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The variability of the raw materials, the diversity of the chemical compositions and 

the heterogeneity of structures are believed to contribute to the complexity in the 

physicochemical behaviours of dairy powders and their different reactivity under 

hydrothermal conditions. Post-dehydration technology, including agglomeration and 

coating processes, is widely used as an effective method to homogenise the dairy 

powders and modify the structural and physical properties of the particles, so as to 

solve the issues during powder processing, transport and storage by controlling the 

key parameters of the process. 

In the present study, the various rehydration behaviours (wetting, dispersing and 

dissolving) of different high protein milk powders (milk protein isolate MPI, whey 

protein isolate WPI, micellar casein MC and sodium caseinate SC) are firstly 

assessed to find the suitable methods to quantify these dynamic processes. Then 

these powders were agglomerated by the use of fluidised bed to investigate the 

possible effects on their rehydration processes. Based on the previous assessment, 

milk protein isolate powder (MPI) was selected as the model system, which was 

agglomerated by both fluidised bed (FB) and high shear mix (HS) granulators, using 

different liquid binders (water, lactose, sucrose) and comparing the different granule 

sizes (granule growths). The impact of both agglomeration methods on the particle 

size, shape, density and porosity, as well as the consequent effects on the wettability, 

dispersibility, flowability and water adsorption are investigated. Finally, different 

lecithin additions by Wurster coating and fluidised bed agglomeration were also 

compared to focus on the structural modification and dynamic wetting process of 

whey protein isolate powders. 
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The results showed that the MPI powders agglomerated by FB generally provide 2 to 

4 times (100 mm - 200 mm) increase in size of the primary powders. The formed 

agglomerates had the least spherical shapes and roughest surfaces and thus 

resulted in the porous structures with lowest bulk density (both loose and tapped) 

and highest porosity values. However, MPI granules produced by HS could reach 

sizes of more than 1000 mm, which are ~20 times that of the primary powders. The 

densely packed structures for those HS granules caused the highest bulk density 

and lowest porosity values. Their shapes were more like spheres with comparatively 

smooth surfaces. For their effects on the rehydration of different milk protein 

powders, FB had the beneficial roles on improving the dynamic wetting process of 

MPI and MC powders, by requiring shorter wetting time, being more quickly 

penetrated by water droplets and absorbing more water by capillary force. The MPI 

granules based on HS were more easily wetted by water. The effects are more 

significant if the larger MPI granules are produced and bigger interstitial spaces are 

formed. But the influences on the wettability of WPI and SC were limited, as their 

materials tend to form an impermeable layer at the powder/water interface when 

contacted with water. Only if using lecithin solution as a liquid binder, WPI could be 

completely wetted in several seconds. Agglomeration processes showed no clearly 

advantageous influences on the solubilisation process of different milk protein 

powders. The densely packed structures created by HS largely delayed the release 

of materials during the rehydration of MPI powders. However, the densely packed 

structures made MPI adsorbed least moisture and showed the slowest adsorption 

kinetics during storage at different relative humidity. Meanwhile, these MPI granules 

have significantly better powder flow behaviours. Agglomeration processes can 
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effectively reduce the minimum outlet diameters of hoppers for reliable flow from 

both mass-flow or core-flow hoppers.  

The present study provided information about the post-dehydration process as a 

useful technique to modify the structural and physical characteristics of milk protein 

powders, which could be helpful to enhance the wetting process during rehydration, 

control the water adsorption behaviours and significantly improve the powder 

flowability.  
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�,�Q�W�U�R�G�X�F�W�L�R�Q 

Food powders are used in daily life for many purposes (infant formulae, flour, 

coffee, sugar, salts, spices, etc.) and provide technological solutions to the issues of 

food products, as powders are easy to process, transport, store and preserve 

(Bhandari et al., 2013; Ortega-Rivas et al., 2006). Contrary to model powders, which 

are homogeneous, spherical, monodisperse particles, the real food powders exhibit 

great heterogeneity in particle size, morphology and structures. It is due to food 

powders are the powders, which consist of tens of thousands of individual particles.  

Hence, a great dispersion is always found in their physical and structural properties 

(Cuq et al., 2013). Meanwhile, powders are complex materials and they are a 

complicated mixture of solids, liquids and gases, rather than perceived as just a 

collection of solids. Therefore, the variability of the raw materials, the diversity of the 

chemical compositions and the heterogeneity of structures are believed to contribute 

to the complexity in the physicochemical behaviours of food powders, as well as 

result in their various reactivity under hydrothermal conditions.  

In the dairy industry, most dairy powders present similar problems, regarding to 

the characteristics in particle size, shape, density and porosity. As dairy powders are 

produced by the dehydration process of liquid milk products, they usually consist of 

fine particles with large size distributions and dense structures (Schuck et al., 2012; 

Schuck, 2013). Fat content (if present) tends to appear on the surface of particle. It 

may cause the undesired physical and surface properties, which negatively influence 

the quality of powders and the subsequent functionalities (Jayasundera et al., 2009; 

Kim et al., 2002; Kim et al., 2005). In addition, if taking into consideration the 

different milk compositions (protein, lactose, fat, minerals), there have been found 
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many issues affecting the functionalities of dairy powders, e.g. prolonged rehydration 

process (for high protein and fat powders)  (Crowley et al., 2016; Gaiani et al., 2007), 

poor flowability (for all powders) (Crowley et al., 2014; Fitzpatrick et al., 2005; 

Fitzpatrick et al., 2004), easy to adsorb moisture and tend to form caked lumps 

during storage (lactose-based powders) (Carpin et al., 2016; Fitzpatrick et al., 2007; 

Fitzpatrick et al., 2010). Consequently, these are the barriers that limit the end-uses 

and processing capability of dairy powders. It is necessary to find the methods to 

optimise the undesired physical and structural characteristics and also aim to 

improve the functionalities by the potential ways. 

Agglomeration and coating processes can alter the physical and chemical 

properties of powders which may be used to overcome powder problems and 

improve functionality, such as rehydration ability (Knight, 2001). During the 

processes, the binders or coating materials are added onto primary particles, acting 

as the bridges or layers to create new particles or agglomerates with different 

structures and physical properties. Both of these two processes are defined as the 

typical post-dehydration technology, which have been widely applied in powder 

productions (Litster and Ennis, 2013; Salman et al., 2007). Basically, they are often 

used, by manufacturers to improve powder performance, but still in an empirical 

fashion. Besides that, most of the published research is related to pharmaceutical 

materials (Pietsch, 2005; Pietsch, 2008), only a few are focus on the food powders, 

especially for dairy powders. In that case, the effects of post-dehydration processes 

on the physical and structural modification of dairy powders need to be clearly 

identified. Due to some limited functionalities, e.g. rehydration, flowability and water 

adoption, are found to be closely corresponding to the structures of dairy powders, it 

will also be interesting to investigate the relationships between post-dehydration 
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process and the functionalities of dairy powders, and thus improve these 

physicochemical behaviours by controlling the key parameters of the process. 

In present study, the high milk protein powders (casein-based, whey-based, and 

milk protein isolate) are used as the model powders. They are agglomerated by the 

use of fluidised bed and high shear mixer agglomeration to firstly compare their 

effects in particle size, shape, density and porosity; and then investigate their various 

rehydration behaviours (wetting, dispersing and dissolving), flowability and water 

adsorption. In addition, Wurster coating process is also used to compare to the 

fluidised bed agglomeration by the differences appearing in the structures and 

wettability of formed whey protein powder. The overall objectives can be divided into 

three, which are illustrated in the Figure below. 

1. Firstly assess the different measurements for the rehydration of different dairy 

powders, in order to find the most suitable methods to quantify the rehydration 

processes. (Chapter 2) 

2. Then aim to investigate the effect of fluidised bed agglomeration on the 

wettability, dispersibility and solubility of different dairy powders. (Chapter 3) 

3. Focus on the effect of different liquid binders and agglomerate size on the 

structural modifications of milk protein powder. (Chapter 4) 

4. Study the granule growth rate process of high shear agglomeration and its 

influences on the structures and rehydration behaviours of milk protein powder. 

(Chapter 5) 

5. Compare the different effects of fluidised bed and high shear agglomeration on 

water adsorption and flowability of milk protein powder. (Chapter 6) 
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6. Use the different lecithin additions by fluidised bed agglomeration and Wurster 

coating process and then compare their different impacts on the structures and 

dynamic wetting process of whey protein powder. (Chapter 7) 
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Abstract  

This study investigated the effects of different post-dehydration techniques, e.g. wet 

agglomeration and coating processes, on the physical and structural modification, as 

well as the subsequent functionalities of powders. It is found that the processes 

contribute differently on the particle size, shape, particle density and porosity of the 

formed granules, due to the various granule growth mechanisms. Fluidised bed 

agglomeration produces large granules with porous structures; while the granules 

formed by mixer agglomeration have the extruded structures with high particle 

density. The centrifugal forces provided by drum agglomeration cause the 

intermediate granules with more spherical shape. More resistant agglomerates 

associated with smaller size and less porous structures may be produced by layering 

the coating materials. Meanwhile, the physical and structural modifications may also 

influence the powder rehydration, flow and water adsorption properties. During the 

dynamic rehydration process, the first wetting behaviour is determined by the 

porosity and the surface properties, while sinking and dispersing processes are 

contributed by the particle size and density. Flowability of a powder is also influenced 

by the particle size, surface contact area between particles (internal frictions) and 

between particle and walls (wall friction). In addition, big particle surface area, large 

interstitial space between particles and internal pores inside of single particle result 

in the quick water transfer and more moisture uptake. Consequently, regarding to the 

functional issues found in dairy powders, the post-dehydration technology has the 

potential for improving the functionalities of dairy powders, by controlling the key 

parameters affecting the formation of dairy powder structures. 

Keywords: post-dehydration, physical properties, structural modification, powder 

functionalities, dairy powder 
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1 Introduction  

Dehydration is widely used in food industry to convert liquid product into 

powdered forms for the enhanced shelf-life and the convenient end-uses. In order to 

express the functionalities of the dried food powders, they have stringent 

requirements regarding rehydration behaviours, flowability, caking, structural and 

physical properties, which are believed to influence the subsequent handling and 

processing (Cuq et al., 2011; Ortega-Rivas et al., 2006; Sharma et al., 2012). 

However, some problematic food powders after dehydration usually exhibit fine 

particle sizes, undesired bulk densities and porosity values, which negatively limit the 

functionalities of food powders or even cause problems during processing (Bhandari 

et al., 2013). For example, in dairy industry, milk powders produced by spray drying 

generally consist of small cohesive particles (especially for those dairy powders 

containing high content of milk protein) (Schuck et al., 2012). These particles may 

cause the dense structures, prolonged rehydration process, poor flowing properties 

and caking behaviours (Carpin et al., 2016; Crowley et al., 2014; Crowley et al., 2016; 

Schuck et al., 2007). Therefore, additional processes acting on the dried powders, 

which are called post-dehydration technology, are often used as a method to 

improve the functionalities of powders by modifying the physical and structural 

properties, or surface compositions of the initial particles.  

There are mainly two types of post-dehydration technologies in the food industry, 

which are agglomeration and coating (Cuq et al., 2013a; Dhanalakshmi et al., 2011). 

They are both commonly used to assist the development of food powder materials 

with improved properties, e.g. wettability, dispersibility, flowability, reduced dustiness 

and bulk density (Saleh and Guigon, 2007; Turchiuli et al., 2005). The characteristic 

of agglomeration is the formation of larger entities from particulate materials. Those 
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particles stick together by the formed bridges, which provide short-range physical 

forces to connect the primary particles. The bonds between particles are usually 

caused by either solids themselves or via the added binders (Cuq et al., 2013b). 

Agglomeration usually uses a liquid binder to form the interparticle bonds and 

powders are motivated by air or mechanical agitation to promote liquid dispersion 

and granule growth. Agglomeration processes include fluidised bed agglomeration, 

mixer agglomeration and tumbling agglomeration (Jacob, 2007; Salman et al., 

2007a). Otherwise, the interparticle bonds can also be created by compression 

process, which applies pressure to create the physical forces to adhere single 

particles. The class of processes includes roll pressing, extrusion and tableting 

agglomeration (Litster and Ennis, 2013). All these common agglomeration processes 

are particle size enlargement processes, which modify the structures and surface 

properties of powders based on the different granule growth mechanisms. In addition, 

coating processes introduce coating materials by different addition methods on 

powders to achieve special objectives, such as protection of core materials and 

improvement of surface properties. The addition of the liquid coating materials can 

be used through Wurster coating apparatus or spouted bed coaters. More resistant 

agglomerates associated with smaller size and less porous structures may be 

produced by layering the coating materials (Saleh and Guigon, 2007). Consequently, 

both agglomeration and coating play a critical role on the physical and surface 

characteristics of food powders, which may potentially contribute to providing and 

improving subsequent functionalities.  

2 Fundamental s of post -dehydration proce sses  

Mechanisms associated with post-dehydration process for food powders are 

varied and complex, as there are many processes based on the different equipment 
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(Jacob, 2007). The types of common post-dehydration processes are shown in Table 

1-1, which lists the relevant equipment and applications. For agglomeration 

processes, pressure agglomeration has been developed to produce the 

pharmaceutical pellets and tablets (Guigon et al., 2007; Pietsch, 2008; Wilson and 

Rough, 2007). However, wet granule growth agglomeration is most widely used in 

food industry. As the common used equipment, fluidised bed is often designed for 

the production of agglomerated dairy powders and infant formulae (Szulc and Lenart, 

2013; Turchiuli et al., 2013), while high shear mixer can be used to generate large 

agglomerated cereal and starch granules (Cunningham, 2007; Pathare, 2010). 

Therefore, on the basis of literature review in the field of food powders, details of wet 

agglomeration processes are discussed and shown below.  

2.1 Wet granule growth agglomeration  

Wet agglomeration refers to the growth of granules induced by the addition of a 

liquid binder over the agitated powder bed. The binding liquid is used to develop 

adhesion forces between particles. Different types of particle motions (e.g. shearing, 

rotation, translation, etc.) are mainly responsible for dispersing the liquid over the 

particles and controlling the time of particle collision, which promote the granule 

growth mechanisms (Cuq et al., 2013a). Thus, wet agglomeration can also be 

subdivided into fluidised bed, mixer and tumble agglomeration, which are operated 

by different equipment and based on the different agglomeration rate processes. 

Generally, the wetted particles can bind with other primary particles to form the 

nuclei agglomerates. Two or more nuclei can coalesce together by contacting with 

each other and then they may be deformed and consolidated by different degrees of 

compactions (Hapgood et al., 2007). This may result in agglomerates with the 

completely different physical and structural properties (Barrera-Medrano et al., 2007). 
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Table 1-1 Application of post-dehydration processes in food industries 

 

Technology Equipment Application References 

Wet 
agglomeration 

Fluidised bed agglomeration Fluidised bed driers 
Dairy powders; Infant 

formulae 

(Cuq et al., 2013a; 
Szulc and Lenart, 2013; 

Turchiuli et al., 2013) 

Mixer agglomeration Horizontal pan, pin mixer Cereal powder; Starch 
(Cunningham, 2007; 

Pathare, 2010) 

Tumbling agglomeration 
Rotary drums, pans, bowl 

and plate granulators 
Fruit and vegetable 

powders 
(Cremer et al., 2014; 

Pietsch, 2005) 

Pressure 
agglomeration 

Roller pressing Compacting rolls 
Pharmaceutical 
excipient; Drugs 

(Bindhumadhavan et al., 
2005; Gereg and 
Cappola, 2002; 

Kleinebudde, 2004) 

Tableting 
Compacting/tableting 

presses 
Pharmaceutical  

Tablets; Nutrition bars 

(Bodmeier, 1997; Kamel 
et al., 2008; Pietsch, 
2005; Wells, 1993) 

Extrusion 
Piston/screw extrusion 

systems 
Effervescent and 

paracetamol granules 

(Lindberg et al., 1988; 
Vervaet and Remon, 

2005) 

Wet Coating Wurster Coating 
Fluidised bed Wurster 

apparatus 
Lecithination; Probiotics 

(Millqvist-Fureby and 
Smith, 2007; Saleh and 

Guigon, 2007) 
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2.1.1 Fluidised bed agglomeration 

In fluidised bed granulator, the particles are set in motion by air, instead of 

mechanical agitation. Pneumatic mixing is used to agitate the particles when an 

atomizable liquid binder (suspensions, solutions or emulsions) is transported onto 

their surfaces. Agglomerates are then produced by the aggregation of the primary 

particles, which are combined together through the liquid bridges supported by Van 

der Waals forces (Litster and Ennis, 2013; Mörl et al., 2007). After drying by the hot 

air, the liquid bridges gradually become solid bridges, which enable the formed 

agglomerates to have stronger strength and to support the granule growth process 

(Chua et al., 2011; Osborne et al., 2011). In addition, the process also integrates a 

number of other processes including wetting, size enlargement, shaping and 

homogenization into a single step by using heat and mass transfer. Areas of 

application have a wide range of industries, like foodstuffs, pharmaceutics, 

detergents and fertilizers (Boerefijn et al., 2007; Mörl et al., 2007; Palzer, 2007a; 

Pietsch, 2005). Fig.1-1 shows a typical fluidised bed granulator. The heated inlet air 

from bottom enters into the fluid bed via a distributor, which makes particles agitate 

uniformly. Liquid binder is then sprayed by an atomising nozzle located above, in or 

below the bed. Filters are set on the top of vessels and used to remove dust from the 

exit air. Generally, the particles produced from fluidised bed agglomeration present 

the comparatively large particle sizes associated with porous structures and low bulk 

�G�H�Q�V�L�W�\���� �Z�K�L�F�K�� �L�V�� �V�L�P�L�O�D�U�� �W�R�� �W�K�H�� �V�K�D�S�H�� �R�I�� �³�U�D�V�S�E�H�U�U�\�´���� �+�R�Z�H�Y�H�U���� �W�K�H��tailor-made 

powders are always designed according to the actual requirements on the 

functionalities of powders. Fluidised bed agglomeration is a complex process, 

influenced by several process variables, e.g. process related variables (fluidizing 

airflow rate, inlet air temperature, binder droplet size, binder feed rate and nozzle 
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pressure), equipment related variables (equipment size and shape, position of 

nozzle, number of spray guns), formulation related variables (raw materials, moisture 

content and flowability of materials, binder types) (Hemati et al., 2003; Hirata et al., 

2013; Masic et al., 2012; Palzer, 2007b; Parveen et al., 2012; Rajniak et al., 2007; 

Schaafsma et al., 2000; Seo et al., 2002; Tan et al., 2006). These factors are all 

believed to affect the final powder products, which may exhibit different particle sizes, 

bulk densities, porosity values and shape properties.   

 

Fig.1-1 Top-sprayed fluidised bed agglomeration (Turchiuli et al., 2005) 

2.1.2 Mixer agglomeration  

Different from fluidised bed, mixer agglomeration process uses a mechanical 

impeller to provide particle motion. As it is shown in Fig.1-2, the blenders can be 

either placed horizontal- or vertical-axis to mix the powder bed. The rotational speed 

can reach between 100 rpm to 1500 rpm to meet the requirements of the desired 
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agglomeration behaviours. In addition, a smaller chopper is typically used to assist 

the growth of small agglomerates and fracture large ones, which homogenises the 

powder properties (size, shape, etc.) and also helps to prevent the formation of 

�³�K�X�J�H�� �O�X�P�S�V�´�� �G�X�U�L�Q�J�� �W�K�H�� �S�U�R�F�H�V�V���� �/�L�T�X�L�G�� �E�L�Q�G�H�U�� �L�V�� �D�O�V�R�� �V�S�U�D�\�H�G�� �R�U�� �S�R�X�U�H�G�� �R�Q�W�R�� �W�K�H��

moving powder bed and then the agitation forces leads to the uniform dispersion of 

the binder (Reynolds et al., 2006). It is somewhat similar to fluidised bed 

�D�J�J�O�R�P�H�U�D�W�L�R�Q���� �K�R�Z�H�Y�H�U���� �W�K�H�� �G�L�I�I�H�U�H�Q�F�H�V�� �L�Q�� �W�K�R�V�H�� �S�R�Z�G�H�U�V�¶�� �V�W�U�X�F�W�X�U�H�V�� �V�W�L�O�O�� �H�[�L�W���� �D�V��

high-density granules with smooth surfaces are often produced, especially at the 

condition of high speed rotation. It has been found that, the granules after 

consolidation present much denser �V�W�U�X�F�W�X�U�H�V�� �U�D�W�K�H�U�� �W�K�D�Q�� �W�K�H�� �R�S�H�Q�� �³�U�D�V�S�E�H�U�U�\�´��

structures formed by fluidised bed (Cuq et al., 2013a; Litster and Ennis, 2013). At the 

same time, if comparing to other wet agglomeration processes, mixer granulators are 

suitable for a wider range of powder materials, including fine cohesive and sticky 

materials and viscous liquid binders. However, there are also some parameters and 

operating conditions that influence the growth and properties of granules. These 

factors include material variables (liquid to solid ratio, binder viscosity, wettability, 

etc.) and operating variables (impeller speed, process time, methods for binder 

addition, etc.), which are considered to be significantly affect the particle size, 

density and shape circularity of the formed granules (Ax et al., 2008; Badawy et al., 

2000; Knight et al., 2001; Kokubo and SUNADA, 1996; Mills et al., 2000; Osborne et 

al., 2011; Rahmanian et al., 2009). Consequently, though this technology is 

commonly applied in the pharmaceutical, agrochemical and detergent industries, it is 

still interesting to use this kind of agglomeration method for the production of food 

powders, as it also shows the potential uses and benefits for some of functionalities 
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of food powders, due to its special and unique effect on the structural formation of 

food granules. 

 

Fig. 1-2 (a) Horizontal and (b) vertical high-shear mixer granulators (Reynolds et al., 

2006) 

2.1.3 Tumbling agglomeration 

Tumbling agglomeration is also one of the most widely used agglomeration 

method in powder industries. Particles are set in motion by the tumbling movement, 

which is achieved by the balance between gravity and centrifugal forces (Walker, 

2007). After spraying a liquid binder via nozzles or distributor pipe systems onto the 

powder bed, the rolling motion then leads to the size enlargement process by 

collisions of moist particles. Meanwhile, the morphology and structures of 

�D�J�J�O�R�P�H�U�D�W�H�V�� �D�U�H�� �P�R�G�L�I�L�H�G�� �D�Q�G�� �X�V�X�D�O�O�\�� �I�R�U�P�H�G�� �P�R�U�H�� �V�S�K�H�U�L�F�D�O�� �³�E�D�O�O�V�´��(Litster and 

Ennis, 2013). A schematic design of a typical drum granulator is shown in Fig.1-3. 

The device is usually equipped with a rotating cylinder or drum, which is slightly 

inclined to the horizontal to facilitate the transportation of material through the drum. 

In order to minimise back-spill of the inlet material and increase depth of the bed 

inside the drum, two dam rings are both assembled at the inlet and exit sides of the 
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drum. Powder materials are transported by chutes, pipes or conveyors and wetted 

by the liquid near the inlet side of the drum. Scrapers are often, but not always, used 

to limit building up on the drum wall. As tumbling granulators normally produces 

granules with the big granule size (in the range of 2 to 20 mm), small agglomerates 

are difficult to be produced based on the particle growth mechanism. In addition, 

centrifugal forces created by tumbling drums always consolidate the formed granules, 

which present the comparatively low porosity values. Thus, the tumbling granulators 

are mostly used in pharmaceutical industries to produce high density pellets or pills. 

However, during the granule growth process, the operation conditions play a marked 

role on controlling the physical and structural properties of final granules. For 

example, drum rotational speed and residence time are both have the pronounced 

effects on the shape (circularity, convexity) of particles. Feed characterises including 

initial size distribution of materials, binder feed rate and moisture content (ratio of 

liquid to solids) are also believed to influence the rate of size enlargement (Adetayo 

et al., 1993; Gluba, 2003; Litster and Ennis, 2013; Ramachandran et al., 2008). 

Consequently, tumbling agglomeration process still exhibits a large range of 

applications for powders and thus may also have the potential use in the area of food 

powders, in particular for novel food product design.  
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Fig.1-3 The rolling drum granulator (Litster and Ennis, 2013) 

2.1.4  Coating process 

The coating process aims to cover powders, agglomerates, granules or other 

particulate materials by a coating agent, which usually forms a layer surrounding the 

surface of the solids. The thickness of layers can be nanoscale dimensions 

(chemical deposition), or a few micrometres (film coating), or even reach several 

millimetres, e.g. sugar coating (Saleh and Guigon, 2007). The coating process is 

performed to: 1). Protect core materials from oxygen, humidity, light or other 

undesired environment; 2). Improve the sensory properties (appearance, aroma, 

taste) of products; 3). Conserve nutrients or active substance in food products; 4). 

Control or delay the release rate of the involved core materials; 5). Prevent caking 

behaviour during storage and transport; 6). Confer the specific interfacial properties 

to the solids (e.g. lecithination of hydrophobic food powders for rehydration). 

