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Appendix A: Diagonalization of the transverse Ising model into two orthogonal parity subspaces,
The quantum Ising model in a transverse field describes H=P'H"P"+P H P~
a lattice of spin-1/2 particles that interact with their ress-
neighbours via ferromagnetic coupling along thexis and
with an external field applied along theaxis. For a spatially
homogeneous one-dimensional latticé\ogpins in a uniform

N
field, the Hamiltonian is Y =-2-Y (2ch.cj — (clejr1 + cjpacs + h.c.)) ,
J

Here, P* = (1/2) (1 £1I) are the projectors onto the even
(+) and odd (-) parity subspaces and

N
H=— Ao +o0io%,, S-1 (S-3)
Z I D are the even and odd parity subspace contributions to the

Hamiltonian. The even and odd parity subspace Hamiltoni-
where X is a dimensionless parameter that measures thgns are identical with the exception that i~ we impose
strength of the external field and the Pauli spjf2-operators  the boundary conditiony; = —c; and in H~ we impose
are defined with periodic boundary condition§,, = of  ¢y,; = ¢;. Note that the parity of the chain is conserved
(o = w,y,2). Under the canonical transformatietf —  ([g* 1I] = 0); the Hamiltonian in Eq[{S13) does not mix the

j=1

05,05 — —of Vj the Hamiltonian Eq[(S11) becomes parity subspaces. Initialising the system in a state wito ze
N projection onto, say, the odd subspace then restricts the dy
H—_ Z \oF +atot (s-2) hamics to the even subspace only. For an initial Gibbs state,

the system is a mixture of positive and negative parity state
_ _ o and both subspaces must be accounted for. Despite this we
The spin operators are mapped to a spinless fermionic opereestrict our attention to the even parity subspace only.s Thi

Jj=1

tors by a Jordan-Wigner transformation, thus treatment becomes exact in the thermodynamic limit where
i1 boundary effects become negligible. This is the correcitlim
1 20 @ sy in which to discuss phase transitions, however a discusgion
cj——Hol(aj—i-w-), ) . ) . ;
2 J the fluctuation theorems is more suited to a finite chain. The

;ill analysis of a chain of arbitrary length in which both pariiips

o = l H o7 (0% — io? spaces are accounted follows from a straightforward ekdans

= [ (0] —io?). _

72 of what is presented here at the expense of more cumbersome
expressions and provides little extra insight. Note thathe

Here, the operatos (c;-) annihilate (create) a Jordan-Wigner main text, the fact that we consider the even subspace only is

fermion at thej™ lattice site and obey the usual fermionic anti- denoted by the summation over the set of positive paritypseu

commutation relations. This in turn allows the definition of domomenta: € K in all relevant expressions. In the main

=1

the parity operator text the 4+’ superscript that is used here to explicitly distin-
N guish between the positive and negative parity subspaces is
m— H [1 _ 2cT.c-] dropped_forthe §ak_e of brevity. o
1 IAp The diagonalisation of the Hamiltonian is completed by
J:

application of a Fourier transformation followed by a Bo-
which measures whether the number of fermions in the chaigolyubov transformation, which factorizes over the spaces
iseven {I = 1) or odd (I = —1). Following the Jordan- with different pseudomomentura. For the positive parity
Wigner transformation the Hamiltonian Ef. (5-2) factosise contribution to the Hamiltonian the Fourier transformatis



2

defined as in Eq.[S=B) withA = X\ and )\, respectively. Using this, the
i/ vacuum states in the two representations are related by
- iky
Cj Z Cke ’
VN A AR s\ . -
kEK+ |0k, 0_g) = (cos (7]6) + sin (Tk) vlka> ’Ok, 0_k).
where the values of pseudomomentum are (S-6)
- N The expressions for higher energy eigenstétgsn_ ) are
Kt = {k =+—(2n-1), n=1,..., —} then obtained by applying the appropriate creation opesato
N 2
to Eq. [S=6).
After this transformation the Hamiltonian Ef. ($5-3) takies t
form
Appendix C: Calculation of the average work
H = " 2(\ = cos(k)) cfextsin(k) (cfel , +c_rer)—A.
keK+

The calculation for the average work done on a quenched
Note that all the terms preserve pseudomomentum so that thignsverse Ising model takes advantage of the factorizafio
remaining step of the diagonalization can be performediwith H*()\o) and H"(\o) into blocks of paired pseudomomenta
each subspace with assigned value-éf The last step is the with labels£k. We start by writing the density matrix of the

Bogolyubov transformation system ap = ).~ o P+ SO that
¢k) to (@)
Cik = cos | — sin | — |, S-4
B ( 5 ) Fomesin( 5 Ay = [Z (H1, () = HE (%) @ pik/] L (8
k>0 k’>0
where
X — cos(k) where Hf,(\,) = e(\)G A + 77,5« — 1) and
cos(@r) = ’ Ht (M) = ex(Mo)(veT + v-rfrv—x — 1). With a little
\/sin?(k) + [\ — cos(k)]? fiort, Eq. [S) can be rewrittenas
. (s-5) effort, g. [5=¥) can be rewritten as
. sin(k)
sin(¢y) = - .
/sint(k) + A — cos(k)]? (W) =" Tr l(HL(AT) - HE, () T] aik/] BNEE:)
With this, the Hamiltonian can be written in the form h0 re0
1 where,
HT = T — 2
kezlﬁ €k (%Wc 2) ’ Z | y |€—55k()\0)(nk+n7;€*1)
Otk = Ny M) (Nl Nk 3 .
with the dispersion relation nie=0,1 4 cosh™(Ber (o) /2)
er = 24/sin2(k) + [\ — cos(k)]2. Noting that Tr[[T,., o—ik/] = 1, Eq.[S-8) reduces to the
form (W) = >, _(Wk), with
Note thate, = e_; > 0 and that the total spectrum is sym-
metric with respect to the zero of energy. (W) = Tr[(HE,(Ar) — HE (Xo))os] -
In order to calculate the trace we note that we need only
Appendix B: Connecting the initial and final Hamiltonians keep the terms OHIk()‘T) that are diagonal in the basis of
HIkO‘O)i

To evaluate the characteristic function explicitly, thgesi-
states of the initial Hamiltonia#/ +(\g) must be written in [HE, (M) o= en(Ar) cos(AR) (v + vk Ty—r = 1).
terms of the eigenstates of the final Hamilton#r (\,). In- dag

verting Eq. [[S-#) and its hermitian conjugate it is posstble \y;tp this, (W},) takes form
relate the sets of pre- and post-quench Bogolyubov opatator

Hence, (W) = (cos(Ap)er(Ar) — € (X)) Tr[(ng +n_p — owg],
Ak = Yk COS (%) + yik sin (%) , which leads straightforwardly to the expression for therave

age work in the main text.
. (Ak ) o (Ak )
Y—k = Y—k COS 5 — 7, sin 5 )

HereA, = &k — ¢ and the expressions for the pre- and post-
guench Bogolyubov angles,. and ¢, have the form given



