linked to condensation on fly 433 

ash particles (Izquierdo and Querol, 2012; Narodoslawsky and Obernberger, 1996; Pitman, 434 

2006) and also affected by incomplete combustion. Based on the comparison of the chemical 435 

composition of Sitka spruce wood ash with a meta-analysis data set of various wood ashes  436 

(Augusto et al., 2008), bottom ash from un-treated Sitka spruce can be considered above 437 
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average quality for its high content of P and K, and its low content of the toxic metals As and 438 

Pb (below reported minimum values). In comparison, fly ash from P. sitchensis also has 439 

relatively high levels of K and P, but contains above median levels of undesired Cd. 440 

Furthermore, contents of the elements As, Pb, Cd, Cr, Hg, Ni and V in bottom and fly ash from 441 

untreated Sitka spruce sawmill residues remain below published maximum allowable 442 

concentrations (Haglund, 2008).  443 

 444 

Wood ash leachates 445 

The leachate from granular ash waste serves as a model for mobilization of ash constituents in 446 

water. Given the use of distilled water as an eluent, the pH conditions during mobilization are 447 

essentially determined by the alkaline pH of the wood ash. The titration profile of BAL exhibits 448 

the same carbonate-like characteristics as published for general wood ash (Etitgni and 449 

Campbell, 1991). This profile is, however, distinct from that of FAL which shows a strong 450 

hydroxide presence. The alkalinity of FAL is 3.6 times higher than that of BAL. Conductivity 451 

tests also reveal a much higher ionic strength and quantity of readily dissolvable components 452 

in FAL. 453 

 454 

Striking quantitative differences were observed in the concentrations of dissolved, plant 455 

nutrients in leachate of the two ash types. Oxidized N is exclusive to FAL, while 456 

orthophosphates are mostly dissolved in BAL (Table 1). The small amount of  N in wood ash 457 

is usually associated with unburned biomass and is largely insoluble, although small amounts 458 

of N condensed on FA particle surfaces can be mobile (Demeyer et al., 2001; Someshwar, 459 

1996). Small amounts of P and Mg are found in BAL, these elements are likely bound to the 460 

silicate matrix (Izquierdo and Querol, 2012) and appear immobile in the case of fly ash. Among 461 

macro elements, the leachates are quantitatively distinct in K, Ca, Na, Al, and SO4, levels which 462 

leach more readily from FA. Unsurprisingly, the saliferous alkali metals K and Na are the most 463 

mobile elements in one stage leachates from both types of wood ash. Differences in particle 464 

size and element composition of the two ash types are likely to contribute to distinct leaching 465 

behaviour of nutrients and hazardous substances in the ash (Stiernström et al., 2014; Tsiridis 466 

and Samaras, 2006; Wadge and Hutton, 1987). Thus, although nutrient contents of the solid 467 

ashes are rather similar for bottom and fly ash, leachates prove to be distinct, with consequences 468 

for plant growth.   469 

 470 
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4.2 Growth promotion 471 

Wood ash contains a range of plant nutrients as well as contaminants (Table 1). Hytönen (2016) 472 

showed that addition of wood ash to a peaty soil increased concentrations of extractable P, K, 473 

Ca and Mg in the soil, and this was associated with growth stimulation. In ultra-oligotrophic or 474 

eutrophic media the relative contribution of ash-derived plant nutrients to plant growth differs. 475 

In the ultra-oligotrophic medium nutrients are virtually absent. Plant growth in the ultra-476 

oligotrophic water control (dotted lines in Figure 2 and Figure 3) is sustained for the short 477 

duration of the test by nutrients stored in the plant. Under these conditions, the only nutrients 478 

present are those supplied through wood ash. This study shows substantially increased growth 479 

rates for L. minor in ultra-oligotrophic medium supplemented with ash (Figure 2B, C, E and 480 

3B). In ultra-oligotrophic media, bottom ash solids and leachates, up to concentrations of 481 

2.5 g/L and 10 g aeq/L respectively, increase biomass and frond growth significantly (Figure 482 

2B and 3B). Fly ash stimulates biomass growth when applied as a solid (up to 5 g/L, Figure 483 

