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Appendix A: Diagonalization of the transverse Ising model

The quantum Ising model in a transverse field describes
a lattice of spin-1/2 particles that interact with their nearest-
neighbours via ferromagnetic coupling along thez-axis and
with an external field applied along thex-axis. For a spatially
homogeneous one-dimensional lattice ofN spins in a uniform
field, the Hamiltonian is

H = −
N
∑

j=1

λσx
j + σz

j σ
z
j+1, (S-1)

where λ is a dimensionless parameter that measures the
strength of the external field and the Pauli spin-1/2 operators
are defined with periodic boundary conditionsσα

N+1 = σα
1

(α = x, y, z). Under the canonical transformationσx
j →

σz
j , σ

z
j → −σx

j ∀j the Hamiltonian Eq. (S-1) becomes

H = −
N
∑

j=1

λσz
j + σx

j σ
x
j+1, (S-2)

The spin operators are mapped to a spinless fermionic opera-
tors by a Jordan-Wigner transformation, thus

cj =
1

2

j−1
∏

l=1

σz
l (σ

x
j + iσy

j ),

c†j =
1

2

j−1
∏

l=1

σz
l (σ

x
j − iσy

j ).

Here, the operatorscj (c†j) annihilate (create) a Jordan-Wigner
fermion at thejth lattice site and obey the usual fermionic anti-
commutation relations. This in turn allows the definition of
the parity operator

Π :=
N
∏

j=1

[

1− 2c†jcj

]

,

which measures whether the number of fermions in the chain
is even (Π = 1) or odd (Π = −1). Following the Jordan-
Wigner transformation the Hamiltonian Eq. (S-2) factorises

into two orthogonal parity subspaces,

H = P+H+P+ + P−H−P−.

Here,P± = (1/2) (1± Π) are the projectors onto the even
(+) and odd (-) parity subspaces and

H± = −λ −
N
∑

j

(

2λc†jcj − (c†jcj+1 + cj+1cj + h.c.)
)

,

(S-3)
are the even and odd parity subspace contributions to the
Hamiltonian. The even and odd parity subspace Hamiltoni-
ans are identical with the exception that inH+ we impose
the boundary conditioncN+1 = −c1 and inH− we impose
cN+1 = c1. Note that the parity of the chain is conserved
([H±,Π] = 0); the Hamiltonian in Eq. (S-3) does not mix the
parity subspaces. Initialising the system in a state with zero
projection onto, say, the odd subspace then restricts the dy-
namics to the even subspace only. For an initial Gibbs state,
the system is a mixture of positive and negative parity states
and both subspaces must be accounted for. Despite this we
restrict our attention to the even parity subspace only. This
treatment becomes exact in the thermodynamic limit where
boundary effects become negligible. This is the correct limit
in which to discuss phase transitions, however a discussionof
the fluctuation theorems is more suited to a finite chain. The
analysis of a chain of arbitrary length in which both parity sub-
spaces are accounted follows from a straightforward extension
of what is presented here at the expense of more cumbersome
expressions and provides little extra insight. Note that, in the
main text, the fact that we consider the even subspace only is
denoted by the summation over the set of positive parity pseu-
domomentak ∈ K+ in all relevant expressions. In the main
text the ‘+’ superscript that is used here to explicitly distin-
guish between the positive and negative parity subspaces is
dropped for the sake of brevity.

The diagonalisation of the Hamiltonian is completed by
application of a Fourier transformation followed by a Bo-
golyubov transformation, which factorizes over the spaces
with different pseudomomentumk. For the positive parity
contribution to the Hamiltonian the Fourier transformation is



2

defined as

cj =
e−iπ/4

√
N

∑

k∈K+

cke
ikj,

where the values of pseudomomentum are

K+ =

{

k = ± π

N
(2n− 1), n = 1, . . . ,

N

2

}

.

After this transformation the Hamiltonian Eq. (S-3) takes the
form

H+ =
∑

k∈K+

2 (λ− cos(k)) c†kck+sin(k)(c†kc
†
−k+c−kck)−λ.