According to the particular application, different methods have been developed to 

introduce the coating agent into the powder bed: sprayed the solution or suspension, 

or applied in the form of fine dry powders (Dewettinck and Huyghebaert, 1999). In 
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the most of cases, the coating layer is more likely to be deposited as a shell of core 

materials, than forming the liquid bridges between wetted particles, which is different 

from the granule growth mechanism of agglomeration process. However, it still 

depends on the drying rate of particles, as the particle may grow by layering if fast 

drying before a collision between wetted particles. Otherwise, the agglomeration may 

dominate the granule growth behaviours. Basically, more resistant agglomerates 

associated with smaller size and less porous structures may be produced by coating 

process. Agglomeration is expected to enlarge the particle size while coating aims to 

cover particles to attain one of the several functionalities mentioned above (Saleh 

and Guigon, 2007). There have been developed many apparatus for coating based 

on the different applications so far, e.g. fluidised bed coater, spouted bed coater, 

Wurster apparatus and rotary drum, pan and disc coaters. Wurster apparatus may 

be the most used configuration of all for film coating (Teunou and Poncelet, 2002). 

This system combines the conception of fluidised bed and spouted bed techniques 

together, which is shown by Fig.1-4. A draft tube called Wurster column is placed 

coaxially in the bed. It is used to order the circulation of particles by the upward gas 

stream inside of the draft tube and then fall downward besides the draft tube. The 

coating solution or suspension is spayed by nozzle, which is fixed in the centre of the 

distributor plate at the bottom of bed.  
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Fig.1-4 Wurster coating apparatus (Saleh and Guigon, 2007) 

2.2 The effect of granule growth process  

Wet agglomeration is a complex process with different competing physical 

phenomena occurring simultaneously in the granulator. This process is commonly 

believed to be the dynamic granule growth process, in which granules are 

continuously forming and breaking down. The physical phenomena can be divided 

as three groups, which determine the characteristics of final granule (Iveson et al., 

2001) (Fig. 1-5). 
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1) Wetting, binder distribution and nucleation; 

2) Consolidation and growth; 

3) Attrition and breakage.   

 

Fig.1-5 Different rate processes in agglomeration (a) wetting and nucleation; (b) 

Coalescence and consolidation; (c) breakage and attrition 

2.2.1 Wetting, binder distribution and nucleation  

The addition and distribution of liquid binders onto the powder bed is the first 

stage of agglomeration process. Particle wetting behaviour occurs by the penetration 

and spreading of the binder droplets, which means the voids between powders 

particles are replaced by the liquid (Fig.1-5). Ideally, if powders have good wettability, 

each drop will penetrate into the particles quickly and completely, and then engulf 
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particles to form a single granule nucleus (Litster, 2003). Otherwise, poor wettability 

of powder may cause the slow imbibition rate of liquid, which thus accumulate on the 

surface of particles. This behaviour is easy to create the large wet agglomerates, 

while other non-agglomerated particles may need longer time for process recycling. 

Therefore, nucleation is a critical stage in determining the final quality of the granules 

as good wetting behaviour may ultimately result in the narrow particle size 

distribution. In addition, nucleation also gives the granules nuclei with loosely 

structures due to the formation of liquid bridges connecting primary particles. The 

nucleation process is largely affected by the characteristics of the liquid spray, the 

flux of powder through the spray zone and the wetting properties of the formulation 

(Litster and Ennis, 2013). 

2.2.2  Coalescence and Consolidation 

Coalescence process is considered to be mainly responsible for the granule 

growth by forming large granules. The process occurs based on the collisions 

between neighbouring granule nuclei, between nuclei and primary particles, or 

between granules and the equipment. For successful coalescence, two conditions 

may be required: 1) the energy of impact must be absorbed during collision; and (2) 

a strong bond must form at the contact between the colliding granules. Otherwise, 

the granules may rebound or even if formed the bridges between them may easily 

rupture by the continuous collisions (Hapgood et al., 2007). The use of liquid at the 

surface of the granule plays a key role for the growth by coalescence, as 

coalescence rate is very sensitive to liquid content with different viscosity (Keningley 

et al., 1997). At the same time, consolidation behaviour always happens together 

with the coalescence of granules. It reduces the size and porosity of granules as well 

as squeezes out entrapped air from the pores inside, which is closely correlated with 
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the density and strength of final granules. The extent of the consolidation is 

dependent on the agitation in the granulator and the resistance of the granule to 

deformation (Saleh et al., 2005). Stronger agitation forces and weaker yield stress 

may result in larger deformation of granules, especially for those coarse powders, 

which can form much denser structures (Cuq et al., 2013a). Therefore, these 

modifications in granule size and density are believed to be controlled by 

coalescence and consolidation.  

2.2.3 Attrition and Breakage  

Attrition and breakage refer to agglomerate fracture into two or more smaller 

sized segments due to impact or compaction in the granulator, drier or in subsequent 

handling (Salman et al., 2007b). It is more likely in the high intensity mixer or for 

those large granules formed by the weak bridges. There are usually different 

phenomena for the appearance of attrition and breakage, e.g. surface attrition 

(erosion & abrasion), particle breakage (fracture & shattering) (Fig.1-5). Some of the 

breakage is inevitable as part of agglomeration processes, and is able to limit 

granule excessive growth, which helps to control the final granule size and shape, as 

well as improving the compositional homogeneity of the product. However, in some 

circumstances, breakage occurs as an undesired process, which produces fine and 

dusty particles detaching from dry granules, or creates cracks in the granules 

(Reynolds et al., 2005). The type and extent of breakage are largely dependent on 

the particle material properties including hardness, fracture toughness and elastic 

modulus; and also the granulation conditions, e.g. binder viscosity, agitation forces 

and process time, etc. It may be possible for a tough granule to survive from a high 

level of impacts before it finally shatters, while a granule with a lower toughness 

and/or more irregular shape may progressively break into smaller fragments with 
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increasing impact stress and /or increasing number of impact events (Hapgood et al., 

2007). Consequently, it is a challenge to avoid the undesired breakage, due to there 

is always a balance toward specifying more porous granules vs. the design and 

production of granules with stronger resistance to attrition.  

3 Powder characteristics  

3.1  Particle size  

Powder properties are believed to be largely dependent on several single 

particles characteristics, which include particle size, shape, surface, density, and 

adsorption properties. Of these features, particle size is most important and essential, 

as size is always used as a benchmark to classify, categorize, or characterize a 

powder (Ortega-Rivas et al., 2006). Due to real particles being produced with 

irregular shapes, an equivalent diameter must be ascribed to the particle of interest, 

which corresponds to the diameter of a sphere with the same surface or volume. The 

dispersion of particle diameters is usually expressed as particle size distributions, 

which are characterized by a mean diameter and span measurement. Particle size 

distribution influences a great number of bulk behaviour of powders, e.g. flowability, 

rehydration abilities, fluidisability and compressibility (Fitzpatrick et al., 2004a; 

Ortega-Rivas et al., 2006; Selomulya et al., 2013). In addition, surface area of 

particles is also determined by the particle sizes. Small particle size is often 

corresponding to large surface area, which thus causes stronger interaction between 

particles themselves or between particles and a surrounding fluid. In that case, those 

powders with small size are easily to be adhered by undesired bridges, based on the 

consolidation environment with relative humidity and temperature. It causes poor 

flow behaviour during conveying or the formation of caked lumps, which brings many 

problems for subsequent handling processes (Schulze, 2007).  
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3.2  Shape properties  

Particle shape properties are considered to mainly influence the performance in 

powder handling process. For example, different shapes of particles present the 

various packing behaviours of powders, which mean they have different bulk 

densities and storage capacity. Rounded particles will pack more tightly than angular 

particles, in particular for those particles with exaggerated shapes e.g. fibres, flakes 

and platelets (Bhandari, 2013). Besides the variation in bulk density, angular 

particles have also been shown to have smaller contact area of particle surfaces, 

and thus potentially influence the flowability of powders (Schulze, 2006). Even 

though shape property is very important, there is little work that has been published 

based on the research of food powders. Actually, the morphology of a real powder 

particle has very complex characteristics that are difficult to be assessed, as 

particles are 3-dimensional objects with random shapes (Endoh, 2006; Fayed and 

Otten, 1997). Therefore, at a very basic level, particle shape can be described 

qualitatively using indicators like circularity, convexity and elongation (Fig.1-6). Firstly, 

the circularity value between 0 and 1 was defined as the ratio of the perimeter of the 

surface equivalent disc (Pe) to the real perimeter of the particle silhouette (Pr). The 

bigger value means the more alike to the equivalent circle. Secondly, the convexity 

describes the compactness of a particle. The maximum theoretical convexity is 1 that 

means the particle surface is very smooth. Finally, elongation stands for aspect ratio 

of particles and a needle shape has a high value which is close to 1 (Ji et al., 2015).  
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Fig.1-6 Representation of the shapes factors: Circularity, Convexity and Elongation 

(Ji et al., 2015) 

3.3 Density and porosity  

Density is normally defined as mass divided by volume. However, a powder is 

really a solid gas mixture, where there are interstitial spaces between the individual 

particles as well as internal pores and voids inside of the particle itself. Hence, the 

existence of gas in the powder results in three density definitions, which are bulk 

density, particle density and solid density. 1.) Bulk density refers to the weight per 

unit volume and is currently calculated by measuring the volume of 100 g of powder 

sample in a 250 mL graduated glass cylinder; 2.) Particle density is regarding as the 

weight of particle solids per unit volume; 3.) Solid density corresponds to the mass of 

powder solid (exclude the occluded air and interstitial air) per unit volume (Fitzpatrick, 

2013; Litster and Ennis, 2013). They are all important attributes in products for 

shipment in bulk, saving packaging material and transport costs. For bulk density, 

there are two factors playing critical roles, which are the particle density and the 
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amount of the interstitial air, which depends on the particle size and shape properties 

of powders. Large sized particles with irregular shapes allow more spaces existing 

between particles and thus cause comparatively lower bulk density. Particle density 

is influenced by many factors, e.g. the composition of the solids (solid density), and 

the internal pores inside of individual particle. The pores and voids formed in the 

particle matrix are believed to be controlled by both processing conditions and the 

type of materials, which may have the natural foaming ability. For example, protein 

content trends to produce foams during spray drying process. Thus, reduced particle 

density is often achieved by forming the occluded air in dried particles (Sadek et al., 

2015). In addition, excessive agitation of rotary atomizers is also found to increase 

the volume of occluded air in spray dried powders (Schuck et al., 2012). Porosity is a 

measure of the void spaces in a material, and is a fraction of the volume of voids 

over the total volume. It is usually used to describe the internal microstructure of the 

particles or agglomerates. Porosity value can be calculated by bulk density and solid 

density and is showed as a percentage between 0 to 100%. Thus, porosity is mainly 

contributed by the occluded air in particles and the interstitial air between particles 

(Bhandari et al., 2013).  

3.4 The effects of post -dehydration processes on the physical and structural 

properties of powders  

It is undoubtedly that agglomeration process increases the particle size of powder, 

as the process itself is designed as the size enlargement. However, owing to the 

different agglomeration equipment and processing conditions (Fig.1-7), the final 

granules present the increased sizes by different degrees (Cuq et al., 2013a). When 

using the higher viscosity liquid binders, stronger bridges are able to adhere more 

primary particles, which mean the final granule is able to reach the larger size. 

https://en.wikipedia.org/wiki/Void_(composites)
https://en.wikipedia.org/wiki/Volume_fraction
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Meanwhile, if applying stronger agitation forces for agglomeration (e.g. high shear 

mixing), molecular forces are dramatically increased by the decrease of distances 

between particles. Hence, more small particles are involved in the architecture of a 

granule, which may form the structures with higher strength (Barrera-Medrano et al., 

2007). In addition, as shown in the previous section 2.2, the granule growth has 

different growth rate processes, which also contribute to the final granule size. For 

example, coalescence behavior is mainly responsible for the increase of particle size, 

while consolidation and breakage will decrease the size on the contrary. Therefore, 

the final particle size distributions of formed granules are considered to be closely 

related to the endpoints, where agglomeration process stops (Iveson et al., 2001). 

Coating process sometimes can also be used to increase the particle size by 

layering the coating materials, but contribute with different extents compared to 

agglomeration (Saleh and Guigon, 2007).  

 

Fig.1-7 Diversity of post-dehydration technologies (Cuq et al., 2013a) 
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Post-dehydration processes play the different roles on modifying the shape 

properties and densities of granules, due to their own particularities in granule 

growth mechanisms (Litster and Ennis, 2013). As it is seen from Fig.1-7, powders in 

fluidised bed are pneumatically mixed by an air steam under the low shear 

conditions. This may cause the progressive formation of granules, which have less 

spherical shapes with rougher surfaces, because of the coalescence of the primary 

particles. Besides that, particles motivated by hot fluidising air-flow are quickly 

dehydrated and are less consolidated after they are connected by liquid bridges, 

which mean this kind of agglomeration tends to produce granules containing more 

internal voids. Thus, low particle density (more spaces inside) and low bulk density 

(low particle density and large interstitial gaps due to irregular shapes) are usually 

obtained for those fluidised bed agglomerates (Turchiuli and Castillo-Castaneda, 

2009). Instead of low shear rates, mechanical mixer agglomeration process 

generates moderate or higher shear mixing by the rotating blades. High deformation 

thus occurs for the granules when they are consolidated by the violent collisions. The 

deformation not only causes the extrusion of particle structures, squeezing the air 

away from the powder matrix, but also physically modifies the shape properties of 

granules, forming the comparatively more rounded shape and smoother surfaces 

(Knight, 2001). In addition, fluidised bed coating and drum agglomeration also 

contribute differently to the density and shape properties of powders. They generally 

produced spherical particles due to their granule growth taking place by layering 

materials (coating materials or other primary particles) onto their nuclei. However, 

their effects on the modification of density are largely depended on the operation 

conditions and types of equipment.  
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Besides the effects on particle size, shape and density, post-dehydration 

process is also believed to influence the surface properties of powders, which is an 

important feature that corresponds to the surface physicochemical reactivity of 

powders (Murrieta-Pazos et al., 2012a). The most significant factor that determines 

the surface reactivity is the surface composition (Kim et al., 2009; Nijdam and 

Langrish, 2006). For example, spray dried whole milk powders have more fat content 

(less lactose) on the surface; therefore this may lead to undesirable poor wettability 

and poor flowability, which restrain the functional applications of the powder (Kim et 

al., 2002; Kim et al., 2005). However, if using agglomeration processes to add the 

suitable liquid binders (e.g. carbohydrate) onto the surface of particles, the surface 

compositions are thereby modified, where most of the fat content may be replaced 

by the binding materials. (Murrieta-Pazos et al., 2012b). It thus potentially improves 

the solubility and/or flowability of whole milk powders. In addition, the coating 

process produces dense particles with one or more layers, which are generated by 

spraying a solution onto the particles. This also provides a new surface composition 

with modified characteristics and specific purposes, such as protecting core 

materials, controlling the release rate in solution, etc. But the extent of change in 

surface composition and the coverage of the added substances still depend on many 

other factors, e.g. the shape and size of primary particles, the efficiency of process, 

the types and additions of liquid binders or coating materials (Lakkis, 2008). Overall, 

it will be interesting to compare the different effects of various post-dehydration 

techniques on the modification of powder surfaces, as well as to identify the possible 

relationships between these processes, surface properties and the subsequent 

functionalities.  
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4 The functionaliti es of powders  

For food powders, there are a great number of functionalities regarding to the 

handling process and the end-use of products in the food industry. First of all, 

rehydration processes, including wetting, sinking, dispersing and dissolving 

behaviours, are believed to be the benchmark to determine the overall quality of 

powder products (Hogekamp and Schubert, 2003). Food powders are normally 

required to be rapidly and completely rehydrated into liquid phrase before use, as 

complete rehydration is a prerequisite for expressing the functionality of the dried 

ingredients (Richard et al., 2013). Furthermore, the recent need for food powders 

rehydration has been developed to dissolve into cold water with only simply stirring 

in a short time. Therefore, it is a big challenge for those food powders, which present 

inherent poor rehydration abilities (Anema et al., 2006; Gaiani et al., 2007a; Havea, 

2006; Schuck et al., 2007). In addition, flowability and water adsorption are also 

important functionalities for the processing of food powders, namely manufacturing, 

handling, transport and storage. Poor flowability may restrict discharge from silos 

effecting throughput and product quality (Schulze, 2008); and the undesired water 

adoption behaviour may cause powder caking, instability of some materials (e.g. 

carbohydrate) and quality loss of the product (Carpin et al., 2016; Fitzpatrick et al., 

2010; Hartmann and Palzer, 2011). Consequently, it is necessary to investigate 

these functionalities comprehensively and find the current problems, as well as the 

potential improvement methods.  

4.1 Rehydration behaviours  

Rehydration of powders is a dynamic process that generally consists of four 

stages based on the relevant reconstitution behaviours. 1.) Particles wetting and 

swelling in the aqueous phase. 2.) Sinking below the liquid surface. 3.) The 
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agglomerated particles break up and disperse into individual primary particles. 4.) 

Completely dissolve to form homogeneous solution. These stages often overlap and 

can be considered to occur concurrently during rehydration, which is dependent on 

the type of food powders (Fang et al., 2007; Forny et al., 2011). Due to the 

complexity of the rehydration process, it is necessary to be discussed individually for 

the purpose of this review.  

4.1.1 Particle wetting 

Wetting process is the first step where solids initially meet the liquid and then 

the liquid phase replaces the gaseous phase at the surface of a solid. For powders, 

good wettability usually means water is easily absorbed by those solids and 

subsequently immerses the particle matrix quickly, which need to overcome surface 

tension at the interface of water and solids. According to the Washburn capillary rise 

model (Washburn, 1921), it is commonly believed that the penetration depth of water 

is largely dependent on the structural and physical properties of powders. Those 

conditions favoured by the ideal fast wetting behaviours include the particles with 

large sizes, the porous structures with high porosity as well as small contact angles 

(Rouquerol et al., 2013). Some studies have also reported that water droplets easily 

penetrated the agglomerated dairy powder bed, which had high occluded air volume 

(more pores) inside of single granules (Crowley et al., 2016; Forny et al., 2011; Yuan 

and Lee, 2013). In addition, surface compositions also determine the wettability of 

dairy powders. For example, the presence of free fat on the surface of whole milk 

powders adversely delays water penetration due to its hydrophobicity. Lactose 

crystallisation may also cause the lipid migration by forming bridges and expelling 

free fat onto the surface.  
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4.1.2 Sinking below water surface 

Sinking is referred to the process that particles fall below the liquid surface after 

they are sufficiently wetted. At this stage, powders are able to begin their 

solubilisation behaviours. Sinkability of powder is believed to be controlled by the 

particle density, which accounts for the true solid density and also the bulk density 

including the inter-particle void volume, and internal pore volume. Hence, the higher 

particle density combined with the less occluded air lead to a comparatively faster 

sinking rate (Fang et al., 2007; Schubert, 1993; Thomas et al., 2004). True density 

depends on the material composition of powders while the bulk density is influenced 

by the process conditions, e.g. spray drying or post-dehydration processes.  

4.1.3 Dispersing into individual particles 

Powder particles start to disperse into aqueous phase as individual particles 

before they are completely dissolved. When food powders are produced from liquid 

into powdered forms by drying process, most of them are partly agglomerated by 

solids bridges. Thus, it is necessary to dissolve these bridges first and break up into 

small primary particles. Otherwise, poor dispersibility may result in large lumps which 

restrain water penetration into single primary particles or prolong the fragmentation 

and erosion of powders (Schuck et al., 2007). It will negatively influence the 

subsequent dissolving step. The studies demonstrated that high porosity and large 

particles size appeared to be the essential criteria for good dispersing behaviours 

(Goalard et al., 2006). At the same time, the process is also dependent on the 

compositions of food powder as the structures of some ingredients (e.g. milk protein 

and lactose) affect the release rate of materials during dispersion and thus is closely 

associated with the dispersing extent of the powders (Crowley et al., 2015). 
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4.1.4 Dissolution in water 

Dissolution is the final stage of powder rehydration and most physical 

functionalities are based on the complete disappearance and release of molecules to 

form the homogeneous solution. In general, the solubility of powder is mainly 

controlled by the nature hydrophobicity or hydrophilicity of food materials. For 

example, the solubility of milk protein is based on the hydrophilic part (polar residues) 

to interact with water molecules by hydrogen bonds, while hydrophobic residues 

avoid water molecules (Baldwin, 2010). In that case, the small hydrophilic molecules 

appear on the surface cause the fast dissolution rate. On the other hand, the 

dissolving stage is more like an end-point of rehydration process rather than a 

separated behaviour itself. Therefore, any delayed previous process (wetting, sinking 

and dispersing) may also influence the final soluble status of food powders.  

4.2 Powder flowability  

Powder flowability is the ability of powders to overcome the resistance to flow, 

which refers to the ease of powder movement, without forming lumps, clusters or 

aggregates (Schulze, 2006). The resistance involves the surface interactions 

between particles in contact and it can be categorised as internal friction and 

cohesion. Internal friction usually occurs as the frictional resistance of a particle 

moving over another particle under normal pressure; while cohesion resistance is 

caused by the attraction forces between particles, which are classified as van der 

Waals, electrostatic and magnetic forces. Of these cohesion forces, Van der Waals 

forces are believed to play the most important role for dry powders. The force is due 

to the positive and negative attractions between atoms on the surfaces of particles 

and thus is highly dependent on the contact area. The smaller sizes of powders with 
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the greater contact area usually correspond to the stronger Van der Waals 

attractions. In addition, the attraction is also found to be closely related to the 

distance between the particles. The force increases dramatically with the decrease 

of distance. Therefore, the bulk powders compacted by the normal stress, e.g. tablet, 

present the comparatively poor flowability due to the strong cohesion (Fitzpatrick, 

2013; Stoklosa et al., 2012). Besides the physical and structural properties of powder 

particles, the differences in surface compositions are also considered to influence 

the cohesion degree of powders. For example, some studies in dairy powders 

reported that, the presence of water or oils on the surface of whole milk powders 

contributes to the different behaviours in their bulk flow properties (Fitzpatrick et al., 

2007; Kim et al., 2005; Teunou and Fitzpatrick, 1999). Liquid will increase the 

contact area and may also form the liquid bridges between particles, which produce 

capillary forces as a result of surface tension. Consequently, stronger cohesion 

forces may occur based on the capillary forces. That is also the main reason for the 

appearance of caking phenomenon, negatively affecting the flowability of dairy 

powders.    

Two basic flow patterns can be observed if bulk solids are discharged from a 

silo: core-flow (also often referenced as funnel-flow) and mass flow (Fitzpatrick et al., 

2004b). In the case of core-flow, the most significant behaviour is that cohesive 

powders will move out through a central funnel, which is formed by the no-flow 

particles remaining at the internal walls of hopper during the discharge. The lack of 

flow at the walls is primarily on the basis of the friction that develops between the 

particles and the internal wall material/surface finish used in the construction of the 

silo. When the internal friction of powder particles becomes weaker than the friction 

acting at the wall, powder bed will fail internally and then a flow channel will develop. 
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All the solids are in motion to give a first-in and last-out discharge regime, which 

have a critical impact on the handling performance and product quality. On the other 

hand, mass-flow is known as an alternative flow pattern, which only occurs if the 

hopper walls are steep and smooth. In that case, the inventory of the vessel is drawn 

down evenly across the cross-sectional area, giving a first-in and first-out discharge 

regime. That will also provide the materials with high repeatability and consistency in 

discharge rate before reaching the outlet (Schulze, 2007).   

4.3 Water adsorption  

Moisture content is very important for all aspects of food powder handling 

processes (Ortega-Rivas et al., 2006). On the basis of different unhindered or 

hindered mobility, it can be classified as free and bound water. The amount of free 

and bound water held by the product is believed to be controlled by the water-

holding or water-binding capacity of the material, respectively (Watano, 2006). 

Basically, �µ�E�R�X�Q�G�� �Z�D�W�H�U�¶�� �L�V�� �F�R�Q�V�L�G�H�U�H�G�� �D�V�� �W�K�D�W�� �S�R�U�W�L�R�Q�� �R�I�� �Z�D�W�H�U�� �K�H�O�G�� �L�Q�� �W�K�H�� �P�D�W�H�U�L�D�O��

which shows physical properties significantly different from those of free, or bulk  

water. In that case, hydrogen bond between water and acceptors is found to be 

stronger than that between liquid water and water-solvating nonpolar groups. The 

interactions of water and low-moisture product may be categorised as monolayer, 

multilayer and water bound in capillaries. 1) Vicinal water may form a monolayer but 

is unable to act as a solvent; 2) Multilayer water associated with water-water bonds 

result in the rapid increase of moisture content in the isotherm; 3) entrapped water 

caused by the capillary condensation, which may act as a solvent for various solutes 

(Al-Muhtaseb et al., 2002). However, due to the complexities and interactions of the 

binding forces involved, there is no universal definition of bound water. In the food 

industry, the most used conception is water activity, defined as:  
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where p is the partial pressure of water in the food , and p0 the vapour pressure 

of pure water at the same temperature (Hedegaard and Skibsted, 2013). 

