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Creation of a Complex Butterfly Attractor Using a Novel
Lorenz-Type System

A. S. Elwakil, S. Özŏguz, and M. P. Kennedy

Abstract—A novel Lorenz-type system of nonlinear differential equa-
tions is proposed. Unlike the original Lorenz system, where the chaotic dy-
namics remain confined to the positive half-space with respect to the
state variable due to a limiting threshold effect, the proposed system en-
ables bipolar swing of this state variable. In addition, the classical set of
parameters( ) controlling the behavior of the Lorenz system are re-
duced to a single parameter, namely . Two possible modes of operation
are admitted by the system; switching between these two modes results in
the creation of a complex butterfly chaotic attractor. Numerical simulations
and results from an experimental setup are presented.

Index Terms—Chaos, chaotic oscillators, Lorenz system.

I. INTRODUCTION

The classical Lorenz system is described by [1]

_X = a(Y �X) (1a)
_Y = (b� Z)X � Y (1b)
_Z = XY � cZ (1c)

wherea; b, andc are constants and the two multiplier-type nonlineari-
ties (XY andXZ) are responsible for the generation of chaos. The pro-
jection of the chaotic attractor observed form this system in theX�Z

plane is widely-known as the butterfly attractor. The dynamics of the
above equations have been studied in detail by several researchers (see
for example [2]) and have been recently revisited in [3] and [4], where
new sets of equations (Chen’s system), not topologically equivalent to
the original system, have been proposed. Nevertheless, these new sets
also rely on multiplier-type nonlinearities. Due to some unique features
of butterfly chaos, attempts have been made to utilize it as a core en-
gine for a number of chaos-based applications [5], [6].

In [7] and [8], attempts to remove the two multipliers from this
system were reported. It was particularly shown in [8] that the contri-
bution to the chaotic dynamics of multiplying any two state variables
can be emulated via a bipolar voltage-controlled switching constant.
The resulting system is also not topologically equivalent to the Lorenz
system, but of similar qualitative dynamics. On arriving to this system,
the procedure followed in [8] stressed the fact that the butterfly attractor
should lie only in the positive half-space with respect to theZ state
variable, similar to the situation in the original Lorenz system, and in-
deed in the systems of [3], [4] and [7]. This constraint is inherited from
(1b) due to the positive thresholdb. Simply removingb from (1b) is not
possible.

In this short brief, a novel Lorenz-type system, which is free from
the positiveZ constraint, is proposed. Not only has the threshold con-
stantb been removed from (1), but also the damping constantc. Hence,
the system is controlled via the remaining single parametera. The pro-
posed system acquires two possible modes of operation; the switching
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S. Özŏguz is with the Istanbul Technical University, Faculty of Electrical-
Electronics Engineering, Maslak, Istanbul 80626, Turkey.

M. P. Kennedy is with the Department of Microelectronic Engineering, Uni-
versity College Cork, Cork, Ireland.

Publisher Item Identifier S 1057-7122(02)03120-3.

Fig. 1. Two-wing butterfly chaotic attractors obtained via numerical
integration of (2) witha = 0:55: (a)S(�;+) mode and (b)S(+;�) mode.

action between these two modes creates a complex(four-wing) but-
terfly attractor. We validate our proposals via numerical simulations
and by constructing an experimental electronic circuit.

II. PROPOSEDSYSTEM

The following set of differential equations are proposed:

_X = a(Y �X) (2a)
_Y� = �KZ (2b)
_Z� = �jXj � 1 (2c)

and

K =
1; X � 0

�1; X < 0
: (2d)

Here, the required range fora is 0 < a < 1. As compared to (1),
note that the multiplierXY has been replaced with the absolute value
function jXj and thatK is effectively equal tosgn(X).

1057-7122/02$17.00 © 2002 IEEE
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Fig. 2. Complex (four-wing) butterfly attractor (a = 0:55 andT = 250T ).

The system described by (2) is a dual system with two comple-
mentary modes of operation. The first mode, in which_Y = _Y

�

and
_Z = _Z+ is denotedS(�;+) while the second mode, where_Y = _Y+

and _Z = _Z
�

, is denotedS(+;�). It is clear from (2) that there
are two equilibrium points for this system given by(x0; y0; z0) =
(�1;�1; 0). Note thatjx0j = 1 and hence from (2c)_ZjX=x = 0.
Therefore, the threshold effect performed byb in (1b) is now performed
by jXj in (2c). In particular, and considering theS(�;+) mode, for
jXj < 1; Z switches to the negative half-space while forjXj > 1; Z
switches to the positive-half space. Therefore, unlike (1b), where it is
not the sign ofZ but the sign of(b�Z)which changes at the threshold,
(2c) guarantees a change of the sign ofZ, ultimately removing the
constraint inherited from the Lorenz system. In conclusion, the thresh-
olding effect has been incorporated into one of the nonlinearities of the
system (2).