2E). Osmotic stress in the ultra-oligotrophic medium (distilled H2O) control (20 μS/cm) may 484 

reduce plant growth performance, thus artificially emphasizing the stimulatory effects mediated 485 

by ash. However, this scenario is unlikely, as significant increases in growth occur at ash 486 

concentrations that barely affect electrical conductivity (i.e. Fig. 2; compare responses to 0.625 487 

and 1.25 g/L ash). Therefore, growth promoting effects under oligotrophic conditions are likely 488 

to be caused by improved nutrient supply. Given the key role that nitrogen plays in mediating 489 

plant growth, it might be expected that fly ash leachate should cause a more pronounced growth 490 

stimulation. However, Hutner’s medium provides 560 mg/L NO3 and the 10 g aeq/L fly ash 491 

dilution only carries 0.7 mg/L NOx, and therefore the latter is unlikely to significantly resolve 492 

nitrogen deficiency. This also implies that even greater stimulation of biomass growth can be 493 

expected when ash is supplemented with an N-source, and this is an aspect that has considerable 494 

relevance for practical ash applications in, for example, forestry. There have been previous 495 

reports of wood ash mediated growth enhancement. For example, Aronsson and Ekelund (2006) 496 

showed that growth of the water moss Fontinalis antipyretica was increased when the growth 497 

medium was supplemented with extracts of crushed wood ash. Nabeela et al., (2015) found that 498 

the addition of low concentrations (<1g/kg) of wood ash to the soil stimulates growth of 499 

Brassica napus, but that toxicity occurs when higher concentrations (>10 g/kg) are used. 500 

Bonfim-Silva et al., (2015) found that incorporation of wood ash in the soil led to substantial 501 

increases in height, leaf and tiller number of two species of grass. Growth stimulation increased 502 

with ash concentration, reaching a plateau at around 12 g/L of wood ash, but no toxicity was 503 

apparent at higher concentrations. Other studies did, however, fail to show any growth 504 

stimulation by wood ash. For example, Park et al., (2005) failed to show enhanced biomass 505 

production by willows (Salix purpurea) and it was hypothesised that this was due to the fact 506 
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that growth was predominantly limited by nitrogen. The diverse responses to wood ash 507 

supplementation emphasise that wood ash mediated growth promotion is conditional upon the 508 

receiving environment, and growth promotion is more likely on acidic soils low in K, Ca and/or 509 

Mg (Augusto et al., 2008; Santalla et al., 2011). For example, Moilanen et al., (2013) showed 510 

strong wood ash induced growth of Scots pine on peat substrate suffering P and K deficiency. 511 

Our data confirm the growth stimulation potential of wood ash solids, and to a lesser extent 512 

leachates, under controlled conditions, and show how these relate to the receiving environment. 513 

4.3 Phytotoxicity 514 

Lemnaceae are an excellent group of model species for ecotoxicity assessment, considered 515 

representative for aquatic macrophytes, and also to a lesser extent for vascular plants in general. 516 

Lemna minor ranks highly for tolerance against a broad range of metal and metalloid elements, 517 

although the species is particularly sensitive to Co, Cr and Cu (Wu et al., 2013). L. minor is a 518 

sentinel species (Dorman et al., 2010) that is commonly used for phytoremediation. This not 519 

only suggests that obtained EC50 outline an aquatic worst-case scenario but also facilitate the 520 

distinction between growth promotion at low ash concentrations and toxicity at higher levels 521 

for this study.  522 

 523 

When exposed to bottom and fly ash, Lemna minor growth performance exhibits distinct dose-524 

response relationships (Figure 2, 3, 4). Fly ash is always more hazardous than bottom ash. 525 

Severe toxic effect concentrations (EC50, Table 2) of bottom and fly ash solids are significantly 526 

different, regardless of the use of oligotrophic or eutrophic growth conditions or native or 527 

neutralised ash applications.  528 

 529 

Table 2 near here 530 

 531 

Plant nutrition provided by the medium has no substantial effect on the toxicity of native fly 532 

ash solids or leachates (Table 2). However, severe toxicity (EC50) is decreased due to pH 533 

neutralization (Table 2). For neutralized bottom ash leachates, both EC10 and EC50 are about 2-534 

fold higher compared to native samples, while the difference is 3-fold for neutralized fly ash 535 

leachates. Thus, careful management of pH during fertilization with ash may avert detrimental 536 

effects (toxicity) and this can have important management implications for ash spreading. 537 