The relationship between water activity and total moisture content of a product 

can be expressed as a sigmoid curve, which is called a sorption isotherm. An 

adsorption isotherm is usually obtained by placing a dry material into different 

environment of increasing relative humidity and measuring the weight gain due to 

water uptake; while a desorption isotherm refers to the opposite (put a wet material 

into same environment and measure the weight loss) (Schuck et al., 2012). The 

isotherms present the water adsorption capability as well as water retention, 

contributing to moisture content during storage and the stability in physical and 

chemical properties. In addition, water sorption always occurs as the dynamic 

process, which needs time to transfer water within the matrix from the surrounding 

atmosphere before equilibrium. Thus, it is also important to measure the kinetics of 

water sorption, which is necessary to monitor the product quality, especially in the 

food industry. The behaviour depends to a large extent on the surface and structural 

properties of the product, i.e., sorption area, porosity, composition and the state of 

individual components (Guillard et al., 2013). These factors are all considered to 

affect the rate and extent of entry and exit of water molecules into the solid matrix. 

For example, many studies have claimed that lactose crystallisation significantly 

decreases the water uptake of skimmed milk powders when relative humidity 

increases to 40%. This is due to crystallisation beings accompanied by a release of 

four or five water molecules and thus causes the drop in water adsorption (Bronlund 

and Paterson, 2004; Hedegaard and Skibsted, 2013; Murrieta-Pazos et al., 2011; 

Schuck, 2013; Shrestha et al., 2007). Besides that, different dairy powders, e.g. 

whey protein, micellar casein, caseinates, skimmed milk powders, all exhibit various 
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sorption behaviours by adsorbing different amount of water at the same temperature 

(Schuck et al., 2012).  

4.4 The potential effects of post -dehydration process on the functionalities of 

a powder  

Many functionalities of a powder have been demonstrated to be closely related 

to its structural and physical properties (Cuq et al., 2011; Sharma et al., 2012). As it 

is discussed previously, wetting behaviour during the rehydration of a powder is 

dependent on the porous structures and the surface compositions of the particles 

(Lazghab et al., 2005); sinking and dispersing process is influenced by particle 

density, porosity as well as particle size (Gaiani et al., 2007b). Thus, it is very 

possible to use the post-dehydration techniques, including various agglomeration 

processes and coating processes, to improve the rehydration process of a powder 

by optimising these physical characteristics and changing the surface properties. 

Similarly, flowability and water adsorption are also determined by surface area of a 

powder, particle size and probably the morphology of particles. Consequently, it will 

be interesting to identify and validate the relationships based on different powders 

first, e.g. different formulated dairy powders; and then investigate the feasibility of the 

application of post-dehydration technology for the better control of flowability and 

water adsorption behaviours. 

5 The application of post -dehydration process on dairy powders  

 
The composition of milk consists of proteins, carbohydrates, fats, minerals and 

water. As the development of filtration technology, different milk materials can be 

separated from raw milk (Oftedal, 2013). For example, fat content can be removed 

by centrifugation from whole milk to produce skimmed milk; milk protein is obtained 
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from skimmed milk by ultrafiltration to remove lactose and minerals; subsequently 

micellar casein can be achieved by microfiltration to further separate whey protein; 

therefore, whey protein is also produced from the permeate (Chandan, 2011; Kilara, 

2011; �2�¶�0�D�K�R�Q�\�� �D�Q�G�� �)�R�[���� ��������). In addition, some non-micellar caseinate, e.g. 

sodium caseinate and calcium caseinate, can be produced from acid casein by 

adding alkali solution (sodium hydroxide or calcium hydroxide respectively) (Farrell 

et al., 2013; Pitkowski et al., 2009). After that, the majority of these liquid milk 

materials are dehydrated and converted into the powdered form for extended 

applications in new value added dairy products and beverages (Ann Augustin and 

Clarke, 2011).  

However, the dairy powders exhibit a lot of problems and issues for their 

functionalities, which largely limit the subsequent processing capacity. As it is shown 

in Table 1-2, it gives the rehydration abilities of some typical dairy powders. Most of 

them exhibit either poor wettability or difficult-to-dissolve. For example, the micellar 

casein dominant powders (e.g. milk protein isolate, micellar casein) showed the 

prolonged solubilisation process due to the strong interaction between casein 

micelles structures. These structures made of calcium phosphate nanoclusters are 

considered to be difficult to break up and thus need long time to dissolve into water 

(Crowley et al., 2015; Dalgleish, 2011; Schuck et al., 2007). Meanwhile, although 

whey protein is considered to be fast-dissolving in water, whey protein isolate is still 

found to have extremely poor wettability, which also adversely delays the 

subsequent dispersing and dissolving processes (Gaiani et al., 2007b). Some 

studies reported that most dairy powders produced by spray drying process, 

especially for those milk protein powders, had comparatively small particle size with 

low interstitial air, which may result in the problematic rehydration (Bouvier et al., 
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2013; Chen and Patel, 2008; Mimouni et al., 2010). In addition, these fine particles 

including dense structures are also believed to be the main reasons to cause poor 

flowability behaviour during conveying and susceptibility to moisture adsorption 

during storage and transport (Fitzpatrick et al., 2005; Fu et al., 2012; Rennie et al., 

1999). It is more likely to occur on the lactose-based dairy powders, which tend to 

combine with moisture molecules and thus forming the crystallised structures and 

caked lumps, negatively affecting the product quality (Carpin et al., 2016). 

Consequently, post-dehydration processes can be used as a potential method to 

improve these functionalities of dairy powders, which are influenced by the physical 

and structural properties.  

Table1-2 Rehydration abilities of the typical dairy powders 
 

 Wettability Sinkability Dispersibility & Solubility 

Whole milk 
(fat >26%) 

Poor Poor Difficult  

Skimmed milk Instant  Quickly Easy 

Milk protein 
isolate 

(protein >85%) 
Poor  Poor Difficult  

Micellar casein 
(protein > 80%) 

Poor  Poor  Difficult 

Sodium 
caseinate Extremely poor Extremely poor Quickly 

Calcium 
caseinate 

Poor  Poor  Difficult 

Whey protein 
isolate 

(protein > 90%) 
Extremely poor Extremely poor Quickly 

Whey protein 
concentrate 35 Poor  Poor  Quickly 

Whey permeate Instant Quickly Quickly 

Reference from Schuck et al. (2012) 
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6 Conclusion  

It has been found that the post-dehydration techniques can be used to modify 

the physical and structural properties of powders by forming new granules with 

normally bigger particle size, different shape properties, and changed bulk and 

particle densities. These kinds of modifications are largely dependent on the 

selection of post-dehydration processes, which are based on various granule growth 

mechanisms. The fluidised bed agglomeration tends to produce large granules with 

porous structures, while mixer agglomeration usually produces granules with 

compressed structures, which means high particle density and high strength 

structures. Drum agglomeration creating the median consolidation will produce the 

intermediate granules but have more spherical shape due to the centrifugal forces. 

For coating process, more resistant agglomerates associated with smaller size and 

less porous structures may be produced by layering with coating materials.  

On the other hand, different granule growth rate processes are also responsible 

for the extent of the physical and structural modifications. Nucleation is a critical 

stage in determining the final quality of the granules as good wetting behaviour may 

ultimately result in the narrow particle size distribution. Coalescence is the main 

process where nuclei start to grow dramatically, while consolidation behaviour 

reduces the size and porosity of granules by different degrees. Attrition and 

breakage may also further influence the granule size and shape at the end of the 

process.  

Some functionalities of a powder are closely related to its physical and structural 

characteristics. During the dynamic rehydration process of a powder, the wetting 

behaviour is determined by the porosity and the surface properties, while sinking and 

dispersing processes are highly determined by the particle size and density. 
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Flowability of a powder is also influenced by the particle size, surface contact area 

between particles or particle and walls. In addition, big particle surface area, large 

interstitial space between particles and internal pores inside of single particle result 

in the quicker water transfer and more moisture uptake. Consequently, regarding to 

these factors on the subsequent functionalities, the post-dehydration technology 

exhibits the potential effects on improving the processing capacity and end-uses of 

the powder. As most of post-dehydration processes are used in pharmaceutical 

materials, few studies have been done in the area of food powders, especially for 

dairy powders. Meanwhile, the spray dried dairy powders present many limitations in 

rehydration, bulk flow and water adsorption. Therefore, it is of industrial interest to 

investigate the application of post-dehydration technologies for overcoming 

problematic powder functionalities and improving the functionality of high protein 

dairy powders in particular.  
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Abstract  

Rehydration is an important powder property and is regarded as a critical issue by 

the dairy industry. Traditional powder rehydration measurements are relatively 

empirical with poor reproducibility. Thus, more reliable techniques tailored for dairy 

powders should be developed based on varied rehydration behaviours and 

applications. In this paper, a critical assessment to identify the measurement 

characteristics of milk protein powder rehydration is presented. Milk protein based 

powders were used as model systems. Four different wettability measurements 

(Immersion, Capillary rise, Condensation and Spreading) and four different 

dispersibility measurements (Dispersibility Index, Light scattering of particles in 

suspension, Light transmission and Conductivity of suspension) are compared and 

analysed. The results show that the method based on immersional wetting 

procedure is only appropriate for skimmed milk powder while the method for capillary 

rise wetting is more useful for the agglomerated milk protein powders with porous 

structures. Contact angle changes in the spreading wetting approach is found to be a 

straightforward technique to show the hydrophobicity or hydrophilicity of milk protein 

powders. If compared with traditional dispersibility measurements, light transmission 

of suspension is suitable to reflect optical properties of slow dispersion process. 

Light scattering methods can also be used to measure the dynamic size change of 

particles during the dispersion process. Furthermore, the conductivity of suspensions 

is a useful indicator to quantify the dispersibility indirectly by the release of minerals 

during rehydration. It is necessary to understand the specialities and applications of 

dairy powders before choosing the appropriate rehydration measurement methods.    

Keywords:   Milk protein powders, wettability, dispersibility, rehydration 

measurements  
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1 Introduction  

Rehydration properties are considered as an important benchmark to determine 

the overall quality of powder products. In the dairy industry, powder rehydration is 

regarded as a critical issue as some powders exhibit poor wettability with the 

materials floating on the surface of solution and others dispersing very slowly 

accompanied by lump formation, which is especially the case for high-protein-

containing powders (Anema, Pinder, Hunter, & Hemar, 2006; Havea, 2006). 

Traditional dairy powder rehydration measurements, which were often designed for 

the analysis of instant skimmed milk powder or whole milk powder, are thus relatively 

crude with poor reproducibility for other specialty milk protein products (i.e., micellar 

casein, whey protein or milk protein isolate powders). Therefore, more analytical 

approaches have been developed to observe each dynamic step and to find the 

methods to quantify the kinetics of powder rehydration process (Crowley, et al., 2015; 

Fang, Selomulya, & Chen, 2010; Forny, Marabi, & Palzer, 2011; Freudig, Hogekamp, 

& Schubert, 1999; Gaiani, Scher, Schuck, Desobry, & Banon, 2009; Marabi, et al., 

2008; Mimouni, Deeth, Whittaker, Gidley, & Bhandari, 2009). However, it is a 

challenge to find a universal method to measure the rehydration abilities of varied 

dairy powders, as they present significantly different behaviours during the 

rehydration process. Recent studies have shown that whey protein isolate powder 

has poor wettability and that the wetting stage is the main limiting factor for whey 

protein rehydration. In comparison, the slow dispersion of micellar casein is 

responsible for its extended rehydration time. Whereas for milk protein isolate, both 

wetting and dispersing processes are rate-limiting steps (Gaiani, Schuck, Scher, 

Desobry, & Banon, 2007; Schuck, et al., 2007). Consequently, it is necessary to 

examine the feasibility of the existing techniques for determination of the rehydration 
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of milk protein powders and to validate the every typical powder and technique case 

by case in order to find the most appropriate one.  

It is commonly believed that wetting is the critical step in powder rehydration 

process, as powder materials with poor wettability have limited access to contact 

with water which then causes the formation of non-hydration regions. In general, 

wetting behaviour can be assessed through different procedures including 

immersional wetting, capillary wetting, condensational wetting and spreading wetting 

in Fig.2-1, which was modified and developed from the other researches 

(Israelachvili, 2011; Lazghab, Saleh, Pezron, Guigon, & Komunjer, 2005). The 

immersional wetting process uses the time required for a given mass of powder to 

submerge fully below the liquid surface as a measure of wettability. But it is mainly of 

practical use for dairy powders that are easy to wet whereas milk protein based 

powders tend to float on the surface of the liquid and so wetting time is no longer a 

useful measure. Thus, it is interesting to assess which kind of dairy powders will be 

suitable for characterisation by this traditional immersional wetting process. Secondly, 

capillary rise wetting is a process whereby the liquid penetrates into the solid porous 

structure by capillary force. For this case, the Washburn method is mostly used, 

which can be quantified by the mass of adsorbed liquid as a function of time (Ji, 

Cronin, Fitzpatrick, Fenelon, & Miao, 2015; Thakker, Karde, Shah, Shukla, & Ghoroi, 

2013; Washburn, 1921). However, the feasibility of this approach for dairy powders 

is still not validated, as some researches have shown that spontaneous liquid 

penetration only occurs if the contact angle between the liquid and solid is lower than 

90° (Yuan & Lee, 2013). Also the wetting behaviour by capillary rise is not only 

influenced by the actual wettability but also by the porous architectures of solids 

(Buckton & Newton, 1986). Thirdly, the condensational wetting process concerns the 
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adsorption of moisture vapour on a solid surface and faster wetting usually 

corresponds to higher rates of vapour sorption (Israelachvili, 2011). The method 

uses different salts solution in desiccators to provide varied relative humidity 

environment for powder adsorption (Schuck, Jeantet, & Dolivet, 2012). Hence uptake 

of water vapour may represent totally different wetting behaviours for milk protein 

powders compared to wetting by liquid water where surface tension effects need to 

be considered. Finally, the spreading wetting process focuses on the contact angle 

when a given amount of a liquid spreads over a solid substrate (Israelachvili, 2011; 

Rouquerol, Rouquerol, Llewellyn, Maurin, & Sing, 2013). The method examines a 

single liquid drop penetrating into solids and thus evaluates the wettability by 

monitoring the changes in contact angles over time.  

 

Fig.2-1 Different wetting procedures 
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In summary, all four methods corresponding to different wetting procedures have 

been widely used in pharmaceutical research, however few applied in dairy powder 

research. Therefore, it is important to identify whether the analytical methods based 

on these four wetting procedures are suitable for the typical milk protein powders.  

Dispersibility is also believed to be an important step in the rehydration process, 

as it is necessary for particles to be dispersed into the liquid before dissolving (Galet, 

Vu, Oulahna, & Fages, 2004; Goalard, Samimi, Galet, Dodds, & Ghadiri, 2006). The 

dispersion process is accompanied by the transfer of particle mass, particle size and 

particle energy, which can be used as the indicators to quantify the process (Forny, 

et al., 2011). The use of the dispersibility index is the traditional standard method to 

measure the amount of dry matter combining simple mixing in a liquid followed by 

sieving. Limitations of this method are that it cannot monitor the dynamic dispersing 

process and it is often influenced by the wetting behaviour of powders as they need 

to be wetted first. Therefore, more effective methods have been found for improved 

monitoring of the particles dispersibility. The most common method is the use of an 

optical fibre sensor to collect the intensity of light scattering of particles in suspension. 

Based on the principles of forward light scattering, it has been used to measure the 

particle size distribution over the mixing time and to monitor the dispersibility of 

powders in terms of the variation in particle size (Chen & Lloyd, 1994; Galet, et al., 

2004). Moreover, transmission of near-infrared light has also been used to exhibit 

the dynamic process of solids dispersing in the suspension during centrifugation 

(Crowley, et al., 2015). Although some studies have shown light scattering and 

transmission to be reliable methods to monitor dispersion behaviour for food 

powders and milk protein powder (Crowley, Kelly, & O'Mahony, 2014; Fang, 

Selomulya, & Chen, 2007), it is still required to examine and investigate the 
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selectivity of these methods with other dairy powders as they present completely 

different dispersion behaviours. Additionally, conductivity is another possible 

approach to express the kinetics of dispersing process via the release of minerals in 

suspension (Zhuang, Zhou, Nguyen, & Hourigan, 1997). Numerous studies reported 

that some minerals had approximately the same dissolution rate as micellar casein 

(Holt, 1997; Mimouni, Deeth, Whittaker, Gidley, & Bhandari, 2010). However, it is still 

not fully understood whether the conductivity method is capable of quantifying the 

dispersion of MPI or MC and other non-casein dairy powders. 

In this paper, four wettability methods and four dispersion methods are applied 

to measure the rehydration behaviour of six milk protein powders, which are whey 

protein isolate (WPI), micellar casein (MC), sodium caseinate (SC), milk protein 

isolate (MPI), MPI agglomerate and skimmed milk powder (SMP). The objective is to 

evaluate the advantages, drawbacks and limitations of each of the methods and to 

identify which methods are more suitable for assessing the rehydration behaviour of 

milk protein powders. 

2 Materials and Methods  

2.1 Materials  

MPI, SC and SMP were supplied by Kerry Ingredients (County Kerry, Ireland). 

WPI was supplied by Davisco Food International (Le Sueur, MN, USA). MC was 

produced from skimmed milk powder by firstly microfiltration with 100 kDa molecular 

weight membranes. The retentate is concentrated by vacuum evaporation and the 

concentration process was performed at a temperature of 65 �( . The solid 

concentration of about 38% was then obtained by the water removal. Finally, the 

concentrated solution was spray dried to obtain the MC powders. The inlet and outlet 
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temperatures were 180 �(  and 85 �( , respectively, and the drying air-flow rate is 750 

m3·h-1. The manufacture of agglomerated MPI powder was described in details in the 

study of Ji, et al. (2015). Briefly, 100 g 15% lactose solution was used as the binding 

liquid which was progressively added to 200 g MPI powder (1 mL·min-1) in a top-

spray fluidised bed granulator (VFC-Lab Micro flo-coater, Vector Corporation, Lowa, 

USA). The temperature of injected air was 50 �(  and the air flow rate was 200 L·min-1. 

After the addition of lactose solution, the obtained powder was dried with hot air at 

100 L·min-1 flow rate and 50 �(  temperature for a further 15 minutes. The 

compositions of the milk protein powders are shown in Table 2-1. All the powders 

were dried in a vacuum oven (Jeiotech, Seoul, Korea) at 45 �(  overnight to obtain the 

final moisture content of about 1.5%. They were kept in the desiccators before the 

wettability and dispersibility measurements. 

Table 2-1 Composition of dairy powders investigated in this study 

Dairy powder 
Protein 

(%,w/w) 

Moisture 

(%,w/w) 

Lactose 

(%,w/w) 

Fat  

(%,w/w) 

Ash 

(%,w/w) 

MPI 86.0 4.0 <1.0 1.5 6.0 

Agglomerated 
MPI 

82.0 5.0 6.2 1.4 5.6 

WPI 90.0 5.0 <1.0 1.0 3.0 

MC 84.0 5.0 2.0 1.0 7.5 

SC 88.0 5.7 <1.0 0.7 4.7 

SMP 36.0 4.0 51.0 0.8 8.2 

 

2.2  Wettability  measurements  

2.2.1 Wetting time by immersional wetting procedure 
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This method is used to quantify the wettability of dairy powders by the time 

needed to achieve complete wetting of a given quantity of powder, when powder is 

gently dropped on the surface of water and immersed without any agitation (Schuck, 

et al., 2012). In this study, 6 g powder samples were filled into a standard 400 mL 

beaker, which contained 100 mL of distilled water with 20 �(  temperature. Powder 

was considered as wettable if wetting time was less than 60 seconds and non-

wettable if wetting time was greater than 120 seconds (GEA Niro, 2005). All the 

measurements were repeated three times.  

2.2.2 Modified Washburn method by capillary rise wetting 

Washburn method is a common technique to measure the wettability of 

powders based on capillary rise wetting behaviour. It usually monitors the rate that a 

liquid penetrates into powders or granules by recording the penetration depth of the 

liquid inside the capillary as a function of time (Washburn, 1921). However, the 

method can be derived and developed into other forms, e.g. the depth of penetrated 

liquid is instead of mass. The principle of the instrument was described in the study 

of Ji, et al. (2015). A 2 g powder sample was loaded into a cylindrical glass tube with 

an open base bottom covered by filter paper and gauze. The tube was set just above 

the surface of distilled water at 25 �( . The wettability of powder was quantified by the 

additional mass of the wetted powder in 10 minutes, which was the weight of 

adsorbed water by the powder. Each sample was measured five times.  

2.2.3  Water adsorption by condensational wetting  

Condensational wetting procedure can be considered as water vapour 

adsorption and was determined by static-gravimetric method. Triplicate 1 g powder 

samples of each dairy powder were stored in empty glass vials of known weight. The 
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powders were kept in desiccators with a stable relative humidity, which ranged from 

11% to 75%, until equilibrated. The hygroscopic environment (R.H.) was provided by 

different saturated salt solutions which were LiCl (11%), CH3COOK (22%), MgCl2 

(33%), K2CO3 (43%), Mg(NO3)2 (53%), NaNO2 (65%) and NaCl (75%). The 

desiccators were evacuated before they were stored in a 25 �(  incubator. The weight 

of powder was measured for at least 96 hours until it reached a constant value. The 

results were expressed as equilibrated moisture content as a function of water 

activity to show the water vapour adsorption isotherms. 

2.2.4  Contact angles by spreading wetting 

The measurement of contact angle is a direct method to measure the tangent 

angle at the contact point of three phases. Due to the dynamic process for the 

wetting behaviour, it is usually to monitor the rate of change of contact angle to 

quantify the wettability of powders (Crowley, et al., 2015). Thus, an optical 

tensiometer (Attension Theta, Biolin Scientific Ltd., Espoo, Finland) was used to 

measure contact angle (��) of 12 µL deionised water droplet by the sessile drop 

technique with dynamic live measurements at a temperature of 20 �( . Before 

measurement powders were loaded into an aluminium pan (ø=100 mm, h=7 mm) 

and a smooth surface was formed by passing a leveller across the surface. The 

volume of the remaining water droplet above the solids during the wetting process 

was also evaluated (Yuan, et al., 2013). The measurements for each sample were 

repeated at least 5 times.  

2.3 Dispersibility measurements  

2.3.1 Dispersibility Index 
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The Dispersibility Index (DI) is defined as the percentage (%) of dry matter that 

passes through a sieve after mixing for a short time with a spatula. The sieve with 

mesh size of 250 µm is used to separate the dispersed particles from the suspension 

based on the extent of dispersion (Schuck, et al., 2012). In this study, 10 g powder 

was added into a 250 mL beaker with 100mL deionised water at 25 �(  and then 

mixed vigorously with a spatula for 15 seconds in order to make 25 complete circle 

stirring movements along the diameter of the beaker. After that, the reconstituted 

samples were then poured onto the 250 µm sieve to separate the dispersed particles 

in the suspension based on the extent of dispersion, and the samples that passed 

through the sieve were collected in a bottle for further drying at 105 �(  temperature 

overnight in an oven. The extracted dry matter was weighed and used to calculate 

the DI as following Equation (1): 

�����������������������������������������������������������������������������������������������������������&�+
L
�9�× �®�:�s�r�r
E�S�;

�S�®
�s�r�r
F �9�à

�s�r�r

�������������������������������������������������������������������������������������������������������������������������������������������A  

Where w is the weight of sample, Wd (%, w/w) is the dry matter after sieving, Wm (%, 

w/w) is the free moisture content of the powder. The measurements for each sample 

were repeated 3 times. 

2.3.2  Particle size measurements by laser light scattering method  

Laser light scattering method based on Malvern Mastersizer 3000 (Malvern 

Instruments Ltd, Worcestershire, UK), was used to quantify the powder dispersion 

process in term of decreasing rate of particle size. The detailed measurement 

principle of the machine was described in the study of Ji, et al. (2015).  In order to 

reach the ideal obscuration range of the machine, approximately 5 mg MPI, MC, 

SMP and 100 mg WPI and SC were added into dispersion unit with 120 mL distilled 
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water at a temperature of 25 �(  ± 2 �(  and then agitated at 2000 rpm. Triplicate 

measurements were carried out for each powder. Particle size distributions were 

recorded every 2 minutes until D (50) reached ~1 ���P�����W�K�H���G�L�D�P�H�W�H�U���R�I�����������S�D�U�W�L�F�O�H�V��

was just lower than 1 ���P�� (Ji, et al., 2015; Mimouni, et al., 2009).  

2.3.3 NIR transmission measurements by Lumisizer 

Lumisizer (L.U.M. GmbH, Berlin, Germany) is an analytical centrifuge, which 

was used to quantify the dispersibility of milk protein powders by measuring the 

intensity of transmitted near-infrared light in suspension. 1.5 g samples were 

rehydrated into 100 mL deionised water at a temperature of 25 �( . 1.5% (w/v) 

concentration suspension was then obtained through agitating by a magnetic stirring 

bar (length 2.5 cm) with a rate of 400 rpm for 30 minutes. After that, 400 µL 

suspensions were sampled by 16 gauge needles to fill into polycarbonate cells. The 

sampling positions always had a constant distance (approximate 1 cm) from bottom 

of the beaker. The measurements were carried out by two different centrifugations; 

firstly 36 g for 10 minutes and then followed by 168 g for further 10 minutes. The 

intensity of the transmission of NIR light was measured in the distinct regions of the 

sample cell and was related to the different phases of dispersion, including stable 

solution, initial sediment and compressed sediment, which created the varied optical 

densities. The transmission profiles were presented every 10 seconds for the first 10 

minutes 36 g centrifugation and then every 60 seconds for next 10 minutes 168 g 

centrifugation. Integral transmission of each profile was calculated by software 

SepView 4.1 (L.U.M. GmbH, Berlin, Germany) and is shown as a function of time. 