To highlight the mechanism by which the proposed system func-
tions, consider theS(�;+) mode in the range0 < X < 1 under
steady-state conditions. In this case_Z is negative while_Y is positive.
Recalling (2a), it is clear thatY will eventually exceedX changing
the sign of _X from negative to positive. Consequently,X will grow to
hit the threshold valueX = 1 and exit to the rangeX > 1. When this
happens,_Z will become positive and hence_Y becomes negative. Thus,
Y will start to decrease until it is less thanX turning _X back negative
and forcingX to re-enter the range0 < X < 1. Similar action takes
place in the negativeX half-space and in the dual systemS(+;�).
This alternating sign change mechanism provides necessary stretching
and folding to generate chaos. Note that such mechanism is not pos-
sible in the systemsS(+;+) or S(�;�) whereX andY decay with
time whileZ diverges unbounded.

In Fig. 1(a) and (b), projections of the butterfly attractor in theX�Z
plane are shown for the two modesS(�;+) andS(+;�) respectively.
Here,a was set to 0.55. The characteristic equation of the system in
both modes is identical and given by:�3+a�2�aK2 = 0. The set of
eigenvalues corresponding to Fig. 1 are thus(�1:05; 0:25� j0:6795)
at both equilibrium points. Since the eigenvalue pattern is independent
of the mode in which the system operates, this suggests that one can
utilize an external source to force switching to occur betweenS(�;+)
andS(+;�). The result in this case is the complex(four-wing) but-
terfly attractor shown in Fig. 2. Here, a pulse train with periodTF =
250TS , whereTS is the normalized time constant of (2) (here,TS = 1),

Fig. 3. Observations from altered versions of (2): (a)Z-symmetrical left-half
two-wing attractor and (b) complex four-wing withK = sgn(Y ) instead of
K = sgn(X).

was used to force the switching. The conditionTF � TS should hold
in order to allow the system to spend sufficient time in one mode before
switching to the other. If one considers the pulse train as a sequence of
binary data, then the one’s and zero’s will be encrypted by theS(�;+)
andS(+;�) modes, respectively.

It is clear that the complex four-wing attractor is symmetrical with
respect toX = 0 andZ = 0 while the two-wing attractors of Fig. 1
are symmetrical with respect toX = 0. Thus, one asks if it is possible
to obtain two-wing attractors which are symmetrical with respect to
Z = 0. The answer to this question is affirmative, as shown in Fig. 3(a),
which represents a two-wing attractor corresponding to the left-half of
the four-wing attractor in Fig. 2. To obtain theseZ-symmetrical dy-
namics, (2b) has to be modified to read:_Y� = �KZ+m, wherem is
a constant. The casem = 0 enables us to observe the full complex at-
tractor while the casem = �1 enables us to observe only its two-wing
left-half (see Fig. 3(a)). Withm = 1, the mirror image of Fig. 3(a)
aroundX = 0 is obtained corresponding to the right-half two-wing
attractor.
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Fig. 4. Experimental realization of the proposed system.

Fig. 5. Experimental observations. (a) Two-wing attractor for theS(�;+) mode (X axis: 0.35 V/div,Y axis: 0.3 V/div). (b) For theS(+;�) mode (X axis:
0.35 V/div,Y axis: 0.3 V/div). (c) Complex (four-wing) butterfly (X axis: 0.35 V/div,Y axis: 0.4 V/div). (d)Z-symmetrical right-half two-wing attractor(m = 1)
(X axis: 0.2 V/div,Y axis: 0.5 V.div).
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It is worth noting that the switching constantK in (2d) can be con-
trolled by the state variableY instead ofX. The resulting complex
butterfly in this case is shown in Fig. 3(b). It is also worth noting that
unlike the Lorenz-type systems of [3], [4] and [8], it is not possible to
control the damping along theZ direction in (2) and hence obtaining
smooth wing transitions is not possible.

III. EXPERIMENTAL VERIFICATION

In this section, we validate our numerical finding by constructing an
electronic circuit realizing (2).

Consider the circuit shown in Fig. 4 which involves three capacitors
(CX ; CY ; CZ), the voltages across which correspond to the three states
of the system respectively. The bilateral MOS analog switches in the
box labeledB are controlled via the outputs of two comparators which
change state following the sign ofVX . Hence, this part of the circuit
realizesK in (2d). The rest of the MOS switches in the circuit are
controlled by an external voltage sourceVP . A reference voltageVR
(see Fig. 4) is used for the whole circuit.

In the case whenVP andVR are positive valued supplies, the cir-
cuit will operate in theS(�;+) mode. Otherwise, if they are neg-
ative valued supplies, the system will operate in theS(+;�) mode.
If a symmetrical square wave signal generator is used to supply both
VP andVR, then the system will alternate equally between the two
modes. Note that the nonlinearityjXj is realized in Fig. 4 by means of
a full-wave rectifier circuit [9] composed of the four diodes and the as-
sociated op amps. The distortion effect inherent in this circuit is reduced
by choosing an appropriate value forVR. All op amps in the circuit are
current feedback op amps (CFOAS) which facilitate significantly the
circuit structure by offering current output signals from their terminals
denotedC [10]. Apart from the op amps involved in the full-wave rec-
tifier part, the rest of the op amps are configured as voltage to current
converters.