 538 

Phytotoxicity of wood ash and wood ash leachates can potentially be caused by several different 539 

factors individually, as well as through interactions. Two main factors include toxicity of single 540 

elements and adverse effects of extreme pH of the medium. Here we have explored these 541 

factors, and assessed their potential role in causing phytotoxicity. 542 
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 543 

(i) We reviewed the literature for threshold and toxicity concentrations (EC10 and EC50) for 544 

single elements, and compared these concentrations with those present in wood ash and/or ash 545 

leachate (Table 1). Naumann et al. (2007) rank the toxicity of toxic metals to Lemna minor 546 

(based on thresholds as EC10) as Ag+ (6-14 μg/L) > Cd2+ > Hg2+ > Cr(VI) > Zn2+ > Cu2+ > Ni2+ 547 

> Co2+ > Tl+ > As (3-12 mg/L). Based on lowest reported EC50 values for metal and metalloid 548 

elements under standard test conditions (Davis et al., 2002; Duester et al., 2011; Naumann et 549 

al., 2007; Simmons, 2012; Wang, 1990; Wu et al., 2013), bottom ash leachate contains 0.44 550 

toxic units (TU, as presented in Horvat et al., 2007) in contrast to 9.75 TU in fly ash leachate. 551 

In bottom ash leachate, the toxic units are linked to the presence of the elements B, Cr and Cu 552 

which make up 38.3, 31.9 and 21.3% of total TU, respectively. The elements Zn, As, Co, Tl 553 

and Ni with 2.49, 2.26, 1.12, 0.91 and 0.59% further contribute to the overall TU load. In fly 554 

ash the situation is essentially different. In fly ash 92.4% of total TU are contributed by 555 

dissolved Zn while Cr, Co and B accounts for 4.46, 0.97 and 0.67%, respectively TU. Thus, 556 

elemental contamination theoretically causes less than 50% effect of the toxic effect of bottom 557 

ash leachate, while fly ash leachate, even when diluted 10-fold, may still reduce growth by 558 

nearly 50%.  559 

 560 

(ii) In eutrophic medium the reduction of L. minor growth coincides with a 10-fold decrease in 561 

H+ ion concentration from pH 7 to 8, irrespective of ash type and form of introduction. High 562 

pH values were associated with a near total cessation of growth (Figure 2 and 3). Lemna minor 563 

is reported to survive in the pH range between 3-4 and 10.5 (McLay, 1976). Growth optima 564 

derived from regressions of average frond number growth rates place the pH optimum for 565 

growth between 6.2 and 6.9  (McLay, 1976). The growth rate for fronds is reduced to an average 566 

of about 80 and 50% of optimum growth at pH 9 and 10, respectively (McLay, 1976). In this 567 

study it was found that when medium was neutralised following ash-addition (i.e. less alkaline 568 

pH) toxicity decreased and in most cases both EC10 and EC50 values increased. Thus, we 569 

conclude that the alkalinity of wood ash contributes to its phytotoxicity. However, the pH effect 570 

is rather complex. For example, the addition of 1.25 g/L bottom ash to oligotrophic medium 571 

increases the pH of the medium to 9.5, but this was associated with a marked stimulation of 572 

growth (Figure 2B,C) consistent with other findings (Aronsson and Ekelund, 2006). Therefore, 573 

it is concluded that observed ash toxicity is unlikely to be due to just the alkalinity of the 574 

medium. Rather, it appears that at higher ash concentrations a toxicity threshold is approached 575 

due to a combination of exposure to contained contaminants, and the alkaline nature of the ash.  576 