Meanwhile, compressed sediment height under 36 g and 168 g of centrifugation was 

determined by the area of greatest optical density, which means the area of lowest 

http://www.lum-gmbh.com/LUMiSizer_product-information.html
http://www.lum-gmbh.com/LUMiSizer_product-information.html
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transmission but subtracting the steady-state value caused by the cell bottom 

(Crowley, et al., 2015).  

2.3.4 Conductivity measurements during particles dispersing  

Conductivity meter (FE30-Kit-�)�L�Y�H�(�D�V�\�Œ conductivity, Mettler Toledo Ltd., 

Greifensee, Switzerland) was used to measure the release of minerals accompanied 

by the rehydration of powders and showed the ionic strength of reconstituted 

powders. Each sample weighting 8 g was poured into 400 mL deionised water and 

wetted by the vortex as rapidly as possible. A 2% w/v solid suspension was created 

and mixed at 500 rpm in a 25 �(  water bath. Deionised water was used and had a 

conductivity value of 67 µs·cm-1. The probe was calibrated at 25 �(  with a standard 

solution of known conductivity value of 1314 µs·cm-1 before placed in the suspension. 

The values were recorded every 10 seconds for the first 2 min, followed by every 60 

seconds for next 10 minutes and every 10 minutes for final 90 minutes. The 

measurements for each sample were repeated at least 3 times. 

3 Results and Discussion  

3.1 Wetting behaviours of milk protein powders based on different wetting  

procedures  

3.1.1 Wetting time by immersional wetting 

As can be seen from Table 2-2, only the skimmed milk powder can be considered to 

be wettable with a wetting time of 22 seconds. The other powders required very long 

times in excess of 20 minutes (although the agglomerated MPI did have a time of 8 

minutes). The result is not surprising because skimmed milk powder contains high 

content hydrophilic lactose, which allows water easily penetrating into the particles 

and thus sinking and dispersing quickly in the water. But for other high protein 
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powders, there was an impermeable hydrophobic layer formed between the water 

surface and powders. This layer separated the water and the powder so that water 

had no access to penetrate into powder particles and caused the formation of non-

hydration regions (Gaiani, et al., 2007; Schubert, 1993). In that case, the interface of 

solid and gas was difficult to be replaced by the interface of solid and water due to 

the high content of hydrophobic milk protein powder with low porosity. Therefore, the 

traditional method based on immersional wetting procedure was not suited for the 

milk protein powders with poor wettability. Moreover, as powder wetting behaviour is 

a dynamic process, it is better to measure the kinetics of wettability, which usually 

can be quantified by the associated free energy change when the type of interface is 

transformed (Yuan, et al., 2013).  

Table 2-2 Wetting time of dairy powders by immersional wetting procedure 

 SC WPI MPI 
Agglomerated 

MPI 
MC SMP 

Wetting 

time 
>20min >20min >20min 8min ± 2min >20min 22s ± 3s 

 

3.1.2 Modified Washburn capillary rise wetting method 

It is obvious to see that capillary rise wetting method is largely dependent on the 

inter-particle pores of powder samples and the choice of liquid, which determines the 

surface tension and viscosity (Forny, et al., 2011). Hence, it is the reason why 

agglomerated MPI with porous structure showed the greatest wettability in Fig.2-2, 

which absorbed more than 1 g water in 10 minutes (Ji, et al., 2015). At the same 

time, MC powder also showed comparatively good wetting behaviour as it absorbed 

nearly 0.5 g water. But for SC and WPI powders, they were only slightly wetted by 

water because water cannot penetrate into a powder spontaneously if high contact 
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angle ( �E>90 �( ) and negative capillary pressure (Lazghab, et al., 2005; Palzer, 

Sommer, & Hiebl, 2003; Yuan, et al., 2013). Moreover, it is interesting to find that 

SMP powder only gained about 0.1 g weight after 10 minutes of the capillary wetting 

procedure, which should be wetted by water much more easily. However, SMP might 

dissolve quickly in the measuring water during measurement so that pure water was 

replaced by the drops of solution saturated with SMP. It caused the viscosity of liquid 

to increase, which decreased the rate of water uptake at the point at which the 

weight of water balances the capillary pressure (Stamm, Gissinger, & Boymond, 

1984). Consequently, the modified Washburn method based on capillary effect was 

concluded to be sensitive to agglomerates with high porosity but not applicable for 

dairy powders that are easy-dissolved. 

 

Fig.2-2 Mean weight of absorbed water for samples (SC, WPI, MPI, Agglomerated 

MPI, MC and SMP) after 10 minutes 

3.1.3 Water adsorption by condensational wetting  

In Fig.2-3, WPI and SC powders were found to adsorb the greatest mass of 

moisture at relative humidity value from 11% to 75%. It is inconsistent with the 

results measured by other wettability methods, which showed WPI and SC powders 
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had extremely poor wettability. It is explained previously as the formation of an 

impermeable layer at the powder-water interface. However, for condensational 

wetting behaviour, the water vapour seemed to more easily penetrate into powdered 

solids and wetted them without creating any films or layers, although the vapour may 

condense into liquid droplets during the process (Depalo & Santomaso, 2013; 

Lazghab, et al., 2005). Hence, WPI and SC may have the higher rates of vapour 

adsorption and better wettability by the condensational wetting mechanism. Fig.2-3 

also illustrates that unagglomerated MPI and agglomerated MPI powders have no 

obvious difference in the isotherm data, which means that agglomeration process 

played no special �U�R�O�H�� �R�Q�� �0�3�,�¶�V�� �Z�D�W�H�U�� �V�R�U�S�W�L�R�Q�� �E�H�K�D�Y�L�R�X�U���� �6�0�3�� �H�[�K�L�E�L�W�H�G�� �G�L�I�I�H�U�H�Q�W 

water adsorption isothermal behaviour from other powders, with no increase in 

moisture adsorption between the water activity values of 44% and 53%. This 

behaviour is consistent with previous reports that demonstrated lactose content in 

SMP reduced water adsorption due to crystallisation (Bronlund & Paterson, 2004; 

Jouppila & Roos, 1994; Shrestha, Howes, Adhikari, & Bhandari, 2007).  

 

Fig.2-3 Water vapour adsorption isotherms of dairy powders (MPI, WPI, MC, SC, 

SMP and Agglomerated MPI) at 25 �(  environment 
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Water adsorption phenomenon of different milk protein powders has been 

discussed many times elsewhere (Berlin, Anderson, & Pallansch, 1968; Foster, 

Bronlund, & Paterson, 2005; Kinsella & Fox, 1986; Murrieta-Pazos, et al., 2011). 

Few of them mentioned the adsorption properties as an indicator of powder 

wettability. Generally, wetting behaviour is evaluated as the critical first step of 

rehydration process of powders (Depalo, et al., 2013; Hogekamp & Schubert, 2003). 

But in this study, condensational wetting was discussed as an exceptional issue due 

to solids being wetted by water vapour instead of contacting water or water droplets 

directly. This method is different from other three wetting methods (immersion, 

capillary rise and spreading) based on the contact angle of liquid phase and solid 

phase (Kwok & Neumann, 1999), while condensational wetting procedure focused 

on the adsorption of saturated vapour, where the interfacial effects are less 

pronounced. Therefore, though this static-gravimetric method for water sorption 

measurement could quantify the vapour wetting with high accuracy and good 

reproducibility, it is not able to assess the wettability regarding powder rehydration 

process. But vapour wetting may still provide some insights into general wettability of 

dairy powders. 

3.1.4 Contact angles by spread wetting 

Contact angle is usually used as a primary parameter to indicate the degree of 

wetting process with a small contact angle (�E<90°) representing good wettability and 

large angle (�E>90°) corresponding to poor wettability (Gao & McCarthy, 2006; Mittal, 

2006). As the surface of liquid is exposed to wet the fresh surface of solid after liquid 

drop and solid interact, it is important to monitor the rate of change of contact angle 

until reaching an equilibrium angle. It means wetting behaviour is dynamic procedure 

other than a static state (Link & Schlünder, 1996). Thus, in this study, it showed how 
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the contact angle of samples changed and also the volume of droplets above the 

substrate decreased as a function of time.  

According to Fig. 2-4A-B, the contact angle of SMP reduced dramatically in just 

5 seconds with a final angle of 60° and 3.5 µL water volumes remained. MC powder 

was second fastest, which took about 15 seconds to reach the equilibrium. 

Meanwhile, agglomerated MPI was found to be more easily and quickly penetrated 

by water droplet than that of unagglomerated MPI, because of the significant effect 

of agglomeration process on improving the wettability of MPI (Ji, et al., 2015). WPI 

and SC powders exhibited extremely poor wetting behaviours with contact angles 

changing only by about 40 degrees and 10 degrees in 5 minutes, respectively. This 

method showed advantages due to its simple operation, straightforward observation 

and high selectivity for dairy powders (Crowley, et al., 2015). It only needs a small 

amount of liquid and a small powder contact surface area (Letellier, Mayaffre, & 

Turmine, 2007). However, there are still some limitations for the optical tensiometer 

method. Firstly, the dynamic contact angles were difficult to measure with high 

reproducibility and accuracy at high speed rate (Hunter, 2001), this was noted for the 

results of SMP, MC and agglomerated MPI. Also granule beds with rough surfaces 

can also pose problems in the assignment of the tangent line, as non-smooth 

surface is likely to cause variations of contact point along the contact line (Rotenberg, 

Boruvka, & Neumann, 1983). Although the limitations regarding of how flat the 

surface should be for measurements are unknown, there are a series of techniques 

for powder presentation to prepare the surface as smooth as possible, including solid 

compacts by a hydraulic press (Crowley, et al., 2015), dip coating (Spelt & Vargha-

Butler, 1996) and surface polishing (Vargha-Butler, Kashi, Hamza, & Neumann, 



Chapter two 

66 
 

1986). Care should be taken to minimize alteration in the physical architecture of the 

powder particles during generation of a powder bed with a smooth surface. 

 

Fig.2-4AB A: The change of contact angle (°) as a function of time using the sessile 

drop technique in approx.20 �(  temperature. B:  The change in the volume of droplet 

(µL) above the solids as a function of time during the wetting process in approx.20 �(  

temperature. The initial volume of water droplet was approx.12 µL. 
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3.2 Dispersing behaviours of typical dairy powders based on different 

measurements  

3.2.1 Dispersibility index 

DI is most widely used parameter to describe the dispersibility of powder 

particles by measuring the mass percentage of dry matter that pass through the 

sieve after simple stirring. This method is easy to operate and can quantify the 

dispersion behaviour of dairy powders directly with low-cost. Fig.2-5 shows the 

dispersibility of SMP and MC was the highest with 95% and 49% DI values, 

respectively. The result of SMP was similar to that reported by Schuck, et al. (2012), 

but not for MC, which is only 24% DI value according to their research. It is due to 

some drawbacks in the selectivity of this traditional method as it is not suitable for 

other milk protein powders with poor wetting behaviour. The results in Fig.2-5 show 

the DI values of WPI and SC were only 39.58% and 6.63% respectively, which were 

lower than expected. This was caused by samples not being properly wetted before 

they began to disperse in the suspension. The periphery of most WPI and SC 

particles were surrounded by impermeable layers during the simple stirring process 

which restrained materials from contacting with water. Therefore, the feasibility of the 

DI method is believed to be largely dependent on the wettability of dairy powders. 

Besides that, the reproducibility and accuracy of the measurements also rely on the 

consistency of multiple operators in treatment of stirring and transferring suspension 

into sieves, even if there are clear guidelines to follow. Furthermore, the DI 

parameter is not adequate to quantify the whole dispersion process as it only shows 

the final state of dispersed particles. Whereas, dispersion is a dynamic process 

accompanied by the release of materials and the transfer of particle size, particle 

mass and energy (Forny, et al., 2011).  
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Fig.2-5 Dispersibility index for samples (SC, WPI, MPI, Agglomerated MPI, MC and 

SMP) 

3.2.2 Particle size measurements by Light scattering 

Light scattering method has been shown to be an applicable tool to measure the 

dispersibility of powders based on the change of particle size and the undissolved 

particle volume concentration (Chen, et al., 1994; Ji, et al., 2015; Mimouni, et al., 

2009; Richard, et al., 2012). It is commonly believed, during the rehydration process, 

the size of dispersing particles is decreasing and thus the dispersibility can be 

quantified by the decrease rate of particle size. Meanwhile, it is necessary to 

evaluate the volume concentration due to powders consist of thousands of single 

particles. Thus, Fig.2-6A showed how the volume concentration of undissolved 

particles decreased during the dispersion as a function of time. Using standard MPI 

powder as an example, the initial particle size of MPI was about 70 µm with high 

volume concentration (Single peak A) at the first stage of rehydration. As dispersion 

proceeds, the migration of peak and a bimodal distribution of particle size is 

observed, which results from the continuous release of particle materials into the 
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surrounding aqueous phase (Fang, Selomulya, Ainsworth, Palmer, & Chen, 2011). 

With further rehydration, the volume concentration of small particles increased until 

another primary peak (Peak B) appeared and thus remained at a constant size of 0.3 

µm at 60 minutes mixing time. The relationship of the particle size distribution of 

different dairy powders and the mixing time are present in Fig.2-6B. Based on these 

results carried out by the light scattering, the migration of particles size of casein-

dominant powders (MC, unagglomerated MPI and agglomerated MPI) with a slow-

dispersion process can be clearly observed. MC powder took approximately 20 

minutes to be mostly solubilised while MPI needed 40 minutes. There was no 

significant difference between agglomerated and unagglomerated MPI, which was 

previously explained in the study of Ji, et al. (2015). At the same time, it was difficult 

to quantify the dispersibility of SMP by this method as it dispersed into water rapidly 

within less than 2 minutes. The same situation was found for SC, which formed 

lumps with big particle size initially but then collapsed quickly. Moreover, it is 

interesting to find that Mastersizer cannot detect any signals of scattered light from 

WPI suspension. It is because WPI particles had already dissolved in a very short 

time just after wetted by water entirely. Consequently, it was concluded that the 

static light scattering method was useful to monitor the slow-dispersing process of 

MC and MPI powders but it could not accurately quantify the quickness of the easy-

dispersing dairy powders.  
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Fig.2-6AB A: Volume density (%) based particle size distributions of dispersing MPI 

particles measured as a function of time (every 2 minutes for 60 minutes mixing time) 

during the rehydration process at 25 �(�� ± 2 �(  and 2000 rpm. The size of initial large 

primary particles with large volume (Peak A) decreased with an increase in small 

dissolved particles (Peak B). B: Particle size D (50) measurements of dispersed 

particles of SC, MPI, Agglomerated MPI, MC and SMP. (WPI sample cannot be 

measured by Mastersizer as WPI dissolved rapidly and the dissolved solids is 

nanoscale) 

3.2.3 NIR transmission measurements by Lumisizer 

In Fig.2-7A, different regions of sample cell were identified based on the 

different light transmission properties of the suspension during a centrifugation 

process. For example, stable transmission value meant the stable supernatant, 

which was caused by dissolved small particles, while sediment formation of primary 

particles was explained by the low transmission value. Thus, it is possible to 

evaluate the dispersion behaviour of dairy powders by using the Lumisizer, 

according to the intensity of light transmission of different dispersion phases along 
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the sample cell (Crowley, et al., 2014). Meanwhile, the height of sediment under two 

different centrifuge speeds (36g and 168g) can also be calculated to show the final 

solubility of powders at the 30 minutes mixing time (Fig.2-7B). It is not surprising to 

see that there was no sediment for WPI, SC and SMP powders, as they have good 

dispersibility and solubility. This was also shown by the previous results in Fig.2-6B. 

Almost the same sediment height was observed for MPI and MC powders under the 

effect of 36 g centrifugation, while MC had slightly more compressed sediment when 

using 168 g centrifugation. In addition, when MPI powders were agglomerated by 

fluidised bed granulation process, there appeared to be a greater number of particles 

dissolved into water and less sediment was formed. But these results were only 

based on one specific time point, which was at 30 minutes mixing time. Dispersion 

and dissolution are kinetic processed and thus it is suggested to be advantageous to 

measure the sedimentation behaviour as a function of time until powders were 

completely solubilised (Fang, et al., 2007; Hogekamp, et al., 2003; Ji, et al., 2015). 

On the other hand, integral transmissions (%) were calculated and provided by the 

software of Lumisizer in Fig.2-7C to evaluate the dispersion behaviour of powders. 

Each integral transmission value was used to stand for one transmission profile 

based on different centrifugation time. Fewer primary particles were found for the 

agglomerated MPI dispersion compared to the non-agglomerated MPI dispersion, 

due to higher transmission value showed in Fig.2-7C. It meant agglomerated MPI 

particles were comparatively more easily to disperse into water at 30 minutes mixing 

time. Even though this method is regarded as a simple way to measure the 

dispersibility and solubility together, however, there is an important drawback that 

needs to be mentioned. The actual intensity of light transmission is largely 

dependent on the type of dairy powders. In other words, it is pointless to compare 
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the disperse behaviours of dairy powders with different compositions, as they have 

different spectroscopy behaviour and NIR transmission in solutions. It is only of 

feasible to compare the non-agglomerated MPI and agglomerated MPI, which had 

very similar constituents. For this reason, the transmission values of WPI, SC and 

SMP were completely different, although they all dissolved within 30 minutes. 
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Fig.2-7ABC. A: A schematic illustration explaining the sedimentation behaviour of MPI suspension was showed by the 

transmission (%) of NIR light through the sample cells by centrifugation time. Profiles were measured every 10 seconds for first 

10min with 36 g centrifugation and every 60 seconds for next 10 minutes with 168 g centrifugation. Each measurement profile 

showed the distinct regions corresponding the different positions along the sample cell. The different transmissions represented the 

regions of dispersed particles and undissolved primary particles, which respectively formed stable supernatant, initial sediment and 

compressed sediment after centrifugation. Representative profiles based on different time (1: 10 seconds, 2: 10 minutes, 3: 20 

minutes) were showed as examples. B: The sediment formed by 1.5% (w/v) sample suspension, which were rehydrated by 400 

rpm stirring condition for 30 minutes at 25 �(  distilled water, after 36 g and 168 g centrifugation for both 10 minutes. The height of 

sediment was determined by the regions of low transmission subtracted the steady- state value that caused by cell bottom (from 

129 mm). C: Integral transmission was calculated by the software of SepView 4.1 (L.U.M. GmbH, Berlin, Germany). Each integral 

transmission value (%) represented the overall transmission through the sample cell (from 109 mm to 129 mm) by a function of 

centrifugation time. 

http://www.lum-gmbh.com/LUMiSizer_product-information.html
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3.2.4 Conductivity measurements  

The conductivity method is considered as a possible way to quantify the 

solubilisation process of casein-dominant powders. The primary species that 

contributed to conductivity were believed to be soluble minerals, while the 

contribution of proteins and lactose can be ignored due to big molecular size or 

uncharged material respectively (Mucchetti, Gatti, & Neviani, 1994; Zhuang, et al., 

1997). At the same time, some studies believe that calcium, phosphorus, 

magnesium together with caseins all belong to the slow-dissolving fraction (Mimouni, 

et al., 2010) because most of them come from the casein micelle structures and exist 

as colloids in typical milk (Holt, 1997). These slow-dissolving salt constituents also 

exhibited similar kinetics of solubilisation with caseins (Mimouni, et al., 2010). 

Therefore, this is the reason why the conductivity of MPI and MC suspension 

increased slowly but continuously over time just as the solubilisation progress (Fig.2-

8). The conductivity meter was used to monitor the dispersion process of particles by 

measuring the release of slow-dissolving salts in suspension. It is thus, possible to 

compare the kinetics of solubilisation of these two dairy powders based on the 

changes in conductivity. At the same time, the conductivity of agglomerated MPI was 

found to increase faster than unagglomerated MPI at first 80 seconds while for the 

next 90 minutes, they present the almost same kinetics. It is because agglomerated 

MPI is more easily wetted and thus fast-dissolving salts are more quickly dissolved 

into water than that of unagglomerated MPI. SMP and WPI powders, which also 

belong to fast-dissolving samples, reached the individual steady conductivity values 

in very short time (less than 10 minutes) as shown in Fig.2-8. It is not possible to 

evaluate their dispersion process corresponding to the conductivity values because 

there is no proof yet to show the relationships of salts and these fast-dissolving dairy 
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constituents, even though Marabi, et al. (2008) reported that the final steady-state 

conductivity meant the complete rehydration of these powders. Besides that, it is 

obvious to see that the initial conductivity of all samples increased quickly at first, 

which was considered to be caused by the release of fast-dissolving salts in 

suspension, e.g. sodium and potassium, when samples were wetted by water 

progressively (Mimouni, et al., 2010). Furthermore, it is remarkable that the specific 

conductivity values of these dairy powders depend on how much salts remain in the 

powders during the manufacturing process. Consequently, conductivity methods for 

casein-dominant powder dispersion should only focus on the kinetics of conductivity 

instead of the value itself, which are always determined by varied membrane 

processes and different batches (de la Fuente, 1998). 

 

Fig.2-8. The change of conductivity by a function of mixing time for the 2% (w/v) 

concentration sample suspension, with 500 rpm stirring condition at 25 �( . (Distilled 

water was used in suspension, which had conductivity value of 67 µs·cm -1.) 
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4 Conclusion  

The measurement characteristics of wettability and dispersibility of milk protein 

based powders were discussed in this paper. Due to the different potential use for 

the dairy powders, such as, MPI and WPI can be used in nutritional beverages 

or infant formulas while MC and SC are the important materials in cheese making, 

an overall assessment of the methods based on these dairy powders was 

summarized in Table.2-3 with their advantages, drawbacks and limitations. 

For the wettability measurements, the traditional method with immersion wetting 

process may be used as an initial screening and can differentiate between powders 

that wet reasonably well from those that are poor wetting. Contact angle methods 

are believed to be very useful for quantifying and comparing the wettability of milk 

protein powders. But it still needs to ensure the surface of powdered sample is as 

smooth as possible so that more accurate contact angles can be observed. 

Washburn method based on capillary rise wetting is also capable of assessing the 

wettability of some dairy powders. The major problem with this approach is with 

powders that readily solubilise when contacted with water, as they may form a 

solubilised viscous layer at the water-powder interface that inhibits capillary rise. This 

can lead to misleading results, for example, SMP is a good wetting powder but has a 

low capillary rise in the Washburn test.   

For the dispersibility measurements, particle size measurements by light 

scattering method is suitable for all the powders tested, especially for slow-

dispersing milk protein powders, e.g. MC and MPI powders. One problem with this 

approach is it cannot accurately measure how quickly the fast dispersing powders 

are dissolving, such as SMP, because of the time required to do the measurement. 

The poor dispersibility of some powders at a specific stirring time is also possibly 

https://en.wikipedia.org/wiki/Infant_formula
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described by the light transmission of the suspension using an analytical centrifuge. 

However, once again the fast-dispersing dairy powders, like SMP, WPI or SC, are 

difficult to quantify their dispersing process in water as they dissolve quickly once 

wetted completely. The DI method is only useful for assessing powders that wetted 

well and dispersed fairly quickly, such as SMP. It is not suited for powders that 

wetted poorly because they form lumps and disperse slowly because of poor wetting. 

For example, WPI has poor DI, due to its poor wettability, even though it is a good 

dispersing powder. Conductivity method is believed to have potential for casein-

dominant dairy powders due to the similar release rate of colloidal salts and micellar 

casein.  
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Table 2-3 Summaries of the methods characteristics of dairy powders wettability and dispersibility * 

* 1: low level; 2: medium level; 3: high level  

** It could be developed into a dynamic method 

*** Not suitable for the wettability of powder rehydration 

Method 
Accuracy

? 
Speed

? 
Reproducible

? 
Dynamic 
method? 

