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Marine sponges (phylum Porifera) are the oldest extant metazoan animals on earth 

today and they host large populations of symbiotic microbes:  Bacteria, Archaea and 

unicellular Eukaryota. Those microbes play various ecological functions which are 

essential to the health of the host. Their functions include carbon, nitrogen and sulfur 

cycling as well as defence of the host through the production of bioactive secondary 

metabolites which protect against infection and predation. The diversity of sponge-

associated microbes is remarkable with thousands of OTUs reported from individual 

sponge species. Amongst those populations are sponge-specific microbes which may 

be specific to sponges or specific to sponge species.  

Sponges are a source of a vast array of chemical entities with many bioactive 

properties of interest to industry and pharmacology. While marine natural product 

discovery concerns many animal phyla, Porifera account for the largest proportion 

of novel compounds. Evidence suggests that many of these compounds of interest 

are the products of symbiotic microbes. 

Descriptions of sponge-associated microbial community structures has been greatly 

advanced by the development of next-generation sequencing technologies while the 

discovery and exploitation of sponge derived biocatalysts and bioactive compounds 

has increased due to developments in sequence-based and function-based 

metagenomics. 

Here we use pyrosequencing to describe the bacterial communities associated with 

two shallow, temperate water sponges namely Raspailia ramosa and Stelligera 

stuposa from Irish coastal waters and to describe the bacterial and archaeal 

communities from three individuals of a single sponge species (Inflatella pellicula) 

from two different depths in cold, deep waters in the Atlantic Ocean in Irish waters, 

including at a depth of 2900 m, a depth far greater than that of any previous 

sequence-based sponge-microbe investigation. We identified diverse microbial 

communities in all sponges and the presence of sponge-specific taxa recruiting to 

previously described sponge-specific clusters and also to novel sponge-specific 

clusters. We also identified archaeal communities which dominated sponge-microbe 

communities. We demonstrate that sponge-associated microbial communities differ 

from ambient seawater communities indicating host selection processes. 
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We used sequence-based metagenomic techniques to identify genes of potential 

industrial and pharmacological interest in the metagenomes of various sponge 

species and function-based metagenomic screening in an attempt to identify lipolytic 

and antibacterial activities from metagenomic clones from the metagenome of the 

marine sponge Stelletta normani.  

In addition we have cultured many diverse bacterial species from sponge tissues, 

many of which display antimicrobial activities against clinically relevant bacterial 

and yeast test strains. Other isolates represent novel species in the genus Maribacter 

and require emendments to the description of that genus. 
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1.1 Marine sponges 

Marine sponges (phylum Porifera) are the oldest extant metazoan animals (Figure 

1.1) with the oldest fossils dating back to ~630 million years (Maloof et al., 2010). 

Sponges are globally distributed (Figure 1.2) and are important members of all 

benthic communities. Sponges have been reported to be more abundant (area 

coverage/biomass/volume) than other benthic organisms (Meesters et al., 1991) with 

increased relative abundances with increasing depth and also sponge species 

diversity often outnumbering all other benthic species combined (Meesters et al., 

1991; Diaz & Rützler, 2001). Sponges play vital roles in marine nutrient cycling as 

important sources of dissolved inorganic nitrogen (DIN), mediated by nitrifying 

endosymbiotic microbes resulting in high concentrations (40 µM) of nitrate near the 

ocean floor (Diaz & Ward, 1997). Sponges are also important sinks and sources of 

particulate organic carbon (POC), dissolved organic carbon (DOC) and dissolved 

organic nitrogen (DON) (Diaz & Ward, 1997). 

 

Figure 1.1: Phylogeny of metazoa, adapted from Degnan et al., 2005. 

The World Porifera Database (van Soest et al., 2012) currently lists > 8,370 valid 

sponge species, which are distributed amongst 680 genera in four distinct classes; 

Calcarea, Hexactinellida, Demospongiae and the recently recognised 

Homoscleromorpha (Gazave et al., 2010). Demospongiae is by far the largest class, 

comprising ~83% of valid species (van Soest et al., 2012b). Almost all sponges are 

found in seawater, however, one suborder of Demospongiae (Spongillina) 

comprising ~250 species are freshwater sponges (van Soest et al., 2012b). 
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Figure 1.2: Global distribution of marine sponges (van Soest et al., 2012b). 

1.1.1 Sponge anatomy and physiology 

1.1.1.1 Sponge skeletons 

Porifera exhibit a wide range of morphologies, from encrusting, through branching 

to barrel types. Sponge skeletal systems are comprised of spicules which may be 

calcareous, composed of calcium carbonate (CaCO3); siliceous, composed of silicon 

dioxide (SiO2) or spongin – a collagenous protein (Figure 1.3). 

 

Figure 1.3: Sponge skeletal components (a) calcareous spicules, (b) siliceous 

spicules, (c) spongin 

(http://www.okc.cc.ok.us/biologylabs/documents/Porifera_Cnidaria/Porifera.htm). 
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The class Calcarea have calcareous spicules, Hexactinellida have siliceous spicules, 

Demospongia and Homoscleromorpha can be spiculate, with a combination of 

siliceous spicules and spongin, or aspiculate which contain spongin skeletons. 

1.1.1.2 Sponge cell types 

The sponge body is composed of very few differentiated cell types. The sponge 

epidermis (pinacoderm) is composed of pinacocyte cells interspersed with porocyte 

cells, which form a porous aquiferous system throughout the sponge body. 

Choanocyte cells line choanosome ‘chambers’, where these flagellated cells, through 

a whipping action, create a water current which flows from outside the sponge body, 

through ostia – pores in the pinacoderm, through the sponge aquiferous system and 

is expelled through the osculum (Figure 1.4). Choanocytes also produce 

spermatocytes for sexual reproduction. The sponge body is composed of a mesohyl – 

collagenous material through which archaeocytes travel. These totipotent cells play a 

role in phagocytosis of food and can also differentiate into oocytes for sexual 

reproduction or gemmules for asexual reproduction. Pinacocyte cells are also 

capable of digesting food particles while sclerocyte cells produce and excrete 

spicules.  

 

Figure 1.4: Anatomy of a marine sponge (http://universe-review.ca/R10-33-

anatomy.htm#sponges). 
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1.1.1.3 Sponge physiology 

Sponges can reproduce either sexually or asexually. Sexual reproduction is achieved 

through the differentiation of archaeocyte cells to oocytes which are released into the 

water column. When the eggs enter the aquiferous canals of a sponge of the same 

species they are transported to the choanosome where they are engulfed by 

choanocytes, fertilization occurs, the eggs develop and the larva is released to the 

water column where the motile organism searches for a suitable settlement site. In 

asexual reproduction gemmules, aggregates of archaeocytes and spicules are 

detached by the water current and settle in a dormant state until a suitable attachment 

site and favourable growth conditions are found. Dormant gemmules are known to 

be able to survive stresses such as extreme cold or lack of oxygen (Bergquist, 1998). 

Sponges do not have distinct systems or organs; with the aquiferous system serving 

the role which is analogous to the circulatory, digestive and excretory systems found 

in higher metazoans. Most adult sponges are sessile filter-feeding animals that filter 

bacteria, micro-eukaryotes and particulate matter from ambient seawater which they 

pump through the canal systems in their bodies. Oxygen is delivered to cells by 

diffusion, food is engulfed and digested by phagocytosis in the mesohyl and 

metabolic waste is removed in the constant water current throughout the body. 

Sponges can pump remarkable volumes of seawater through their bodies with reports 

of 24,000 L kg-1 day-1 in some sponge species (Taylor et al., 2007). Some sponges 

(~120 species) do not possess the aquiferous canal systems and thus are not filter 

feeders. Instead they are carnivorous, capturing prey on ‘hooks’ on the outer surface 

of the body where specialised cells migrate to the captured prey and phagocytize and 

digest the food prey. Carnivorous sponges have to date only been found in the deep 

sea (van Soest et al., 2012).  

Sponges do not possess adaptive immunity though innate immunity featuring an 

interferon-like 2’-5’ adenylate-synthetase system, a variable immunoglobin-like 

system and LPS activated kinase cascades are all present (Müller & Müller, 2003) 

and compounds with anti-microbial and anti-inflammatory properties have been 

extracted from sponge tissues. The primary producer of sponge-derived secondary 

metabolites is however still quite unclear though with many of these sponge derived 
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compounds strongly resembling compounds that are produced by microbes 

(Hentschel et al., 2012). 

1.2 Sponge associated microorganisms 

Marine sponges (Porifera) are host to microbes from all domains of life; Eukarya 

(Baker et al., 2008; Cerrano et al., 2004), Archaea (Margot et al., 2002; Webster et 

al., 2004) and Bacteria (Taylor et al., 2007). Viruses and bacteriophages have also 

been detected in sponge tissues (Lohr et al., 2005; Harrington et al., 2012). These 

close and consistent associations are thought to be based on various symbiotic 

relationships including commensalist and mutualist (Wilkinson, 1983) as well as 

parasitic (Bavestrello et al., 2007). Microbes are also a significant food source for 

marine sponges (Reiswig, 1975) which, as sessile animals, must derive their 

nutrition by active filter-feeding from ambient seawater. This water filtering activity 

results in a remarkable enrichment of microbes in sponge tissues where 108-1010 

bacteria per gram wet weight have been recorded (Lee et al., 2009). This is orders of 

magnitude more than in the surrounding water (106 ml-1). Much research interest has 

focused on the bacterial associates of marine sponges since the early work of Clive 

Wilkinson (Wilkinson, 1978) and Jean Vacelet (Vacelet & Donadey, 1977) in the 

1970s showed that bacteria comprise a significant proportion of sponge tissues.  

 

1.2.1 Sponge associated bacteria  

1.2.1.1 Culture dependent analyses 

Bacterial associates of sponges have been investigated through both culture-

dependent and culture-independent methods. Culture isolation from sponges is, like 

all other source environments, hampered by ‘the great plate anomaly’ where less 

than 1% of taxa observed through other methods, have proved amenable to 

laboratory culture through traditional or innovative means (Hentschel et al., 2012).  

Researchers have used a wide range of culture conditions (media/ incubation 

temperatures) in attempts to access as wide a variety of bacterial diversity as possible 

(Kanagasabhapathy et al., 1996; Kennedy et al., 2008; Flemer et al., 2011; Gopi et 

al., 2012; Hentschel et al., 2001; Lee et al., 2009; Margassery et al., 2012; 
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Muscholl-Silberhorn et al., 2008). Others have targeted the isolation of particular 

taxa of interest (Abdelmohsen et al., 2010; Hoffmann et al., 2010; Jiang et al., 2007; 

O’Halloran et al., 2011; Phelan et al., 2012; Radwan et al., 2010; Santos et al., 2010; 

Schneemann et al., 2010; Sun et al., 2010; Zhang et al., 2006; Zhang et al., 2008; 

Zhu et al., 2008; Webster et al., 2001; Xi et al., 2012). In addition a number of 

innovative culture isolation methods have been employed including- in the spirit of 

Winogradsky, manipulation of bacterial communities through antibiotic 

administration prior to isolation (Richardson et al., 2012), or imaginative approaches 

of liquid culturing and floating-filter culturing methodologies have been used 

(Sipkema et al., 2011) 

Despite these efforts the same bacterial phyla repeatedly appear following culture 

isolations, with members of only seven bacterial phyla (Proteobacteria, Firmicutes, 

Actinobacteria, Planctomycetes, Verrucomicrobia, Cyanobacteria and 

Bacteroidetes) (Taylor et al., 2007) to date being isolated in culture from sponge 

tissues; despite the observation that >30 phyla or candidate phyla can be found in 

close association with sponges through molecular methods (Hentschel et al., 2012). 

Notwithstanding this, diverse novel bacterial taxa are regularly isolated from sponge 

species worldwide (Table 1.1). 

1.2.1.2 Culture independent analyses 

1.2.1.2.1 Microscopy 

The presence of bacteria in the mesohyl of sponges was first confirmed by Lévi and 

Porte in the early 1960s (Wilkinson, 1978) using an electron microscope (EM). 

Subsequently, EM studies reported various cell types, including Cyanobacteria, in 

sponge tissues (Vacelet, 1971) and later still dense bacterial cell populations in 

sponge mesohyl tissues (Vacelet and Donadey, 1977) were estimated to comprise 

30% of the sponge biomass. Magnino et al. used scanning electron microscopy 

(SEM) to report, in 1999, the presence of unicellular cyanobacteria and non-

photosynthetic filamentous cyanobacteria in the tissues of Theonella swinhoei 

(Magnino et al., 1999). 
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Genus/species Phylum Host Reference 

Desulfoluna spongiiphila Proteobacteria (� ) Aplysina aerophoba Ahn et al., 2009 

Kangiella spongicola Proteobacteria (� ) Chondrilla nucula Ahn et al., 2010 

Fulvitalea axinellae Bacteroidetes Axinella verrucosa Haber et al., 2012 

Spongiibacter marinus Proteobacteria (� ) Haliclona sp. Graeber et al., 2008 

Spongiispira norvegica Proteobacteria (� ) Isops phlegraei Kaesler et al., 2008 

Rubritalea squalenifaciens Verrucomicrobia Halichondria okadai Kasai et al., 2007 

Planococcus plakortidis Firmicutes Plaktoris simplex Kaur et al., 2012 

Streptomyces tateyamensis Actinobacteria Haliclona sp. Khan et al., 2010 

Winogradskyella poriferorum Bacteroidetes Lissodendoryx isodictyalis Lau et al., 2005 

Fabibacter halotolerans Bacteroidetes Tedania ignis Lau et al., 2006 

Roseivirga spongicola Bacteroidetes Tedania ignis Lau et al., 2006 

Stenothermobacter spongiae Bacteroidetes Lissodendoryx isodictyalis Lau et al., 2006b 

Gillisia myxillae Bacteroidetes Myxilla incrustans Lee et al., 2006 

Shewanella irciniae Proteobacteria (� ) Ircinia dendroides Lee et al., 2006b 

Thalassococcus halodurans Proteobacteria (� ) 
Halichondria 

panicea 
Lee et al., 2007 

Marinobacter xestospongiae 

 
Proteobacteria (� ) Xestospongia testudinaria Lee et al., 2012 

Leptobacterium flavescens Bacteroidetes Clathria eurypa Mitra et al., 2009 

Salegentibacter agarivorans Bacteroidetes Artemisina sp. 
Nedashkovskaya et al., 

2006 

 
Endozoicomonas numazuensis 

Proteobacteria (� ) Haliclona��
�  Nishijima et al., 2011 

Tsukamurella spongiae Actinobacteria ? Olson et al., 2007 

Pseudovibrio axinellae Proteobacteria (� ) Axinella dissimilis O’Halloran et al., 2012 

Mycobacterium poriferae Actinobacteria Halichondria bowerbanki Padgitt & Moshier, 1987 

Saccharopolyspora cebuensis Actinobacteria Haliclona sp. 
Pimentel-Elardo et al., 

2008 

Streptomyces axinellae Actinobacteria Axinella polypoides 
Pimentel-Elardo et al., 

2009 

Pseudomonas pachastrellae Proteobacteria (� ) Pachastrella sp., Romanenko et al., 2005 

Lysobacter spongiicola Proteobacteria (� ) Pachastrella sp. Romanenko et al., 2008 

Rubritalea marina Verrucomicrobia Axinella polypoides Scheuermeyer et al., 2006 

Marinoscillum pacificum Bacteroidetes ? Seo et al., 2009 

Vibrio caribbeanicus 

 
Proteobacteria (� ) 

Scleritoderma cyanea 

 
Hoffmann et al., 2012 

Shewanella spongiae Proteobacteria (� ) ? Yang et al., 2006 

Spongiibacterium flavum Bacteroidetes Halichondria oshoro Yoon & Oh, 2012 

Rubritalea spongiae Verrucomicrobia ? Yoon et al., 2007 

Aquimarina spongiae Bacteroidetes Halichondria oshoro Yoon et al., 2010 

Formosa spongicola Bacteroidetes Hymeniaciden flavia Yoon and Oh., 2010 

Table 1.1: Novel bacteria isolated from marine sponges 

The development of fluorescence in situ hybridisation (FISH) allowed subsequent 

investigators to identify particular bacterial taxa and their spatial distribution within 

sponge tissues by designing probes to target particular 16S rRNA genes. This 

allowed for the identification of Cyanobacteria (Ridley et al., 2005; Pfannkuchen et 
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al., 2010) Actinobacteria, � - and � -Proteobacteria, Bacteroidetes and 

Planctomycetes (Webster et al., 2001) in sponges and also demonstrated the vertical 

transmission of eubacteria and archaea in sponge larvae (Sharp et al., 2007). 

1.2.1.2.2 16S rRNA clone libraries 

The development of the polymerase chain reaction (PCR) along with molecular 

cloning techniques allowed, for the first time; very detailed descriptions of the 

species’ composition of unculturable sponge-associated bacterial communities as 

well as explorations of other aspects of sponge microbial ecology to be undertaken. 

The bacterial community structures in many sponges have to date been elucidated 

(Webster et al., 2004;  Erwin et al., 2011; Cassler et al., 2008;  Kennedy et al 2008b; 

Zhu et al., 2008; Hardoim et al., 2009; Sipkema et al., 2009; Wang et al., 2009; 

Radwan et al., 2010; Brück et al., 2012).  In addition both inter- and intra- sponge 

species microbial community comparisons have been performed (Hentschel et al., 

2002; Lee et al., 2009; Montalvo et al, 2011). The structures of communities within 

taxa of particular interest, have been examined including: Actinobacteria (Sun et al., 

2010) Chloroflexi (Schmitt et al., 2011) and Cyanobacteria (Webb & Maas, 2002; 

Usher et al., 2004; Ridley et al., 2005; Steindler et al., 2005). Differences in 

community profiles between inner and outer sponge tissues have also been explored 

(Thiel et al., 2007; Sipkema & Blanch, 2010; Gerçe et al., 2011). Cloning of 16S 

rRNA genes has led to the discovery of a novel candidate bacterial phylum, 

Poribacteria (Fiesler et al., 2004), which is common to many sponge species (Lafi et 

al., 2009) but almost exclusively known from sponges.  