 577 
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4.4 Conclusion 578 

Any wood ash after-use strategy has to reconcile the opposing aims of preventing contaminants 579 

from re-entering ecosystems and recycling of beneficial plant nutrients. It is, in principle, 580 

feasible to return minerals to the place where they were extracted from the soil by trees. This 581 

study demonstrates both the plant growth promoting, as well as the toxic characteristics of wood 582 

ash that fulfils the minimal element content criteria for spreading as a fertiliser. It is argued that 583 

phytotoxicity is due to both the elemental composition of the ash, its alkaline character, and 584 

possible interactions between these two factors. In turn, growth promotion is due to the 585 

substantial content of plant growth nutrients. This study shows that the margin between growth 586 

promotion and toxicity incurring concentrations can be enlarged through ash neutralisation. 587 

Thus, the receiving environment (nutrient status and pH) determines the balance between 588 

toxicity and growth promotion, and needs to be considered in any ash spreading strategy. 589 

 590 
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Figure 1: Lemna minor biomass (fresh weight) and frond (number) growth rates were 
quantified following exposure to wood ash suspensions or leachates under ultra-oligotrophic or 
eutrophic (nutrient medium) conditions. Impacts on L. minor growth were also quantified for 
pH neutralised suspensions and leachates under eutrophic conditions. All experiments 
comprised four independent replicates.  
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 734 

Table 1: Element analysis of wood bottom and fly ash solids and corresponding BS EN 12457-2 leachates (100 g ash extracted with 1 L distilled 
water) with relative mobility and enrichment factors. Relative mobility of elements was calculated as the ratio of total soluble amount in 10 L 
leachate to the aqua regia extractable amount per kg; enrichment factors for solids (EFS) and for leachates (EFL) were calculated as the ratio 
between fly and bottom ash aqua regia extractable concentrations, and extract concentrations, respectively. TON: Total Oxidized Nitrogen 
(NO2 + NO3). Shown are average ± Standard Deviation (SD), n=4; no SD is given when the analyte was detected only once.  
 

 Bottom ash 
Bottom ash 
leachate 

relative 
mobility Fly ash Fly ash leachate 

relative 
mobility  EFS EFL 

  g/kg     mg/L     ppm g/kg     mg/L     ppm    
N 0.66 ± 0.24     1.72 ± 0.18      2.62  

NH3-N    <0.5       <0.5       
NO2-N    <0.1       0.63 ± 0.01    6.32 
TON    <1       6.98 ± 0.19    6.98 

P 11.8 ± 1.34 1.87 ± 0.39 1583 12.4 ± 0.49 0.08   61  1.05 0.04 
PO43-    2.19 ± 0.22     <0.5       0.23 

K 57.2 ± 9.73 1217 ± 306 212855 71.1 ± 3.48 5445 ± 320 765823  1.24 4.47 
Ca 113 ± 11.5 11.9 ± 4.46 1052 98.0 ± 5.3 437 ± 280 44636  0.86 36.6 
Mg 16.5 ± 1.86 1.65 ± 0.08 999 15.7 ± 0.67 <0.3   <191  0.95 0.18 
Na 4.32 ± 0.54 99.9 ± 16.6 231192 3.70 ± 0.06 212 ± 12.4 574425  0.86 2.13 
Fe 11.1 ± 0.97 <0.03   <27 5.05 ± 0.10 <0.03   <59  0.45  
Al 13.4 ± 1.61 0.03 ± 0.03 25 6.32 ± 0.13 1.96   3104  0.47 58.1 
Mn 11.9 ± 1.27 0.02   14 10.5 ± 0.44 <0.01   <10  0.88  
Cl    111 ± 41.3     1243 ± 20.8    11.2 

SO4    297 ± 12.4     4133 ± 92.4    13.9 
  mg/kg     μg/L       mg/kg     μg/L          

Sb    5.12 ± 1.43     <20       
As 2.66 ± 0.15 23.4   87887 5.44 ± 0.05 8.05   14798  2.04 0.34 
Ba 1228 ± 64.0 19.2 ± 4.19 157 72.9 ± 12.0 247 ± 116 33938  0.06 12.9 
Be 0.35 ± 0.03 <20   <566572 0.16 ± 0.02 <20   <1277955  0.44  
B 105 ± 6.28 2015 ± 430 192042 192 ± 1.71 789 ± 901 41147  1.83 0.39 