Suitable dairy 
powders? Application limits 

Industrial 
setting? Equipment   Potential benefits 

Immersional 
wetting method 

1 3 2 No 
SMP or other 
easy-wet milk 

protein powders 

Not be able to distinguish 
the wetting behaviour of 
poor wetting powders 

Yes Beaker and 
slide 

Cheap; fast 
measuring 

Washburn 
method 

3 3 3 No** 

 
MC, MPI and 
agglomerates  

 

Used for Newtonian liquids 
only and not suitable for 

easy-solubilising powders 

Yes Cylinder 
glass tube 

Quantitative 
method; fast 
measuring   

Water 
adsorption 

static method 
3 1 2 Yes No dairy 

powders*** 
Moisture vapour wetting 
by different mechanism 

Yes 
Desiccators 

and 
incubators 

Automotive; no 
operator-dependent 

Contact angle  3 3 2 Yes All milk protein 
powders 

Need the surface of 
powdered samples as 

smooth as possible 

Yes Optical 
tensiometer 

Direct method; fast 
measuring; small 
sample amount 

Dispersibility 
Index 

2 1 1 No 
Easy-wet dairy 

powders without 
lump formation 

Bad reproducibility with 
multiple operators and not 
capable for poor-wetting 

powders 

Yes Spatula and 
sieve 

Cheap; easy to 
operate 

Light scattering 3 3 2 Yes 
slow-disperse 
milk protein 

powders 

Difficult to measure fast-
disperse milk protein 

powders 

Yes 
Online 

measuring 
equipment  

Direct method; 
automotive; small 
sample amount 

Light 
transmission of 

suspension 
2 3 2 No 

slow-disperse 
milk protein 

powders 

Not suitable for fast-
disperse milk protein 

powders 

Difficult NIR light 
equipment  

Automotive; 
quantitative method 

Conductivity of 
suspension 

3 3 2 Yes 
Only casein-

dominant 
powders 

Only useful with the 
premise of same release 
rate of salts and protein 

particles 

Yes 
Online 

measuring 
equipment 

Automotive; 
quantitative method 
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Abstract  

Five common high protein dairy powders and their agglomerates produced by 

fluidised bed granulation were evaluated and compared for their rehydration 

characteristics in this study. Wettability of powders was measured by immersion 

wetting time, capillary rise wetting and contact angles methods, while dispersion and 

solubilisation processes were quantified by the change of particle size and the 

sediment height after centrifugation. The results showed that these high protein dairy 

powders generally had poor wettability, especially for whey protein isolate and the 

caseinates, which formed an impermeable layer separating the water surface and 

powders just after they contacted the water. However, the casein-micellar dominant 

powders exhibited prolonged dispersion due to strong interactions inside the micellar 

structures. The agglomerates with large particle size and high porosity are expected 

to exhibit increased wettability. However, agglomeration only caused the external 

structural modification and thus is difficult to accelerate the dispersion process of 

micellar casein, which can be explained by the milk protein isolate rehydration 

mechanism. The micellar structure inhibits the release of materials into surrounding 

liquid phase, which is mainly responsible for the extended rehydration time.   

Keywords:  high protein dairy powders, agglomeration, rehydration, wettability, 

dispersibility 
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1 Introduction  

The production of milk protein is growing rapidly worldwide due to its 

advantageous nutritional and functional properties. As milk protein consists of casein 

and whey protein, different milk protein materials can be produced using different 

manufacturing processes (Oftedal, 2013). For example, milk protein is obtained from 

skimmed milk by ultrafiltration to remove lactose and minerals; subsequently micellar 

casein can be achieved by microfiltration to further separate whey protein; therefore, 

whey protein is also produced from the permeate (Chandan, 2011; Kilara, 2011; 

�2�¶�0�D�K�R�Q�\�� �	�� �)�R�[���� ��������). In addition, some non-micellar caseinate, e.g. sodium 

caseinate and calcium caseinate, can be produced from acid casein by adding alkali 

solution (sodium hydroxide or calcium hydroxide respectively) (Farrell, Brown, & 

Malin, 2013; Pitkowski, Nicolai, & Durand, 2009). These milk protein materials are 

widely used in dairy products and infant formula, or used as emulsifiers and 

stabilisers in food and beverages (Chandan, 2011; Moughal, Munro, & Singh, 2000). 

However, whatever the type of milk protein, liquid materials are usually spray-dried 

into the powdered forms for the ease of handling, storage and transportation (Ann 

Augustin & Clarke, 2011; Selomulya, et al., 2013). In that case, the various milk 

protein powders are necessarily required to be rapidly and completely rehydrated 

again before use, as complete rehydration is a prerequisite for expressing the 

functionality of the dried ingredients. The literature has already reported that micellar 

casein powders were difficult to disperse in water and whey protein powders also 

have very poor wettability (Gaiani, et al., 2006; Gaiani, Schuck, Scher, Desobry, & 

Banon, 2007; Schuck, et al., 2007). Comprehensive assessment is still needed for 

the rehydration characteristics of these common milk protein powders. Consequently, 

it is of interest to investigate their rehydration ability and understand their rehydration 

mechanism. 
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It is commonly believed that the rehydration process mainly consists of three 

sequential stages, which are wetting, dispersing and solubilisation. Wetting is the 

first step where the particles contact liquid while dispersing and solubilisation are the 

critical phases where primary particles start to release materials from the particle 

surface into the liquid (Forny, Marabi, & Palzer, 2011; Ji, Fitzpatrick, Cronin, Crean, 

& Miao, 2016; Richard, et al., 2013). Once any of these three processes is limited, 

the time for the whole rehydration is prolonged. Casein-dominated powders are 

believed to be poorly-dispersible due to the strong interactions among the micellar 

structures. Hence, they usually take a longer time to totally dissolve in water 

(Baldwin & Truong, 2007; Havea, 2006; Schokker, et al., 2011). However, whey 

protein powders demonstrate poor wetting behaviour where the material floats on the 

surface of the solution, which is considered to be the rate-limiting factor for whey 

protein rehydration (Gaiani, Scher, Schuck, Desobry, & Banon, 2009). Therefore, it is 

necessary to characterise the individual behaviours of milk protein powders during 

wetting, dispersion and solubilisation processes as different milk protein powders 

exhibit completely different wettability, dispersibility and solubility (Schuck, Jeantet, & 

Dolivet, 2012).  

Agglomeration is a particle size enlargement process that creates granulates by 

adding a binder and forming bridges to link primary particles together. The process is 

used to change the structural and physical properties by increasing the size of the 

particles and the voids between particles, and also by decreasing the bulk density of 

powders (Rajniak, et al., 2007). Hence, the modified structure is believed to influence 

the rehydration characteristics of powders. For example, the wetting phase is 

affected by large particles with large pores, which allow water to penetrate into 

particles more easily (Hogekamp & Schubert, 2003). Dispersibility is also related to 
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the particle size and the density of powders (Goalard, Samimi, Galet, Dodds, & 

Ghadiri, 2006). Some studies reported that the agglomeration process played a 

beneficial role in the wetting behaviour of milk protein isolate powders but no 

significant improvement for dispersion (Gaiani, et al., 2007; Ji, Cronin, Fitzpatrick, 

Fenelon, & Miao, 2015). Therefore, it is of interest to find out if the agglomerated 

powders can positively affect the rehydration behaviours for the cases of other 

protein powders. The rehydration process of milk protein can be described generally 

in the following mechanism: wetting of the powders; detachment of powders into 

primary particles; release of materials from particles into the aqueous phase and 

simultaneous continuous erosion of the surface layer until the collapse of particles 

and their complete dissolution (Mimouni, Deeth, Whittaker, Gidley, & Bhandari, 

2009). The agglomerated powders may also have an additional step which is the 

dissolution of the solid bridges linking the particles with the resulting granules 

dispersing into primary particles (Forny, et al., 2011). To the best of our knowledge, 

few reports have investigated this mechanism for the rehydration kinetics of milk 

protein and compared with its agglomerated form.  

The objective of this study is to investigate the effect of agglomeration on the 

rehydration properties of high protein dairy powders (protein content >80%). Milk 

protein isolates (MPI), whey protein isolates (WPI), micellar casein (MC), sodium 

caseinate (SC), calcium caseinate (CC) are used as the model systems. The results 

will be used to exhibit the rehydration characteristics and also to better explain the 

rehydration mechanism of milk protein powders and their agglomerates.  

2 Materials and methods  

2.1 Materials  
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The composition of the milk protein powders used in this study is showed in 

Table 3-1. MPI and SC were supplied by Kerry Ingredients (County Kerry, Ireland). 

WPI was supplied by Davisco Food International (Le Sueur, MN, USA). CC was 

produced by Teagasc (County Cork, Ireland). Skim milk (Kerry Ingredients, County 

Kerry, Ireland) was used to produce MC by a pressure driven process with 100 kDa 

molecular weight membranes and then the obtained retentate was vacuum 

evaporated to increase the solid content to approximately 38%. The concentration 

process was performed at 65 �(�ä��Finally, the MC powders were obtained by a spray 

drying process, where the inlet and outlet temperatures were 180 �(�� and 85 �(�á��and 

the drying air-flow rate was 750 m3·h-1. Before the measurements, all the powders 

were dried in a vacuum oven (Jeiotech, Seoul, Korea) at 45 �(  overnight to obtain the 

final moisture content of about 1.5% and then kept in the desiccators.  

Table 3-1 Composition and particle size of milk protein powders  

*NA = non-agglomerated; A = agglomerated. 

2.2 Agglomeration process  

The agglomeration process of all these milk protein powders was carried out by 

a top-spray fluid bed granulator (VFC-Lab Micro flo-coater, Vector Corporation, Lowa, 

 
MPI WPI MC SC CC 

NA A NA A NA A NA A NA A 

Protein   
(%, w/w) 86.0 82.0 90.0 84.0 84.0 80.1 88.0 86.0 87.0 81.4 

Lactose  
(%, w/w) 1.0 6.2 1.0 6.5 2.0 7.3 0.1 2.4 0.2 6.6 

Moisture 
(%, w/w) 

4.0 5.0 5.0 5.2 5.0 6.8 5.7 5.9 5.5 6.3 

Particle size 
D(50) (µm) 

49.3 ± 
1.5 

188.0 ± 
2.0 

54.5 ± 
1.8 

179.0 ± 
4.0 

50.0 ± 
1.4 

220.0 ± 
6.0 

85.0 ± 
1.0 

208.0 ± 
3.0 

65.7 ± 
2.1 

194.0 ± 
3.0 
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USA). 50 g of each model powder was fed into the product vessel. As different milk 

powders have different fluidisation behaviours in the fluidised bed, the appropriate 

upward flowing air stream from 30 L·min-1 to 250 L·min-1 was adjusted for the 

fluidisation of each powder (MPI: 200 L·min-1; WPI: 70 L·min-1; MC: 250 L·min-1; SC: 

30 L·min-1; CC: 40 L·min-1). Meanwhile, the adjustable amount of 15% lactose 

solution binders, based on the different granulation behaviours of these milk protein 

powders, were injected by a peristaltic pump (1 mL·min-1). (25 g liquid was used for 

MPI, MC and CC granulation process, while WPI and SC needed 20 g and 10 g 

binders respectively.) The air pressure on the nozzle was 1 Bar. When the lactose 

binders had been used up, the agglomerates were dried by air for another 15 

minutes at 50 �( . After that, all agglomerated powders continued to be dried in the 

vacuum oven together with the standard powders to ensure similar moisture content.  

2.3 Wettability measurements  

Wetting process can be described as: firstly, the interface of solid and gas is 

replaced by the interface of solid and water; secondly, inward diffusion of the liquid 

through the capillary structures of the porous powder particle (Yuan & Lee, 2013). 

Three methods were used to quantify the wettability of powders. Wetting time by 

immersional wetting procedures can be used as an initial screening and distinguish 

between powders with general good or poor wettability. Modified Washburn method 

by capillary rise wetting was used to describe the water diffusion capacity of these 

powders, while contact angle in spreading wetting procedure is a widely used index 

to evaluate the wettability by water droplet overcoming interfacial tensions between 

the solid and gaseous phase. 

2.3.1  Wetting time  
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This traditional method evaluates the wettability by measuring the time required 

to achieve complete wetting. A set quantity of powder is gently discharged onto the 

surface of water and allowed to immerse spontaneously without agitation. Powder 

wetted in less than 60 seconds is usually considered easy to wet while powder which 

takes longer than 120 seconds is considered non-wettable. Thus, in this study, 6 g of 

each sample was dropped into a 400 ml beaker containing 100 ml of distilled water 

at 20 �(�� (GEA Niro, 2005). The beakers were chosen as the same size with a 

diameter of 70 mm and a surface area of approx. 38.48 cm2. Wetting time is 

recorded by a timer and all the measurements were repeated three times. Images of 

WPI particles were also captured by an optical microscope (Olympus BX51M) just 

after the particles contacted with water on glass slides. Images taken at different 

magnifications were used to show the formation of external layers outside the 

particles surface, which restrained the water from further wetting of the particles. 

2.3.2 Modified Washburn method 

The wettability of powders can also be measured by the Washburn method 

(Washburn, 1921). The detailed principles of a modified Washburn method including 

the instrument was described in the study of Ji, et al. (2015). It is based on a 

capillary rise wetting procedure which quantifies the wettability by the weighing of the 

additional mass of wetted powder as a function of time. A 2 g sample was used each 

time in this study and was loaded into a cylindrical glass tube with an open base 

bottom, which was covered by both a piece of filter paper and gauze. After that, the 

tube was fixed just above the surface of water which allowed the water to penetrate 

into the particles by capillary force. Finally, the additional mass of wetted powder 

was recorded at 10 minutes. All the measurements for each sample were repeated 

three times. 
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2.3.3 Contact angle  

Contact angle (�E�; is a widely used primary parameter to quantify the wettability 

of a solid surface by a liquid (Yuan, et al., 2013). A small contact angle (�E<90�¹) 

represents good wettability for the solid, and a large contact angle ( �E>90 �¹) 

represents poor wetting behaviour. As the wetting behaviour is a dynamic process 

that liquid penetrate into powder bed, in this study, it was followed by observing the 

changes of contact angles. An optical tensiometer (Attension Theta, Biolin Scientific 

Ltd., Espoo, Finland) was used to measure the contact angle based on sessile drop 

spread wetting. A 12 µL deionised water droplet was gently dripped on the surface of 

the powder substrate to carry out the dynamic live measurements at a temperature 

of 20 �( . The powder substrate was prepared by a leveller to ensure a smooth 

surface formed when measuring the tangent angle at the contact point of the three 

phases. The change of contact angle was recorded as a function of time and each 

sample was measured five times.  

2.4 Dispersibility and solubility measurements  

2.4.1 Particle size measurements  

In general, the dispersion process corresponds to the decrease of particle size, 

due to the release of materials from the surface of primary particles (Fang, 

Selomulya, Ainsworth, Palmer, & Chen, 2011). Thus, the change of particle size 

distribution (PSD) of the suspension during agitation is an applicable method to 

monitor the dispersion process of milk protein powders, especially for the case of 

casein-dominant powders with poor dispersibility (Mimouni, et al., 2009). A Malvern 

Mastersizer 3000 (Malvern Instruments Ltd, Worcestershire, UK) equipped with a 4 

mW He-Ne laser operating at a wavelength of 632.8 nm was used to measure the 
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PSD in this study. The samples were diluted in a 120 ml dispersion unit, which was 

filled with 25 �(  ± 2 �(  distilled water and agitated at a speed of 2000 rpm. The 

appropriate amount of each milk protein powder was weighed out in order to reach 

the ideal level obscuration of 8% for the machine. 5 mg of MPI, agglomerated MPI 

and MC were precisely weighed to make sure the results of specific surface area 

(SSA) are comparable, while WPI, SC, CC and their agglomerates were weighed 

100 mg for the measurements. Both PSD and SSA were continuously measured by 

�����P�L�Q�X�W�H�V���L�Q�W�H�U�Y�D�O�V���D�V���W�K�H���S�D�U�W�L�F�O�H�V���Z�H�U�H���P�L�[�H�G�����X�Q�W�L�O���'�������������U�H�D�F�K�H�G���D�S�S�U�R�[�������P�����'��

(50) is defined as the diameter of 50% particles). Triplicate measurements were 

carried out for each powder. 

2.4.2 Sediment height 

Light transmission technology together with an analytical centrifuge (L.U.M. 

GmbH, Berlin, Germany) was used to measure the sedimentation behaviour of 

samples. Initial sediment and compressed sediment can be exhibited by the varied 

intensities of the transmission of NIR light based on different optical density in 

suspension along the sample cell during the centrifugation (Crowley, et al., 2015). 

The sediment height was determined by the area of greatest optical density, which is 

the area of lowest transmission value having subtracted the steady-state value 

caused by the cell bottom. In this study, 1.5 g of each of the samples was rehydrated 

into 100 mL 25 �(�� deionised water to create 1.5% (w/v) concentration suspension. A 

magnetic stirring bar (length 2.5 cm) was used to agitate the suspension at 400 rpm 

for 30 minutes, and then followed by sampling 400 µL at a constant distance (1 cm) 

from bottom of the beaker to fill into polycarbonate cells. Two centrifugations were 

set up for the measurements, which included firstly 36 g for 10 minutes and then 

followed by 168 g for a further 10 minutes. The measurements were performed every 

http://www.lum-gmbh.com/LUMiSizer_product-information.html
http://www.lum-gmbh.com/LUMiSizer_product-information.html
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10 seconds for the first 10 minutes 36 g centrifugation and then every 60 seconds for 

next 10 minutes 168 g centrifugation.  

2.5 Scanning electron microscopy  

2 g of standard MPI powder were added to 100 mL distilled water to create the 

2% (w/v) suspension. Stirring was performed by an overhead mixer (Eurostar 40 

digital, IKA, Staufen, Germany) and a 4-bladed stirrer of 50 mm diameter (R 1342, 

IKA) for different rehydration time at 25 �(�� (60 minutes, 90 minutes and 150 minutes). 

One or two drops of each MPI suspension was deposited for 5 minutes on the silicon 

substrates, which were rinsed by 100 mM phosphate buffer (pH=7) in advance. 3% 

glutaraldehyde solution was used to fix the chemical structures of rehydrated milk 

protein for 15 minutes (Mimouni, Deeth, Whittaker, Gidley, & Bhandari, 2010a). After 

that, distilled water was used to wash the samples to remove the fixing chemicals. 

The samples were dehydrated by graded ethanol, which were 50%, 70%, 90% and 

100% (Dalgleish, Spagnuolo, & Goff, 2004), and then they were further dried in a 

desiccator with P2O5 until they were suitable to be observed by scanning electron 

microscopy in a vacuum environment (~5 
H��10-6 mbar). A field emission scanning 

electron microscope (Zeiss Supra, Carl Zeiss Microscopy GmbH, Jena, Germany) 

was used for imaging at 1.5 kV.  

3 Results and discussion  

3.1 The wettability of high milk protein powders  

According to the results of the immersion wetting procedure (Table 3-2), all of 

the milk protein powders are difficult to wet with water, due to their particles floating 

on the surface of the water and not sinking completely below the surface even after 

20 minutes. It is not surprising because dairy powders with high protein content 
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(>80%) are usually hydrophobic (Havea, 2006; Hussain, Gaiani, & Scher, 2012). Fig. 

3-1 shows the WPI particles coated by layers just after contacting water. An 

impermeable layer was formed at the powder/water interface. This may result in the 

non-hydrated regions, where water had no access to penetrate into the particles. 

The traditional wettability method based on immersion wetting process provides an 

initial screening of the milk protein powders. The Washburn method was used to 

further differentiate these powders with poor wetting behaviours, as illustrated in Fig. 

3-2. This shows that MC and CC uptake the most weight of water among all the milk 

protein powders, which were 0.469 g and 0.555 g, respectively. WPI and SC only 

adsorbed less than 0.1 g water in 10 minutes because water cannot penetrate into 

these powders spontaneously under the high contact angle (�E>90�¹) and negative 

capillary pressure (Lazghab, Saleh, Pezron, Guigon, & Komunjer, 2005; Palzer, 

Sommer, & Hiebl, 2003). Therefore, milk protein powders, especially WPI and SC, 

are believed to very quickly reach the point at which the weight of water balances the 

capillary pressure.   

Table 3-2 Wetting time of milk protein powders  

 
 

MPI WPI MC SC CC 

Wetting 
time 

(seconds) 

NA >1200 >1200 >1200 >1200 >1200 

A 480 ± 120 >1200 320 ± 14 >1200 >1200 

*NA = non-agglomerated; A = agglomerated. 

Contact angle (�E�; based on the droplet spreading wetting is also a commonly 

used index to evaluate the wettability of powders (Gao & McCarthy, 2006). It 

considers the changes in �E values as a function of time to quantify the dynamic 

process other than a static state (Mittal, 2006). As shown in Fig. 3-3A, it can be seen 
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that the contact angle of MC reduced significantly with a final angle of 20° in just 

about 10 seconds, which showed the best wetting behaviours of all powders. 

However, for MPI powder, the water droplet took a much longer time (280 seconds) 

to reach an equilibrium angle. Moreover, in Fig. 3-3B, CC, SC and WPI were 

believed to have extremely poor wettability, due to the high initial contact angles only 

changing by about 10° (CC & SC) and 40° (WPI) respectively, even after 300 

seconds of measurement. The contact angle results were consistent with the results 

based on Washburn measurements, except for CC, which took up the most water 

weight by capillary force. This may be because when CC particles contacted water, 

they seemed to quickly adsorb water and form a thick gel-like film. That may cause a 

certain amount of water to combine with CC particles and the formed film was likely 

to prevent further water penetration. However, the precise explanation is still 

unknown and needs further study in the future. 

 

Fig.3-1 Optical microscopy images of WPI particles, upon which formed the 

impermeable hydrophobic layers when wetted by water. The particles were 

�G�L�V�S�H�U�V�H�G���L�Q���Z�D�W�H�U���R�Q���J�O�D�V�V���V�O�L�G�H�V�������/�H�I�W�����V�F�D�O�H��� �����������P�����5�L�J�K�W�����V�F�D�O�H��� �����������P�� 
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Fig.3-2 Weight of adsorbed water for samples (MPI, WPI, MC, SC, CC and their 

agglomerates) by capillary rise wetting after 10 minutes.  
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Fig.3-3ABC A:  The change of contact angle (°) as a function of time for MPI, MC 

and their agglomerates using the sessile drop technique in approx. 20 �(  

temperature. B:  The change of contact angle (°) as a function of time for WPI, SC, 

CC and their agglomerates. C: Images of MPI, WPI and MC as examples to show 

how the water droplets penetrated into powders by the different time intervals.  
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3.2 The dispersibility and solubility of high milk protein powders  

The dispersibility of milk protein powders can be quantified by the light 

scattering method, as it is used to measure the changes of particle size during 

powder dispersion (Ji, et al., 2015). In Fig. 3-4A&B, MC and MPI powders exhibited 

slow dispersion, based on the long mixing time required for the migration of particle 

size from the original size (about 50 µm) to the size when particles were mostly 

solubilised (below 1 µm). MC took approximately 20 minutes to reach an equilibrium 

size while MPI needed 40 minutes to reach complete dissolution. The particle size 

(D50) of CC powder remained at about 80 µm, which suggests that the CC particles 

were mostly not dissolving into water during the 90 minutes. In Fig. 3-4B, SC 

exhibited very good dispersion behaviour as its particle size decreased dramatically 

below a size of 1 µm within just 6 minutes. WPI disappeared very quickly within 2 

minutes, as the machine did not detect any signals of particles after 2 minutes mixing. 

(The dissolved WPI are nanoscale, which is out of detecting range.) At the same 

time, it is interesting to see that the particle size of MC, MPI and CC increased over 

the initial couple of minutes. This is due to particles absorbing water just following 

the wetting stage and this swelling process leads to the increase in particle size at 

the first stage of dispersion. The same phenomenon was presented by others 

(Bhandari, Bansal, Zhang, & Schuck, 2013; Gaiani, et al., 2006).  
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Fig.3-4AB A:  Particle size D (50) measurements of dispersed particles of MPI, CC 

and their agglomerates for every 2 minutes in 25 ± 2�(  water. B: Particle size D (50) 

measurements of SC, MC and their agglomerates. (WPI quickly dispersed into water 

and Mastersizer cannot detect its particle size. Even agglomerated WPI can only be 

measured for the first 4 minutes)  

Besides the measurement of particle size, sedimentation is also used to 

describe the solubilisation behaviour of powders. As explained in the Methods 

section, sediment formation is determined according to the intensity of light 

transmission, due to the compressed sediment created the area of greatest optical 

density (Crowley, et al., 2015). Thus, the lowest transmission value is observed and 

used to calculate the sediment height in Table 3-3. It can be seen that WPI and SC 

have no sediment at all after 30 minutes rehydration and no matter 36 g or 168 g 

centrifugation. These findings were consistent with the previous results based on the 

rate of change of particle size, which means that WPI and SC are both powders with 

good dispersibility from the initial particle size to the lower measurement limit of the 

machine. MC, MPI and CC all had sediment with a height higher than 3 mm under 

36 g centrifugation and about 2.5 mm height under the 168 g centrifugation, after 30 

minutes rehydration. This shows that micellar casein-dominant powders, including 
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MPI and MC, require long times to be completely rehydrated because of the strong 

interactions between the micellar structures, and this has also been concluded by 

others (Crowley, et al., 2015; Mimouni, Deeth, Whittaker, Gidley, & Bhandari, 2010b; 

Schuck, et al., 2007). The structures mainly consist of casein micelles, linked 

together by calcium phosphate bridges and surrounded by a layer of casein 

molecules which helps to stabilize the micelle in solution (Farrell, et al., 2013; 

McMahon & Oommen, 2013; Schokker, et al., 2011). Thus, the release of micelles 

from powder particles is time-consuming. However, the artificial non-micellar form of 

caseinate powders, e.g. SC, are more easily dissolved into water (Pitkowski, et al., 

2009). It is surprising to find that CC showed extremely poor solubility in water at a 

temperature of 25 �( , which is totally different from the behaviour of SC. Some 

papers report similar results, including calcium induced aggregation and precipitation 

of caseinate solution due to the specific binding of calcium which results in 

aggregation and precipitation that is considered to be hydrophobic (Guo, Campbell, 

Chen, Lenhoff, & Velev, 2003; Thomar, Benyahia, Durand, & Nicolai, 2014). 

Consequently, CC powders may be difficult to reconstitute into water again, but this 

still depends on pH and temperature (Moughal, et al., 2000). 