These investigations have spanned a large range of sponge species from all of the 

worlds’ oceans (Table 1.2). The sequencing of 16S rRNA clone libraries led to the 

identification of 16 bacterial phyla or candidate phyla (Acidobacteria, 

Actinobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Deinococcus-Thermus, 

Firmicutes, Gemmatimonadetes, Lentisphaerae, Nitrospira, Planctomycetes, 

Poribacteria, Proteobacteria [� -, � -, � - and � -], Spirochaetes, TM6 and 

Verrucomicrobia) which have been found in close association with sponges (Taylor 

et al., 2007). Subsequently, sequencing of sponge-derived DGGE bands (Hardoim et 

al., 2009) added the phyla Aquificae, Deferribacteres, Dictyoglomi and the candidate 

phylum TM7 to the list of taxa found in association with sponges. 
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Sponge species Reference Sponge species Reference Sponge species Reference 
Agelas oroides Gerçe et al., 2011 Halichondria panicea Lee et al., 2009 Raspailia topsenti Schmitt et al., 2012 
Amphimedon sp. Radwan et al., 2010 Haliclona (? gellius) Sipkema et al., 2009 Rhabdastrella 

globostellata 
Lafi et al., 2009 

Ancorina alata Kamke et al., 2010; Schmitt et al., 2012 Haliclona foraminosa Lee et al., 2009 Rhopaloides odorabile Webster et al., 2001; Hentschel et al., 2003 
  Haliclona rufescens Lee et al., 2009 Smenospongia aurea Fiesler et al., 2004 
Aplysina aerophoba Fiesler et al., 2004; Hentschel et al., 2002; Hentschel et al., 2003; 

Steindler et al., 2005; Usher et al., 2004 
Haliclona sp. Steindler et al., 2005; Usher et al., 

2004 
Sphaerotylus 
antarcticus 

Webster et al., 2004 

Aplysina archeri Steindler et al., 2005 Homaxinella 
balfourensis 

Webster et al., 2004 Spheciospongia 
floridae 

Steindler et al., 2005 

Aplysina fistularis Fiesler et al., 2004; Lafi et al., 2009 Hymeniacidon perleve Sun et al., 2010 Stelleta kallitetilla Steindler et al., 2005 
Aplysina fulva Hardoim et al., 2009 Hyrtios erectus Radwan et al., 2010 Stelleta maori Schmitt et al., 2012 
Aplysina insularis Fiesler et al., 2004 Ircinia fasciculata Erwin et al., 2011; Erwin et al., 

2012 
Stelleta pudica Steindler et al., 2005 

Aplysina lacunose Fiesler et al., 2004 Ircinia felix Steindler et al., 2005 Stylinos sp. Taylor et al., 2004 
Axinella polypoides Gerçe et al., 2011 Ircinia oros Erwin et a., 2011; Erwin et al., 

2012 
Stylissa carteri Giles et al., 2012 

Callyspongia sp. Taylor et al., 2004 Ircinia variabilis Erwin et al., 2011; Erwin et al., 
2012; Steindler et al., 2005 

Suberites zeteki Zhu et al., 2008 

Callyspongia vaginalis Giles et al., 2012 Kirkpatrickia variolosa Webster et al., 2004 Svenzea zeai Steindler et al., 2005 
Candidaspongia 
flabellata 

Steindler et al., 2005 Lamellodysidea chlorea Ridley et al., 2005 Terpios hoshinota Tang et al., 2011 

Carteriospongia 
foliascens 

Steindler et al., 2005 Lamellodysidea herbacea Ridley et sl., 2005 Tethya calaforniana Sipkema & Blanch, 2010 

Chondrilla 
australiensis 

Steindler et al., 2005; Usher et al., 2004 Latrunculia apicalis Webster et al., 2004 Tethya sp. Gerçe et al., 2011 

Chondrilla nucula Steindler et al., 2005; Thiel et al., 2007b Lendenfeldia chondrodes Ridley et al., 2005 Tethya stolonifera Schmitt et al., 2012 
Chondrilla sp. Usher et al., 2004 Mycale acerata Webster et al., 2004 Theonella conica Steindler et al., 2005 
Chondrilla sp. Steindler et al., 2005 Mycale adhaerens Lee et al., 2009 Theonella swinhoei Hentschel et al., 2002; Hentschel et al., 2003; 

Steindler et al., 2005 
Chondrosia reniformis Gerçe et al., 2011 Mycale armata Usher et al., 2004 Theonella swinhoei Lafi et al., 2009 
Cinachyra sp. Khan et al., 2011 Mycale hentscheli Webb & Maas, 2002 Tsitsikamma favus Walmsley et al., 2012 
Clathria pennata Lee et al., 2009 Mycale loveni Lee et al., 2009 Ulosa sp. Khan et al., 2011 
Craniella 
austrialiensis 

Li et al., 2006 Myxilla intruscans Lee et al., 2009 Verongula gigantean Fiesler et al., 2004 

Crella cyathophora Giles et al., 2012 Niphates digitalis Giles et al., 2012 Vetulina sp. Cassler et al., 2006 
Cribochalena 
vasculum 

Steindler et al., 2005 Oscarella lobularis Gerçe et al., 2011 Xestospongia hispida Lee et al., 2009 

Cymbastela 
concentrica 

Taylor et al., 2004; Taylor et al., 2005 Petrosia ficiformis Gerçe et al., 2011; Steindler et al., 
2005; Usher et al., 2004 

Xestospongia muta Montalvo et al., 2011; Steindler et al., 2005 

Cymbastela marshae Usher et al., 2004 Petrosia sp. Steindler et al., 2005; Khan et al., 
2011 

Xestospongia proxima Steindler et al., 2005 

Discodermia dissoluta Brück et al., 2012 Phakella fusca Han et al., 2012 Xestospongia 
testudinaria 

Montalvo et al., 2011 

Dysidea avara Gerçe et al., 2011 Phyllospongia papyracea Ridley et al., 2005   
Dysidea granulosa Gopi et al., 2012 Polymastia sp. Kamke et al., 2010   
Gelliodes carnosa Li et al., 2011 Polymastia sp. Schmitt et al., 2012 Pseudoceratina 

fistularis 
Lafi et al., 2009 

Geodia sp. Gerçe et al., 2011 Pseudoaxinella tubulosa Steindler et al., 2005   

Table 1.2: Sponge species from which bacterial 16S rRNA gene clone libraries have been reported.
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1.2.1.2.3 Pyrosequencing 

Next generation sequencing has had a profound effect on microbial ecology studies. 

The technology allows for the generation of hundreds of thousands of sequencing 

reads from metagenomic DNA samples. Barcoding of samples allows for the pooling 

and parallel processing of samples and so very robust and comprehensive 

descriptions of bacterial community structures from diverse sources have been 

generated. The large datasets generated by pyrosequencing analyses have allowed 

for the identification of members of the ‘rare-biosphere’ (Sogin et al., 2006). Also, 

more accurate descriptions of community structures and rank-abundance profiles of 

bacterial communities from a huge diversity of biomes have been described. 

Various aspects of human associated microbial communities have been reported 

including: the gut (elderly – [Kraneveld et al., 2012; O’Toole et al., 2012], infant – 

[Fouhy et al., 2012]), skin (Blaser et al., 2012), mouth (Alcaraz et al., 2012), disease 

associated (pulmonary disease – [Cabrera-Rubio et a., 2012], cirrhosis – [Bajaj et al., 

2012], intestinal disease – [Ukhanova et al., 2012], cystic fibrosis – [Delhaes et al., 

2012] and the healthy (Ling et al., 2012). 

Soil-associated bacterial communities from forest (Hartmann et al., 2012), 

agricultural (Shange et al., 2012) and contaminated soils (Ge et al., 2012) have been 

described.  Aquatic bacterial consortia from lakes (Campbell & Kirchman et al., 

2012; Lin et al., 2012), seawater (Ray et al., 2012 and hydrothermal vents (Sylvan et 

al., 2012) have also been reported.  The bacterial communities associated with a 

wide range of terrestrial animals including (chicken [Lei et al., 2012], cow [Machado 

et al., 2012], dog [Garcia-Mazcorro et al., 2012], horse [Shepherd et al., 2012], 

mosquito [Boissière et al., 2012], honey bee [Sabree et al., 2012], beetle [Mattila et 

al., 2012], fleas and ticks [Hawlena et al., 2012]) and marine animals (fish [van 

Kessel et al., 2012], squid [Collins et al., 2012], corals [Lee et al., 2012b; Morrow et 

al., 2012] and a marine polychaete [Neave et al., 2012]) have also been described. 

The same is true for marine sponges. A recent review of publicly available sponge-

associated 16S rRNA sequences (Simister et al., 2012) analysed a dataset of ~7,500 

sequences. However, pyrosequencing analyses have generated >700,000 sponge-

derived bacterial 16S rRNA gene sequences which were not included in that study. 

These datasets have investigated various aspects of sponge-bacterial associations, 
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including bacterial community structures (Webster et al., 2010; Jackson et al., 2012; 

Trindade-Silva et al., 2012), seasonal variations in community composition (White 

et al., 2012), bacterial-archaeal relative abundances (Lee et al., 2011), vertical 

symbiont transmission (Webster et al., 2010) and core, variable and species-specific 

bacterial communities from a range of sponge species (Schmitt et al., 2012). These 

pyrosequencing studies have thus far investigated 15 sponge species (Table 1.3) and 

have led to the identification 35 bacterial phyla or candidate phyla which have been 

found in close association with sponges. Taxa identified in sponges for the first time 

by pyrosequencing include BRC1, Chlamydiae, Fibrobacteres, Fusobacteria, 

Tenericutes and WS3 (Webster et al., 2010), Chlorobi, Chrysiogenetes, OD1, � -

Proteobacteria and Thermodesulfobacteria (Lee et al., 2011), OP10, OS-K (Schmitt 

et al., 2012) and Thermotogae, Elusimicrobia and Synergistetes (Trindade-Silva et 

al., 2012). Many of these extra taxa are amongst the rarest members of the sponge-

associated communities. Highly diverse communities described at genus, family, 

order and class levels have been described with ~3,000 OTUs (95% sequence 

identity) reported from the marine sponge Rhopaloides odorabile (Webster et al., 

2010). 

 

Sponge species Reference Sponge species Reference 
Ianthella basta Webster et al., 

2010 
Aplysina aerophoba Schmitt et al., 2012 

Ircinia ramosa Webster et al., 
2010 

Aplysina cavernicola Schmitt et al., 2012 

Rhopaloides 
odorabile 

Webster et al., 
2010 

Ircinia variabilis Schmitt et al., 2012 

Hyrtios erectus Lee et al., 2011 Petrosia ficiformis Schmitt et al., 2012 

Stylissa carteri Lee et al., 2011 Pseudocorticium 
jarrei 

Schmitt et al., 2012 

Xestospongia 
testudinaria 

Lee et al., 2011 Axinella corrugata White et al., 2012 

Raspailia ramosa Jackson et al., 
2012 

Arenosclera 
brasiliensis 

Trindade-Silva et al., 
2012 

Stelligera stuposa Jackson et al., 
2012 

  

Table 1.3: Sponge species from which pyrosequencing of bacterial 16S rRNA genes 
has been reported. 
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The utility of pyrosequencing has allowed for the launch of two ambitious projects, 

The Earth Microbiome Project (Gilbert et al, 2010) and the Human Microbiome 

Project (Huttenhower et al., 2012) where consortia from around the world are 

attempting to document the bacterial diversity of (a) the entire planet and (b) the 

human. 

 

1.2.2 Sponge associated archaea 

Archaea were first reported in association with marine sponges in 1996 (Preston et 

al., 1996) when Cenarchaeum symbiosum was found in the tissues of Axinella 

mexicana. It was subsequently found that C. symbiosum was consistently found in 

sponges of the family Axinellidae (Margot et al., 2002). Many reports of sponge 

associated archaea followed (Webster et al., 2001; Lee et al., 2003; Webster et al., 

2004; Pape et al., 2006; Holmes & Blanch, 2007; Meyer & Kuever et al., 2008; 

López-Legentil et al., 2010; Turque et al., 2010; Liu et al., 2011; Radax et al., 2012) 

and included studies which demonstrated the vertical transmission of archaea in 

sponge larvae suggesting a close co-evolutionary relationship (Sharp et al., 2007; 

Steger et al., 2008). 

Lee and colleagues used pyrosequencing to determine the relative abundances of 

bacteria and archaea in sponges from the Red Sea (Lee et al., 2011). Relative 

abundances of archaea ranged from 4-28% in different sponges and comprised 

almost exclusively Crenarchaeota. 

 

1.2.3 Sponge associated Eukaryota 

1.2.3.1 Sponge associated fungi 

In recent years the relative paucity of information regarding sponge-associated fungi 

has partly been addressed. A number of research groups have begun to focus on the 

diversity and pharmacological potential of sponge-associated fungi (Wei et al., 2009; 

Abdel-Lateff et al., 2009; Zhang et al., 2009; Paz et al., 2010; Wiese et al., 2011; 

Chu et al., 2011; Ding et al., 2011; Zhou et al., 2011). Fungi from 32 orders, from 

three phyla (Ascomycota [22 orders], Basidiomycota [8 orders], Zygomycota [2 
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orders]), representing >120 genera have to date been found in or on sponges (Höller 

et al., 2000; Yu et al., 2012). At least 18 orders of fungi have been isolated in culture 

(Yu et al., 2012). Many of the fungi reported are closely related to terrestrial species 

though members of marine-fungal clades (Gao et al., 2008) have been reported. In 

particular Penicillium sp. and Aspergillus sp. have been found to be common in 

marine sponges. While these reports have come from a diverse range of sponge 

species from around the world, vertical transmission of fungal symbionts has been 

reported in three sponge species. Maldonado and colleagues used Transmission 

Electron Microscopy (TEM) to observe the close association of a filamentous fungus 

with sponge oocytes (Maldonado et al., 2005) while Rozas and co-workers cultured 

6 fungal species from in vitro cultures of sponge primmorphs and single cells (Rozas 

et al., 2011). These reports suggest that fungi may in fact be true sponge symbionts 

and thus might have an important role in host physiology. 

 

1.2.3.2 Sponge associated diatoms 

Diatoms have long been known to be associated with marine sponges (Cox & 

Larkum, 1983), but their precise role in sponge tissues is as yet unclear. Parasitism 

has been suggested (Bavastrello et al., 2000; Cerrano et al., 2004) as diatoms 

invading and damaging sponge pinacocytes has been observed. Mutualism is also 

possible. As organisms which are important in photosynthesis in marine ecosystems, 

diatoms found growing within sponge tissues, may provide photosynthates for the 

host or may help to strengthen the spiculate skeleton (Totti et al., 2005) in return for 

a growth niche. Other evidence points to diatoms as a food source for sponges 

(Gaino et al., 1994; Cerrano et al., 2004). 

1.2.3.3 Sponge associated dinoflagellates 

Dinoflagellates of the genus Symbiodinium form close symbiotic relationships with 

many marine animals but are most commonly known in corals where nutrient 

exchange between the partners has been demonstrated (Weisz et al., 2010). Four 

distinct clades of Symbiodinium spp. have been reported in close association with 

sponges (Hill et al., 2011). These symbioses are almost exclusively known from the 

Clionaidae family of sponges, notable exceptions being the symbioses with a 
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Haliclona sp. sponge (Garson et al., 1998) and an Anthosigmella sp. (Hill et al., 

1996). Cliona spp. display variable morphologies and the encrusting phenotype is a 

boring, bioeroding sponge which grows on and kills corals (Xavier et al., 2011). It 

was thought that symbiotic Symbiodinium sp. may have been acquired from the 

coral, however Schönberg and colleagues identified genetically unrelated 

dinoflagellates in sponges and in the sponge-invaded coral species (Schönberg & 

Loh, 2005), suggesting a distinct sponge-dinoflagellate symbiotic partnership. 

1.2.3.4 Other sponge associated eukaryota 

Other eukaryotes have been reported to be present in close association with sponges. 

Polychaetes (annelid worms) and shrimp were reported from Caribbean sponges 

(Duffy, 1992). Ophiuroidea (brittle stars), Cnidaria (sessile Anthozoa), Turbellaria 

(flatworms), Nemertinia (ribbon worms), Sipuncula (sipunculid worms), Polychaeta, 

Mollusca, Crustacea, Pycnogondia (sea spiders), Echinodermata (sea cucumbers), 

Ascidiacea (sea squirts) and Pisces (fish) have all been observed in association with 

a Brazilian sponge (Zygomycale parishii) over a 5 year study period (Duarte & 

Nalesso, 1996). Ophiuroidea were also found to be consistently associated with 

sponges but the authors suggest that this relationship is species-specific between 

Callyspongia vaginalis and Ophiothrix lineata (Henkel and Pawlik, 2004). Although 

many of these phyla are known parasites, their precise roles within their sponge hosts 

are as yet not known. A mutualist relationship between a sponge (Halichondria 

panicea) and a scallop (Chlamys varia) has however been reported where the sponge 

obtains increased suspended nutrients while the scallop gains protection from 

predation (Forrester, 1979).  

 

 

1.2.4 Sponge-specific microorganisms 

In 2002, Hentschel and colleagues performed a meta-analysis of all publically 

available (n = 190) sponge-derived 16S rRNA gene sequences (Hentschel et al., 

2002). The analysis included 5 sponge species from different geographical regions as 

follows: Mediterranean Sea (France, Israel and Croatia), Red Sea, North Pacific 

(Japan and USA), Australian waters (Davies Reef) and from the Philippine Sea 



���
�

(Palau). Phylogenetic analyses of these sequences revealed monophyletic clusters of 

sponge-derived sequences more closely related to each other than to sequences of the 

same taxa derived from non-sponge sources. This led Hentschel to frame the 

hypothesis of sponge-specific microbes and to speculate on the evolutionary 

establishment of those clusters. That study established that 14 monophyletic 

sequence clusters from 7 bacterial phyla, representing 70% of all sponge-derived 

sequences, were ‘sponge-specific.’ Hentschel went on to define sponge-specific to 

apply to groups of at least 3 sequences which are (i) recovered from different sponge 

species and/or from individuals of the same species from different geographic 

locations, (ii) more closely related to each other than to sequences from non-sponge 

sources and (iii) cluster together independently of the tree-building algorithm used.  

By 2006, ~1,700 sponge derived 16S rRNA sequences were publically available and 

Taylor and colleagues endeavoured to determine whether the sponge-specific 

microbe hypothesis could still be supported (Taylor et al., 2007). They reported that 

32% of all sponge-derived sequences from at least 10 bacterial phyla and also from a 

major archaeal lineage (Crenarchaeota) recruited to sponge-specific clusters. These 

sponge-specific clusters included 100% (n = 21) of all sequences, then available, 

from the putatively sponge-specific candidate phylum Poribacteria. High 

proportions of sponge derived sequences from Chloroflexi (62%), Cyanobacteria 

(79%), Nitrospira (57%), and Spirochaetes (67%) were classified as sponge-specific. 

Notable proportions of sequences from Actinobacteria (38%), Gemmatimonadetes 

(25%) and � -/� - Proteobacteria (34%) were assigned to sponge-specific clusters. 

Conversely, only 5% of Acidobacteria sequences, 9% of Firmicutes sequences and 

0% of Bacteroidetes sequences were determined to be sponge-specific. 

Approximately one quarter of sponge-derived archaeal 16S rRNA sequences were 

defined as sponge-specific.  

Although many sponge-specific clusters withstood Taylors’ rigorous analysis, an 

approximate nine-fold increase in the number of sponge-derived sequences analysed, 

combined with a concomitant increase in the numbers of non-sponge derived 

sequences from which to draw comparison, led to an approximate halving (32%) of 

the proportion of sponge-derived sequences being classed as sponge-specific.  
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Simister and colleagues revisited the issue in 2011 (Simister et al., 2011). By this 

time the number of publicly available (non-pyrosequencing) sponge-derived 16S 

rRNA sequences had risen to ~7,500. In their analysis they found that 27% of 

sponge-derived sequences were assigned to sponge-specific clusters from 14 

bacterial phyla and one major archaeal lineage (Thaumarchaeota). In keeping with 

Taylors’ findings, large proportions of sponge derived Chloroflexi (61%), 

Cyanobacteria (53%), Nitrospirae (39%) and Spirochaetes (92%) were classified as 

sponge-specific. The low abundance detection of Poribacteria in seawater resulted 

in 79% of the 170 sponge-derived Poribacteria being described as sponge-specific. 

Simister et al. also reported high proportions of sponge-derived Acidobacteria 

(57%), � - Proteobacteria (55%), Deinococcus-Thermus (53%), TM6 (43%) and 

TM7 (67%) sequences in sponge-specific clusters. Intermediate proportions of 

Actinobacteria (21%), Gemmatimonadetes (36%), � - (20%) and � - (33%) 

Proteobacteria appear sponge-specific.  Low proportions of Firmicutes (3%), 

Bacteroidetes (6%) and Planctomycetes (7%) recruit to sponge-specific clusters. 