Note that all the terms preserve pseudomomentum so that the
remaining step of the diagonalization can be performed within
each subspace with assigned value of±k. The last step is the
Bogolyubov transformation

c±k = γ±k cos

(

φk

2

)

∓ γ†∓k sin

(

φk

2

)

, (S-4)

where

cos(φk) =
λ− cos(k)

√

sin2(k) + [λ− cos(k)]2
,

sin(φk) =
sin(k)

√

sin2(k) + [λ− cos(k)]2
.

(S-5)

With this, the Hamiltonian can be written in the form

H+ =
∑

k∈K+

ǫk

(

γ†kγk − 1

2

)

,

with the dispersion relation

ǫk = 2

√

sin2(k) + [λ− cos(k)]2.

Note thatǫk = ǫ−k > 0 and that the total spectrum is sym-
metric with respect to the zero of energy.

Appendix B: Connecting the initial and final Hamiltonians

To evaluate the characteristic function explicitly, the eigen-
states of the initial HamiltonianH+(λ0) must be written in
terms of the eigenstates of the final HamiltonianH+(λτ ). In-
verting Eq. (S-4) and its hermitian conjugate it is possibleto
relate the sets of pre- and post-quench Bogolyubov operators.
Hence,

γ̃k = γk cos

(

∆k

2

)

+ γ†−k sin

(

∆k

2

)

,

γ̃−k = γ−k cos

(

∆k

2

)

− γ†k sin

(

∆k

2

)

.

Here∆k = φ̃k−φk and the expressions for the pre- and post-
quench Bogolyubov angles,φk and φ̃k, have the form given

in Eq.(S-5) withλ = λ0 andλτ respectively. Using this, the
vacuum states in the two representations are related by

|0k, 0−k〉 =
(

cos

(

∆k

2

)

+ sin

(

∆k

2

)

γ̃†k γ̃
†
−k

)

∣

∣0̃k, 0̃−k

〉

.

(S-6)
The expressions for higher energy eigenstates|nk, n−k〉 are
then obtained by applying the appropriate creation operators
to Eq. (S-6).

Appendix C: Calculation of the average work

The calculation for the average work done on a quenched
transverse Ising model takes advantage of the factorization of
H+(λ0) andH+(λ0) into blocks of paired pseudomomenta
with labels±k. We start by writing the density matrix of the
system asρ =

⊗

k>0 ρ±k, so that

〈W 〉 = Tr

[

∑

k>0

(

H+
±k(λτ ) −H+

±k(λ0)
)

⊗

k′>0

ρ±k′

]

, (S-7)

where H+
±k(λτ ) = ǫk(λτ )(γ̃

†
k γ̃k + γ̃†−k γ̃−k − 1) and

H+
±k(λ0) = ǫk(λ0)(γk

†γk + γ−k
†γ−k − 1). With a little

effort, Eq. (S-7) can be rewritten as

〈W 〉 =
∑

k>0

Tr

[

(

H+
±k(λτ )−H+

±k(λ0)
)

∏

k′>0

σ±k′

]

, (S-8)

where,

σ±k =
∑

n±k=0,1

|nk, n−k〉〈nk, n−k|
e−βǫk(λ0)(nk+n−k−1)

4 cosh2(βǫk(λ0)/2)
.

Noting that Tr
[
∏

k′>0 σ±k′

]

= 1, Eq.(S-8) reduces to the
form 〈W 〉 = ∑

k>0〈Wk〉, with

〈Wk〉 = Tr
[

(H+
±k(λτ ) −H+

±k(λ0))σ±k

]

.

In order to calculate the trace we note that we need only
keep the terms ofH+

±k(λτ ) that are diagonal in the basis of
H+

±k(λ0);

[

H+
±k(λτ )

]

diag
= ǫk(λτ ) cos(∆k)(γk

†γk + γ−k
†γ−k − 1).

With this,〈Wk〉 takes form

〈Wk〉 = (cos(∆k)ǫk(λτ )− ǫk(λ0))Tr [(nk + n−k − 1)σ±k] ,

which leads straightforwardly to the expression for the aver-
age work in the main text.