Table 3-3 Sediment height after 36 g and 168 g centrifugation for both 10 minutes 

 

*NA = non-agglomerated; A = agglomerated. 

 
MPI WPI MC SC CC 

NA A NA A NA A NA A NA A 

Sediment 
height 
(mm) 

36 g x 
10 min 

3.25 ± 
0.05 

2.75 ± 
0.11 

0 0 
3.23 ± 
0.12 

3.65 ± 
0.23 

0 0 
3.63 ± 
0.17 

3.87 ± 
0.17 

168 g x 
10 min 

2.45 ± 
0.05 

1.95 ± 
0.10 

0 0 
2.62 ± 
0.10 

2.78 ± 
0.15 

0 0 
2.57 ± 
0.12 

2.70 ± 
0.06 



Chapter three 
    

101 
 

3.3 The effect of agglomeration on the wettability and dispersibility of high 

milk protein powders  

3.3.1 The effect of agglomeration on wetting behaviours 

Firstly, Fig. 3-2, which is based on the capillary rise wetting procedure, shows 

that all the agglomerated powders adsorbed more water than the standard powders. 

Even if the agglomerated WPI, SC and CC formed similar impermeable films as they 

formed on the surface of the standard powders when contacting the water, the 

agglomerates still presented comparatively better wetting behaviours. The 

agglomerated MC was shown to improve in wettability by the most, with a water 

uptake of 4.9 g in 10 minutes. The agglomerated MPI also showed an increase of 

about 0.8 g. The agglomeration process not only largely increased the size of milk 

protein particles, but also created the granules with high porosity due to the 

formation of void structures (Turchiuli & Castillo-Castaneda, 2009). Hence, 

agglomerated powders usually have better wettability than standard powders, as 

liquid is more easily able to permeate between the powder particles and wet them 

more quickly (Lazghab, et al., 2005). Similar results were observed from Fig. 3-3ABC, 

which compared the droplet contact angles of agglomerated powders and standard 

powders. The agglomerated MPI took about 50 seconds to obtain the equilibrium 

angle of 40°, which was a significant decrease in time when compared to the non-

agglomerated powder. A similar trend was found for agglomerated WPI, which 

displayed lower contact angles over the 300 seconds measurement time. In 

comparison to WPI and MPI, the agglomeration process appeared to only slightly 

enhance the wettability of MC, but this is because the contact angle changed so 

much more rapidly for MC. For agglomerated CC powder, only a small difference of 

20° was found after water contacting particles for 300 seconds, and there was no 
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obvious difference between SC and its agglomerate for the whole process, as the 

external layer prevented the droplet penetrating into the particles.  

Although large particles with loose and porous structures potentially explain the 

beneficial influence of agglomeration on the wettability of these milk protein powders 

(Ji, et al., 2015; Yuan, et al., 2013), Table 3-2 shows that most of the agglomerated 

powders still needed longer than 20 minutes for completely wetting (only 

agglomerated MPI and MC had significantly shorter wetting times of about 480 

seconds and 320 seconds, respectively). This is because wetting behaviour depends 

mainly on the hydrophobicity of milk protein powders, more than their physical and 

structural properties. In other words, it is not surprising to see that agglomerated WPI, 

�6�&���D�Q�G���&�&���P�D�L�Q�W�D�L�Q�H�G���O�R�Q�J���Z�H�W�W�L�Q�J���W�L�P�H�V�����D�V���D�J�J�O�R�P�H�U�D�W�L�R�Q���F�D�Q�¶�W���F�K�D�Q�J�H���W�K�H���Q�D�W�L�Y�H��

properties of milk protein powders or completely change the difficult-to-wet powders 

into easy-to-wet ones (Forny, et al., 2011).  

3.3.2 The effect of agglomeration on dispersion and solubilisation behaviours 

As described previously, SC and WPI powders dispersed rapidly into water. The 

effect of agglomeration on these two powders was not significant, as it is difficult to 

see differences in the dispersion process for the agglomerates and the standard 

powders based on the measurements of particle size changes (Fig. 3-4B). Same 

conclusions are determined from Table 3-3, where there were no sediments 

detected after 30 minutes rehydration with 36 g or 168 g centrifugation. Therefore, it 

can be concluded that the influence of agglomeration process on the WPI and SC is 

limited as they already had good dispersibility and solubility. For the slow-dispersing 

powders (Fig. 3-4A), there was no measured size increase or swelling at the 

beginning of the dispersion process, which means that agglomerates have shorter 
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swelling time based on their quicker penetration by water (Ji, et al., 2015). Besides 

that, the rate of change of MPI and CC agglomerate size were shown as being 

almost the same as their non-agglomerated powders. The agglomerated MC took 

significantly longer to disperse than the non-agglomerated MC, which means 

agglomeration prolonged the MC dispersion process (Gaiani, et al., 2007; Schuck, et 

al., 2007). It is commonly believed that the slow dispersion process of MPI or MC is 

�F�D�X�V�H�G�� �E�\�� �W�K�H�� �V�O�R�Z�� �Z�D�W�H�U�� �W�U�D�Q�V�I�H�U�� �L�Q�W�R�� �W�K�H�� �³�V�N�L�Q�´�� �R�I�� �L�Q�W�H�U-linked casein micelles 

(Mimouni, et al., 2010a). The agglomeration process just modifies the physical 

structures by binding particles together but does not accelerate the release of 

materials from the primary particles, which is responsible for the extended dispersion 

time of micellar casein powders. Generally, the possible ways to increase the 

dispersion rate are based on the destruction of the micellar structure by adding 

mineral salts, e.g. phosphate or citrates solutions (Schuck, et al., 2002), or by the 

physical approach of ultrasonication (McCarthy, Kelly, Maher, & Fenelon, 2014). The 

casein micelles are dissociated and then quickly dissolved into water. Therefore, 

fluidised bed agglomeration process played no significant beneficial role on the 

dispersion of micellar casein powders. Similarly, the solubility of CC precipitate is 

also influenced by the chemical environment rather than the physical structural 

modification produced by agglomeration (Thomar, et al., 2014).  

Consequently, it may be concluded that the effect of agglomeration on the 

wettability and dispersibility of dairy powders are different. According to the results of 

five dairy powders that were investigated in this study, their wetting behaviours were 

found to be dependent on the modification of physical properties while their 

dispersing behaviours were mainly controlled by the native dispersibility of primary 

particles. Thus, the agglomeration process may accelerate the rehydration of 
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powders whose wetting process is their rate-limiting step, such as WPI. If for the 

powders with dispersing as their rate-limiting step, such as MC, agglomeration plays 

no positive role and may even negatively influence rehydration. However for MPI, 

both wetting and dispersing processes are rate-limiting steps. Hence, it is necessary 

to evaluate the effect of agglomeration on a complete rehydration process to find out 

whether it shortens or prolongs the rehydration time (Ji, et al., 2015). Some other 

powders like SC and CC may have problems in wetting or dispersing due to the 

individual native hydration behaviours (Post, Arnold, Weiss, & Hinrichs, 2012). 

Therefore, agglomeration is believed not to significantly change their rehydration 

properties. 

3.4 The mechanism for the rehydration process of MPI powders  

The MPI powder exhibited how the specific surface area (SSA) and D (50) of 

particles changed as they dispersed and dissolved into water, which can be 

observed in Fig. 3-5A. Different from the gradually decrease of D (50), it is 

interesting to find that the SSA increased very slowly for the first 20 minutes but it is 

followed by dramatic growth for the next 40 minutes. It can be attributed to the 

disruption of the aggregates and the release of the primary particles with smaller size 

at the beginning of the dispersion process, but it only caused a slight increase in 

SSA. However, after 20 minutes of stirring time, the materials from micellar 

structures started to be released into the surrounding water. In that case, the SSA 

increased significantly as more and more materials dissolved. It also can be 

explained by Fig. 3-5B, which exhibited the volume density of unagglomerated MPI 

particles with different size for the different stirring time. Similarly, the volume of large 

particles decreased slowly at first 20 minutes but decreased sharply due to the 

collapse of the structures. Therefore, the dissolved small particles appeared from 20 
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minutes and the volume of these particles increased rapidly during the solubilisation 

process.  
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Fig.3-5AB A: Schematic of MPI and agglomerated MPI particles rehydration in water, 

based on the change of particle size D (50) and specific surface area as a function of 

time. B: Volume density (%) based size distributions of dispersing MPI particles 

measured as a function of time. It showed the volume concentration of both 

undissolved and dissolved powder particles.     

The dissolution mechanism of standard milk protein isolate can be described in 

the following steps: i) powder particles come into contact with water; ii) particles start 

to de-agglomerate from aggregates into the individual primary particles; iii) the 

continuous release of materials from the surface of these primary particles into 

aqueous phase; iv) erosion of the external layer of particles and finally full dissolution. 

It considers that milk protein powder produced by atomization in a spray-dryer 

usually consists of primary particles and these particles contain internal vacuoles 

based on the spray dry process (Bhandari, et al., 2013; Fang, et al., 2011). Thus, the 

dispersion process of milk protein isolate is mainly contributed by the disappearance 

of the aggregates of primary particles and also the release of micellar casein 

materials (McKenna, 2000).  

The SEM images in Fig. 3-6 clearly demonstrate the erosion of the particle 

surface under the effect of water transfer during the rehydration process. Before 

wetting by water, MPI particles have smooth surfaces, which can be seen from Fig. 

3-6A. After wetting and dispersing for a period of time, the most significant difference 

is the increase in the roughness of the surface of the rehydrating particles. This is 

due to water beginning to penetrate the external layer of micellar casein (Fig. 3-6B). 

For the longer rehydration periods, a much rougher surface was observed and large 

breaches appeared to indicate the further erosion of the outer skin by water (Fig. 3-

6C), but the particle still did not completely break down due to the strong interactions 
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between the micellar structures. Finally, sufficient materials were solubilised and the 

insides of micelles were exposed leading to the eventual collapse of the structures 

(Fig. 3-6D). Therefore, it is believed that the compactness skin outside of micellar 

casein particles is responsible for restraining the individual micelles into the 

surrounding liquid phase. 

 

Fig.3-6ABCD SEM images of MPI particles after different rehydration time. A:  spray-

dried particles before rehydration (1.4 kV); B:  particles after 60 minutes rehydration 

(1.5 kV); C: particles after 90 minutes rehydration (1.5 kV); D: particles after 150 

minutes rehydration (1.5 kV). The white arrow in panels C indicates the presence of 

large breaches caused by water erosion. 
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The agglomerated MPI were found to undergo a very similar solubilisation 

process as the non-agglomerated MPI with the only difference being at the beginning 

of the dispersion (Fig. 3-5A). The size of the agglomerates decreased sharply to 

about 75 µm, which is almost the same as the unagglomerated particles after 

swelling. It is due to the lactose solid bridges linking the particles being easily 

dissolved and the agglomerates being quickly dispersed into the non-agglomerated 

particles. This is exhibited by the schematic of agglomerated MPI rehydration in Fig. 

3-5A. (Forny, et al., 2011; Schubert, 1987). After that, there was no significant 

difference between agglomerates and non-agglomerates during the solubilisation 

process. Consequently, agglomerated MPI is believed to have one additional step at 

first, which is the dissolution of the solid bridges.  

4 Conclusion  

The rehydration properties of five common high protein milk powders and their 

agglomerates were investigated in this study. The application of a variety of 

measurement techniques provided a more complete insight into the rehydration 

behaviour of the powders which exhibited different wetting and dispersion 

behaviours. Poor wettability was the rate-limiting factor for WPI and SC rehydration, 

while poor dispersibility was the main problem for MC rehydration. Both MPI and CC 

displayed both poor wettability and poor dispersion. Agglomeration had a beneficial 

role on the droplet penetration process, and this was more significant for WPI and 

MPI powders. In capillary rise wetting procedure, agglomerated MPI and MC present 

the significantly better wettability. Agglomeration had no beneficial effect on 

dispersibility as it does not influence the structure of the primary particles. In fact, it 

may even have slowed dispersion by adding the additional step of dissolving the 

solid bridges between the particles.  
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Abstract  

The effect of agglomeration on the density, morphology and subsequent rehydration 

behaviours of milk powders was investigated. In this study, milk protein isolate, as a 

model system, was agglomerated in a fluid bed granulator with three different 

binders: water, lactose and sucrose solution (15% w/v). Morphology was quantified 

by circularity, convexity and elongation. Wettability was measured by the modified 

Washburn method. Powders solubilisation was quantified by dynamic particle size 

measurement and the kinetics of dissolved solids concentration in solution. The 

results showed that granules with water as the binder produced significantly lowest 

circularity and convexity and highest elongation. An increase in the size of the 

agglomerated MPI corresponded with an increase in the wettability but a decrease in 

the ability of solubilisation in water. Granules agglomerated with hydrophilic sugars 

were found to contribute differently which improved the wettability significantly but no 

improvement for the kinetics of dissolution.  

Key Words:  Fluid bed agglomeration, binders, wettability, solubilisation, morphology, 

density  
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1 Introduction  

Fluidized bed agglomeration, as one of the most used granulation methods, is a 

process by which granulated particles are obtained by spraying a binder as solution, 

suspension, or melt onto a fluidized powder bed (Rajniak et al., 2007a; Turchiuli et 

al., 2013; Weber et al., 2007). In the food industries, powders are usually required to 

have good handling properties (dust-free, good flowability and easy to rehydrate). 

Milk protein isolate powder (MPI), as a widely used dairy ingredient, not only have 

fine particles and dense structures but is also difficult to rehydrate (Gaiani et al., 

2007). The process of fluid bed agglomeration is applied to optimise the physical and 

structural properties of dairy powers, such as, particle size, densities, porosity, shape 

(Szulc and Lenart, 2013) and subsequently the rehydration behaviour (Knight, 2001). 

Because there is strong interaction between the fluid bed process and the properties 

of obtained powders (Knight, 2001), controlling the process conditions is  a potential 

way to improve the quality of MPI powders. 

The use of binders in fluid bed agglomeration is one of the most frequent 

methods to modify the structure of agglomerates. They form solid bridges adhering 

primary particles and create new structures with pores and voids. Therefore, they 

affect the rate of particles size enlargement, densities and morphology of the 

granules (Keningley et al., 1997; Mills et al., 2000). However, different binders have 

different bonding efficiency due to varied chemical compositions, mechanical 

properties, concentration, viscosity and inter-particular interactions between the 

particles and the binder. For example, sucrose or glucose usually produces hard and 

brittle bridges while gelatin and acacia gum provide slow disintegration and high 

hardness to the agglomerates (Barbosa-Cánovas and Juliano, 2005). In food 

systems, aqueous solutions of lactose and sucrose are the most used binders in fluid 

bed agglomeration. Thus, the relationship between types of binders and 
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agglomerates structure properties needs to be clearly identified. Although some 

pharmaceutical research related to agglomerate behaviour in fluidized beds have 

been published (Abberger et al., 2002; Chua et al., 2011; Parveen et al., 2013; 

Rajniak et al., 2007b; Seo et al., 2002), less attention has been given to milk powder 

systems, especially high protein-based powders which also present great potential 

for improvement to the quality of dairy powder structures. 

The rehydration ability of milk protein powders is an essential attribute as most 

of them are dissolved before use. It is commonly believed that the whole rehydration 

process mainly consists of three sequential stages which are wetting, dispersing and 

dissolving phases (Forny et al., 2011; Gaiani et al., 2007; Hogekamp and Schubert, 

2003; Richard et al., 2012). Each stage is affected by the different physical 

properties. Generally, wettability depends on large particles with large pores in 

between and also small contact angles (Hogekamp and Schubert, 2003); 

dispersibility is influenced by particle size, porosity and density (Goalard et al., 2006); 

dissolution is favoured by the presence of small hydrophilic molecules on the surface 

(Lillford and Fryer, 1998). Using sugar solutions as binders in agglomeration 

�P�R�G�L�I�L�H�V�� �W�K�H�� �S�R�Z�G�H�U�V�¶�� �V�W�U�X�F�W�X�U�H�� �D�Q�G�� �V�X�U�I�D�F�H�� �F�R�P�S�R�V�L�W�L�R�Q�� �D�Q�G�� �L�Q�I�O�X�H�Q�F�H�V�� �W�K�H��

interaction with water. Consequently, the performances of different binders on the 

rehydration ability should be investigated. Furthermore, as the reconstitution process 

is dynamic and powders with high protein content have relatively poor wettability and 

dispersibility (Gaiani et al., 2007; Richard et al., 2012), it is impossible to quantify the 

total process according to traditional standard methods. Moreover, different 

rehydration stages often overlap (Fang et al., 2007) and it is a challenge to observe 

each stage independently, particularly dispersing and dissolving stages. Hence new 

methods were developed to better quantify the functionality of powders in this study. 

For example, the modified Washburn method, as a dynamic wettability measurement, 
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was found to describe the ability of the powder particles to overcome the surface 

tension between themselves and the liquid (Depalo and Santomaso, 2013). 

Meanwhile, particle size measurement by static light scattering was used to monitor 

the solubilisation (both dispersing and dissolving) of powders during rehydration 

process (Richard et al., 2012). Final solubility was expressed as the kinetics of 

dissolved solids concentration (w/w %) in water. 

The overall aim of this study was to acquire a better understanding of the 

influence of fluid bed agglomeration of milk protein isolate (MPI) powder, using three 

different binders and two agglomerate size fractions, on improving the rehydration 

ability of MPI. Within this study, the influence of the three binders on the physical 

properties of the agglomerates, including powder densities, porosity and morphology, 

was also investigated. 

2 Materials and Methods  

2.1 Materials  

Milk protein isolate (MPI) was supplied by Kerry Ingredients (County Kerry, 

Ireland). The composition of MPI is 86% protein, 1.5% fat, 6% ash and <1% 

carbohydrate. The binding liquids used in the fluid bed agglomeration were: distilled 

water; aqueous solutions of lactose, 15% w/v (Arla Food Ingredients, Viby J, Aarhus, 

Demark) and aqueous solutions of sucrose, 15% w/v (Sigma Aldrich, USA). 

2.2 Fluid bed agglomeration  

A top-spray fluidised bed granulator (VFC-Lab Micro flo-coater, Vector 

Corporation, Lowa, USA) was used to carry out the agglomeration of MPI. 200g MPI 

powder was fed into the bottom of product vessel and fluidised by upward flowing air 

stream. The temperature of injected air was 50 �(  and the air flow rate was 200 L 
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min-1. 100g binding liquid was injected from the top of vessel by a peristaltic pump 

(1mL min-1) and sprayed into small droplets by a two-fluid spray nozzle. The air 

pressure on the nozzle was 1 bar. When the binding solution had been used up, the 

product was dried for 15min at 50 �(  and the air flow was reduced to 100L min-1. 

2.3 Powder characterisation  

Three different samples were obtained based on three different binders in the 

fluid bed granulation (A1: Water binding, A2: Lactose solution binding, and A3: 

�6�X�F�U�R�V�H�� �V�R�O�X�W�L�R�Q�� �E�L�Q�G�L�Q�J������ �7�K�H�� ���������P���� ���������P�� �D�Q�G�� ���������P�� �O�H�Y�H�O�� �V�L�H�Y�H�V�� ���(�Q�G�H�F�R�W�W�V����

London, UK) were used to obtain two different agglomerate size fractions (P1: 

���������P�a���������P�� �D�Q�G�� �32�����������P�� �a�� ���������P������ �,�Q�F�Ouding unagglomerated MPI standard 

powder (ST), a total of 7 powders (ST, A1P1, A1P2, A2P1, A2P2, A3P1, and A3P2) were 

investigated in this study. The obtained samples were dried overnight in the vacuum 

oven (Jeiotech, Seoul, Korea) at 60 �(  temperature and then kept in the desiccator to 

cool down into room temperature.   

2.4 Density and Porosity  

Loose and tapped bulk densities were measured using a graduated cylinder and 

a tapped machine (Funke Gerber, Berlin, Germany). The volume occupied by a 

given mass of powder (50g) after 100 taps was measured three times to calculate 

the tapped bulk density. Gas Pycnometer (AccuPyc II 1340, Micromeritics Instrument 

Corporation, Georgia, USA) was used to measure the particle density of samples, 

which were placed in the sample cell and purging with a flow of helium to degas the 

cell by ten pressurisation cycles. Furthermore, porosity (�-) was calculated using 

�W�D�S�S�H�G���E�X�O�N���G�H�Q�V�L�W�\���!T and particle �G�H�Q�V�L�W�\���!A.  The relation shows as Eq. (1): 

�¡ 
L �:�Ë�$ 
F�Ë�7�; �Ë�$�¤ ��
H��
Ú
Ù
Ù                                   (1) 

http://www.micromeritics.com/product-showcase/accupyc-ii-1340.aspx
http://www.micromeritics.com/product-showcase/accupyc-ii-1340.aspx
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2.5 Particle Shape  

The shape properties were described by Malvern Morphology G3 (Malvern 

Instruments Ltd, Worcestershire, UK). 15mm3 volume samples were placed in the 

dispersion unit to be dispersed into single layer on the glass plate so that they can 

be observed by the microscope. Generally, three parameters were used to quantify 

and indicate the shape properties of powders (Fig.4-1). Firstly, the circularity value 

between 0 and 1 was defined as the ratio of the perimeter of the surface equivalent 

disc (Pe) to the real perimeter of the particle silhouette (Pr). The bigger value means 

the more alike to the equivalent circle. Secondly, the convexity describes the 

compactness of a particle. The maximum theoretical convexity is 1 that means the 

surface of particle is very smooth. Finally, elongation stands for aspect ratio of 

particles and a needle shape has a high value which is close to 1. These indicators 

were usually expressed as average value for bulk population distribution. Each 

sample was measured five times to obtain the average value.  

 

Fig.4-1 Definition of the shapes factors: Circularity, Convexity and Elongation 

measured by Malvern Morphology G3.  

 



Chapter four 
    

120 
 

2.6 Rehydration  properties  

2.6.1 Wettability 

Dynamic wettability measurement was based on the Washburn method 

(Washburn, 1921) which applied the capillary force to wet the powder (Fig.4-2). In 

this study, 2g samples were added into a glass tube without bottom (powder holder), 

and covered by filter paper and a piece of gauze at the bottom of the tube to prevent 

the powders falling down. Then the tube was fixed just above the distilled water 

(24�( ) surface. After 10 minutes, an analytical balance was used to measure the 

additional mass of wetted powder. Each sample was measured five times. 

 

Fig.4-2 Scheme of modified Washburn method to quantify the wettability of MPI 

powders by measuring the weight of adsorbed water (24�( ) in 2g powders after 10 

minutes. 

2.6.2 Solubilisation 

Due to it is difficult to observe the dispersing and dissolving phases 

independently, solubilisation ability of the powders, including dispersibility and 

dissolution, were expressed as the reduction rate of particle size in dispersant based 
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on granule erosion and break-up (Chen and Lloyd, 1994; Goalard et al., 2006; 

Richard et al., 2012).  An optical fibre sensor (Fig.4-3) (Galet et al., 2004; Larsen et 

al., 2003), which collected the light backscattering of the particles, was used to 

�G�H�W�H�U�P�L�Q�H���W�K�H���N�L�Q�H�W�L�F�V���R�I���V�R�O�X�E�L�O�L�V�D�W�L�R�Q���D�Q�G���U�H�I�O�H�F�W���W�K�H���T�X�D�O�L�W�\���R�I���S�R�Z�G�H�U�¶�V��rehydration 

behaviour. Another used method to quantify the solubility of powder was the 

measurement of the concentration of dissolved powder (w/w %) in distilled water by 

time under the stirring.  

 

Fig.4-3 Scheme of Light scattering method to quantify the solubilise ability of MPI 

powders to monitor the particle size of dispersed particles every 2 minutes in 25 ± 2�(  

water at mixing condition of 2000rpm. 

2.6.2.1 Particle size measurement of dispersed particles  

Particle size measurement of dispersed particles was measured by laser light 

scattering using Malvern Masterszier 3000 (Malvern Instruments Ltd, Worcestershire, 

UK) equipped with a 4mW He-Ne laser operating at a wavelength of 632.8nm. 

Samples were diluted into 120ml dispersion unit with distilled water to reach 

obscuration of 8%. Refractive indexes for solvent, particle and adsorption were set 

as 1.33, 1.45 and 0.01, respectively. In this study, in order to be within the ideal 

obscuration range of machine, a constant mass of samples (approximate 5mg) were 
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introduced into dispersion unit with 2000rpm agitation and 25�(  ± 2�(  temperature 

range. The solid in liquid concentration was set at 0.004%. During the triplicate 

measurements, samples were detected every 2 minu�W�H�V�� �X�Q�W�L�O�� �'�� ���������� �U�H�D�F�K�H�G�� �a�����P��

���W�K�H�� �G�L�D�P�H�W�H�U�� �R�I�� �������� �S�D�U�W�L�F�O�H�V���Z�D�V�� �M�X�V�W�� �O�R�Z�H�U�� �W�K�D�Q�� �����P������ �7�K�H�� �D�Y�H�U�D�J�H�� �U�H�V�X�O�W�V�� �Z�H�U�H��

used to monitor the particle size reduction as powders dispersed and dissolved.  