From the domain Archaea, 41% of sponge-derived 16S rRNA gene sequences fell 

into four distinct clusters of sponge-specific taxa. 

While the study by Simister and colleagues analysed a dataset of ~7,500 sponge-

derived sequences, they like the previous Taylor study, only considered relatively 

long sequencing reads. The emergence of pyrosequencing however has contributed 

~700,000 sponge-derived 16S rRNA sequences to public databases. These reads vary 

in length from 50-60 bp (Webster et al., 2010) up to an average 430 bp (Jackson et 

al., 2012). Despite not being considered in the meta-analyses Webster, Jackson and 

Lee (Lee et al., 2011) assigned pyrosequencing data sequence reads to previously 

described and new sponge-specific clusters. Webster and co-workers assigned 13.3% 

(n = 52,270) of their sequences to sponge-specific clusters, Lee and colleagues 

analysed >110,000 sponge-derived sequences and reported that 36-65% of sequences 

from sponge individuals could be assigned to previously described sponge-specific 

clusters. Jackson and colleagues analysed ~26,000 sequences from two sponge 

species and reported that 2.8% of reads from one sponge and 26% from the other 

sponge appeared to be sponge-specific. 
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1.3 Symbiotic functions of sponge-associated microbes 

1.3.1 Methods to elucidate sponge symbiont functions 

The detection of microbial biomarker gene sequences from sponge metagenomes has 

led to speculation about the possible symbiotic functional roles of those taxa. Known 

physiological functions of microbes may be used to predict possible functions but 

empirical conclusions cannot be drawn from phylogenetic biomarker data analyses. 

In addition, these predictions can only be made for microbes which have been 

cultured and from which physiological characterizations have been elucidated. Other 

methods used to determine sponge symbiont functions include genome 

reconstruction (Liu et al., 2011b), single-cell genomics (Hallam et al., 2006; Siegl et 

al., 2011), metatranscriptomics (Kamke et al., 2012; Radax et al., 2012b), shotgun 

cloning and sequencing of sponge metagenomic DNA (Thomas et al., 2010), 

shotgun pyrosequencing (Trindade-Silva et al., 2012) and the targeted PCR 

amplification of functional genes from sponge metagenomes (Schirmer et al., 2005; 

Kim & Fuerst, 2006; Fiesler et al., 2007; Bayer et al., 2008; Kennedy et al., 2008b; 

Mohamed et al., 2008; Mohamed et al., 2010; Han et al., 2012; Yang & Li, 2012).  

A recent example of a successful shotgun sequencing based approach has been the 

genome reconstruction of an unidentified � -proteobacterium from shotgun sequence 

data from the sponge Cymbastela concentrica (Liu et al., 2011b).  The application of 

single-cell genomics has been used to make predictions about sponge symbiont 

functions (Kamke et al., 2012) from uncultured microbes. The genome of 

Cenarchaeum symbiosum derived from the marine sponge Axinella mexicana, was 

sequenced following cell enrichment and differential centrifugation (Hallam et al., 

2006). Siegl and colleagues used fluorescence activated cell sorting (FACS) to 

obtain single cells of Poribacteria from the sponge Aplysina aerophoba for genome 

sequencing (Siegl et al., 2011).  

Kamke and colleagues compared the presence of 16S rRNA genes with the presence 

of 16S rRNA in two sponge species (Ancorina alata and Polymastia sp.) to 

determine which taxa were active in the holobiont (Kamke et al., 2010). 

Pyrosequencing of cDNA has recently been used by Radax and co-workers to 

elucidate the diversity and abundance of actively transcribed genes from the sponge 

Geodia barretti (Radax et al., 2012b); while shotgun approaches (cloning – Thomas 
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et al., 2010; pyrosequencing – Trindade-Silva et al., 2012) have identified functional 

genes in the sponges Cymbastela concentrica and Arenosclera brasiliensis, 

respectively. 

Researchers have also targeted functional genes of particular interest for PCR 

amplification and sequencing, with genes involved in ammonia-oxidation, 

nitrification and putative host defence in particular being targeted. Ammonia-

oxidation (amoA) genes have been noted in the metagenomes of Aplysina aerophoba 

(Bayer et al., 2008), Ircinia strobilina, Mycale laxissima (Mohamed et al., 2010) and 

Phakiella fusca (Han et al., 2012). Nitrification genes (nirS) have been amplified 

from the sponge Astrosclera willeyana (Yang & Li, 2012). Genes involved in the 

production of bioactive secondary metabolites which may contribute to sponge 

defence have also been targeted. Polyketide synthase (PKS) genes have been noted 

from the sponges Pseudoceratina clavata (Kim & Fuerst, 2006), Discodermia 

dissoluta (Schirmer et al., 2005), Theonella swinhoei, Aplysina aerophoba (Fiesler et 

al., 2007) and Haliclona simulans (Kennedy et al., 2008b). 

1.3.2 Discrimination between food microbes and symbiotic microbes 

A long standing question in the sponge microbiology area has been how sponges 

discriminate between food and symbionts when both occur in the sponge mesohyl. 

Genomic, metagenomic and metatranscriptomic analyses have identified factors 

which may play crucial roles in the symbiosis of sponge and microbe. These include 

factors associated with cell recognition, adhesion and signalling. Gene transcripts for 

cell recognition factors [Polycystic Kidney Domain-like (PKD)] have been identified 

in the Geodia barretti metatranscriptome (Radax et al., 2012b) while Ig-like domain 

protein encoding gene sequences were found in the genome of ‘candidatus’ 

Poribacteria (Siegl et al., 2010). Adhesion related genes (ankyrin repeat, tetratrico 

peptide repeat, fibronectin type III and laminin-G domain proteins) were also noted 

in the genomes of sponge-derived Poribacteria (Siegl et al., 2010) and � -

proteobacteria (Liu et al., 2011b) and adhesion related gene transcripts (ankyrin 

repeat domain proteins, tetratrico repeat domain proteins, Ton B-dependent receptors 

and collagen binding surface proteins) were observed from the metatranscriptome of 

Cymbastela concentrica (Thomas et al., 2010) and Geodia barretti (Radax et al., 

2012b). Cell signalling related protein transcripts were also noted by Radax and 
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colleagues. However signalling related gene sequences were reported to be under-

represented in the genome of the sponge derived � -proteobacterium when compared 

to the genome of a related non-symbiotic � -proteobacterium (Liu et al., 2011b). 

1.3.3 Nutrient cycling in sponges 

It is thought that sponge endosymbiotic microbes play crucial roles in carbon, 

nitrogen and sulfur cycling (Taylor et al., 2007). 

1.3.3.1 Carbon cycling in sponges 

Carbon cycling in sponges occurs through autotrophic (chemotrophic and 

phototrophic) or heterotrophic activities.   The presence of large populations of 

photosynthetic microbes (cyanobacteria and zooxanthellae) in sponges has been 

shown to contribute to host nutrition through the production of photosynthates, with 

the transfer of carbon from symbiont to host being observed (Wilkinson, 1979; 

Freeman & Thacker, 2011). Illumination has been shown to play an important role in 

sponge distribution and growth rates. Sponges hosting large cyanobacterial 

populations (Pericharax heteroraphis, Jaspis stellifera and Neofibularia irata) have 

been observed to grow only at depths of less than 15m where sunlight can penetrate, 

enabling photosynthesis (Wilkinson, 1978). Differential growth rates were observed 

in clionaid sponges, which host photosynthetic Symbiodinium spp., while naturally 

illuminated or kept in darkness, indicating the contribution of photosynthesis to 

sponge growth (Rosell & Uriz, 1992).  

Chemotrophy related genes have been reported from the genomes of sponge derived 

Poribacteria (Siegl et al., 2010) and from the sponge derived archaeon 

Cenarchaeum symbiosum (Hallam et al., 2006). Siegl and colleagues reported genes 

of the Wood–Ljungdahl carbon assimilation pathway in Poribacteria while Hallam 

and co-workers reported genes from the 3-hydroxypropionate pathway in C. 

symbiosum. Evidence for the presence of genes or enzymes of the Wood-Ljungdahl 

pathway were also reported from the metagenomes of Cymbastela concentrica 

(Thomas et al., 2010) and Arenosclera brasiliensis (Trindade-Silva et al., 2012) as 

well as from the metatranscriptome of Geodia barretti (Radax et al., 2012b). 

Trindade-Silva and colleagues have also reported genes from the reductive citric acid 

cycle in the A. brasiliensis metagenome.  
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Heterotrophic carbon cycling occurs through the filter feeding activities of sponges 

and phylogenetic biomarker genes from methanotrophic microbes have also been 

detected in sponges and it is thought that they may contribute to carbon cycling 

(Webster et al., 2010; Lee et al., 2011; Jackson et al., 2012). 

1.3.3.2 Nitrogen cycling in sponges 

As with terrestrial systems, nitrogen is a major limiting factor for all of life in marine 

ecosystems. The cycling of nitrogen from nitrogen gas (N2) through inorganic 

(nitrate [NO3
-], nitrite [NO2

-], ammonium [NH4
+]) and organic forms (e.g. proteins, 

amino acids and nucleotides) is highly complex in the ocean (Gruber, 2008). The 

importance of marine sponges to benthic ecosystems suggests that nitrogen cycling 

in sponges plays a major role in the nitrogen budget of those habitats.  

1.3.3.2.1 Nitrogen fixation 

Biological nitrogen fixation is the principal source of fixed nitrogen in the marine 

environment and is mediated in large part by phototrophic microorganisms such as 

cyanobacteria (Gruber, 2008).   Nitrogen fixation, via nitrogenase activity, was first 

reported in sponges in the 1970s (Wilkinson & Fay 1979). Nitrogen fixing 

Vibrionaceae have been reported in association with Halichondria sp. by Shieh and 

colleagues (Shieh & Lin., 1994) while stable isotope analysis by Wilkinson and co-

workers showed the incorporation of 15N into amino acids in the sponge 

Callyspongia muricina (Wilkinson et al., 1999). 

It has been demonstrated that low 15N:13N ratio in sponges is inversely correlated 

with bacterial diversity in sponges (Weisz et al., 2007). Low levels of 15N is 

indicative of biological nitrogen fixation and Weisz and colleagues measured low 
15N ratios in sponges (Ircinia felix and Aplysina cauliformis) with highly diverse 

associated bacterial communities, as determined by microscopy (TEM) and DGGE; 

while higher ratios of 15N were present in a sponge (Niphates erecta) with low 

microbial abundance and diversity. 

In 2008, Mohamed and colleagues used PCR to identify nifH genes related to � - 

(Methylocystis sp.), � - (Desulfovibrio sp.) and � - (Azotobacter sp.) proteobacterial 

and cyanobacterial (Tolypothrix sp., Leptolyngbya sp.) genes and to archaeal 

(Methanosarcina sp.) genes in the sponges Ircinia strobilina and Mycale laxissima 
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(Mohamed et al., 2008). The nifH gene encodes nitrogenase reductase, a key enzyme 

in nitrogen fixation. That study also showed for the first time the active expression of 

nifH in sponges through reverse transcriptase PCR (RT-PCR).   The latest evidence 

for nitrogen fixation in sponges comes from Liu and co-workers who described the 

partial genome reconstruction of a nitrogen fixing bacterium (Mesorhizobium sp.) 

from shotgun Sanger sequencing data in the sponge Cymbastela concentrica (Liu et 

al., 2012).  

Thus, mounting evidence suggests that nitrogen fixation by sponge symbiotic 

microbes occurs in sponge tissues and thus may play a major role in marine 

ecosystem nitrogen budgets. 

1.3.3.2.2 Nitrification 

The second step in the nitrogen cycle is the aerobic oxidation of ammonium (NH4
+) 

to nitrate (NO3
-). This biological process is performed by ammonia oxidising 

bacteria (AOB) and ammonia oxidising archaea (AOA) (Purkhold et al., 2000). The 

two step process is mediated by the oxidation of ammonium to hydroxylamine 

(NH2OH) by ammonia monooxygenase followed by the oxidation of hydroxylamine 

to nitrate by hydroxylamine oxidoreductase in bacteria. For archaeal nitrifiers 

hydroxylamine oxidoreductase homologs have not yet been described and so an 

alternative process in archaea has been suggested (Junier et al., 2010). Genome 

sequence data of a nitrifying archaeon (Nitrosopumilus maritimus) suggests 

hydroxylamine oxidation may occur via multicopper oxidases (Walker et al., 2010). 

Nitrate is subsequently oxidised to nitrite. The gene which encodes ammonia 

monooxygenase (amoA) is used as a biomarker for both function and taxonomic 

surveys. Global diversity of nitrifying microorganisms is thought to be limited to two 

monophyletic clades of bacteria (one clade of � -Proteobacteria and one clade of � -

Proteobacteria) and to Crenarchaeota (Purkhold et al., 2000). 

In sponges, ammonia is a toxic metabolic waste product and the role of nitrifying 

symbionts may be crucial to sponge health. Evidence of nitrification in sponges 

comes from a number of different sources including: direct measurements of 

nitrite/nitrate excretion (Corredor et al., 1988; Diaz & Ward, 1997; Jiménez & Ribes, 

2007; Bayer et al., 2008; Hoffmann et al., 2009; Schläppy et al., 2010; Ribes et al., 

2012), PCR mediated bacterial (Meyer & Kuever, 2008; Bayer et al., 2008) and 
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archaeal amoA gene amplification (Steger et al., 2008; Meyer & Kuever, 2008; 

Bayer et al., 2008; Steger et al., 2008; Hoffmann et al., 2009) in sponges, amoA 

gene transcription in Xestospongia muta via RT-PCR (López-Legentil et al., 2010), 

metatranscriptomic detection of 16S rRNA transcripts from known nitrifying taxa 

and mRNA transcripts of amoA and nitrite oxidoreductase genes in G. barretti 

(Radax et al., 2012b) and from genome analysis from the sponge derived archaeon 

C. symbiosum (Hallam et al., 2006). 

Corredor and colleagues provided the first evidence of nitrification in sponges when 

reporting the large release of nitrate from Chondrilla nucula, the first time nitrate 

excretion from any animal has been recorded (Corredor et al., 1988). Similar 

experiments later showed nitrate excretion by C. nucula, Pseudoaxinella zeai, 

Oligoceras violacea (Diaz & Ward, 1997), Axinella polypoides, Ircinia oros 

(Jiménez & Ribes, 2007), Aplysina aerophoba (Jiménez & Ribes, 2007; Bayer et al., 

2008), Geodia barretti (Hoffmann et al., 2009), Chondrosia reniformis (Jiménez & 

Ribes, 2007; Schläppy et al., 2010; Ribes et al., 2012), Dysidea avara (Jiménez & 

Ribes, 2007; Schläppy et al., 2012) and Agelas oroides (Jiménez & Ribes, 2007; 

Ribes et al., 2012). Interestingly, Ribes and colleagues reported no nitrate excretion 

from Dysidea avara and suggested seasonal differences for this contradiction to the 

findings of Schläppy and colleagues. Ribes and co-workers also reported that 

different taxa were responsible for nitrification in A. oroides and C. reniformis. It is 

clear from these studies that nitrification is an important symbiotic function in 

marine sponges. 

1.3.3.2.3 Denitrification 

The nitrogen cycle is completed by the reduction of nitrite to dinitrogen gas via nitric 

oxide (NO) and nitrous oxide (N20) or via NO and hydrazine (N2H4). Alternatively 

NO2 can be reduced to ammonium. Genes encoding enzymes which mediate 

denitrification (e.g. nitrite reductase, nitrous oxide reductase) are found in diverse 

microbial phyla (Zumft, 1997).  

Denitrification and anaerobic ammonia oxidation (anammox) have been reported in 

Geodia barretti (Hoffmann et al., 2009) as well as 16S sequences related to 

denitrifiers and the amplification of nirS (nitrite reductase). Schläppy and colleagues 

also reported denitrification in Chondrosia reniformis and Dysidea avara but could 
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not detect anammox activity in either of these sponges (Schläppy et al., 2010). Siegl 

and colleagues reported the presence of nitrite reductase and nitric oxide reductase 

genes in the genome of the sponge derived ‘candidatus’ Poribacteria (Siegl et al., 

2010). Liu and co-workers combined metagenomic and metaproteomic methods to 

report 16S sequences related to the denitrifying Nitratireductor sp., a nitrate 

reductase gene cluster and expressed nitrate reductase proteins (NarG and NarY) in 

Cymbastela concentrica (Liu et al., 2012). 

Complete cycling of nitrogen in sponges has been demonstrated as well as elements 

involved in nitrogen assimilation (Hentschel et al., 2012) and genes related to 

aspects of the nitrogen cycle have also been reported from sponge larvae (Steger et 

al., 2008), which is strongly indicative of both true symbiotic relationships and vital 

ecological functioning. 

1.3.3.3 Sulfur cycling in sponges 

Sulfur comprises ~1% of the dry weight of living organisms as a constituent of 

amino acids (cysteine and methionine), co-enzymes (e.g. co-enzyme A [CoA]), in 

metalloproteins and in ligands (e.g. cytochrome oxidase c) (Sievert et al., 2007). 

However, animals are dependent on microbial transformations of sulfur (sulfur 

oxidation/ sulfur and sulfate reduction). Diverse bacterial taxa mediate these 

transformations in assimilatory and dissimilatory processes which are vital to both 

life and biogeochemical cycling. 

Anaerobic green sulfur bacteria - Chlorobium sp. (Eimhjellen, 1967), and purple 

sulfur bacteria – Chromatium sp., Ectothiorhodospira sp. (Imhoff & Trüper, 1976) 

and Thiocystis sp. (Eimhjellen, 1967) when isolated in culture from sponges in the 

1960s and 1970s gave the first indication that sulfur cycling may be occurring in 

sponges and also that microaerobic and anaerobic microenvironments existed within 

sponge tissues. 

Subsequently, Hoffmann and colleagues monitored oxygen gradients in the tissues of 

Geodia barretti, measured sulfate reduction in that sponge, demonstrated biomass 

transfer from bacteria to sponge cells and used FISH to map the spatial distribution 

of sulfate reducing taxa in the sponge (Hoffmann et al., 2005).  These elegant 

experiments confirmed sulfur cycling symbioses between microbes and sponges. 
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Similarly, the spatial distribution of Desulfovibrionaceae in the sponge Chondrosia 

reniformis has been reported (Manz et al., 2000). 

Genomic analyses of sponge derived microbes have resulted in the identification of  

biotin and thiamine synthesis genes in the genome of Cenarchaeum symbiosum 

(Hallam et al.,2006), sulfatase genes in the genome of ‘candidatus’ Poribacteria 

(Siegl et al., 2010) and glutathione transport genes in the genome of a sponge 

associated � -proteobacterium (Liu et al., 2011b). These analyses further 

demonstrated the potential for sulfur cycling and assimilation in sponge tissues. In 

metagenomic analyses Thomas et al. reported the metagenome of the Cymbastela 

concentrica to be enriched for glutathione S transferase genes when compared to 

planktonic seawater communities but a comparative under-representation of sulfate 

permeases in the sponge was also observed (Thomas et al., 2010). Trindade-Silva 

and colleagues noted abundant dimethyl sulfoxide (DMSO) reductase genes in the 

metagenome of Arenosclera brasiliensis (Trindade-Silva et al., 2012). While in a 

metatranscriptomic study Radax and co-workers noted a highly transcribed iron-

sulfur binding domain protein in Geodia barretti (Radax et al., 2012b). 