Cd 1.62 ± 0.13 0.19   1146 9.67 ± 0.25 <2   <2069  5.99  
Cr 19.0 ± 1.91 81.7 ± 17.4 42930 14.0 ± 0.60 254 ± 21.0 181900  0.73 3.11 
Co 8.75 ± 0.59 1.04   1189 6.24 ± 0.17 <20   <3208  0.71  
Cu 84.0 ± 26.0 8.89 ± 3.89 1058 76.5 ± 1.3 4.26 ± 0.31 557  0.91 0.48 
Pb 11.5 ± 1.53 <2   <1743 38.5 ± 0.90 4.45 ± 0.29 1156  3.35 2.22 
Li 12.1 ± 1.10     7.40 ± 0.31      0.61  
Hg <0.2   <0.01   <500 <0.2   <0.01   500    
Mo <1   104 ± 24.9 <1041000 1.68   243 ± 43.5 1447917   2.34 
Ni 17.0 ± 1.26 <1   <589 12.9 ± 0.21 <10   <7737  0.76  
Se 3.01 ± 0.68 8.53   28362 4.18 ± 0.75 99.5   238181  1.39 11.7 
Ag <1       1.41          
Sr 817 ± 83.5 73.2 ± 21.0 896 725 ± 83.5 1858 ± 1013 25649  0.89 25.4 
Tl 3.95   <1   <2532 4.23   <10   <23641  1.07  
Sn 1.45   <2   <13793 1.72   <40   <232558  1.19  
Ti 719 ± 49.5 8.15 ± 1.03 113 290 ± 24.6 78.1 ± 12.5 2691  0.40 9.58 
V 18.6 ± 1.49 183 ± 13.2 98522 10.9 ± 0.24 45.5   41935  0.58 0.25 
Zn 325 ± 25.2 5.29   163 1833 ± 58.0 3296 ± 2191 17989  5.64 623 
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Figure 2: Biomass and frond growth rates of Lemna minor exposed to wood ash solid suspensions under two trophic regimes; bottom ash (B-C), fly ash (E-F); ultra-738 
oligotrophic medium (empty bars) and Hutner’s growth medium (grey bars). Also shown are electrical conductivity and pH (day 0) of ultra-oligotrophic medium 739 
(empty circles and squares, respectively) and half-strength Hutner’s growth medium (grey circles and squares, respectively) supplemented with bottom ash (A) or 740 
fly ash (D). Biomass and frond growth rates were normalized to Hutner’s control growth rates (0.363±0.053 day-1 and 0.277±0.043 day-1; respectively), shown as 741 
100%, dashed line with grey SD range. Also shown is the growth rate on distilled water without added ash (dashed line with clear SD range). P=0.05; p=0.01; 742 
p=0.001 743 
 744 

  745 
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Figure 3: Biomass and frond growth rates of Lemna minor exposed to wood ash leachate dilutions under two trophic regimes; bottom ash (B-C), fly ash (E-F); ultra-748 
oligotrophic medium (empty bars) and half-strength Hutner’s growth medium (grey bars). Also shown are electrical conductivity and pH (day 0) of ultra-oligotrophic 749 
medium (empty circles and squares, respectively) and half-strength Hutner’s growth medium (grey circles and squares, respectively) supplemented with bottom (A) or 750 
fly ash (B) leachate. Biomass and frond growth rates were normalized to Hutner’s control growth rates (0.363±0.053 day-1 and 0.277±0.043 day-1; respectively), shown 751 
as 100%, dashed line with grey SD range. Also shown is the growth rate on distilled water without added ash (dashed line with clear SD range). P=0.05; p=0.01; 752 
p=0.001 753 
 754 



28/31 

 755 
 756 

0

50

100

150

0.6
25 1.2

5 2.5
5 10 20 40 80

**
*

***%
 fr

on
d 

gr
ow

th
 r

at
e

0

5000

10000

15000

2

4

6

8

0.6
25 1.2

5 2.5
5 10 20 40 80 16

0

El
ec

tr
ic

al
 c

on
du

ct
iv

ity
[ µ

S ⋅
cm

-1
]

pH
 of test m

edium
 (d0)