2.6.2.2 Dissolved solids measurement  

For dissolved powder concentration measurement, samples weighing 1g were 

added into 50ml water in the beakers and slightly mixed by spoon to make the 

powders wet completely and sink below the surface of water. Then samples were 

placed in 24 �(  water bath and stirred by 3-pitched-blade impeller (impeller diameter: 

4cm ) at a rate of 300rpm for different mixing time (30min, 60min, 90min, 120min, 

150min, 180min, 210min, 240min). After that, the suspensions were put into 50ml 

centrifuge tubes and centrifuged at 3000 g and 24 �(  for 10 minutes (Eppendorf 

Centrifuge 5810R, Hamburg, Germany). 2ml supernatant was taken and analysed by 

solid analyser machine (Smart System 5, CEM, North Carolina, USA), to evaluate 

the concentration of solids (w/w %) in the solution. All the results were repeated 

three times 

2.7 Statistical analysis  

Results were expressed as mean ± standard deviations (SD). One-way analysis 

of variance (ANOVA) was carried out by SPSS software (PASW, Statistics 1.8). It 

was used to perform statistical differences by the least significant difference (LSD) 

test, in relation to the applied variable using F-test.  Differences were considered to 

be significant at P<0.05. 

https://www.google.ie/search?safe=active&biw=1280&bih=899&q=hamburg+germany&stick=H4sIAAAAAAAAAGOovnz8BQMDgzMHnxCnfq6-QUplUV6yEgeIaZxRVKWllZ1spZ9flJ6Yl1mVWJKZn4fCscpITUwpLE0sKkktKv717bvvW_O4_6npthvLD6779P-WRiIA2JzfvmAAAAA&sa=X&ei=PAlpU6zNJOfQ7Aa524GYDg&ved=0CJgBEJsTKAIwDg
https://www.google.ie/search?safe=active&biw=1280&bih=899&q=germany&stick=H4sIAAAAAAAAAGOovnz8BQMDgzMHnxCnfq6-QUplUV6yEgeIaWximqGllZ1spZ9flJ6Yl1mVWJKZn4fCscpITUwpLE0sKkktKt6Z6uB0yzXqTfe-jtaDKgc8OapPtAIAoTlvLWAAAAA&sa=X&ei=PAlpU6zNJOfQ7Aa524GYDg&ved=0CJkBEJsTKAMwDg
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3 Results and Discussion  

3.1 Influence of binders on physical properties of agglomerates  

3.1.1 Density and porosity 

Bulk density is defined as the mass of powders divided by the total volume 

occupied by them. The total volume includes particle volume, inter-particle void 

volume, and internal pore volume. Tapped density corresponds to the occupied 

volume after packing by tapping the container, which means voids between particles 

are reduced (Turchiuli and Castillo-Castaneda, 2009). It is commonly believed that 

agglomeration creates granules with lower bulk density due to the formation of voids 

structures (Kowalska and Lenart, 2005; Szulc and Lenart, 2010). Same trends were 

observed in Table 4-1, where loose and tapped bulk density of unagglomerated MPI 

powders were 0.298 g/cm3 and 0.356 g/cm3 respectively, which were significantly (p< 

0.05) higher than those of agglomerated MPI powders. Furthermore, if compared 

with the bulk densities of six agglomerated samples, an increase in the size of the 

agglomerate was found to correspond to a decrease of bulk density. But the different 

binders appeared to have no particular effect on bulk loose and tapped densities for 

both particle size fractions. The loose bulk densities of samples were all about 0.21 

g/cm3 and 0.18 g/cm3 for small and large size fractions respectively. And the tapped 

bulk densities were about 0.26 g/cm3 and 0.20 g/cm3 respectively. For particle 

density, the agglomerates formed by distilled water were similar to that of ST while 

those formed by lactose and sucrose had lower particle densities, which were lower 

than 1.3 g/cm3. Similar results were shown by Szulc and Lenart (2013), where 

values of particle density were influenced by the type of binder liquid and the 

composition of samples. Besides that, Jinapong et al (2008) also reported that 
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agglomerated soymilk powders resulted in the lower particle density than the 

standard unagglomerated ones.  

Porosity is defined as the ratio of void volume to total volume of the powder and 

void volume is the difference between the total volume and particles volume 

(Turchiuli and Castillo-Castaneda, 2009). Thus, porosity is largely dependent on the 

measurement of total and particles volumes. Generally, an increase in porosity of the 

agglomerated powders was observed in comparison with the primary ones (Werner 

et al., 2007). In this study, the porosity values of MPI samples showed in Table 4-1 

can reach around 80% based on the low bulk density. Agglomerated skim milk 

powder (Hogekamp and Pohl, 2003) and agglomerated soymilk powders (Jinapong 

et al., 2008) also reported the similar porosity values. As the same trends to bulk 

density, agglomerated MPI samples also had significantly higher porosity than 

unagglomerated ones and larger particle size corresponded to higher porosity. 

Meanwhile, there was no big difference among the agglomerates with different 

binders in the same particle size fraction.  
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   Table 4-1 Bulk Density, Particle density and Porosity of powders * 

Samples ST A1P1 A1P2  A2P1 A2P2  A3P1 A3P2  

Particle size          
�'���������������P�� 

49.4 ± 0.2a 106.2 ± 0.5b 199.0 ± 1.2c 102.5 ± 0.3d 188.7 ± 1.0e 103.4 ± 0.3f 191.2 ± 1.4e 

Bulk Loose 
Density (g/cm3) 0.298 ± 0.007a 0.206 ± 0.009b 0.184 ± 0.006c 0.221 ± 0.006b 0.179 ± 0.005c 0.215 ± 0.007b 0.181 ± 0.004c 

Bulk Tapped 
Density (g/cm3) 0.356 ± 0.001a 0.262 ± 0.000b 0.198 ± 0.000c 0.265 ± 0.001b 0.199 ± 0.000c 0.252 ± 0.001d 0.207 ± 0.000e 

Particle 
Density (g/cm3) 1.311 ± 0.004ab 1.335 ± 0.020a 1.302 ± 0.016bc 1.282 ± 0.024bc 1.278 ± 0.003cd 1.254 ± 0.035de 1.246 ± 0.027e 

Porosity                  
(%) 

72.85 ± 0.12a 80.37 ± 0.30b 84.79 ± 0.23c 79.33 ± 0.32d 84.43 ± 0.10c 79.90 ± 0.41bd 83.39 ± 0.34e 

* Data are expressed as mean± standard deviation; values followed by a different superscript letter in the same line are significantly different   
at P<0.05. 
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        Table 4-2 Morphological descriptors of powders * 

Powder 
Morphology ST A1P1 A1P2 A2P1 A2P2 A3P1 A3P2 

Circularity 0.826 ±0.015a 0.642±0.006b 0.592±0.014c 0.669±0.008de 0.630±0.015bc 0.688±0.004d 0.668±0.002e 

Convexity 0.937±0.008a 0.796±0.005b 0.728±0.010c 0.814±0.005d 0.761±0.017e 0.829±0.005f 0.789±0.007b 

Elongation 0.262±0.010a 0.317±0.004b 0.293±0.003c 0.301±0.001d 0.266±0.001a 0.309±0.001e 0.281±0.005f 

       * Data are expressed as mean± standard deviation; values followed by a different superscript letter in the same line are significantly 
different at P<0.05. 
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3.1.2 Morphology 

The effect of the binders in fluid bed agglomeration on the morphological 

properties of powders was also investigated. Three morphological descriptors 

(Circularity, Convexity, and Elongation) followed by Malvern Morphology G3 

identified the bulk shape properties. Examining Table 4-2, compared to the 

unagglomerated MPI powders, it is clear to find that agglomerated granules had 

significantly (p<0.05) lower circularity and convexity but higher elongation, which 

means the particles had less rounded shape, rougher surface and lower ratio of 

width / length.  As it is seen in Fig.4-4, more irregular shapes were observed in 

agglomerates with larger particle size. It is due to initial primary particles (Fig.4-4A) 

rapidly aggregated into intermediate structures to create small agglomerates (Fig.4-

4B) and then progressively grew to the big porous agglomerates (Fig.4-4C). Thus, 

the shape factors of particles were significantly changed. If focusing on the effect of 

different binders, water binding agglomerates had least similarity of a circle and most 

surface area among the three for both small and large particle size fractions. Even 

for the sugars binders, there still was significant difference between them in 

convexity and elongation. It is not surprised to the results because the higher binder 

liquid concentration resulted in the high compactness of agglomerates (Szulc and 

Lenart, 2013). Thicker bridges or layers were formed on the surface of agglomerates 

obtained by higher binder concentrations. Same tendency was found in soymilk 

powders (Dacanal and Menegalli, 2010; Jinapong et al., 2008) and also in other 

agglomerated spray-dried powders (Fuchs et al., 2006; Turchiuli et al., 2005). 

However, morphology of agglomerates is very difficult to predict because it also 

depends on the droplet deposition, droplet spreading, bridge breakage and the 

amount and the way that binders are introduced (Werner et al., 2007).  
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Fig.4-4 �&�R�P�S�D�U�L�V�R�Q�� �R�I�� �L�P�D�J�H�V�� �R�E�W�D�L�Q�H�G�� �E�\�� �0�D�O�Y�H�U�Q�� �0�R�U�S�K�R�O�R�J�\�� �*������ ���[�������� �V�F�D�O�H�� � ���������P����

�[���������� �V�F�D�O�H�� � �� �������� ���P���� ���$���� �	�� �$������ �0�3�,�� �V�W�D�Q�G�D�U�G�� �S�R�Z�G�H�U�V���� �%���� �	�� �%������ �V�P�D�O�O�� �V�L�]�H�� �I�U�D�F�W�L�R�Q�V�� �R�I��

agglomerates binding with water; C1 & C2: large size fraction of agglomerates binding with 

water.) 
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3.2 Influence of binders and agglomerate size on rehydration  behaviour  

3.2.1 Wettability  

Wettability is the ability of the powder particles to imbibe a liquid and overcome 

the surface tension between them based on capillary force. Generally, the GEA Niro 

�P�H�W�K�R�G���L�V���X�V�H�G���W�R���P�H�D�V�X�U�H���W�K�H���Z�H�W�W�D�E�L�O�L�W�\���R�I���³�H�D�V�\-�Z�H�W�´���S�R�Z�G�H�U�V�����+�R�Z�H�Y�H�U�����I�R�U���V�R�P�H��

powders with poor wetting ability, such as high protein powders in this study, it can 

be determined by the additional weight of powder after absorbing liquid in a specified 

time.  

Wettability results are illustrated in Fig.4-5 for ST and the six agglomerated 

powders. Agglomeration had a major improvement on the wettability of MPI, as the 

agglomerated powders absorbed significantly more water than that of ST in 10 

minutes. A major reason for this improvement was due to the increase in particle size, 

as presented in Table 4-1. Good wettability was generally favoured by the presence 

of large particles, resulting in larger voids between the particles which allow water to 

penetrate more easily into the powders (Freudig et al., 1999; Hogekamp and Pohl, 

2003). And also for each binder, the larger particle size fraction produced the highest 

wettability.  

Fig.4-5 also shows that binder type has an influence on wettability. The 15% 

lactose solution binder had the best wettability for both size fractions. For the smaller 

size fraction, the 15% sucrose solution binder was slightly better than the distilled 

water but worse for the larger size fraction. It is because the influence of binder 

composition on wettability is complex. The chemical nature of composition plays an 

important role, e.g. hydrophilic and hydrophobic nature (Fang et al., 2007; Freudig et 

al., 1999). Powders agglomerated with lactose and sucrose solution contain 

hydrophilic carbohydrates that results in the development of more hydrophilic bridge 
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surfaces that make powder wetting by water more easy. The binder composition will 

also influence the morphology of agglomerates produced, as seen in Table 4-2, and 

this in turn will influence how water penetrates into the powder.  

 

Fig.4-5 Mean weight of absorbed water for samples (ST, A1P1, A1P2, A2P1, A2P2, 

A3P1 and A3P2) after 10 minutes 

It is commonly believed that particles with rounder and rougher surfaces lead to 

higher wettability whereas smoother and elongated powders have lower wettability 

(Gaiani et al., 2011; Perea et al., 2009; Yekeler et al., 2004). This is due to the lower 

roundness and higher elongation which result in a higher wetting angle than 

equivalent round particles; longer contact lines also cause stronger adhesion force of 

prismatic particles(Oliver et al., 1977). Comparing the hydrophilic lactose and 

sucrose binders, samples agglomerated with lactose showed rounder (lower 

elongation) and rougher (lower convexity) which may in part explain the better 

wettability. However, due to a complex influence on wetting behaviour, the precise 
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explanation of the effect of morphology is still unknown and needs further study in 

the future.   

3.2.2 Solubilisation   

3.2.2.1 Particle size measurement of dispersed particles 

This approach measured the evolution of particle size of wetted particles over 

time (as described in materials and methods). Fig. 4-6ABC illustrates the influence of 

initial particle size on the solubilisation of particles over time (as illustrated by the 

decrease in D(90), D(50) and D(10) size values). Fig. 4-6ABC shows an initial rapid 

decrease in particle size of the larger sized agglomerates. This is due to water easily 

penetrating into the agglomerate pore network, solubilising the solid bridges between 

the primary MPI particles and releasing them into solution. After this initial period of 

about 4 minutes, the particles attain a similar size, independent of initial 

agglomerated size fraction. This provides further evidence that the agglomerates 

have been broken down into their primary MPI particles.  

This initial time period was followed by much slower solubilisation and it took 

around 60 minutes for the particles to mostly solubilise, as evidenced by the D90 

values approaching zero. Fig. 4-6ABC shows that agglomeration with any of the 

binders had no significant beneficial impact on the solubilisation rate of MPI. This 

appears to be due to the solubilisation rate being controlled by the solubilisation of 

the primary MPI particles (Mimouni et al., 2009). This suggests that the primary MPI 

particles solubilise very slowly, possibly due to strong attractions between casein 

micelles within the powder. In fact, it may marginally increase the solubilisation time, 

because a few minutes may be required to break down the agglomerates into MPI 

primary particles. In addition, there also appears to be some differences based on 

the type of binder used, however it is not of major significance. Overall, the 
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solubilisation of the MPI powder was insensitive to agglomeration and the choice of 

binders.  

In Figs. 4-6ABC, it is interesting to see that the particle sizes of ST increased 

over the first 4 minutes. This is because particles usually sorb water following the 

wetting stage and this behaviour is called swelling. Same phenomenon was founded 

�L�Q���R�W�K�H�U�¶�V���S�D�S�H�U��(Gaiani et al., 2009; Gaiani et al., 2007; Goalard et al., 2006). On the 

other hand, Fig. 4-6ABC did not show swelling with the agglomerates as they have 

much shorter swelling time due to their quicker penetration by water (Gaiani et al., 

2009). Furthermore, swelling of agglomerates and primary particles occurred when 

the agglomerates were disintegrating, so any increase in size due to swelling was 

counteracted by the large reduction in agglomerate size.  
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Fig.4-6 ABC Particle size measurement of dispersed particles versus time (every 2 

minutes) in 25 ± 2 �(  water at mixing condition of 2000rpm (A= water binding 

agglomerates and ST; B= lactose solution binding agglomerates and ST; C= sucrose 

solution binding agglomerates and ST.). 

3.2.2.2 Dissolved solids measurement 

Solubilisation was also expressed as the amount of solids that were dissolved 

into solution over time. As with Fig. 4-6ABC, Fig. 4-7 shows that agglomeration did 

not have a significant beneficial impact on the solubilisation rate of MPI. In fact, 

agglomerate solubilisation was slower than that of ST when using distilled water as a 

binder. This is in agreement with work by Schuck et al (2007) and Gaiani et al (2007). 

They found that granulation increased the solubilisation time of native phosphocasein 

powders. This is due to casein micelles interacting strongly within the primary 

particles and developing attractions that are difficult to break down (McKenna, 2000). 

Thus, water takes a long time to solubilise the powder particles and results in the 

slow solubilisation rate. In relation to agglomeration, water has to first penetrate into 

the agglomerates to release the primary MPI particles and this takes some additional 

time. Agglomerates formed by lactose and sucrose binders showed a somewhat 
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similar progression to ST, with similar dissolved solids concentrations above 200 

minutes. The presence of lactose and sucrose on the surface of protein particles is 

believed to inhibit the interaction between casein micelles because they are more 

hydrophilic. Consequently, MPI powders agglomerated with lactose and sucrose 

solution are comparatively more easily dissolved into water than that agglomerated 

with water, as evidenced in Fig.4-7.    

 

Fig.4-7 Solubilisation as measured by dissolved solids concentration (w/w %) versus 

time (every 30 minutes) after 10 minutes 3000g centrifugation 

 

It is interesting to observe that there is a big increase in dissolved solids content 

of the ST and agglomerates over the initial 30 minutes where it increased form 0% to 

around 0.6%, whereas for the following 300 minutes, solids concentration continued 

to reach only 1%. This is most likely due to mass transfer considerations where at 

the beginning, the concentration gradient between particle surface and water is 
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greatest and the particle size, surface area and influence of turbulence are greatest. 

Meanwhile, the results in Fig. 4-7 showed that it took 300 minutes to reach 1% solids 

concentration, which represents about 50% of the initial mass of particles added. But 

in Fig. 4-6ABC the dissolution took about 60 minutes to totally dissolve the particles 

as the D90 value were nearly at zero. The huge difference is due to the different 

agitation speeds which it is commonly believed to significantly influence the 

rehydration time (Richard et al., 2012; Schober and Fitzpatrick, 2005). This may be a 

potential factor that can improve the rehydration properties of MPI powders.  

4 Conclusion  

In summary, fluid bed agglomeration with different binding liquids was found to 

modify the structures and physical properties of MPI powders. Agglomeration 

significantly decreased the bulk density; increased the porosity of powders; and 

formed particles with lower circularity and convexity but higher elongation. The type 

of binder also influenced the shape factors of agglomerates. Using water as binder 

created more irregular particles than using the other two sugar binders. 

Both the agglomerate size and the binder type had significant influences on the 

improvement in wettability. Overall, the larger agglomerate size fraction produced 

with the lactose binder provided the best wettability. In relation to solubilisation of the 

wetted particles, agglomeration had no beneficial effect with any of the binders used. 

This low rate of solubilisation is because it is controlled by the solubilisation of the 

primary MPI particles, which appears to be very slow due to the strong interaction 

between casein micelles in the primary particles. Consequently, it would be 

interesting to explore how the size of these primary particles influences the 

rehydration behaviour and if this could be manipulated to greatly improve the 

solubilisation rate in particular.  
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The structural modif ication and rehydrat ion behaviours of milk 

protein isolate powders : the effect of granule growth in the high 

shear granulation process  
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Abstract  

The effects of granule growth in high shear granulation on the structures and 

rehydration abilities of milk protein powders were investigated. In this study, milk 

protein isolate, as a model powder, was agglomerated in a high shear granulator. 

The formed granules with different sizes were used to compare the densities, granule 

shapes and subsequently the wettability, dispersibility and solubility. It is found that 

the small nuclei showed the most compacted structures. Then the primary 

agglomerates coalesced to create irregular secondary structures with lower density 

and higher porosity until the final agglomerates formed. The densely packed 

structures allowed the granules to be more easily wetted by water. The large 

granules showed quicker release of materials into water until reaching a critical size, 

where more mechanical energy is potentially required for further granule break down. 

All the agglomerated MPI granules solubilised much more slowly than the standard 

MPI powder. 

Keywords:   Milk protein isolate, High shear granulation, Granule structure, 

Wettability, Dispersibility, Solubility  
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1 Introduction  

Milk protein isolate is a widely developed functional ingredient in the production 

of cheese, beverages, yoghurt and other food products. As a powder, it plays an 

important role in industry, due to its convenience for process, preservation and 

transportation (Ann Augustin and Clarke, 2011). Milk protein isolate powders are 

usually produced from skimmed milk by ultrafiltration to remove lactose and minerals 

and then dehydrated by spray drying (Chandan, 2011). The obtained products after 

spray drying are normally fine particles with dense structures, thus it may bring many 

problems, e.g. heterogeneity of the native structures (size, shape and porosity)(Cuq 

et al., 2013; Knight, 2001), and difficult-to-rehydrate (poor wettability and 

dispersibility)(Gaiani et al., 2007; Selomulya et al., 2013). These issues potentially 

restrict the applications of milk protein powders, as powders are required to have 

good handling properties, as well as quick and complete rehydration behaviour to 

express their functionality. Granulation is a particle size enlargement process to form 

monodisperse granules and to optimise structural and physical properties (Cuq et al., 

2013; Salman et al., 2007). Subsequently, the structures modified by the granulation 

process are also believed to strongly influence the rehydration properties (Ji et al., 

2015; Knight, 2001).   

Many different granulation processes using a variety of equipment have been 

widely developed in the applications of food and pharmaceutical materials (Barkouti 

et al., 2013; Litster and Ennis, 2013; Palzer, 2011; Rajniak et al., 2007). These 

processes result in different granule structures, due to the main differences in the 

mechanisms of particle growth and intensity of solidification (Barrera-Medrano et al., 

2007). For example, fluidised bed wet granulation is used to atomize binding liquids 

into small droplets on the free-flowing solids without agitation (Turchiuli et al., 2013). 
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�7�K�X�V�����W�K�H���F�U�H�D�W�H�G���J�U�D�Q�X�O�H�V���X�V�X�D�O�O�\���V�K�R�Z���S�R�U�R�X�V���³�U�D�V�S�E�H�U�U�\�´���V�W�U�X�F�W�X�U�H�V�����Z�K�L�F�K���L�Q�F�O�X�G�H��

large inter-particle void volume and internal pore volume, as the binding droplets play 

the role of bridges to coalesce the primary particles (Jacob, 2007; Ji et al., 2015). 

Another common used wet agglomeration equipment is the high shear granulator, 

which uses an impeller to vigorously agitate the powders during the addition of 

binding liquid, to produce the densely packed granules (Reynolds et al., 2006). 

These granules have not only comparatively higher density, but also a spherical 

shape and smooth surface, due to the effect of consolidation by agitation (Cuq et al., 

2013). Although some studies have showed the advantages of agglomerated milk 

protein powders that were produced from a fluidised bed granulator (Ji et al., 2015), it 

is also necessary to find out if the high shear granulation process displays different 

beneficial roles on the milk protein powder due to its unique and special effects on 

the structural modification. 

High shear granulation is a complex process and commonly consists of different 

groups of rate processes: 1) wetting and nucleation; 2) coalescence and 

consolidation; 3) attrition and breakage (Iveson et al., 2001; Mort, 2007). These 

competing physical phenomena occur in the granulator and control the granule size, 

shape and porosity, as well as many other important physical properties (Cuq et al., 

2013). Wetting and nucleation is the first stage of granulation that distribute the 

binding liquid through the powders and then forms the nuclei aggregates, which are 

loosely packed (Litster and Ennis, 2013). When two or several particles collide during 

the liquid addition, they may stick together to create the new secondary 

agglomerates, and thus modify the structures. By the condition of high shear 

agitation, granules are consolidated through collisions with the granulator or other 

particles due to the force of agitation (Ennis, 2010). Plastic deformation may occur 
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and that will squeeze out entrapped air and increase the internal pore saturation so 

as to reduce the granule size and porosity, which significantly influence the final 

structures of formed granules (Barrera-Medrano et al., 2007). Consequently, it is 

necessary to investigate how the different granule growth processes affect the 

structural formation of milk protein powders during the high shear granulation. 

However, as the growth processes always happen simultaneously and there is no 

clear definition to distinguish them, it is difficult to characterise the granules by the 

individual growth process (Hapgood et al., 2007). In that case, the granules with 

different particle sizes, which were caused by these growth rate processes, will be 

used to compare the structural and physical properties in this study. 

While much research has been conducted into the fundamentals of granulation 

(Litster and Ennis, 2013; Salman et al., 2007), less attention has been given to the 

subsequent influence on functionality of powders. However, the agglomerated 

granules with modified structures are believed to potentially influence the rehydration 

behaviours, which include wetting, dispersing and dissolving phases (Hogekamp and 

Schubert, 2003; Richard et al., 2013). Each of them �L�V���F�O�R�V�H�O�\���U�H�O�D�W�H�G���W�R���W�K�H���S�R�Z�G�H�U�V�¶��

physical and structural properties. Good wettability and dispersibility are both 

favoured by larges particles with high inter-particle porosity and high particle density 

(Forny et al., 2011; Goalard et al., 2006), while the dissolving behaviour is prone to 

the presence of small hydrophilic particles on the surface (Lillford and Fryer, 1998). 

Some studies showed that, agglomerated milk protein powders produced from 

fluidised bed display better wettability due to liquid being more easily penetrate into 

solids with porous structures (Ji et al., 2015). But for the high shear granulation, 

which has completely different granule growth mechanism from fluidised bed (Jacob, 

2007)�����W�K�H���V�L�P�L�O�D�U���V�W�X�G�L�H�V�� �K�D�Y�H�Q�¶�W���E�H�H�Q���U�H�S�R�U�W�Hd so far. Consequently, it is essential 
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to investigate the effect of its granule growth processes, on the individual wetting, 

dispersing and dissolving behaviours of milk protein powders.  