Diverse sulfur metabolizing taxa have been reported in association with sponges 

where comprehensive community structure analyses have been determined by 

pyrosequencing (Table 1.4). Notable amongst these studies is the relative 

abundances of these taxa in individual sponge species. Chloroflexi comprise up to 

6.5% of the Ircinia ramosa bacterial community and up to 11% of the Rhopaloides 

odorabile community (Webster et al., 2010). The same phylum comprises up to 

~35% of the microbial communities of Hyrtios erectus and Xestospongia 

testudinaria (Lee et al., 2011). Ectothiorhodospiraceae account for up to 7% of the 

R. odorabile community (Webster et al., 2010), ~5% of the cohort from Raspailia 

ramosa and ~34% of the Stelligera stuposa bacterial associates (Jackson et al., 

2012). Such abundances indicate the importance of sulfur metabolising symbionts to 

their sponge hosts. Also of note is the abundant detection of Chloroflexi and 

Ectothiorhodospiraceae in the larvae of R. odorabile (Webster et al., 2010), which is 

indicative of vertical transmission of these symbionts. 
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Reference Sponge species Phototrophic sulfur oxidisers Chemolithotrophic 
sulfur oxidisers 

Sulphur reducers Sulphate reducers 

Webster et al., 
2010 

Ianthella basta Rhodobacter, 
Ectothiorhodospiraceae,  Chloroflexi 

   

Ircinia ramosa Rhodobacter, 
Ectothiorhodospiraceae,  Chloroflexi 

   

Rhopaloides 
odorabile 

Rhodobacter, Rhodomicrobium, 
Chromatiaceae, 
Ectothiorhodospiraceae,  Chloroflexi 

Paracoccus, Thiomicrospira Desulfuromonas, 
Desulfobacterium 

 

Lee et al., 2011 Hyrtios erectus Chlorobi, Chloroflexi, 
Ectothiorhodospiraceae 

 Thermoproteales Desulfovibrio 

Stylissa carteri Chlorobi, Chloroflexi Arcobacter Thermoproteales, 
Thermoplasmatales 

Desulfobacter 

Xestospongia 
testudinaria 

Chlorobi, Chloroflexi  Thermoproteales  

Jackson et al., 
2012 

Raspailia ramosa Chromatiacaea, Chloroflexi, 
Ectothiorhodospiraceae 

Paracoccus, Arcobacter, 
Sulfurimonas, Sulfurovum 

Desulfuromonas Desulfovibrio, Desulfonema, 
Desulfosarcina 

Stelligera stuposa Ectothiorhodospiraceae    
Schmitt et al., 
2012 

Aplysina 
aerophoba 

Chloroflexi , Ectothiorhodospiraceae    

Aplysina 
cavernicola 

Chloroflexi,  Ectothiorhodospiraceae    

Ircinia variabilis Chloroflexi,  Ectothiorhodospiraceae    
Petrosia ficiformis Chloroflexi,  Ectothiorhodospiraceae    
Pseudocorticium 
jarrei 

Chloroflexi    

White et al., 
2012 

Axinella corrugata Ectothiorhodospiraceae   Desulfovibrio, Desulfobacter 

Trindade-Silva 
et al., 2012 

Arenosclera 
brasiliensis 

Chlorobi, Chloroflexi, Rhodocyclales Aquificae   

Table 1.4: Sulfur metabolizing taxa reported from marine sponges by pyrosequencing of 16S rRNA genes. 



���
�

Other sulfur cycling taxa have been reported at low abundances but a recent 

study demonstrated that a sulfate reducing species, present at just 0.006% 

relative abundance in a peat soil, was responsible for a considerable amount of 

sulfate reduction in that soil and therefore, though such taxa can be uncommon 

the physiological contribution to the community functioning cannot however be 

underestimated (Pester et al., 2010). 

1.3.4 Other putative symbiosis factors 

Genomic, metagenomic and metatranscriptomic studies have identified other 

factors with possible roles in the symbiotic partnerships between sponges and 

microbes. Transposable insertion elements have been identified in the 

metagenome of Cymbastela concentrica (Thomas et al., 2010) and transposase 

gene transcripts were reported from the metatranscriptome of Geodia barretti 

(Radax et al., 2012). These elements are thought to play roles in microbial 

genomic rearrangements and streamlining to help with adaptation to a symbiotic 

lifestyle (Thomas et al., 2010). Factors with possible roles in the maintenance of 

a symbiotic relationship including tetracycline resistance genes and multidrug 

resistance protein genes were found in the genome of a sponge associated 

unidentified � -proteobacterium (Liu et al., 2011b) while clustered regularly 

interspaced short palindromic repeat (CRISP) gene sequences with possible roles 

in resistance to viral infection were found in the metagenome C. concentrica 

(Thomas et al., 2010). Genes and gene transcripts involved in the biosynthesis of 

essential vitamins (B2 or B12) have been noted in the genomes of Cenarchaeum 

symbiosum (Hallam et al., 2006), ‘candidatus’ Poribacteria (Siegl et al., 2010) 

and a sponge associated � -proteobacterium (Liu et al., 2011b), in the 

metagenome of C. concentrica (Thomas et al., 2010) and in the 

metatranscriptome of G. barretti (Radax et al., 2012b). This suggests that 

symbiotic microbes may be an important source of these essential vitamins for 

their hosts. 

Sponges and sponge associated microbes have also been noted to be a 

remarkably rich sources of various classes of chemicals with a wide range of 

bioactive properties and are thought to potentially play important roles in sponge 

host defence from infection and predation (Taylor et al., 2007). 
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1.4 Pharmacological potential of marine sponges 

Extensive research into marine sponges and marine sponge associated microbes 

has primarily been driven due to the pharmacological potential of diverse 

chemical entities with wide ranging biological activities being discovered from 

marine environments (Blunt et al., 2010).  Physico-chemical properties of the 

marine environment (pH, pressure, temperature, osmolarity) mean that bioactive 

substances produced in that environment may have sufficiently different 

properties to terrestrially produced products to make them of interest for novel 

drug discovery (Thakur et al., 2005). The search for novel drugs has involved 

many phyla of marine invertebrates but the phylum Porifera has proved the most 

promising (Figure 1.5) (Leal et al., 2012). As sessile filter feeders, sponges, with 

no adaptive immunity, rely on a barrage of chemical entities to defend against 

infection, parasitism and disease and also to gain a competitive advantage 

(Thakur et al., 2005).  

 

Figure 1.5: Marine natural product discovery from marine phyla from 1990-
2009. (Other phyla include Annelida, Arthropoda, Brachiopoda, Hemichordata, 
Platyhelminthes and Bryozoa). Adapted from Leal et al., 2012. 

The diverse range of chemical classes with bioactive properties obtained from 

sponges and sponge derived microbes include alcohols (Bugni et al., 2004), 
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alkaloids (Table 1.5), amino acid derivatives (Clark et al., 2001; Aiello et al., 

2010; de Madeiros et al., 2012), aromatic compounds (Dai et al., 2010), fatty 

acids (Tachibana et al., 1981; Aratake et al., 2009; Keffer et al., 2009), lactones 

(Namikoshi et al., 2004; Sirirak et al., 2012; Zhang et al., 2012), peptides (Table 

1.6), polyacetylenes (Ankisetty & Slattery, 2012; Lee et al, 2012c), polyketides 

(Table 1.7), quinones and quinolones (Bultel-Poncé et al., 1999; Lucas et al., 

2003; Davis et al., 2012; Kumar et al., 2012), sphingolipids (Ando et al., 2010; 

Yoo et al., 2012), sterols (Rudi et al., 2004; Yu et al., 2006; Guo et al., 2012), 

terpenes and terpenoids (Table 1.8). These bioactivities have been identified 

from bacterial or fungal isolates from sponges or from aqueous or organic 

extracts from the sponge tissues. In many cases the bioactive compounds have 

been identified, purified and characterised. 

Reference Sponge 
species 

Compound Target of activity 

Ang et al., 2000 Haliclona sp. Manzamine A Plasmodium berghei 
Chang et al., 
2003 

Monanchora sp. Crambescidin 826 HIV 

Endo et al., 
2004 

Agelas sp. Nagelamides A-H Gram positive bacteria 

Hassan et al., 
2004 

Leucetta 
chagosensis 

Naamine G Cladosporium herbarum 

Zhang et al., 
2008 

Halichondria 
panicea 

Circumdatin I UV-A protectant 

Yasuda et al., 
2009 

Agelas sp. Nagelamide O Gram positive bacteria 

Carroll et al., 
2010 

Ianthella 
flabelliformis 

Bastadin 25 � -opoid receptor  

Regalado et al., 
2010 

Pandaros 
acanthifolium 

Pandaroside G Trypanosoma brucei 
rhodesiense 

Yang et al., 
2010 

Hyattella sp. Psammaplysin G Plasmodium falciparum 

Dyshlovoy et 
al., 2012 

Aaptos aaptos Aaptamine NT2 (embryonal carcinoma) 
cells 

Liu et al., 2012b Aaptos 
suberitoides 

Suberitines B & D P388 (lymphoblastic) cells 

Yamazaki et al., 
2012 

Haliclona sp. Papuamine & 
Haliclonadiamine 

MCF-7 (breast), LNCap 
(prostate), Caco-2 (colon) and 
HCT-15 (colon) cells 

Yang et al., 
2012 

Agelas 
mauritiana 

Ageloxime B MRSA 

Table 1.5: Examples of sponge derived alkaloids with bioactive properties. 

 

Compounds and activities against important human infections and diseases have 

been reported. Important bioactive compounds which have been reported include 

anti-bacterial compounds (including anti-MRSA and anti-tuberculosis) (Table 
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1.9), anti-fungal compounds (Table 1.5), anti-parasitic compounds (including 

anti-malarial) (Tables 1.5-1.8), anti-viral compounds (including anti-HIV) 

(Tables 1.5, 1.6 & 1.8), anti-coagulant compounds (Carroll et al., 2002; Carroll 

et al., 2004), anti-helminth compounds (Capon et al., 2004), anti-biofouling 

compounds (Devi et al., 1998; Sera et al., 2002; Hellio et al., 2006), anti-

inflammatory compounds (Tables 1.7 & 1.8), neuromodulatory compounds 

(Capon et al., 2004b; Carroll et al., 2010; Zhang et al.,2012), a UV-A protectant 

compound (Zhang et al., 2008) and a large array of cytotoxic compounds with 

potential uses as anti-cancer drugs (Tables 1.5-1.8). 

Reference Sponge species Compound Target of activity 
Rashid et al., 
2000 

Haliclona nigra Haligramides A & B cytotoxic 

Sera et al., 
2002 

Haliclona sp. Haliclonamides C, D 
& E 

Mytilus edulis 
galloprovincialis 

Pabel et al., 
2003 

Aplysina 
aerophoba 

lipopeptides S. aureus, E.coli, 
Vibrio sp., C. 
albicans 

Oku et al., 
2004 

Neamphius huxleyi Neamphamide A HIV 

Plaza et al., 
2007 

Siliquariaspongia 
mirabilis 

Mirabamides A-D HIV 

Plaza et al., 
2009 

Siliquariaspongia 
mirabilis 

Celebesides A-C & 
Theopapuamides B-
D 

HIV 

Williams et 
al., 2009 

Eurypon laughlini Rolloamides A & B cytotoxic 

Pimentel-
Elardo et al., 
2010 

Tedania sp. Valinomycin Leishmania major 

Zhang et al., 
2010 

Phakellia fusca Phakellistatins 15-18 P388 
(lymphoblastic) 
cells 

Chu et al., 
2011 

Holoxea sp. L-Trp-L-Phe cytotoxic 

Kimura et 
al., 2012 

Discodermia calyx Calyxamides A & B P388 
(lymphoblastic) 
cells 

Rabelo et al., 
2012 

Cinachyrella apion Lectin HeLa cells 

Sorres et al., 
2012 

Pipestela 
candelabra 

Pipestelides A-C cytotoxic 

Table 1.6: Examples of sponge derived peptides with bioactive properties. 
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Reference Sponge species Compound Target of activity 
Piel et al., 2004 Theonella swinhoei Theopederin Anti-tumour 
Johnson et al., 
2007 

Cacospongia 
mycofijiensis 

Fijianolide Anti-tumour 

Plaza et al., 2008 Siliquariaspongia 
mirabilis 

Mirabilin Anti-tumour 

Ankisetty et al., 
2010 

Plaktoris 
halichondrioides 

? aromatic 
compounds 

Anti-inflammatory 

Fattorusso et al., 
2010 

Plakortis cfr. simplex Manadoperoxides 
A-D 

Plasmodium 
falciparum 

Feng et al., 2010 Plaktoris sp. Plaktoride Q Trypanosoma brucei 
brucei 

Jiménez-Ribero et 
al., 2010 

Plaktoris 
halichondrioides 

Plaktoride J Plasmodium 
falciparum 

Schneemann et 
al., 2010 

Halichondria 
panicea 

Mayamycin Anti-cancer, anti-
bacterial 

Table 1.7: Examples of sponge derived polyketides with bioactive properties. 

Reference Sponge species Compound Target of 
activity 

Lucas et al., 2003 Dysidea sp. Bolinaquinone Anti-inflammatory 
Posadas et al., 2003 Fasciospongia 

cavernosa 
Cacospongionolide B Anti-inflammatory 

Wonganuchitmeta et 
al., 2004 

Brachiaster sp. 12-deacetoxyscalarin 19-
acetate 

M. tuberculosis 

Zhang et al., 2009 Stelletta sp. sesquiterpenoids Anti-inflammatory 
Chao et al., 2010 Negombata 

corticata 
Negombatoperoxides cytotoxic 

Hirashima et al., 2010 Rhabdastrella 
globostellata 

Isomalabaricane cytotoxic 

Orhan et al., 2010 Ircinia sp. Dorisenone D Trypanosoma sp. 
Park et al., 2010 Phorbas 

gukulensis 
Gukulenins A & B cytotoxic 

Chang et al., 2012 Hippospongia sp. Hippospongide A cytotoxic 
Chanthathamrongsiri et 
al., 2012 

Stylissa 
cf. massa 

8- 
isocyano-15-
formamidoamphilect-11 

Plasmodium 
falciparum 

Diyabalanage et al., 
2012 

Carteriospongia 
flabellifera 

Flabelliferans A& B cytotoxic 

Li et al., 2012 Xestospongia 
testudinaria 

Aspergiterpenoid A Bacteria 

Gupta et al., 2012 Clathria 
compressa 

Clathric acid Gram positive 
bacteria 

Salam et al., 2012 ? Manoalide Hepatitis C 
Wang et al., 2012 Phorbas sp. Phorbasone A Anti-inflammatory 
Table 1.8: Examples of terpene/terpenoids compounds from marine sponges 
with bioactive properties 
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Reference Sponge species Source of 
activity 

Target of activity 

Monks et al., 2002 Haliclona aff tubifera Organic extract E. coli, S. aureus, S. 
epidermis 

Pabel et al., 2003 Aplysina aerophoba Bacillus sp. E. coli, S. aureus  
 Melophlus sarassinorum Melophlins (tetramic 

acids) 
S. aureus, B. subtilis 

Wonganuchitmeta et al., 
2004 

Brachiaster sp. Heteronemin 
(sesterterpene) 

M. tuberculosis 

Endo et al., 2004 ? Nagelamides 
(alkaloids) 

Gram positive bacteria 

Namikoshi et al., 2004 Luffariella sp. Manoalides  S. aureus 
Thakur et al., 2005 Suberites domuncula � -Proteobacteria S. aureus, S. epidermis  
Baker et al., 2008 Haliclona simulans 

 
Penicillium sp. B. subtilis; S. aureus 

 Pezizomycotina sp. 
Hypocreales spp. 
Phaeosphaeriaceae sp. 

Kennedy et al., 2008 Haliclona simulans Pseudoalteromonas 
sp., Halomonas sp., 
Psychrobacter sp., 

B. cereus, B. subtilis, E. 
coli, MRSA 

Keffer et al., 2009 Siliquariaspongia sp. Motualevic acid MRSA 
Schneemann et al., 2010 Halichondria panicea 

 
Myamycin (polyketide) MRSA 
Microbacterium sp. S. aureus; E. faecalis 
Rhodococcus sp. S. aureus 
Streptomyces sp. S. aureus 
Micromonospora sp. S. aureus; E. faecalis 

Jiménez-Romero et al., 
2010 

Plakortis halichondrioides Plaktoride J (lactone) M. tuberculosis 

Abdelmohsen et al., 2010 ? Dietzia sp. S. aureus 
Devi et al., 2010 Halichondria sp. Bacillus licheniformis P. aeruginosa, S. aureus, 

V. cholerae, MRSA 
El-Amraoui et al., 2010 Cliona viridis Ethanol extracts 

 
E. coli; B. subtilis; P. 
flourescens; S. aureus 
 

Haplosclerida spp. 
Cliona celata 
Ircinia dendroides 
Haliclona mediterranea 
Haliclona viscosa 

O'Halloran et al, 2011 Axinella dissimilis, Polymastia 
boletiformis, Haliclona simulans 

Pseudovibrio spp. MRSA 

Flemer et al., 2011 Suberites carnosus Arthrobacter sp., 
Pseudovibrio spp., 
Spongiobacter spp. 

E. coli; B. subtilis; S. 
aureus 

Kumar et al., 2012 Hippospongia sp. Epi-ilimaquinone MRSA 
Ankisetty & Slattery, 2012 Xestospongia sp. Methanol extracts P. aeruginosa, M. 

intracellulare 
Gopi et al., 2012 Dysidea granulosa Acinetobacter 

calcoaceticus 
A. hydrophila, V. 
alginolyticus, V. 
parahaemolyticus 

Gupta et al., 2012 Clathria compressa Organic extract Gram positive bacteria 
Marinho et al., 2012 Petromica citrina Aqueous extract S. aureus, S. 

epidermidis, E. faecalis 
Yang et al., 2012 Agelas mauritiana Ageloxime B (alkaloid) MRSA 

Table 1.9: Examples of anti-bacterial activities from marine sponge aqueous or 
organic extracts, bacterial or fungal isolates from sponges or from compounds 
purified from sponges, bacterial or fungal extracts. 
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1.5 Exploiting the pharmacological potential of marine sponges 

Although many novel bioactive compounds have been, and continue to be, 

isolated from sponges and their symbiotic microbes these compounds are 

produced naturally in minute quantities and  the utility of these compounds to the 

pharmaceutical industry is therefore somewhat limited (Gulder & Moore, 2009). 

When halichondrins were isolated from the marine sponge Halichondria okadai 

(Hirata & Uemura, 1986), they were identified as very potent anti-tumour 

compounds with enormous clinical potential. However, it was estimated that one 

tonne of sponge biomass would need to be harvested to obtain 300 mg of a 

mixture of the halichondrin analogues (Proksch et al., 2003). With 1-5 kg of the 

drug potentially required annually for treating cancer patients, natural harvest 

was obviously unrealistic. 

To help overcome the supply problem the biosynthetic origin of bioactive 

chemical entities is an important consideration. Bacteria have long been used for 

industrial production of food products (Raspor & Goranovic, 2008; Prevost et al., 

1985), biopolymers (Rehm, 2010) and antibiotics (Tamehiro et al., 2003). 

Systems and tools for manipulation of bacteria for industrial purposes are long 

established. Where marine natural products are of bacterial origin, industrial and 

biotechnological manipulations offer hope for natural compound production in 

sufficient quantities for clinical trials. In some cases, evidence such as molecular 

architectures, suggest that bioactive compounds from sponges may in fact be 

secondary metabolite products of symbiotic bacteria (Waters et al., 2010; 

Hentschel et al., 2012). 