It can be verified that for the choice ofCX = CY = CZ =
C;R1 = R2 = R3 = R;Ra = R=a and by defining the quanti-
tiesX = VX=VR; Y = VY =VR; Z = VZ=VR and normalizing time
with respect toRC, Fig. 4 realizes equation set (2).

An experimental setup of the circuit was constructed using a CD4016
chip for the MOS analog switches while the comparators are LM311
chips. The CFOAS are AD844 chips and all elements were biased from
�5 V supplies.

In Fig. 5(a), theVX � VZ phase projection for the system in the
S(�;+) mode is shown. The corresponding parameters are:R = 5:1
k
, C = 1 nF,Ra = 9:27 k
 andVP = VR = 0:3 V. These values
correspond toa = 0:55 (recall (2)). By settingVR = �0:3 V, the
system switches to theS(+;�) mode, as shown in Fig. 5(b). Now, by
connecting a square wave generator to bothVP andVR, we observe the
complex (four-wing) butterfly shown in Fig. 5(c). Here, the frequency
of the source is 150 Hz whereas the center frequency of the circuit
(!0 = 1=RC) is approximately 31 kHz.

Finally, note that the op amp with the input voltageVm can be used
to add the constantm to _Y in order to realize theZ-symmetrical attrac-
tors, as discussed in Section 2. SettingVm = VR = 0:3 V (m = 1),
the right-half two-wing attractor, shown in Fig. 5(d), was observed.

It is worth noting that the box labeledA (see Fig. 4) which contains
the four diodes can be directly replaced with analog switches similar
to those in boxB and controlled by the same comparator outputs. This
replacement is expected to suite monolithic integration of the circuit;

CFOAS in MOS technology are already available [11]. We have also
tested this modified version and obtained similar results.

IV. CONCLUSION

In this brief, a novel Lorenz-type chaotic system was introduced. The
system has two modes of operation; forced switching between which
results in the creation of a complex butterfly attractor which is sym-
metrical with respect to all coordinates. We emphasize the fact that
this complex (four-wing) butterfly is a composite attractor formed of
two two-wing butterfly attractors. In turn, each two-wing attractor is
by itself a composite attractor formed of two one-wing attractors. Con-
sequently, the four-wing attractor is a compound structure; its basic
building block is the chaotic attractor corresponding only to one of its
wings. This building block attractor has a single equilibrium point and
satisfies the conditions proposed in Section IV of [8]. Its dynamics are
therefore captured by of [8, eq. (18)]. It is possible to confine the tra-
jectories of the complex attractor to any of its separate wings in the
electronic circuit of Fig. 4 by using the displacement voltageVm and
controlling the polarity of the voltage sourcesVP andVR.

REFERENCES

[1] E. N. Lorenz, “Deterministic nonperiodic flow,”J. Atmos. Sci., vol. 20,
no. 1, pp. 130–141, 1963.

[2] C. Sparrow,The Lorenz Equations: Bifurcations, Chaos, and Strange
Attractors. NewYork: Springer-Verlag, 1982.

[3] G. Chen and T. Ueta, “Yet another chaotic attractor,”Int. J. Bifurcation
Chaos, vol. 9, no. 7, pp. 1465–1466, 1999.

[4] T. Ueta and G. Chen, “Bifurcation analysis of Chen’s attractor,”Int. J.
Bifurcation Chaos, vol. 10, no. 8, pp. 1917–1931, 2000.

[5] K. M. Cuomo, A. V. Oppenheim, and S. H. Stogatz, “Synchronization
of Lorenz based chaotic circuits with applications to communications,”
IEEE Trans. Circuits Syst. II, vol. 40, pp. 626–633, Oct. 1993.

[6] O. A. Gonzales, G. Han, J. P. de Gyvez, and E. Sanchez-Sinencio,
“Lorenz-based chaotic cryptosystem: A monolithic implementation,”
IEEE Trans. Circuits Syst. I, vol. 47, pp. 1243–1247, Aug. 2000.

[7] E. H. Baghious and P. Jarry, “Lorenz attractor from differential equations
with piecewise-linear terms,”Int. J. Bifurcation Chaos, vol. 3, no. 1, pp.
201–210, 1993.

[8] A. S. Elwakil and M. P. Kennedy, “Construction of classes of circuit-
independent chaotic oscillators using passive-only nonlinear devices,”
IEEE Trans. Circuits Syst. I, vol. 48, pp. 289–307, Mar. 2001.

[9] C. Toumazou, F. J. Lidgey, and S. Chattong, “High-frequency current
conveyor precision full-wave rectifier,”Electron. Lett., vol. 30, pp.
745–746, 1994.

[10] A. M. Soliman, “Applications of the current feedback operational ampli-
fiers,” Analog Integr. Circuits Signal Proc., vol. 11, no. 11, pp. 265–302,
1996.

[11] S. A. Mahmoud and A. M. Soliman, “Novel MOS-C balanced-input bal-
anced-output filter using the current feedback operational amplifier,”Int.
J. Electron., vol. 84, no. 5, pp. 497–485, 1998.

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on March 26,2010 at 09:44:28 EDT from IEEE Xplore.  Restrictions apply. 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