0

50

100

150

0.6
25 1.2

5 2.5
5 10 20 40 80 16

0

***
***

***

***

*

***
***

***
**

Ash concentration [g/L]

%
 b

io
m

as
s 

gr
ow

th
 r

at
e

0

50

100

150

0.6
25 1.2

5 2.5
5 10 20 40 80 16

0

*
***

***
** ***

** ***
***

*
**

%
 fr

on
d 

gr
ow

th
 r

at
e

0

5000

10000

15000

2

4

6

8

0.6
25 1.2

5 2.5
5 10 20 40 80 16

0

El
ec

tr
ic

al
 c

on
du

ct
iv

ity
[ µ

S ⋅
cm

-1
]

pH
 of test m

edium
 (d0)



0

50

100

150

0.6
25 1.2

5 2.5
5 10 20 40 80

***
***

*

Ash equivalents [g/L]

%
 b

io
m

as
s 

gr
ow

th
 r

at
e

A

D

B C

E F



29/31 

Figure 4: Biomass and frond growth rates of Lemna minor exposed to neutralized wood bottom (light grey bars) and fly ash (striped bars) solid suspensions (B-C) 757 
and leachate dilutions (E-F) in Hutner’s growth medium. Also shown are electrical conductivity and pH (day 0) of half strength Hutner’s growth medium (circles 758 
and squares, respectively) supplemented with neutralized ash suspensions (A) or neutralized leachate (D). Biomass and frond growth rates were normalized to 759 
Hutner’s control growth rates (0.370±0.040 day-1 and 0.255±0.061 day-1; respectively), shown as 100%, dashed line with grey SD range. P=0.05; p=0.01; p=0.001  760 



30/31 

 761 

 762 
 763 

Table 2: Effect Concentration (EC10 and EC50) values with 95% CI calculated for the inhibition of biomass and frond growth rate in respective media 

  Bottom ash (95% CI) 
Bottom ash leachate (95% 

CI) Fly ash (95% CI) Fly ash leachate (95% CI) 

  g/L g aeq/L g/L g aeq/L 

native sample in distilled water (ultra-oligotrophic) medium 

Biomass        
growth rate 

EC10 28.5 (16.3-50) 25.9 (13.5 -49.5) 6.44 (3.15-13.1) 8.03 (4.79-13.4) 

EC50 35.4 (22.3-56.2) 43.9 (34.3-56.3) 14.2 (10.7-18.7) 12.5 (8.67-17.9) 

Frond               
growth rate 

EC10 41.9 (22.1-79) >40 8.03 (1.53-42.2) >10 

EC50 52 (33.2-81.5) <80 18.1 (12.1-27.1) <20 

native sample in Hutner's (eutrophic) medium              

Biomass        
growth rate 

EC10 10.1 (3.67-28.1) 25 (8.18-76.6) 8.6 (4.28-17.3) 6.92 (3.25-14.7) 

EC50 50.9 (33-78.5) 33.1 (20.2-54.2) 20.5 (15.6-27.1) 17.8 (13.2-24.1) 

Frond               
growth rate 

EC10 13.3(5.1-34.3) 14.8 (9.82-22.2) 8.6 (4.28-17.2) 8.33 (3.87-17.9) 

EC50 42.9 (30.8-60) 36.9 (29.7-45.7) 21.8 (16.8-28.3) 19.6 (14.1-27.2) 

neutralized sample Hutner's medium              

Biomass        
growth rate 

EC10 9.7 (3.56-26.5) 51.6 (27.7-96.4) 4.49 (1.06-19.1) 26.7 (13.6-52.3) 

EC50 74.4 (56.7-97.6) 87.9 (69-112) 37.1 (25.953.3) 61.6 (48.984.5) 

Frond               
growth rate 

EC10 9.71 (3.56-26.5) 35.7 (12.8-99.1) 4.5 (1.06-19.1) 24.8 (12.4-49.7) 

EC50 68.3 (48.2-96.9) 94.2 (56.7-156) 36.7 (22.2-60.6) 60.8 (44.3-83.3) 
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