The extensive search for pharmaceutical products from marine sponges has led to 

some success stories. The nucleosides Ara-A (Acyclovir) and Ara-C (Cytarabine) 

from the sponge Cryptotethya crypta are commercially available as antiviral and 

anti-tumour drugs, respectively (Sashidhara et al., 2009). The chemical synthesis 

of Halichondrin B (Eribulin) has been achieved and was recently approved for 

breast cancer treatment (Jain & Cigler, 2012; Pean et al., 2012). At the time of 

writing, the synthetic tripeptide Hemiasterlin first identified in the marine sponge 

Cymbastela sp. had entered phase I clinical trials for cancer treatment (Waters et 
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al., 2010) while a derivative of the hydroxamic acid, psammaplin (Panobinostat 

[LBH-589]), from the sponge Psammaplysina sp. is in phase II clinical trials  

(http://clinicaltrials.gov/search/intervention=lbh-589). 

 

1.6 Metagenomic strategies for the discovery and production of novel 

industrial and pharmacological products 

The term ‘metagenome’ was first coined by Handelsman and colleagues 

(Handelsman et al., 1998) when they used it to describe the collective genomes 

of soil microbes. Metagenomic analyses involve describing the sequence based 

or function based characteristics of a metagenome. Where gene sequences of 

particular interest are known, primers for PCR or probes for hybridisation can be 

designed to investigate a metagenome for the presence of desired genes 

(Kennedy et al., 2010). Where investigations are focusing on genes and gene 

products where sequences are not known a functional metagenomics approach is 

possible (Brady et al., 2007). This involves the extraction of total DNA from the 

metagenome of choice, fractionating the DNA to provide DNA fragments large 

enough to include complete gene clusters and operons and cloning the large 

fragments via bacterial artificial chromosomes (BACs) or fosmids into a 

heterologous host such as E. coli (Figure 1.6).  

Generation of large libraries of these clones allows for the high-throughput 

functional screening of the libraries for desired functions, by culturing the clones 

on media incorporating appropriate substrates to reveal phenotypic functions 

(Handelsman, 2004).  

Large insert BAC and fosmid clone libraries have to date been constructed from 

a variety of different environmental niches including: marine plankton (Suzuki et 

al., 2001), seawater (Cottrell et al., 1999; Béjà et al., 2000; DeLong et al., 2006; 

Woebken et al., 2007; Martinez et al., 2010), from sediment (Nesbø et al, 2005; 

Lee et al., 2006c; Hardeman & Sjoling, 2007; Huang et al., 2009), from a 

hydrothermal chimney biofilm (Brazelton & Baross, 2009), from soil (Henne et 

al., 2000; Rondon et al., 2000; Brady et al., 2001; Wang et al., 2000; Entcheva et 

al., 2001; MacNeil et al., 2001; Gillespie et al., 2002; Courtois et al., 2003) and 
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also from the metagenome of marine sponges (Schirmer et al., 2005; Kim & 

Fuerst, 2006; Chen et al., 2006; Fiesler et al., 2007; Okamura et al., 2010; Abe et 

al., 2012; Pimentel-Elardo et al., 2012; Selvin et al., 2012).   

 

 

Figure 1.6: Sequence based and function based metagenomics (Kennedy et al., 

2010). 

 

Clone libraries from soil metagenomes have led to the discovery of novel 

antibiotic compounds and antimicrobial activities (Henne et al., 2000; Wang et 

al., 2000: Brady et al., 2001; Mac Neil et al., 2001: Gillespie et al., 2002: 

Courtois et al., 2003), while marine sponge derived large insert metagenomic 
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clone libraries have led to the identification of novel polyketide synthase (PKS) 

genes from the sponges Discodermia dissoluta (Schirmer et al., 2005), 

Pseudoceratina clavata (Kim & Fuerst, 2006), Theonella swinhoei and Aplysina 

aerophoba (Fiesler et al., 2007); together with novel non-ribosomal peptide 

synthase (NRPS) genes from the sponges Haliclona okadai (Abe et al., 2012) 

and A. aerophoba (Pimentel-Elardo et al., 2012). Antimicrobial activity has also 

been noted from a clone from the metagenome of Gelliodes gracilis (Chen et al., 

2006). With respect to novel biocatalysts, a novel esterase has been discovered 

from the metagenome of Hyrtios erectus (Okamura et al., 2010) and a novel 

lipase was isolated and biochemically characterised from a Haliclona simulans 

clone library (Selvin et al., 2012). 

1.6.1 Problems associated with large insert metagenomic clone libraries 

Several problems hamper the discovery of novel genes and gene products from 

metagenomic clone libraries. These include the choice of heterologous host, 

detection of activities and appropriate screens for the detection of activities, 

which can all prove to be problematic. 

E.coli is the heterologous host of choice in most cases (Ekkers at al., 2012), with 

Uchiyama and colleagues having reported that ~40% of foreign genes are 

expressed in E. coli.  However the expression of foreign genes can be impeded 

by host codon usage preferences, problems with gene promoter recognition, 

transcription initiation factors, improper protein folding and the inability to 

export gene products from the host cell (Ekkers et al., 2012). In addition 

expression of foreign gene products can sometimes be toxic to the heterologous 

host (Uchiyama & Miyazaki, 2009). The abundance of genes of interest in the 

source environment and the cloned insert size and library size also has an effect 

on the probability of cloning particular genes (Uchiyama & Miyazaki, 2009).  

Ekkers and colleagues have described the ‘great screen anomaly’, where gene 

and product discovery from clone libraries is disappointingly low compared to 

what might be expected (Ekkers et al., 2012).  

Efforts to increase the rate of gene and product discovery can possibly be 

improved by the use of multiple heterologous host expression systems. Shuttle 

vectors that can be transformed from E. coli to hosts such as Streptomyces or 
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Pseudomonas may increase the chances of heterologous expression (Ekkers et 

al., 2012). Enhanced detection methods such as the inclusion of reporter genes 

(e.g. green fluorescent protein (GFP), � -lactamase or tetracycline resistance on 

vectors may allow for detection of activities which is below detection thresholds 

from phenotypic assays alone (Uchiyama & Miyazaki, 2009). Uchiyama and 

colleagues also suggest that improvements in synthetic biology can lead to the 

design and synthesis of novel genes based on gene sequences in curated 

databases which may then be cloned into expression systems. Finally, the design 

of novel functional screens to detect activities of interest will be required if 

functional based metagenomic approaches are to lead to an increased discovery 

of genes and gene products of industrial or pharmaceutical interest (Steele et al., 

2009). 

 

1.7 Summary 

Marine sponges host a remarkable diversity of symbiotic microorganisms. These 

symbionts appear to play vital physiological roles in the host, including cycling 

of vital nutrients – carbon, nitrogen and sulfur, and may also play an important 

role in host defence through the production of bioactive secondary metabolites of 

varied chemical classes, which in themselves may display wide ranging activities 

of biotechnological interest. The vast genetic diversity associated with individual 

sponges can be exploited through culture dependent and culture independent 

techniques. Exploitation of sponge associated microbial genes has led to the 

development of commercially available pharmaceutical products while others are 

in clinical trials. Increased efforts to sample, characterize, analyse and screen 

sponge derived microbial products offers hope for the development of many 

more such products for the marketplace. 
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2.1 Abstract 

Marine sponges are host to numerically vast and phylogenetically diverse 

symbiotic bacterial populations, with 35 major phyla or candidate phyla to date 

having been found in close association with sponge species worldwide. Analyses 

of these microbial communities have revealed many sponge-specific novel 

genera and species. These endosymbiotic microbes are believed to play 

significant roles in sponge physiology including the production of an array of 

bioactive secondary metabolites. Here, we report on the use of culture-based and 

culture-independent (pyrosequencing) techniques to elucidate the bacterial 

community profiles associated with the marine sponges Raspailia ramosa and 

Stelligera stuposa sampled from a single geographical location in Irish waters 

and with ambient seawater. We also report antimicrobial activities from bacterial 

isolates from these sponges. To date little is known about the microbial ecology 

of sponges of these genera. Culture isolation grossly underestimated sponge-

associated bacterial diversity. Four bacterial phyla (Actinobacteria, 

Bacteroidetes, Firmicutes, Proteobacteria) were represented amongst ~200 

isolates, compared with ten phyla found using pyrosequencing. Twenty bacterial 

isolates displayed antimicrobial activity against bacteria or yeasts Long average 

pyrosequencing read lengths of ~430b (V1-V3 region of 16S rRNA gene) 

allowed for robust resolution of sequences to genus level. 2,109 bacterial OTUs, 

at 95% sequence similarity, from 10 bacterial phyla were recovered from R. 

ramosa, 349 OTUs were identified in S. stuposa representing 8 phyla, while 533 

OTUs from 6 phyla were found in surrounding seawater. Bacterial communities 

differed significantly between sponge species and the seawater.  Analysis of the 

data for sponge-specific taxa revealed that 2.8% of classified reads from the 

sponge R. ramosa can be defined as sponge-specific while 26% of S. stuposa 

sequences represent sponge-specific bacteria. Novel sponge-specific clusters 

were identified.  The majority of previously reported sponge-specific clusters 

(e.g. Poribacteria) were absent from these sponge species.  This deep and robust 

analysis provides further evidence that the microbial communities associated 

with marine sponge species are highly diverse and divergent from one another 

and appear to be host selected through as yet unknown processes. 
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2.2 Introduction 

Marine sponges (phylum: Porifera) host significant microbial populations which 

may be symbiotic (Wilkinson, 1983), pathogenic (Bavestrello et al., 2000), a 

food source (Reiswig, 1975) or transient. In some sponges, up to 30% of total 

biomass can comprise endosymbiotic microorganisms (Wilkinson, 1978). 

Symbiotic microbes may play important physiological roles in sponges. 

Associated cyanobacteria may supply photosynthates and fixed nitrogen 

(Wilkinson, 1978b) sulphur oxidising bacteria may remove sponge metabolic 

waste products (Webster et al., 2001) while proteobacteria and actinobacteria 

may produce bioactive secondary metabolites which supplement the host 

immune defences (Hentschel et al., 2001). This complex microbiota makes 

marine sponges of particular interest to microbial ecology studies and also offers 

a potentially invaluable source of novel genes and gene products for 

biotechnological applications. 

Sponge-microbe associations have to date been studied using both culture-

dependent and culture-independent techniques. As is common with other 

environments the vast majority of bacteria present in sponge tissues have not as 

yet been cultivated. Early culture-independent ecological investigations used 

transmission electron microscopy to observe diverse cell types in sponge tissues 

(Vacelet & Donadey, 1977; Wilkinson, 1978). Subsequently, fluorescence in situ 

hybridisation studies have been used to identify numerous bacterial phyla closely 

associated with sponges (Sharp et al., 2007). Other culture-independent studies 

employed PCR amplification of bacterial 16S rRNA genes directly from sponge 

metagenomic DNA followed by denaturing gradient gel electrophoresis (Usher et 

al., 2004; Lee et al., 2007) or restriction fragment length polymorphism analyses 

(Lee et al., 2009; Zhang et al., 2006). Cloning and sequencing of 16S rRNA 

genes has also been used in many microbial diversity investigations from a wide 

range of sponge species (Cassler et al., 2008; Kennedy et al., 2008b; Lafi et al., 

2009; Montalvo et al., 2005; Ridley et al., 2005; Sipkema et al., 2009; Webb & 

Maas, 2002; Webster et al., 2001; Webster et al., 2004). Recently 

pyrosequencing of PCR amplicon libraries from metagenomic sources has 

allowed for deeper insights into environmental microbial community structures, 
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negating the requirement for a cloning step and providing numbers of sequencing 

reads orders of magnitude greater than was previously possible. This is also true 

for sponge metagenomic samples, with recent studies identifying remarkable 

levels of bacterial diversity associated with sponges from Australian Waters 

(Webster et al., 2010) from the Red Sea (Lee et al., 2011, Schmitt et al., 2011), 

from the Indian and Pacific Oceans, the Caribbean and Mediterranean Seas 

(Schmitt et al., 2011), Brazilian waters (Trindade-Silva et al., 2012) and from the 

Atlantic Ocean off the coast of Florida, USA (White et al., 2012).  Members of 

35 bacterial phyla or candidate phyla have been reported from sponges in these 

analyses, with up to ~3000 bacterial OTUs at 95% sequence similarity, reported 

in association with a single sponges individual (Webster et al., 2010). 

Culture-dependent studies of marine sponge-associated microorganisms have 

attempted to access maximum cultivable diversity through use of different 

isolation media (Kennedy et al., 2008; Sipkema et al., 2011) or have targeted 

particular groups for isolation. Members of the phyla Actinobacteria, 

Bacteroidetes, Cyanobacteria, Firmicutes, Planctomycetes, Proteobacteria and 

Verrucomicrobia have been isolated in growth culture from sponge species 

(Taylor et al., 2007). Several researchers have targeted the isolation of member 

species of taxa such as Actinomycetes and Streptomycetes in attempts to access 

the metabolic capabilities of these groups. This strategy has led to the isolation of 

several novel actinobacterial species (Abdelmohsen et al., 2010; Olsen et al., 

2007; Padgitt & Moshier, 1987). Similar studies have also led to the isolation of 

novel bacterial genera and species from other phyla, with novel � -Proteobacteria 

(Lee et al., 2007), � - Proteobacteria (Hentschel et al., 2001; Lee et al., 2006b; 

Romanenko et al., 2005; Romanenko et al., 2008), Bacteroidetes (Lau et al., 

2005; Lau et al., 2006; Lau et al., 2006b; Lee et al., 2006) and Verrucomicrobia 

(Scheuermayer et al., 2006; Yang et al., 2010) being cultured from sponge 

tissues. There is growing evidence that monophyletic bacterial lineages have co-

evolved with their sponge hosts to form sponge-specific clades which are more 

similar to each other than to similar taxa from non-sponge sources (Lee et al., 

2011; Taylor et al., 2007; Webster et al., 2010). 

The aims of this study are: (1) to compare the bacterial communities of two 

temperate water sponges, Raspailia ramosa (Montagu, 1818) and Stelligera 
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stuposa (Ellis and Solander, 1786), from a single geographical location. This will 

be accomplished by deep sequencing of 16S rRNA genes; (2) to compare these 

to similar studies on sponges from tropical waters; (3) by culture isolation to 

determine if the abundant phylotypes from each sponge species are cultivable; 

and (4) to identify antimicrobial activities from marine sponge isolates. 

 R. ramosa and S. stuposa are particularly abundant species from depths of 6-24 

m, amongst a notably diverse sponge community, in Lough Hyne (Bell & 

Barnes, 2000). The success of these species in a highly competitive habitat of 

almost 60 sponge species makes them an interesting research focus. 

 

2.3 Materials and Methods 

2.3.1 Sponge Sampling 

Sponge sampling was performed at the beginning of winter (November) 2008 at 

Lough Hyne Marine Nature Reserve (N 51°30�, W 9°18�) by SCUBA diving at a 

depth of 15-20 m.  Lough Hyne has an unusual tide flow system and is noted for 

harbouring a highly diverse population of sponges (Bell & Barnes, 2000). The 

marine sponges, Raspailia ramosa (Class Demospongiae; Order Poecilosclerida; 

Family Raspailiidae) and Stelligera stuposa (Class Demospongiae; Order 

Hadromerida; Family Hemiasterellidae) were collected within a few meters of 

each other by excision of  a piece (1-5 g) of sponge tissue in situ at similar 

depths. Sponge species were identified by Bernard Picton (Ulster Museum) and 

Christine Morrow (Queens University Belfast). Seawater was collected from the 

sponge sampling site simultaneously. Sponge samples were rinsed in sterile 

artificial seawater (ASW) to remove exogenous materials. ASW is derived from 

a commercial synthetic ion and mineral formulation (Instant Ocean – Aquatic 

Eco-Systems, Inc., Apopka, FL, USA) and is commonly used in aquaria. A 

sample was removed for immediate microbial culturing and the remainder was 

placed in sterile plastic Ziploc bags and stored on dry ice for transport and then 

frozen at -80°C. Seawater was stored on dry ice for transport and then stored at 

4°C. 
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2.3.2 Culture Isolation 

2.3.2.1 General Isolation 

Sponge tissue was weighed, rinsed with sterile artificial seawater and macerated 

with a sterile razor blade.  The macerated tissue was placed in a tube with sterile 

glass beads and vortexed. Sterile artificial seawater was added and the samples 

were again vortexed for 2 min. Dilution series’ were performed to 10-5 with 

sterile ASW and 100 µl of each dilution was spread plated onto each of three 

growth media: 

starch-yeast-peptone seawater agar (SYP-SW): 1% (w/v) starch, 0.4% (w/v) 

yeast extract, 0.2% (w/v) peptone, 3.33% (w/v) artificial sea salts - Instant Ocean 

(Aquatic Eco-Systems Inc., Apopka, FL, USA), 1.5% (w/v) agar; modified 

marine agar (MMA) : 0.005% (w/v) yeast extract, 0.05% (w/v) tryptone, 0.01% 

(w/v) � - glycerol phosphate disodium salt, pentahydrate (C3H7Na2O6P·5H2O), 

3.33% (w/v) artificial sea salt (Instant Ocean), 1.5% (w/v) agar, and chitin agar: 

4% (v/v) colloidal chitin, 1.5% (w/v) agar.  

Culture plates were incubated at 18°C in an attempt to isolate mesophilic 

phylotypes and thus ensure that the widest range of diversity was obtained. 

Colonies were picked from the master growth plates and isolated as axenic 

cultures by successive re-streaking on fresh media until pure cultures were 

obtained. Colonies were chosen to represent the widest range of diversity 

possible as adjudged by colony characteristics such as colour, morphology and 

growth rate. 

2.3.2.2 Targeted isolation 

A second isolation strategy was employed to target possible antibiotic producing 

bacteria. Sponge tissues (R. ramosa) were macerated and serial diluted as 

described above and 100 µl of each dilution was spread on each of seven growth 

different media. Additionally, aliquots of the serial diluted sponge homogenates 

were heat treated by incubating for 55°C for 6 min and then spread on each of 

seven growth media as before.  The media used were: 
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(1) starch-yeast-peptone seawater agar plus nalidixic acid: 1% (w/v) starch, 

0.4% (w/v) yeast extract, 0.2% (w/v) peptone, 3.33% (w/v) artificial sea salts, 

0.001% (w/v) nalidixic acid; 

(2) starch-yeast-peptone seawater agar plus rifampicin: 1% (w/v) starch, 

0.4% (w/v) yeast extract, 0.2% (w/v) peptone, 3.33% (w/v) artificial sea salts, 

0.0005% (w/v) rifampicin;  

(3) actinomycete isolation agar: 0.2% (w/v) sodium caseinate, 0.4% (w/v) 

sodium propionate [Na(C2H5COO)], 0.01% (w/v) magnesium sulfate (MgSO4), 

0.01% (w/v) asparagine, 0.05% (w/v) dipotassium phosphate (K2HPO4), 0.0001% 

(w/v) ferrous sulfate (FeSO4), 1.5% (w/v) agar, 0.5% (v/v) glycerol;  

(4) actinomycete isolation agar plus seawater: 0.2% (w/v) sodium caseinate, 

0.4% (w/v) sodium propionate [Na(C2H5C00)], 0.01% (w/v) magnesium sulfate 

(MgSO4), 0.01% (w/v) asparagine, 0.05% (w/v) dipotassium phosphate 

(K2HPO4), 0.0001% (w/v) ferrous sulfate (FeSO4), 1.5% (w/v) agar, 0.5% (v/v) 

glycerol, 3.33% (w/v) artificial sea salts;  

(5) starch casein nitrate agar: 1% (w/v) starch, 0.2% (w/v) dibasic potassium 

phosphate, 0.2% (w/v) potassium nitrate (KNO3), 0.2% (w/v) sodium chloride 

(NaCl), 0.03% (w/v) casein, 0.05% (w/v) magnesium sulfate (MgSO4), 0.001% 

(w/v) ferrous sulfate (FeSO4), 1.5% (w/v) agar;  

(6) starch casein nitrate agar plus seawater: 1% (w/v) starch, 0.2% (w/v) 

dibasic potassium phosphate (K2HPO4), 0.2% (w/v) potassium nitrate (KNO3), 

0.2% (w/v) sodium chloride (NaCl), 0.03% (w/v) casein, 0.05% (w/v) magnesium 

sulfate (MgSO4), 0.001% (w/v) ferrous sulfate (FeSO4), 1.5% (w/v) agar, 3.33% 

(w/v) artificial sea salts;  

(7) raffinose histidine agar: 1% (w/v) raffinose, 0.1% (w/v) L-histidine, 0.05% 

(w/v) magnesium sulfate (MgSO4), 0.001% (w/v) ferrous sulfate (FeSO4), 2% 

(w/v) agar, 0.0001% (w/v) nalidixic acid, 0.0001% (w/v) cycloheximide, 

0.00025% (w/v) nystatin. Culture plates were incubated at 18°C for four weeks. 

Colonies were picked from master growth plates and subcultured until pure 

cultures were obtained. 
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2.3.3 Phylogenetic Analysis of Cultured Isolates 

Cultured isolates were analysed by PCR amplification of 16S rRNA genes, 

sequencing of amplified genes and BLAST analyses of obtained sequences. 

DNA templates for PCR Template DNA was obtained by addition of 25 � l of 

glycerol stock culture to 100 � l TE buffer followed by incubation at 98°C for 10 

min. The lysed cells were pelleted by centrifugation at 1,400 g. The resultant 

supernatant served as template DNA for PCR. 

16S rRNA PCR Each 30 µl PCR reaction comprised 1X reaction buffer, 0.2 mM 

dNTPs, 0.5 � M forward primer 27f (5’-GAGTTTGATCCTGGCTCAG-3’), 0.5 

µM reverse primer 1492r (5’-GGTTACCTTGTTACGACTT-3’), 1 U Taq 

polymerase (5 U/µl), 1.0 µl template DNA, sdH2O. 

PCR Cycle Conditions Cycle conditions comprised initial denaturation at 95°C 

for 5 min followed by 35 cycles of denaturation at 95°C for 30 s, primer 

annealing at 50°C for 30 s and extension at 72°C for 2 min. A final extension at 

72°C for 10 min followed (Lane, 1991). PCR amplicons were analysed by 

electrophoresis on 1% agarose gels. 

Sequencing 16S rRNA PCR amplicons were sequenced by capillary 

electrophoresis, single extension sequencing (Macrogen Inc., Korea), using 

3730xl DNA Analyser.  

Sequence Data Analysis Sequences were edited manually using FinchTV 1.4.0 

(Geospiza, Inc.; Seattle, WA, USA; http://www.geospiza.com). Sequences were 

dereplicated using FastGroupII (http://biome.sdsu.edu/fastgroup/) (Yu et al., 

2006). Sequence alignment and tree construction were performed using Mega 

version 4 (http://www.megasoftware.net/) (Tamura et al., 2007).  Alignment was 

performed with ClustalW and tree construction was by neighbour joining method 

(Saitou & Nei, 1987) and included bootstrap tests (Felsenstein, 1985). The 

evolutionary distances were computed using the maximum composite likelihood 

method (Tamura et al., 2004) and are in the units of the number of base 

substitutions per site. All positions containing gaps and missing data were 

eliminated from the datasets (complete deletion option). Reference sequences 
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were downloaded from the Ribosomal Database Project (release 10, update 13) 

(http://rdp.cme.msu.edu/). 

2.3.4 Antimicrobial assays 

Deferred antagonism assays were performed with all bacterial isolates from the 

marine sponges R. ramosa and S. stuposa. A panel of test strains was used: 

Escherichia coli NCIMB 12210, Bacillus subtilis IE32 and Staphylococcus 

aureus NCIMB 9518, Candida albicans Sc5314, Candida glabrata CBS138, 

Saccharomyces cerevisiae BY4741 and Kluyveromyces marxianus CBS86556. 

Sponge isolates were spotted to SYP-SW agar plates and incubated for 24-48 hr. 

Bacteria test strains were grown overnight in 5 ml Luria Bertani (LB) broth, the 

overnight culture was added to 50 ml LB broth and incubated shaking until it 

reached an OD600nm 0.8. The culture was diluted 1/1000 with soft LB agar [2% 

(w/v) LB powder (Sigma), 0.5% (w/v) agar]. The test cultures were poured over 

the sponge isolates and incubated at 18°C for 24-36 hr. For yeast test cultures, 

overnight cultures were grown in yeast-peptone-dextrose agar (YPD) [1% (w/v) 

yeast extract, 2% (w/v) peptone, 2% (w/v) D-glucose, 1.5% (w/v) agar]. Overlays 

were poured with soft YPD – 0.7% (w/v) agar. A zone of inhibition of the test 

strain around a sponge isolate colony was determined to be an antimicrobial 

producing strain. 

2.3.5 Metagenomic DNA Extraction from Sponges 

Sponge tissue was weighed and ground to a fine powder under liquid N2 in a 

sterile mortar with a sterile pestle. The ground sponge tissue was suspended in 

lysis buffer (100 mM Tris, 100 mM EDTA, 1.5 M NaCl (w/v), 1% CTAB (w/v), 

2% SDS (w/v)) – adapted from Brady, 2007. Metagenomic DNA was then 

extracted as described by Kennedy et al., 2008b. DNA was analysed by gel 

electrophoresis and quantified using a spectrophotometer (NanoDrop ND-1000). 

The DNA solutions were stored at -20°C. 

2.3.6 Metagenomic DNA Extraction from Seawater 

Seawater was filtered through a sterile 0.45 µm filter membrane (Whatman, 

Austin, TX, USA) under vacuum. DNA was then extracted using WaterMaster 

DNA Purification Kit (Epicentre Biotechnologies, Madison, WI, USA) according 
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to the manufacturer’s instructions. The DNA was analysed by gel 

electrophoresis. The DNA solutions were stored at -20°C. 

2.3.7 PCR Amplicon Library Preparation for Pyrosequencing 

PCR amplicon libraries of the V1-V3 region of the 16S rRNA genes from 

metagenomic DNA preparations from (1) R. ramosa, (2) S. stuposa and (3) 

seawater were prepared. The PCR primers used, 63f and 518r were adapted for 

pyrosequencing by addition of adapter sequences and multiplex identifier (MID) 

sequences (see Table 2.1) which allowed for the mixing and parallel sequencing 

of the samples. 

PCR for pyrosequencing Each 50 � l reaction comprised 1X buffer, 0.1 mM 

dNTPs, forward primer 63f* [5’-GCCTAACACATGCAAGTC-3’] (0.5 µM), 

reverse primer 518r* [5’-ATTACCGCGGCTGCTGG-3’] (0.5 µM), 2 U Taq 

polymerase, 2.0 µl template DNA, 30.0 µl sdH2O. Template DNA was 

metagenomic DNA extracted from (1) R. ramosa, (2) S. stuposa and (3) 

seawater. (Asterisk denotes primer adapted for pyrosequencing as per Table 2.1). 

 Primer Adapter MID 
Template specific 

sequence 

Raspailia 

ramosa 

forward CGTATCGCCTCCCTCGCGCCATCAG ACGAGTGCGT 
GCCTAACACATGCAAGTC 

(63f) 

reverse CTATGCGCCTTGCCAGCCCGCTCAG ACGAGTGCGT 
ATTACCGCGGCTGCTGG 

(518r) 

Stelligera 

stuposa 

forward CGTATCGCCTCCCTCGCGCCATCAG ACGCTCGACA 
GCCTAACACATGCAAGTC 

(63f) 

reverse CTATGCGCCTTGCCAGCCCGCTCAG ACGCTCGACA 
ATTACCGCGGCTGCTGG 

(518r) 

seawater 

forward CGTATCGCCTCCCTCGCGCCATCAG AGACGCACTC 
GCCTAACACATGCAAGTC 

(63f) 

reverse CTATGCGCCTTGCCAGCCCGCTCAG AGACGCACTC 
ATTACCGCGGCTGCTGG 

(518r) 

Table 2.1:  Primer sequences for the amplification of the V1-V3 regions of the 

bacterial 16S rRNA genes modified with adapter and multiplex identifier (MID) 

barcodes. 
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PCR Cycle Conditions Cycle conditions comprised initial denaturation at 94°C 

for 5 min followed by 30 cycles of denaturation at 92°C for 60 s, primer 

annealing at 55°C for 60 s and extension at 72°C for 60 s. A final extension at 

72°C for 10 min followed (El-Fantroussi et al., 1999). Three individual PCR 

reactions were performed for each sample. The PCR amplicon libraries were 

purified using Qiagen (Qiagen Ltd., UK) PCR purification kit as per the 

manufacturer’s instructions. The DNA concentration of each resultant solution 

was quantified on NanoDrop. To minimise the effects of PCR bias on results 

equimolar amounts of each of the 3 individual amplicon libraries were pooled for 

each of the samples. Amplicon libraries were sequenced on the GS FLX 

Titanium platform (454 Life Sciences) at the University of Liverpool, UK. 

 

2.3.8 Pyrosequencing Data Analysis 

Sequencing reads were quality-filtered in the Ribosomal Database Project 

(Release 10) pyrosequencing pipeline (http://pyro.cme.msu.edu/). Reads with 

ambiguous bases N were removed, primer sequences were trimmed, sequence 

reads shorter than 100 bases and reads with average quality score <20 were 

discarded. Replicate sequences were removed using the Dereplicate tool. 

Sequences were clustered by complete-linkage clustering. Sequences were 

aligned using the secondary structure Infernal Aligner algorithm (Nawrocki & 

Eddy, 2007). Sequences were assigned to taxa using naïve Bayesian rRNA 

classifier using a confidence threshold of 50% (Wang et al., 2007). Shannon and 

Chao1 indices and rarefaction curves were obtained using the RDP tools. Sponge 

specific cluster analysis was performed by aligning sequences to the complete 

datasets used by Taylor et al, 2007, followed by phylogenetic tree building using 

neighbour joining, maximum likelihood and minimum evolution algorithms. 

Accession Numbers The 16S rRNA gene sequences for the isolates were 

deposited in GenBank under the accession numbers JF820664-JF820814. The 

pyrosequencing reads were deposited to the NCBI Sequence Read Archive under 

the accession number SRA035391. 
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2.4 Results 

2.4.1 Culture isolation 

In the general isolation strategy, partial 16S rRNA sequences were obtained for 

123 bacterial isolates from Raspailia ramosa and for 82 isolates from Stelligera 

stuposa. Phylogenetic analyses identified members of 4 phyla [Actinobacteria, 

Bacteroidetes, Firmicutes and Proteobacteria (� - and � - classes)] associated with 

each sponge species. The community profiles show similarities at the genus level 

within the Firmicutes and Proteobacteria but are dissimilar within the phyla 

Actinobacteria and Bacteroidetes (Figure 2.1). Both cohorts are dominated by � -

Proteobacteria (71% of R. ramosa isolates and 54% of S. stuposa isolates – 

Figure 2.2). The dominant phylotypes of this class, from both sponges, are close 

relatives of Pseudoalteromonas sp., Vibrio sp. and Halomonas sp. Seven genera 

of � -Proteobacteria were isolated from R. ramosa while six genera of � -

Proteobacteria were isolated from S. stuposa. Three genera (Pseudoalteromonas, 

Shewanella, Halomonas) were isolated from both sponges. Four genera 

(Colwellia, Vibrio, Aliivibrio , Microbulbifer) were unique to R. ramosa while 3 

genera (Glaciecola, Alteromonas, Acinetobacter) were unique to S. stuposa. The 

� –Proteobacteria cultured from S. stuposa are most closely related to the 

common marine genera Roseobacter spp., and Ruegeria spp. while the R. ramosa 

derived  � –Proteobacteria are almost exclusively Pseudovibrio spp. Amongst the 

Firmicutes isolates Staphylococcus spp. and Bacillus spp. were isolated from 

both sponges. A Microbacterium sp. isolate was obtained from S. stuposa. Five 

genera of Bacteroidetes were isolated from each sponge species though only one 

genus (Cellulophaga) was common to both sponges. Three actinobacterial genera 

were isolated from R. ramosa and five actinobacterial genera were obtained from 

S. stuposa with only two genera (Micrococcus, Arthrobacter) common to both 

sponges. For the targeted isolation strategy, partial 16S rRNA sequences were 

obtained for 33 isolates (Figure 2.3). ~85% of these isolates were from the 

phylum Firmicutes (14 x Bacillus spp., 12 x Staphylococcus spp. and 2 

Paenibacillus spp.). Other isolates were related to Tetrathiobacter sp. (� -

Proteobacteria) and Pantoea sp. (� -Proteobacteria). 
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Figure 2.1: Neighbour-joining phylogenetic trees [(a) - Actinobacteria, 

Bacteroidetes and Firmicutes, (b) Proteobacteria] of bacterial isolates from the 

marine sponges R. ramosa and S. stuposa. � -denotes S. stuposa isolate 	 -denotes R. 

ramosa isolate. Numbers in parentheses represent numbers of replicate isolates. Only 

isolates from the general isolation strategy are included. 

�

Figure 2.2: Percentage of bacterial isolates from the marine sponges R. ramosa and 
S. stuposa by phylum. Only isolates from the general isolation strategy are included. 

 

2.4.2 Antimicrobial assay 

Antimicrobial activities against one or more test strains were noted from 20 sponge 

isolates (Table 2.2). While ~3% of isolates from the general isolation strategy 

displayed antimicrobial activity, ~42% of isolates from the targeted isolation strategy 

showed antimicrobial activities. Three isolates (Bacillus sp., Tetrathiobacter sp., 

Staphylococcus sp.) showed strong inhibitory activity against Candida glabrata. One 

unidentified isolate (WH018scsh40) inhibited all yeast test strains tested (Figure 

2.4). 
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 WH018sc61

 WH018sh71

 WH018sh72

 Staphylococcus equorum strain CM5 JN230520

 WH018sn13

 Staphylococcus sp. PDD-35b-7 JF706520

 WH018snh25

 WH018ash67

 WH018a68

 WH018as65

 WH018ash24
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 Bacillus pumilus strain PPR4 JN544162

 Bacillus weihenstephanensis strain 0310ARD12L 1 FR 848411

 WH018a20

 WH018ah03

 WH018ah01

 WH018ah02

 Bacillus mycoides strain B20 JN377666

 Bacillus cereus strain SDK1 FR686499

 Bacillus cereus strain EWRR2 JN102338

 Bacillus cereus strain TCCC11197 FJ393296

 WH018snh56

 WH018ah22

 WH018sc47

 

 Bacillus licheniformis strain PRM7 JN544147

 WH018rh31

 WH018scs32

 Bacillus licheniformis strain pK J614258

 Lysinibacillus fusiformis strain V92DM JN400329

 Bacillus sp. CCBAU 13244 EF377302

 WH018ah21

 WH018sn28

 WH018sn16

 Bacillus licheniformis strain CBP2 EF450112

 WH018sc44

 Paenibacillus vortex strain V453 HQ005270

 WH018sch48

 Paenibacillus xylanexedens JF970588

 WH018scs33

 Pantoea sp. EMA-35 HQ824361

 WH018scsh41

 WH018a18

 Tetrathiobacter kashmirensis strain 3T5F JF11017
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 WH018snh26
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Figure 2.3: Neighbour joining phylogenetic tree of bacterial isolates from the 

targeted isolation strategy. Sponge isolates are identified by the prefix –WH018’. 
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Figure 2.4: Examples of antimicrobial activities of sponge isolates. (a) WH009151s 

V E. coli, (b) WH009126m V S. aureus, (c) WH009063c V E. coli, (d) 

WH018sccsh40 V C. glabrata, (e) WH018scsh40 V K. marxianus (f) WH018scsh40 

V S. cerevisiae. 
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Isolate E.coli S.aureus C.glabrata C.albicans K.marxianus S.cerevisiae 

WH009063c Pseudovibrio sp. X      
WH009094c Pseudovibrio sp. X      
WH009103c Pseudovibrio sp. X      
WH009126m 

Pseudoalteromonas 
sp.  X     

WH009151s Shewanella sp. X      
WH009171s 

Pseudoalteromonas 
sp. X      

WH018ah01 Bacillus sp.    XXX    
WH018ah02 Bacillus sp.    X   
WH018ah03 Bacillus sp.    X   
WH018ash04 Bacillus sp.    X   
WH018snh08 Bacillus sp. X      
WH018a18 Tetrathiobacter sp.    X   
WH018a20 Bacillus sp.    XX   
WH018ah21 Bacillus sp. X      
WH018snh26 Tetrathiobacter sp.    XXX    
WH018scs33 Pantoea sp.    X   
WH018scsh40 ?   X  XX XX 
WH018ah58 ?    XXX    
WH018sh71 Staphylococcus sp.    XXX    
WH018sh73 Pantoea sp.   XX    
Table 2.2: Antimicrobial activities of sponge isolates against bacterial and yeast test 

strains as determined by the deferred antagonism assay. Isolates in bold text indicate 

isolates from the targeted isolation strategy. X – denotes moderate inhibition of the 

test strain, XX – denotes intermediate inhibition of the test strain, XXX – denotes 

strong inhibition of the test strain. 

 

2.4.3 Pyrosequencing 

A combined total of ~70,000 raw bacterial 16S rRNA tag sequences comprising over 

20 million bases were obtained from pyrosequencing. After quality filtering 14,146 

sequence reads from R. ramosa with an average length 420 bp, 12,099 sequences of 

average length 437 bp from S. stuposa and 12,126 sequences of average length 369 

bp from seawater were analysed. The number of OTUs in each sample was 

determined and Shannon and Chao1 diversity indices were calculated (Table 2.3).  
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Rarefaction curves at 5% sequence dissimilarity for all three samples showed some 

levelling off indicating that the libraries were representative and that the estimations 

of microbial diversity were likely to be accurate (Figure 2.5a). Rank abundance 

curves indicated that the majority of the sequences belonged to rare species although 

differences in the slope indicated that the microbial community associated with S. 

stuposa had lower evenness than R. ramosa (Figure 2.5b). 

 
No. of 

reads 

No. of 
reads 
after 

quality 
filtering 

Average 
sequence 

length 

No. of 
OTU’s 
(97% 

sequence 
identity) 

No. of 
OTU’s 
(95% 

sequence 
identity) 

Chao1 
richness 

(95% 
sequence 
identity) 

Shannon 
Index 

(95% 
sequence 
identity) 

R. ramosa 24,433 14,146 420 3,013 2,109 3,466 5.49 

S. stuposa 26,918 12,099 437 570 349 581 2.94 

Seawater 18,271 12,126 369 1,380 533 730 4.17 

Table 2.3:  Analysis of 16S rRNA (V1-V3) pyrosequencing reads from the marine 

sponges R. ramosa, S. stuposa and from seawater. Chao1 species richness and 

Shannon diversity indices were calculated at 95% sequence identity. 

Taxonomic classifications of sequences resulted in 98% of R. ramosa-derived 

sequences being classified, ~96.75% of S. stuposa-derived reads classified and 

99.8% of seawater-derived reads classified [Supplementary Table S2.1 (see 

Appendix)]. Distinct differences between all three datasets were evident. Very high 

levels of diversity were noted from the R. ramosa sequences with 3,013 unique reads 

at 97% sequence similarity and 2,109 unique reads at 95% sequence similarity. Ten 

bacterial phyla [Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, 

Cyanobacteria, Deferribacteres, Firmicutes, Nitrospira, Proteobacteria (� -, � -, � -, � - 

and � - classes) and TM7] were observed in R. ramosa-derived reads. From the 

sponge S. stuposa, much lower diversity was evident with 570 unique reads seen at 

97% sequence identity and 349 unique sequences at 95% sequence similarity. 

Sequences representing eight bacterial phyla [Actinobacteria, Acidobacteria, 

Bacteroidetes, Cyanobacteria, Firmicutes, Nitrospira, Proteobacteria (� -, � -, � - and 

� - classes) and TM7] were recovered from S. stuposa. 
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No. of sequences
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Figure 2.5: (a) Rarefaction curves and (b) rank abundance curves for marine sponge 

and seawater derived pyrosequencing reads. 

 

The bacterial diversity observed in seawater was lower than for either of the two 

sponges when phylum level analysis was examined. Members of six bacterial phyla 

[Actinobacteria, Bacteroidetes, Cyanobacteria, Firmicutes, Nitrospira and 

Proteobacteria (� -, � -, and � - classes)] were represented. However, more OTUs at 

97% sequence identity (1,380) and at 95% sequence identity (533) were noted in 

seawater when compared to S. stuposa (570 and 349 respectively). These diversity 

levels are reflected in the Shannon diversity indices calculated for each sample 

(Table 2.2). Chao1 species richness estimates predict 3,466 OTUs at 95% sequence 

identity for R. ramosa suggesting that 40% of the diversity present was not sampled. 
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Similarly, ~40% of OTUs from S. stuposa were not sampled relative to Chao1 

estimates of 581 OTUs at 95% similarity. Chao1 estimates for seawater (730) 

suggest that greater than 75% of OTUs (95% identity) present in seawater were 

sampled here. Rarefaction curves for each sample (Figure. 2.5a) reflect these 

estimates and also show the differences in evenness of the microbial communities. 

The microbial community associated with R. ramosa is the most diverse with many 

species present at relatively low abundance; for S. stuposa the community is less 

diverse with a greater proportion of the community consisting of dominant clusters.  

�

Figure 2.6: Relative abundance of 16S tag sequences by phylum from marine 

sponges and seawater. 
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At the phylum level Proteobacteria dominated in both sponges (Figure 2.6), making 

up 78% and 71% of classified reads from R. ramosa and S. stuposa, respectively. 

The next most abundant phylum for both sponges was the Nitrospira. This phylum 

accounts for 9.16% of R. ramosa-derived sequences and ~24% of S. stuposa-derived 

reads [including all of S. stuposa cluster 1 (Ssc1 – Figure 2.8)] while <0.01% of 

seawater-derived sequences belong to the phylum Nitrospira. Bacteroidetes 

accounted for a significant proportion (5%) of R. ramosa sequences but only 0.2% of 

S. stuposa sequences and 0.9% of sequences from seawater. Cyanobacteria and 

Actinobacteria were also more abundant in R. ramosa (2.4% and 0.7%) than S. 

stuposa (0.3% and 0.03%). More rarely found phyla were Firmicutes (in both 

sponges), Chloroflexi and � -Proteobacteria (unique to R. ramosa); Acidobacteria 

and TM7 (both sponges) and Deferribacteres (only in R. ramosa). Low-abundance 

� -Proteobacteria were found in both sponges but were absent from seawater. The 

only � -proteobacterial order (Myxococcales) found in S. stuposa was also found in R. 

ramosa. � -Proteobacteria were also found at low abundance in both sponges but not 

in seawater. Amongst the � -Proteobacteria low numbers of Vibrionales and 

Xanthomonadales were observed in both sponges; Xanthomonadales were present at 

low abundance in seawater also but Vibrionales completely dominated the seawater 

with more than half of all seawater-derived tag sequences recruiting to this order. 

Alteromonadales, Enterobacteriales and Pseudomonadales were also found at low 

abundance in S. stuposa but were more common in R. ramosa. Low abundance 

Thiotrichales and Legionellales were identified to be associated with R. ramosa, but 

these orders were absent from S. stuposa.  
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 Mycale sp. clone AJ292193

 Mycale sp. clone AJ292192

 Mycale sp. clone AJ292194

 Mycale sp. clone AJ292195

 Geminocystis hermandii PCC 6308 AB039001
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 Prochlorococcus marinus NATL2A CP000095

 marine clone DQ300603

 Borrelia burgdorferi U03396

 Streptomyces griseus M76388

 Bacteroides fragilis M61006

 Bifidobacterium bifidus S83624

 Agrobacterium tumefaciens D14504
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0.05  
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Figure 2.7: Maximum Likelihood phylogenetic tree of bacteria from the phylum 

Cyanobacteria including a cluster (4 sequences) derived from the marine sponge 

Raspailia ramosa (Rrc388 – Raspailia ramosa cluster 388) forming a monophyletic 

novel sponge specific cluster. 

 

2.5 Discussion 

2.5.1 Isolated Bacteria 

The phylogeny of the cultured isolates showed broad similarities to previously 

reported studies with the four bacterial phyla isolated here being regularly cultured 

from sponges (Taylor et al., 2007). All of the proteobacterial genera isolated in 

culture were represented in the pyrosequencing dataset from the sponge from which 

they were cultivated this was not the case for the Actinobacteria or Firmicutes 

isolates, many of which were members of genera that were not detected by 

pyrosequencing.  While it is well known that much of the sponge microbiota is 

currently inaccessible by culture-dependent methods (Sipkema et al., 2011), it would 

also appear that bacteria accessible by culturing approaches are likewise not detected 

by culture-independent approaches. Similar findings were noted by Sun and 

colleagues (Sun et al., 2010) and by Zhang and co-workers (Zhang et al., 2006). 

Both groups targeted Actinomycetes for isolation from marine sponges. Sun and co-

workers also constructed a 16S rDNA clone library while Zhang and colleagues 

performed RFLP analysis. Both groups identified cultured isolates which were 

absent from their culture-independent analyses. Whether this is due to extreme low 

abundance or methodological bias is currently unknown. 

Members of the genera Pseudoalteromonas and Pseudovibrio were isolated from 

both sponge species and were also detected by pyrosequencing from both sponges.  

Previously, sponge-derived Pseudovibrio spp. isolates have displayed strong 

antimicrobial activities (Kennedy et al., 2008; O’Halloran et al., 2011)  while other 

� -proteobacterial isolates, Ruegeria spp. and Roseobacter spp. have been implicated 

in signalling processes in sponges through the production of quorum-sensing 

molecules (Mohamed et al., 2008). Sponge-associated Actinobacteria are of 

particular interest due to the propensity of terrestrial members of this phylum to 



����
�

produce bioactive secondary metabolites. Arthrobacter spp. were isolated in culture 

from both sponges here. Members of this genus are very common in soil and can 

metabolise toxic heavy metals and pesticides (Megharaj et al., 2003). Similarly, 

Micrococcus spp. were isolated from both sponges and this genus also includes 

species which harbour pesticide-degrading gene products (Sims et al., 1986). 

The targeted isolation strategy was used in an attempt to obtain antibiotic producers 

such as Streptomyces sp. Although, no actinobacteria were in fact isolated the 

relative number of isolates displaying antimicrobial activity was an order of 

magnitude greater than that observed from the general isolation method used here. 

Bacillus sp. and Staphylococcus sp. were isolated by both strategies but 

Paenibacillus sp., Tetrathiobacter sp. and Pantoea sp. were only seen from the 

targeted approach. It is clear that different culture isolation strategies result in 

different phylotypes being obtained and to ascertain the full cultivable bacterial 

diversity of a sponge associated bacterial community a wide range of disparate 

isolation conditions are required. 

2.5.2 Antimicrobial activities 

Antibacterial activities were observed from eight sponge isolates, seven isolates 

inhibited E. coli and one isolate inhibited S. aureus (Table 2.2).  The sponge isolates 

exhibiting these activities are most closely related to Pseudovibrio sp., 

Pseudoalteromonas sp., Shewanella sp. and Bacillus sp. Pseudovibrio sp. isolates 

from other sponge species have been noted to display inhibitory activity against 

important clinical pathogens such as MRSA (O’Halloran et al., 2011). Sponge 

derived Pseudoalteromonas sp., and Bacillus sp., have also previously been reported 

to display antimicrobial activities (Flemer et al., 2011). Shewanella spp. are known 

to produce antibiotic compounds also (Shnit-Orland et al., 2007).  

Yeast test strains were inhibited by 14 of the sponge isolates. Half of those isolates 

were closely related to Bacillus sp., with phylogenetic analysis suggesting that these 

isolates may represent at least two different species within the genus (Figure 2.2). 

Other isolates exhibiting antimicrobial activities were close relatives of 

Staphylococcus sp., Tetrathiobacter sp., Pantoea sp. as well as two unidentified 

isolates. The mechanism of the antimicrobial activities being displayed by these 

isolates is as yet  unknown. Furthermore, it is unclear whether the antimicrobial 
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compounds are produced in vivo in the sponge host or what ecological roles they 

may play, if any. It has however been suggested that production of antimicrobial 

compounds by sponge symbiotic bacteria plays roles in chemical defence of the host 

against infection and predation (Taylor et al., 2007). 

 

2.5.3 Pyrosequencing 

Phylum level analysis in this study reveals much lower diversity than has been noted 

in some previous sponge pyrosequencing studies (Lee et al., 2011; Webster et al., 

2010). Those studies identified 26 and 23 bacterial phyla associated with sponges 

from Red Sea and Australian waters respectively.  However, analysis of OTUs at 

95% sequence similarity reveals levels of species diversity approaching what was 

noted by Webster despite the disparity in numbers of sponge-derived sequence reads 

analysed (~51,000 obtained here versus ~250,000 by Webster and colleagues). While 

Lee and co-workers identified ~850 bacterial OTUs (95% sequence similarity) in 

association with a single sponge species and Webster et al noted ~3,000 OTU’s in a 

single species, ~ 2,100 bacterial OTU’s were found here in the most diverse sponge 

(R. ramosa) community. This is in contrast to S. stuposa where 349 bacterial OTU’s 

were noted. Chao1 estimates for the R. ramosa community (3,466 OTUs) at 95% 

sequence identity, though much higher than any previous report for marine sponges, 

reflects the data of Lee et al. where a similar proportion (~60%) of the community 

was represented relative to Chao1 estimates. Other sponge pyrosequencing studies 

have reported 14 (Trindade-Silva et al., 2012), 18 (White et al., 2012) and 8-15 

(Schmitt et al., 2011) bacterial phyla associated with different sponge species. These 

findings echo Schmitt and colleagues findings that bacterial communities associated 

with sponges are largely species-specific. Their analyses revealed that >72% of 

OTUs were species–specific in five sponges which they examined while 26% of 

OTUs were common two-to-four of those sponges and only 2% of OUTs were found 

in all 5 sponge species. In this study ~13% of classified genera were found in both 

sponge species. 
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2.5.4 Community analysis 

Genus level and cluster analyses of classified sequences reveal that different 

phylotypes dominate each of the communities. The largest cluster from the R. 

ramosa derived sequences aligned to the ubiquitous SAR11 clade of � -

Proteobacteria. The genus Pelagibacter accounts for 10% of all classified sequences 

from that sponge, the most common identified genus.  This compares to 0.5% of 

reads from S. stuposa and 0.97% of seawater-derived reads identified as SAR11. 

Nitrospirae account for a large proportion of  sequences from both sponges (9.1% of 

R. ramosa sequences, ~24% of S. stuposa sequences) but are scarce in seawater (one 

sequence read). Nitrospira is the most common identified genus from S. stuposa. 

Nitrospiraceae have been commonly detected in other sponge species, however the 

levels found here are significantly higher than other pyrosequencing studies that 

showed levels of 0.01% to 3% among several sponge species (Lee et al., 2011; 

Webster et al., 2010).  

A large number of S. stuposa tag sequences were classified as purple sulfur bacteria 

from the family Ectothiorhodospiraceae (34% of reads) with a further 4.4% of reads 

being classified as members of the same order (Chromatiales). This family of 

bacteria also appear to constitute a significant proportion of the microbiota of R. 

ramosa with 4.3% of classified reads recruiting to the Ectothiorhodospiraceae and a 

further 0.7% to other Chromatiales families.  Within other sponge species the 

presence of significant numbers of purple sulfur bacteria have been found in 

Haliclona simulans from the west coast of Ireland, where 44% of clones recruited to 

the Ectothiorhodospiraceae (Kennedy et al., 2011b). Webster and co-workers have 

also reported high levels of Ectothiorhodospiraceae ranging from ~0.4% to >5% 

among different sponge species (Webster et al., 2010). The high levels of this group 

of bacteria within both sponges and their absence from the surrounding seawater 

implies a significant role in sponge biology. The Ectothiorhodospiraceae are 

typically sulfur-oxidising anaerobic phototrophs, although the role of these bacteria 

in sponge biology is as yet unclear.  The order Rhodobacterales from the � - class of 

Proteobacteria accounted for 9% of R .ramosa derived sequences, 10% of seawater 

sequences but just 0.5% of sequences from S. stuposa. A large cluster from S. 

stuposa aligns to the order Oceanospirillales of � -Proteobacteria. While 5% of S. 

stuposa sequences recruit to this order, only 0.1% of R. ramosa reads and 0.9% of 
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seawater reads recruit to Oceanospirillales. Within Oceanospirillales the most 

abundant genus present in S. stuposa is the Endozoicomonas which constitutes 5% of 

the classified reads. A small proportion (<0.1%) of R. ramosa tag sequences recruit 

to this genus while one tag sequence from seawater represents this genus, suggesting 

that this may be a sponge species-specific symbiont. Members of this genus are 

mostly associated with marine animals (sponges, corals, marine slugs) while the 

nearest related genera are mostly found in saline or hypersaline aquatic environments 

or in sea sediment (Kurahashi & Yokota, 2007; Yang et al., 2010). The order 

Flavobacteriales from the phylum Bacteroidetes is abundant in R. ramosa (4.9% of 

reads) but only accounts for 0.26% of S. stuposa sequences and 0.72% of reads from 

seawater. Many genera from the Flavobacteriaceae family are present with no 

dominant clusters. Flavobacteriaceae have been identified as an important 

environmental reservoir for � -lactamase genes (Naas et al., 2003). Alteromonadales 

from � -Proteobacteria also constitute a significant proportion of the R. ramosa 

community (3% of sequences) and account for 19% of sequences from seawater but 

only 0.12% of S. stuposa sequences recruit to that order. The R. ramosa derived 

sequences include seven reads and the S. stuposa derived sequences include one 

sequence recruited to the candidate division TM7. Prior to pyrosequencing 

technology, few TM7 sequences were reported from marine sponges. Three TM7 

sequences were reported from Chondrilla nucula (Taylor et al., 2007) through 

cloning experiments. Lately, through pyrosequencing, low abundance TM7 

sequences were found in various sponge species. Webster reported TM7 sequences 

derived from Ianthella basta and also from sponge larvae (Rhopaloeides odorabile) 

(Webster et al., 2010). Lee and colleagues report TM7 sequences associated with 

four Hyrtios erectus individuals, with Stylissa carteri and also with two 

Xestospongia testudinaria individuals (Lee et al., 2011). Regular identification of 

sponge-associated TM7 sequences due to deeper sequencing suggests that members 

of this division may be widespread in sponges at very low abundance. Many � -

Proteobacterial sequences from all three samples remained unclassified at lower 

taxonomic levels. These include 32% of all R. ramosa sequences, 17% of all S. 

stuposa sequnces and 1% of sequences from seawater. The seawater tag sequences 

are completely dominated by the common marine order of � -Proteobacteria, 

Vibrionales. More than 55% of sequences from seawater recruit to the order 

Vibrionales; this compares to 0.4% of R. ramosa tag sequences and 0.03% of S. 
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stuposa sequences. More than 98% of the seawater sequences belong to the phylum 

Proteobacteria, the other dominant groups being 9% Rhodobacteraceae and ~13% 

Pseudoalteromonas. In comparable studies, Lee et al. found >90% of 

pyrosequencing reads from seawater aligning to three bacterial phyla 

(Proteobacteria, Cyanobacteria and Bacteroidetes) (Lee et al., 2011) while Webster 

and co-workers reported that 90–95% of pyrosequencing reads belong to the same 

three phyla (Webster et al., 2010). The filter pore size used for DNA extraction in 

this study may have allowed more diminutive cells to pass through, thereby affecting 

the seawater community profile. However, the three phyla which dominate in water 

from the Red Sea (Lee et al., 2011) and Australian waters (Webster et al., 2010) also 

account for >99% of tag sequences from Lough Hyne. 

2.5.5 Sponge-Specific Phylotypes 

One of the most striking features of sponge microbial ecology is the identification of 

sponge-specific phylotypes as defined by Hentschel (Hentschel et al., 2002). 

Numerous sequence clusters identified in this study can be classified as sponge-

specific. From the sponge R. ramosa 17 sequence clusters, representing 2.8% of 

quality-filtered reads, constitute 2 novel sponge-specific clusters. One cluster of four 

sequences represents a novel sponge-specific cluster in the phylum Cyanobacteria 

(Figure 2.7) while 16 R. ramosa-derived clusters representing 391 sequences 

represent a novel sponge-specific cluster in the � - class of Proteobacteria (Figure 

2.9). From S. stuposa, 18 sequence clusters representing 26% of sequences from that 

sponge align to ‘sponge cluster 23’ in the phylum Nitrospira (Figure 2.8) using the 

cluster numbering system used by Webster (Webster et al., 2010). Notable sponge-

specific clusters from numerous phyla (Chloroflexi, Bacteroidetes, 

Gemmatimonadetes, Verrucomicrobia, Planctomycetes, Lentisphaerae, 

Poribacteria, Spirochaetes, � -Proteobacteria) identified in other sponge species 

were absent from the sponges examined here. In addition, Poribacteria-specific PCR 

primers failed to amplify a product from metagenomic DNAs of the sponges 

examined here (data not shown).  
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Figure 2.8: Maximum Likelihood phylogenetic tree of bacteria from the phylum 

Nitrospira including 18 clusters (3,166 sequences) derived from the marine sponge 

Stelligera stuposa recruiting to sponge cluster 23 according to the numbering system 

of Webster et al, 2010. 
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Figure 2.9 continued 
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Figure 2.9: Maximum Likelihood phylogenetic tree of bacteria from the � - class of 

Proteobacteria including 16 clusters (391 sequences) derived from the marine sponge 

Raspailia ramosa forming a monophyletic novel sponge specific cluster. 
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2.5.6 Linking Taxonomy to Function 

The composition of the microbial communities, present within each sponge is likely 

to reflect the metabolic roles of these bacteria. The community associated with S. 

stuposa appears to be much less diverse than that associated with R. ramosa; with 

approximately 62% of the total microbial community being made up of three distinct 

bacterial groups, the order Chromatiales (33%), the genus Nitrospira (24%), and the 

genus Endozoicomonas (5%). Within the more complex microbiota of R. ramosa the 

most abundant of these three groups also make up a significant portion of the 

microbial population with ~9% Nitrospira and 5% Chromatiales present, implying 

an important, if not fundamental, role in the biology of these sponge species. 

Taxonomic biomarker genes cannot be used to identify symbiotic roles for bacterial 

communities but some inferences can be made based on known physiological and 

metabolic capabilities of particular phylotypes. Cyanobacterial photosynthesis may 

be an important source of carbon for many sponges (Taylor et al., 2007) and were 

present in both of these sponges. Bacterial groups involved in all steps of nitrogen 

metabolism, N2 fixation (Rhizobia sp.), ammonia oxidation Nitrospira sp., 

Nitrosomonas sp.), nitrite and nitrate reduction (Flavobacterium sp.) were also 

associated with both sponge species. Finally sulphur metabolising bacterial groups 

were also evident associated with sponges. Sulfur-oxidising 

(Ectothiorhodospiraceae and Sulfurovum sp.) and sulfide-oxidising bacteria 

(Arcobacter sp.) were present in R. ramosa as were sulfate-reducing phylotypes 

Desulfovibrio sp. and Desulfuromonas sp., while in S. stuposa sulfur metabolism 

may chiefly involve the dominant Ectothiorhodospiraceae. The abundance of both 

of these sponge species in the same ecological niche (Bell & Barnes, 2000) suggests 

that, although in some cases different bacterial groups appear to perform similar 

symbiotic roles for each individual host, the difference in complexity between the 

microbial communities does not alter the success of these sponges in that habitat. 
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2.6 Conclusion 

Different pyrosequencing studies have targeted various regions of the 16S rRNA 

gene for amplification (Lee et al., 2011; Webster et al., 2010) and no standard has 

emerged yet. However, with increasing read-lengths obtainable, it has been shown 

that sequences spanning a variable region and a hypervariable region of the 16S gene 

can provide the most robust taxonomic classification of sequences (Kim et al., 2010; 

Wang et al., 2007; Wommack et al., 2008). For this reason, we targeted the V1-V3 

region, and the average sponge-derived sequence lengths obtained here (~430b) 

resulted in the majority of quality-filtered sequence reads spanning the full length of 

the variable regions being targeted. However, it has been shown that intrinsic 

pyrosequencing errors can result in diversity estimates which are orders of 

magnitude higher than the actual diversity levels (Kunin et al., 2010). 

Pyrosequencing of 16S rRNA amplicon libraries generated from the sponge 

metagenome has provided a detailed insight into the composition of the sponge 

associated cohorts. Clear differences in community profiles, when compared to 

seawater-derived data, show that the major proportion of sponge-associated bacteria 

is not incidental or transient, as most OTUs identified in the sponge hosts were not 

present in seawater. This was also shown in other deep sequencing studies 

comparing sponges to seawater (Lee et al., 2011; Webster et al., 2010). Host 

selection is remarkably divergent. Of the 10 bacterial phyla identified in R. ramosa, 

two are absent from S. stuposa and four were not found in the surrounding seawater. 

Also evident are the differences between the microbial communities associated with 

these sponges and other sponges that have been studied by deep sequencing 

approaches.  While similarities are present, as illustrated by the analysis of sponge-

specific clusters; what is perhaps more clear are the differences in the microbial 

populations between sponge species, with many sponge-specific groups being absent 

from these species. 

It is clear from the deep analysis of the microbiota of S. stuposa and R. ramosa, the 

first temperate sponge species studied in this way that the cosmopolitan nature of 

sponge-microbial associations are to varying degrees both sponge-specific and 

species-specific. The symbiotic roles attributed to bacteria within sponge tissues are 

performed in some cases by similar phylotypes that seem to be almost universally 
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present within sponges and across habitats (e.g. Cyanobacteria, Nitrospira) and in 

other instances by dissimilar populations (e.g. sulfur metabolism). As deep 

sequencing approaches are applied to additional sponge species from varied habitats, 

and more sponge-specific clusters are identified; more detailed patterns of sponge-

microbial interactions will emerge.  The challenge that this data presents is in linking 

our increasingly in-depth knowledge of sponge-microbial phylogeny to informed 

approaches to study sponge-microbial physiology and reveal the biochemical roles of 

the microbial consortia. 
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3.1 Abstract 

Microbes associated with marine sponges play significant roles in host physiology. 

Remarkable levels of microbial diversity have been observed in sponges worldwide 

through culture-dependent and culture-independent studies. Most studies have 

focused on the structure of the bacterial communities in sponges and have involved 

sponges sampled from shallow waters. Here we used pyrosequencing to compare the 

bacterial and archaeal communities associated with three individuals of the marine 

sponge Inflatella pellicula from the deep-sea, one individual from a depth of 780 m 

and two individuals from 2900 m, a depth which far exceeds any previous sequence-

based report of sponge-associated microbial communities. Sponge-microbial 

communities were also compared to the microbial communities in seawater from 

concomitant depths. Although the sponges from 2900 m hosted similar communities, 

clear differences between the sponge-associated community from 780 m and the 

sponge communities from the greater depth were apparent. The seawater 

communities did not resemble the sponge communities. Archaea were remarkably 

dominant in the sponge-associated communities. Thaumarchaeota comprised large 

proportions of the sponge-associated cohorts and occurred in increased abundance 

with increased sampling depth. While Archaea comprised ~11.3-36.6% of seawater 

communities their abundance in sponges ranged from ~43-72.5%. Euryarchaeota 

which were the dominant archaeal phyla in seawater were rare in sponges. Bacterial 

communities associated with these sponge samples are less diverse and less even 

than in any other sponge species investigated to date by pyrosequencing. Sponges 

hosted 9-12 bacterial phyla, fewer than was found in seawater (13 and 15 phyla). 

Deep-sea sponge microbial communities appear to differ greatly from sponge-

microbe communities from shallow waters. 

 

3.2 Introduction 

Marine sponges (Porifera) are host to microbes from all domains of life; Eukarya 

(Baker et al., 2008; Cerrano et al., 2004), Archaea (Margot et al., 2002; Webster et 

al., 2004) and Bacteria (Taylor et al., 2007). These close and consistent associations 

are thought to be based on various symbiotic relationships; commensalist, mutualist 

(Wilkinson, 1983) and parasitic (Bavestrello et al., 2007). Microbes are also a 
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significant food source for marine sponges (Reiswig, 1975) which, as sessile 

animals, must derive their nutrition by active filter-feeding from ambient seawater. 

Much research interest has focused on the bacterial associates of marine sponges 

since the early work of Clive Wilkinson (Wilkinson, 1978) and Jean Vacelet 

(Vacelet & Donadey, 1977) in the 1970s showed that bacteria comprise significant 

proportions of sponge tissues. Progressive advances in technologies in molecular 

biology have shown that enormous levels of bacterial diversity inhabit sponge 

tissues. Members of 35 major bacterial phyla or candidate phyla (Schmitt et al., 

2011) as well as archaea (Taylor et al., 2007) and eukaryotic microbes (fungi and 

diatoms) have been detected in sponge tissues through culture isolation (Kennedy et 

al., 2008), microscopy; TEM (Vacelet & Donadey, 1977) and FISH (Sharp et al., 

2007) and molecular investigations; DGGE (Usher et al., 2004), RFLP (Zhang et al., 

2006), PCR (Sipkema et al., 2009) and latterly pyrosequencing (Webster et al., 

2010; Lee et al., 2011; Schmitt et al., 2011; Jackson et al., 2012; White et al., 2012). 

Numerous sponge families, genera and species from tropical, temperate and polar 

waters have to date been investigated. These studies have revealed inter- and intra-

species similarities and differences, with apparent sponge-specific taxa (Hentschel et 

al., 2002), which despite being derived from disparate sponge species and distant 

biogeographic regions are more closely related to each other than to similar taxa 

from non-sponge habitats. Recently massively parallel pyrosequencing has enabled 

very detailed descriptions of sponge-associated microbial communities, generating 

sequence datasets many orders of magnitude greater than was previously possible. 

This has enabled the discovery of low-abundance members of these microbial 

communities and a more complete and accurate description of the structures and 

stability of the highly complex resident symbiont communities. Few studies to date 

have considered the relative abundance of Archaea in sponge-associated microbial 

communities. However, Lee and colleagues (Lee et al., 2011) showed that Archaea 

comprise significant proportions (ranging from 4-28%) of the microbial communities 

inhabiting various individuals of three sponge species from the Red Sea. Such 

significant levels of Archaea within sponge tissues suggest that they may play 

important roles in host physiology, particularly as they have been shown to be of 

ecological importance in nitrogen cycling (Koenneke et al., 2005). 



����
�

Here we use pyrosequencing to describe the archaeal and bacterial communities 

associated with the sponge Inflatella pellicula (Schmidt, 1875) from the deep ocean. 

The marine sponge I. pellicula has to date only been found in cold and deep waters 

below 200 m and has been found in the North Atlantic and North Pacific oceans. 

Three individuals are compared, one sampled from a depth of 780 m and two 

individuals sampled from a single location at a depth of 2900 m. We also compare 

the sponge-derived cohorts to those of seawater sampled from both depths. 

The objectives of the work presented in this chapter are: (1) to elucidate the 

microbial community structures associated with the marine sponge I. pellicula, (2) to 

compare the sponge-associated communities to those of ambient seawater, and (3) to 

determine if deep-sea sponge-associated microbial structures resemble those of 

shallow water sponges. 

 

3.3 Materials and Methods 

3.3.1 Sampling  

Sponges and seawater were sampled using the Irish research vessel, RV Celtic 

Explorer and the remotely operated vehicle (ROV), Holland I from the Atlantic 

Ocean in Irish waters as per Table 3.1. One individual of the marine sponge 

Inflatella pellicula (Class Demospongiae; Order Poecilosclerida; Suborder 

Myxillina; Family Coelospheridae) was sampled at a depth of 780 m while two 

individuals of the same species were obtained from a single location at a depth of 

2900 m. Sponges were immediately rinsed with sterile artificial seawater, placed in 

sterile Ziploc bags and then frozen at -80°C until ready for use. Artificial seawater 

comprised 33.3g/L Instant Ocean, (Aquarium Systems – Blacksburg, VA, USA), a 

defined ion and mineral formulation commonly used in aquaria. Seawater (30L) was 

collected at the same depths as the sponge sampling depths and immediately filtered 

through 0.2 µm membrane filters (Whatman – Austin, TX, USA) and the filters were 

stored in sterile tubes at -80°C until ready for use. 
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Sample Depth  

(m) 

GPS Location Temperature  

(°C) 

Seawater 780 N54° 00’ 03” W12° 18’ 36” 9.9 

Inflatella pellicula 780 N54° 00’ 03” W12° 18’ 36” 9.9 

Seawater 2900 N54° 14’ 31” W12° 41’ 38” 2.76 

Inflatella pellicula 2900 N54° 14’ 31” W12° 41’ 38” 2.76 

Inflatella pellicula 2900 N54° 14’ 31” W12° 41’ 38” 2.76 

Table 3.1: Sampling of sponges and seawater from the Atlantic Ocean in Irish 

waters. 

3.3.2 Metagenomic DNA Extraction from Sponges 

Sponge tissues were weighed and finely ground under liquid N2 with a sterile mortar 

and pestle. The ground tissues were suspended in lysis buffer [100 mM Tris, 100 

mM EDTA, 1.5 M NaCl (w/v), 1% CTAB (w/v), 2% SDS (w/v)] - adapted from 

Brady, 2007. Metagenomic DNA was then extracted as previously described 

(Kennedy et al., 2008b). DNA solutions were analysed by gel electrophoresis, 

quantified by spectrophotometry (NanoDrop ND-1000 – Wilmington, DE, USA) and 

then stored at -20°C. 

3.3.3 Metagenomic DNA Extraction from seawater 

DNA was extracted from filters using WaterMaster DNA Purification Kit (Epicentre 

Biotechnologies, Madison, WI, USA) according to the manufacturer’s instructions 

and stored at -20°C. 

3.3.4 PCR Amplicon Library Preparation for Pyrosequencing 

PCR amplicon libraries of the V5-V6 region of 16S rRNA genes were prepared from 

I. pellicula and seawater metagenomic DNAs. Universal primers U789f (5’-

TAGATACCCSSGTAGTCC-3’) and U1068r (5’-CTGACGRCRGCCATGC-3’) 

(Lee et al., 2011), targeting both bacteria and archaea, were adapted for 

pyrosequencing by the addition of sequencing adapters and multiplex identifier 

(MID) sequences as per Table 3.2. Each 50 µl PCR reaction comprised 1X buffer, 

0.2 mM dNTPs, 0.1 µM of each primer, 2U Taq polymerase, ~10 ng template DNA 

and sdH2O. PCR cycle conditions comprised initial denaturation at 94°C for 5 min 

followed by 26 cycles of denaturation at 94°C for 30 s, annealing at 53°C for 30 s 
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and extension at 72°C for 45 s. A final extension 72°C for 6 min was added (Lee et 

al., 2011). To minimise PCR bias three individual reactions were performed per 

template and equimolar amounts of PCR products from each of the three reactions 

were pooled for pyrosequencing. PCR products were purified using Qiagen PCR 

Purification Kit (Qiagen Ltd., UK) as per the manufacturer’s instructions. Barcoded 

samples were pooled and sequenced on GS FLX Titanium platform (454 Life 

Sciences) at the University of Liverpool, Centre for Genomic Research, Liverpool, 

UK. 

 

Sample Primer Adapter Multiplex 

Identifier (MID) 

Template specific primer 

SW780m 

(seawater 

780m) 

Forward CGTATCGCCTCCCTCGCGCCATCAG ACGAGTGCGT TAGATACCCSSGTAGTCC (U789f) 

Reverse CTATGCGCCTTGCCAGCCCGCTCAG ACGAGTGCGT CTGACGRCRGCCATGC (U1068r) 

SW2900m 

(seawater 

2900m) 

Forward CGTATCGCCTCCCTCGCGCCATCAG ACGCTCGACA TAGATACCCSSGTAGTCC (U789F) 

Reverse CTATGCGCCTTGCCAGCCCGCTCAG ACGCTCGACA CTGACGRCRGCCATGC (U1068r) 

Ip780m 

(I.pellicula 

780m) 

Forward CGTATCGCCTCCCTCGCGCCATCAG TAGTATCAGC TAGATACCCSSGTAGTCC (U789f) 

Reverse CTATGCGCCTTGCCAGCCCGCTCAG TAGTATCAGC CTGACGRCRGCCATGC (U1068r) 

Ip2900mA 

(I.pellicula 

2900m) 

Forward CGTATCGCCTCCCTCGCGCCATCAG TCTCTATGCG TAGATACCCSSGTAGTCC (U789F) 

Reverse CTATGCGCCTTGCCAGCCCGCTCAG TCTCTATGCG CTGACGRCRGCCATGC (U1068r) 

Ip2900mB 

(I.pellicula 

2900m) 

Forward CGTATCGCCTCCCTCGCGCCATCAG TGATACGTCT TAGATACCCSSGTAGTCC (U789f) 

Reverse CTATGCGCCTTGCCAGCCCGCTCAG TGATACGTCT CTGACGRCRGCCATGC (U1068r) 

Table 3.2: Primer design for pyrosequencing of 16S rRNA (V5-V6) genes from 

archaea and bacteria in sponges and seawater. 

3.3.5 Pyrosequencing Data Analysis 

Primer adapter and MID sequences were removed from all reads and reads were 

filtered for quality using the Ribosomal Database Project (RDP) -Release 10.29, 

Pyrosequencing Pipeline (http://rdp.cme.msu.edu/). Reads with ambiguous bases 

‘N’, average quality score <20 or shorter than 100 bp were discarded from further 
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analysis. Individual sample libraries were aligned using the INFERNAL aligner 

(Nawrocki & Eddy, 2007). OTUs were determined using the RDP clustering tool 

(complete linkage clustering). Taxonomic classifications were determined using the 

‘Classifier’ tool (naïve Bayesian rRNA classifier- Wang et al., 2007) at 50% 

confidence threshold by comparing to the database of 2320464 rRNA sequences. 

Rarefaction curves were generated from data obtained from the ‘Rarefaction’ tool; 

diversity indices (Shannon index & Chao1 species estimator) were obtained using 

the relevant tools at sequence similarities of 95%. Rank-abundance curves were 

derived from cluster analysis results. Unclassified sequences were further 

investigated using BLAST analyses (Altschul et al., 1990) at the NCBI website 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). Representative sequences from sponge 

derived sequence clusters of identical reads (0% distance) were extracted, analysed 

by BLAST and used to generate phylogenetic trees.  Sequence alignment and tree 

construction were performed using MEGA version 5 

(http://www.megasoftware.net/) (Tamura et al., 2011).  Alignment was performed 

with ClustalW and tree construction was by Neighbour-Joining (Saitou & Nei, 1987) 

method. Reference sequences were downloaded from the RDP database. All 

sequence data is publicly available on MG-RAST (ID no.s 4497997.3, 4497995.3, 

4497996.3, 4497999.3, 4497998.3). (http://metagenomics.anl.gov/). 

 

3.4 Results 

3.4.1 Sequencing 

Pyrosequencing of 16S rRNA genes from archaea and bacteria from three individual 

sponges of the same species (I. pellicula) was performed. One individual was 

sampled from a depth of 780 m (I. pellicula 780m) while the other sponges were 

sampled from a single location at a depth of 2900 m (I. pellicula 2900m sample A 

and I. pellicula 2900m sample B). Sequencing was also performed from seawater, 

one sample for each sampling depth. The five combined samples yielded ~46300 

raw 16S rRNA sequence reads, of which ~43600, comprising >12.2 million bp were 

included in the final analysis after quality filtering (Table 3.3). Sponge-derived 

datasets combined accounted for ~ 24800 reads. Average sequence lengths varied 

from 280bp for samples from 780 m to 277bp for samples from 2900 m. 
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Sample 
No. of 

reads 

No .of reads 

after quality 

filtering 

No. of bacterial 

phyla 

No. of 

OTUs 

(97%) 

No. of 

OTUs 

(95%) 

Shannon 

Index 

 

Chao1 

 

        

Seawater 

780m 
6350 5961 13 817 561 4.89 812 

Seawater 

2900m 
13577 12849 15 1508 1026 4.79 1769 

I. pellicula 

780m 
10211 9537 9 327 203 2.16 361 

I. pellicula 

2 900mA 
6540 6088 11 368 289 1.96 592 

I. pellicula 

2 900mB 
9688 9179 12 446 340 2.17 654 

Table 3.3: Analysis of 16S rRNA gene (V5-V6) pyrosequencing reads from three 

individuals of the marine sponge I. pellicula from two different sampling depths and 

from seawater sampled at the same depths. Shannon indices and Chao1 estimates 

were calculated at sequence similarities of 95%. 

 

3.4.2 Sequence Classification 

Greater than 99.99% of quality filtered sequence reads were assigned to domains, 

Archaea or Bacteria. However, ~9% of all sequences could not be assigned to phyla. 

The majority (>75%) of sequences not assigned to domains derived from a single 

sample (I. pellicula 780m) and all sponge-derived unclassified reads shared 

homology with host mitochondrial DNA sequences as determined by BLAST 

searches. 

3.4.3 Relative Abundances of Archaea and Bacteria 

Archaeal sequences were more abundant in sponges than in seawater (Figure 3.1) 

and were more abundant in sponges sampled at 2900 m than in the sponge sampled 

at 780 m. While the relative abundances of archaeal sequencing reads in the samples 

from 780 m (~36.6% in seawater, 43% in I. pellicula) were comparable, major 

differences were seen in the relative abundance of archaeal reads in samples from 

2900 m (11.3% in seawater, 72.6% and 60.3% in sponges).  


















































































































































































































































