In summary, the objective of this study is to investigate the effect of granule 

growth during the high shear granulation, on the rehydration abilities (wettability, 

dispersibility and solubility) of milk protein isolate powders. As part of this work, 

�J�U�D�Q�X�O�H�V�¶�� �V�W�U�X�F�W�X�U�D�O�� �P�R�G�L�I�L�F�D�W�L�R�Q�V���� �L�Q�F�O�X�G�L�Q�J�� �G�H�Q�V�L�W�L�H�V�� �D�Q�G�� �P�R�U�S�K�R�O�R�J�\����were also 

examined. 

2 Materials and methods  

2.1 Materials  

Milk protein isolate powders (MPI) were supplied by Kerry Ingredients (Kerry, 

Ireland). The composition is 86% milk protein, 1.5% fat, 6% ash, 5.2% moisture and 

less than 1% lactose. The lactose used in the high shear granulation, was purchased 

from Arla Food Ingredients (Viby J, Aarhus, Demark). 

2.2 High shear granulation  

The MPI powders were agglomerated by a high shear granulator (4M8, Procept, 

Zelzate, Belgium). 200 g batch sizes of MPI standard powders were fed into the 

glass bowl and then were agitated by an impeller at a speed of 300 rpm and a 

chopper at a speed of 500 rpm during the granules formation stage. 100 mL 15% w/v 

lactose solution used as the binding solution was added into the bowl by droplets at 

the dosing speed of 4 mL·min-1. When the binding solution had been used up, the 

product continued to be consolidated by the impeller and chopper at the same speed 

for another 10 minutes, which made sure the total granule size distribution was 

properly mono-dispersed. After that, a fluidised bed (VFC-Lab Micro flo-coater, 

Vector Corporation, Lowa, USA), which provided the air with a temperature of 50 �(��
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and the flow velocity of 200 l·min-1, was used to dry the granules until the moisture 

content was lower than 10%. Three batches of MPI granules were prepared 

respectively for the repeated measurements.  

2.3 Powder characteri sation  

The granules were subjected to a sieve analysis using a nest formed from  75, 

106, 180, 425, 850 and 1000 µm sieves (Endecotts, London, UK) to obtain five 

agglomerate size fractions (S1: -1000/+850 µm; S2: -850/+425 µm; S3: -425/+180 

µm; S4: -180/+106 µm and S5: -106/+75µm). The particles of size larger than 1000 

µm or the smaller size than 75 µm were removed. Therefore, including the standard 

MPI powder, six samples in total were investigated in this study. All the powders 

based on the different sizes were dried in a vacuum oven (Jeiotech, Seoul, Korea) at 

60 �(�� temperature for 24 hours and then kept in the desiccators to reach ambient 

temperature. The final moisture contents of samples before measurement were 

about 2~3%.  

2.4 Physical properties  

2.4.1 Granule size, density and porosity 

The particle sizes of granules were measured by laser light scattering using 

Malvern Masterszier 3000 (Malvern Instruments Ltd, Worcestershire, UK). At least 

three measurements were made and the average D (50) value was taken. The loose 

and tapped bulk densities were measured by a tapping machine with a graduated 

cylinder (Funke Gerber, Berlin, Germany). The volume occupied by 30 g powder was 

used to calculate the loose density while the tapped density was obtained by the 

volume after 100 taps. In addition, the particle density of powder was measured by 

Gas Pycnometer (AccuPyc II 1340, Micromeritics Instrument Corporation, Georgia, 
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USA). Sample was placed in the cell and purged with a flow of helium to degas the 

cell by ten pressurisation cycles. All the density measurements were repeated at 

least three times. Finally, the porosity was calculated using the tapped density and 

the particle density.  

2.4.2 Granule shape 

The shape of a granule is usually quantified by three parameters, which are 

circularity, convexity and elongation. In this study, they were measured by Malvern 

Morphology G3 (Malvern Instruments Ltd, Worcestershire, UK). The detailed method 

was described by Ji et al. (2015). Briefly, a volume of sample was dispersed 

uniformly into a single layer on the glass plate. Then, the microscope was used to 

observe these particles and give out the average values of circularity, convexity and 

elongation. All the measurements were repeated at least five times. 

2.5 Wettability  

2.5.1 Wetting time 

Wetting time is used to quantify the wettability of powders. The method was 

based on GEA Niro method (GEA Niro, 2005), which recorded the time needed for 

powders to achieve complete wetting without agitation. In this study, 6 g samples 

were put into a 400 mL beaker containing 100mL distilled water at 20 �(�� temperature. 

All the measurements were repeated three times.  

2.5.2 Capillary rise wetting 

Powder wettability can also be quantified by the Washburn method (Washburn, 

1921), which is based on the powder capillary rise wetting behaviour. It measured 

the liquid that penetrated into powders by recording its penetration length or 

absorbed weight. In this study, 2 g of powder was loaded into a cylindrical glass tube 



Chapter five 
    

148 
 

with an open base bottom, which was covered by filter paper and gauze. The tube 

with powders on the bottom was fixed to just touch the distilled water at 25 �(��

temperature. After that, the additional mass of wetted powder was recorded in 10 

minutes. The measurements for each powder were repeated three times. 

2.5.3 Contact angle 

Contact angle is the tangent angle at the contact point of three phases (liquid, 

solid and air) and it is a widely used parameter to describe the wettability of powders. 

As the wetting behaviour is believed to be a dynamic process, the contact angle and 

how it varies with time was used to quantify the wetting process directly (Yuan and 

Lee, 2013). An optical tensiometer (Attension Theta, Biolin Scientific Ltd., Espoo, 

Finland) was used to observe the penetration of a 12 mL water droplet into powder 

beds and to record contact angles over time. Before that, powders were firstly loaded 

into an aluminium pan with a diameter of 100 mm. Then a leveller was used to form a 

smooth surface, which is necessary for determining the right contact points and for 

calculating the angles. The contact angle was recorded as a function of time. All the 

measurements were repeated at least five times. 

2.6 Granule dispersibility  

The dispersibility of granules was quantified by the change of particle size 

during the solubilisation process (Mimouni et al., 2009). The sizes of dispersed 

granules were measured by Malvern Masterszier 3000 based on laser light scattering 

technique (Malvern Instruments Ltd, Worcestershire, UK). Details of the method were 

described by the study of Ji et al. (2015). Approximately 5 mg samples were fed into 

120 mL dispersion unit with 2000 rpm agitation and the measurements were carried 
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out every 2 minutes for a total of 140 minutes and at 25 �( • ± 2 �(  temperature ranges. 

The results of D (50) and D (10) were presented as a function of mixing time.  

2.7 Dissolution  

The dissolved solids kinetics was used to describe the solubility of granules in 

this study. 1 g sample was added into 50 mL water in a standard 200 mL beaker, 

which was preheated in a 25 �(  water bath. Then it was stirred by a 3-pitched-blade 

impeller with a diameter of 4 cm at an agitation speed of 300 rpm. After different 

mixing times (15, 30, 60, 90, 120, 150, 180, 240 and 300 minutes), each suspension 

was centrifuged at 3000 g and 25 �(  for 10 minutes (Eppendorf Centrifuge 5810R, 

Hamburg, Germany). Approximately 2 mL supernatant was taken and a solids 

analyser machine (Smart System 5, CEM, North Carolina, USA) was used to 

measure the dissolved MPI in the supernatant, expressed as the percentage of 

overall MPI solids (%). Triplicate measurements for each sample were presented.  

2.8 Granule microstructure by SEM  

A field emission scanning electron microscope (Zeiss Supra, Carl Zeiss 

Microscopy GmbH, Jena, Germany) was used to observe the MPI granules. They 

were placed on a double-sided adhesive tape and fixed to SEM stubs before imaging 

at 1.35 kV. Two magnifications (80 x and 150 x) were performed respectively, based 

on the different granule sizes. 

2.9 Statistical anal ysis  

Results were expressed as mean ± standard deviations (SD). SPSS software 

(PASW, Statistics 1.8) was used to carry out One-way analysis of variance (ANOVA). 

Statistical differences of particle size, density and morphology descriptors were 
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compared by the least significant difference (LSD) test, in relation to the applied 

variable using F-test. Differences were considered to be significant at P<0.05. 

3 Results and discussion  

3.1 Effect of different granule sizes on the physical and structural properties 

of MPI  

3.1.1 Density and porosity 

In Table 5-1, it is obviously to see that the agglomerated MPI showed 

significantly higher loose and tapped bulk densities than the unagglomerated powder, 

which means high shear granulation creates denser structures. It is due to the 

densification of high shear agitation which compressed the particle volume, 

squeezed out entrapped air to remove the internal pores, and thus decreased the 

total volume that granules occupied, which can be observed from Fig.5-1. The SEM 

images show the granules were coalesced by single primary particles and also their 

structures were densely packed and highly compacted compared to the standard 

MPI powders. In addition, from looking at the granules with different sizes in Table 5- 

1, the smallest granules S5 had the highest particle density and the larger granules 

had progressively lower particle densities. For bulk densities, it is interesting to find 

that largest granules S1 with 1075 µm size, present the highest loose density of 

0.538 g/mL, while the smallest granules S5 showed the highest tapped density of 

0.561 g/mL. S3 and S4, which were in the range of 106 µm to 425 µm, had the 

lowest loose and tapped densities of all the granules. The porosity values of all the 

samples are also presented in Table 5-1. Similarly, the MPI granules generally had 

significantly lower porosity than the standard MPI, as the porosity is mainly 

dependent on bulk density and particle density. Thus, S1, S2 and S5 had relatively 
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low porosity values, which were all below 54%, while the porosity of S3 and S4 were 

more than 60%. 

Table 5-1 Bulk Density, Particle density and Porosity of powders * 

* Data are expressed as mean ± standard deviation; values followed by a different 

superscript letter in the same line are significantly different at P < 0.05. 

At the beginning of process, when MPI particles were wetted by liquid, the nuclei 

granules were formed as the primary aggregates fused by the standard particles. At 

the same time, they were solidified by the force of agitation, which resulted in the 

less air entrapped and the small interstitial spaces in the matrix (Cuq et al., 2013; 

Knight, 2001). Therefore, the bulk and particle volumes of S5 decreased and its 

porosity also became lower. As the nuclei granules continued to grow, they 

coalesced together to create the bigger secondary agglomerates based on the 

bridges that produced by the binding liquid (Hapgood et al., 2007). This process 

produced the more irregular particles, which increased the void volume among these 

particles (Iveson et al., 2001). It may be the reason why S3 and S4 have the 

comparatively lower bulk densities and higher porosity than other granules. When the 

secondary agglomerates reached the critical size, the bonds were not strong enough 

to connect other particles. In that case, the granules stopped growing and they were 

Sample Characterisation Particle size 
D(50) (µm) 

Loose 
density 
(g/mL) 

Tapped 
density 
(g/mL) 

Particle 
density 
(g/mL) 

Porosity (%) 

S1 >850 µm 1075 ± 15 a  
0.538 ± 
0.006 a 

0.543 ± 
0.002 a 

1.127 ± 
0.010 a 

51.8 ± 0.2 a 

S2 425um~850 µm 681 ± 9 b 0.500 ± 
0.006 b 

0.538 ± 
0.002 a 

1.145 ± 
0.008 ae 

53.0 ± 0.2 b 

S3 180um~425 µm 263 ± 5 c 
0.431 ± 
0.003 c 

0.463 ± 
0.000 b 

1.188 ± 
0.005 b 

61.0 ± 0.1 c 

S4 106um~180 µm 111 ± 2 d 
0.450 ± 
0.000 d 

0.478 ± 
0.000 c 

1.203 ± 
0.004 c 60.3 ± 0.1 d 

S5 <106 µm 75 ± 1 e 
0.526 ± 
0.000 e 

0.561 ± 
0.000 d 

1.214 ± 
0.005 d 53.8 ± 0.1 e 

Standard  33 ± 1 f 0.303 ± 
0.000 f 

0.345 ± 
0.000 e 

1.163 ± 
0.011 e 

70.3 ± 0.2 f 
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highly deformed again by the mechanical solidification (Reynolds et al., 2005). Hence, 

as it showed in Fig.5-1 A&B, the more compacted large granules S1 and S2 formed 

and the particles were closely arranged on the surface. However, it is difficult to 

conclude the effect of granule growth precisely due to the formed granules may 

break into fragments by breakages. That will also influence the structures of obtained 

granules, which needs further studies in the future.  
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Fig.5-1. SEM images of MPI granules with different particle sizes by granule growth 

processes. (A:  S1; B:  S2; C: S3; D: S4; E: S5; F: standard MPI) 

3.1.2 Granule morphology 

Three parameters (Circularity, Convexity and Elongation) are used to describe the 

granules with different particle sizes. Examining Table 5-2, S5 had both highest 

circularity and convexity values of 0.891 and 0.965 respectively, which were the most 

spheroidal shape and smoothest surface of all the samples including the standard 

MPI. As explained previously, the initial formed nuclei granules were consolidated 

through collisions with other granules and granulator. Therefore, the formed shapes 

were rather spheroidal and smooth by the uniformly force from ploughshares and 

chopper (Litster and Ennis, 2013). As the granule size increased, it is found that 

granules formed with significantly lower circularity and convexity values. Especially 

for S3, it had only 0.767 for circularity and 0.866 for convexity, which is even lower 

than that of unagglomerated MPI. In Fig.5-1 C&D, it is also clear to see that S3 and 

S4 had less rounded shapes. It is commonly considered that the agglomerated 

secondary granules may cause irregular shaped particles and also rougher surfaces, 

due to the bridges formed between particles which modified the shapes (Barrera-

Medrano et al., 2007; Hapgood et al., 2007; Reynolds et al., 2006). Furthermore, 

when granule size reached S1 or S2, the coalescence stage is no longer the 

dominant growth process. Their shapes again became more rounded and smoother 

than S3 or S4, by the influence of further densification (Fig.5-1 A&B). But for 

elongation, which is used to quantify the ratio of particle length and width, there is no 

significant difference among these granules with different particle size, because 

single granule was homogenised based on the force from high shear agitation. Thus, 
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their elongation values were all about 0.26, while the standard MPI had a 

comparatively longer shape. 

Table 5-2 Morphological descriptors of powders * 

*Data are expressed as mean ± standard deviation; values followed by a different 

superscript letter in the same line are significantly different at P < 0.05. 

3.2 Effect of different granule sizes on the wettability of MPI  

3.2.1 Wetting time by immersional wetting procedure 

According to the results in Table 5-3, the agglomerated granules, regardless of the 

particle size, took significantly less time to be wetted by water than that of standard 

powders. The wettability seemed to correspond to the particle size of samples with 

larger granules showing better wettability. S1 and S2 displayed the best wettability 

taking less than 10 seconds to be fully wetted. The other granules all had shorter 

wetting times than 60 seconds, which can be considered as the easy wetting 

powders. However, the standard powders took more than 20 minutes to completely 

immerse below the water surface, due to an impermeable hydrophobic layer formed 

to separate the water surface and dry powder (Ji et al., 2016). This was not a 

problem for the agglomerated granules after high shear granulation process. The 

surface tensile strength of the assembly of granules is reduced by the size 

enlargement when contacting with water. Hence, the granules separated during 

Sample Circularity (0.5) Convexity (0.5) Elongation (0.5) 

S1 0.862 ± 0.018 a 0.931 ± 0.015 a 0.262 ± 0.000 a 

S2 0.870 ± 0.004 a 0.933 ± 0.001 a 0.258 ± 0.004 a 

S3 0.767 ± 0.015 b 0.866 ± 0.013 b 0.262 ± 0.010 a 

S4 0.820 ± 0.006 c 0.908 ± 0.005 c 0.263 ± 0.002 a 

S5 0.891 ± 0.001 d 0.965 ± 0.001 d 0.263 ± 0.006 a 

Standard 0.816 ± 0.023 c 0.931 ± 0.009 a 0.301 ± 0.012 b 
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wetting process rather than adhering together as fine particles (Knight, 2001). 

However, particle size is not the only factor that influences the wetting behaviours. Ji 

et al. (2016) demonstrated that the agglomerated MPI produced by fluidised bed 

granulation, which had a median particle size of about 180 µm, still floated on the 

water surface for more than 8 minutes. Therefore, the densely packed granules with 

higher density also significantly improve the wettability of MPI due to there being 

fewer pores in the matrix (Hogekamp and Schubert, 2003).  

Table 5-3 Wetting time of dairy powders by immersional wetting procedure 

 

3.2.2 Capillary rise wetting  

From Fig.5-2, it can be seen that the agglomerated MPI granules absorbed 

significantly more water by capillary force than the standard powders in 10 minutes. 

The results are consistent with the wetting time measurements, the granules with 

large size also have the better wettability based on the capillary rise wetting 

procedure. The standard MPI only adsorbed 0.244 g water while S1 and S2 

adsorbed most, exceeding 8.5 g water. This is due to the larger void spaces between 

each granule, which causes a higher pore radius that results in a positive correlation 

with the depth of liquid intrusion (Lazghab et al., 2005; Palzer et al., 2003; Yuan and 

Lee, 2013). This is shown by the Washburn model as Eq. (1) (Washburn, 1921)�Ö                         

�H�6 
L
�a�m�q�˜ �®�å�®�“�®�r

�6�®�—
                               (1) 

where �Ž is the penetration depth of the liquid, �D is liquid viscosity,�@ is the liquid surface 

tension, �” is radius of pores, �E is the contact angle and �– is time for penetration. 

 S1 S2 S3 S4 S5 Standard 

Wetting 

time 
5 s ± 1 s 7 s ± 1 s 15 s ± 2 s 25 s ± 4 s 41 s ± 7 s >20min 
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Hence, it indicates that the large pores between the particles result in greater 

penetration depth or the greater mass of liquid by spontaneous intrusion, which is 

also used to explain the better wettability of the big granules. However, it is 

interesting to find that, though the particle size of S5 was only 75 µm, it exhibited 

much better wetting behaviour than the standard MPI. If compared to the results 

presented by (Ji et al., 2015), S5 still adsorbed more water than the agglomerated 

MPI produced by fluidised bed with a median size of 180 µm. Similar to immersional 

wetting procedure, special water bonding capacity of whey protein also limited the 

behaviours of capillary rise wetting (Gaiani et al., 2007; Schubert, 1993),  

 

Fig.5-2 Mean weight of absorbed water for samples (the agglomerated MPI granules 

S1, S2, S3, S4, S5 and standard MPI) after 10 minutes 

3.2.3 Contact angles by spreading wetting procedure 

For the droplet spreading wetting procedure, the wettability of powdered 

samples was compared based on the changes of contact angle as a function of time 

(Gao and McCarthy, 2006). In Fig.5-3, firstly, the contact angle of standard MPI 
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powder decreased from 160° to 40° in about 300 seconds, which was much longer 

than that of the agglomerated MPI granules with different sizes. These granules took 

less than 10 seconds to allow the water droplet penetrate into the powder bed. Again, 

the bigger granules seemed to cause quicker disappearance of water droplets. For 

example, S1 and S2 not only had the lowest initial wetting angles of 130°, but also 

required only about 2.8 seconds for the contact angle to decrease to 40°. This is not 

simply �G�X�H�� �W�R�� �W�K�H�� �J�U�D�Q�X�O�H�¶�V�� �K�L�J�K�� �S�R�U�R�V�L�W�\���� �D�V�� �W�K�H�� �V�W�D�Q�G�D�U�G�� �S�R�Z�G�H�U�V�� �K�D�Y�H�� �D�Q�� �H�Y�H�Q��

higher value, as shown in Table 5-1. Thus, it is believed that the granules having 

larger voids between the particles result in the easy-wetting behaviour (Yuan and Lee, 

2013). Meanwhile, as explained previously, standard MPI powders with poor 

wettability are usually due to the formation of impermeable hydrophobic gel-like 

layers (Ji et al., 2016). However, it appears that this did not happen for the 

agglomerated granules. Overall, all the applied wetting procedures showed that the 

MPI granules formed in high shear granulation exhibited much better wettability than 

the standard MPI powder. 
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Fig.5-3. The change of contact angle (°) as a function of time using the sessile drop 

technique in approx.20 �(  temperature.  

3.3 Effect of different granule sizes on the dispersibility and solubility  of MPI 

3.3.1 Particle size changes during MPI granules solubilisation  

As it is seen from Fig.5-4 A&B, 50% of the standard MPI particles were 

completely rehydrated into water in about 32 minutes, while the most of the 

agglomerated granules were found to be more difficult to disperse based on the 

slower decrease of particle size. Particularly, there were almost no size changes for 

S4 and S5 for the whole 140 minutes, which indicated that they both had the 

extremely poor dispersibility at the condition of 2000 rpm agitation. In addition, S1, S2 

and S3 were found to slowly release the materials into the surrounding aqueous 

phase by the different releasing rates. In Fig.5-4A, the largest granules S1 took the 

longest time of 130 minutes to reach 200 µm particle size, although its dissolution 

rate was quickest of all. S2 and S3 also required more than 100 minutes achieving a 

relatively stable particle size. It is surprising to see that these three granules all finally 

decreased to a constant size, which is about 200 µm. However for S4 and S5, which 

had smaller sizes initially (111 µm and 75 µm respectively), their particle sizes were 

maintained at about their initial values. At the same time, in Fig.5-4B, 10% of S1 and 

S2 particles displayed totally different dispersing behaviours, as their sizes 

decreased dramatically during the first 20 minutes and the materials were solubilised 

in about 120 minutes. S3 also showed similar dispersion process but it began with 

smaller size and still was not totally dissolved at 120 minutes.  
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Fig.5-4 Particle size measurements of dispersed particles of the agglomerated 

granules S1, S2, S3, S4, S5 and standard MPI, as a function of mixing time (every 2 

minutes) A:  D (50); B:  D (10). 
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Generally, the micellar casein that exists in milk protein powder has slow 

dispersion behaviour, due to its complex structures of inter-linked network of casein 

micelles (Mimouni et al., 2010; Schuck et al., 2007). However, the poor dispersibility 

of the agglomerated granules is determined by other more important factors. It can 

be explained as the strong interactions for the granule structures, caused by 

solidification in the high shear granulation (Reynolds et al., 2006). According to the 

results, the agglomerated granules were very difficult to break down and collapse 

into small solids, which can be defined as poor dispersibility, at the 2000 rpm 

agitation condition. Furthermore, it is concluded that the primary aggregates of 

granules were the most compacted, which led to the slowest release rate of materials 

(Hapgood et al., 2007). It is conceivable that the size of remaining particles 

corresponds closely to the granule strength that can resist the agitation force, as 

higher mechanical energy is required to separate the primary aggregates and 

disperse them into the medium. That is also the reason why S1, S2 and S3 have the 

different dispersibility during the process. It is believed that the strength of formed 

granules was weaker than that of primary nuclei structures, because of the final 

granules consisting of several nuclei granules, layering and filling by the primary 

particles and the particles that broke down from other granules by attrition (Barrera-

Medrano et al., 2007). Consequently, these materials were less bounded to the large 

granules and easier to disperse and dissolve into water than that in the small nuclei, 

which is demonstrated by the changes of D (10) particle sizes in Fig.5-4B. 

On the other hand, before the powders started to solubilise into water, their 

particle sizes increased over the first several minutes, as they swelled up by 

absorbing water following the wetting stage (Gaiani et al., 2009). It can be found that 

standard MPI and small granules S4 and S5 stopped swelling by 4 minutes, while the 

large granules took longer time to reach a peak in particle size. For example, the size 
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of S1 can increase to about 1500 µm in 8 minutes. It is indicated that water needed 

more time to completely penetrate into the large granules with the longer diameter 

(Palzer, 2007).  

3.3.2 Dissolution of MPI granules 

Fig.5-5 shows the dissolved MPI solids percentage in solution as a function of 

mixing time. The standard MPI displays the best dissolution behaviour compared with 

others, as nearly 60% of its solids dissolved after 5 hours mixing time. The 

agglomerated granules displayed much lower dissolution ability with only 30% solids 

being solubilised in the supernatant after 5 hours mixing; S4 and S5 with the smallest 

granule size showed the least dissolved solids of only about 25%. It is very similar to 

the results of dispersibility of the different granules where small granules also had the 

poorest dispersing behaviours. It is commonly considered that good dispersibility is a 

prerequisite for particles to dissolve into liquid quickly (Forny et al., 2011). Therefore, 

when the release of materials into water was prolonged by the dense structures and 

the dissolution ability was thus also limited. 

In addition, the solid percentage of all the samples increased comparatively 

quickly over the first 30 minutes and was then followed by slower dissolution 

behaviour for the next 300 minutes. It is believed that the first dissolved solids were 

mainly contributed by the easy-dissolving components, e.g. whey protein and some 

minerals, when water began to penetrate into the structures of granules (Mimouni et 

al., 2010). However, the agglomerated granules retarded the release of these 

materials, as those easy-dissolved components did not solubilise as much as those 

in standard MPI powders. This may be due to slower water penetration of water 

inside the granule matrix (Palzer, 2007), which may cause the partial dissolution of 
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whey protein and minerals. This phenomenon was more obvious for the small 

granules, because of their more compacted structures (Iveson et al., 2001).  

 

Fig.5-5. Solubilisation as measured by dissolved MPI percentage (%) versus different 

mixing time. 

4 Conclusion  

The MPI granules produced by high shear granulation process were found to 

have modified physical and structural properties that influenced their rehydration 

behaviours in water. The high agitation condition in the process consolidated the 

granules and caused high deformation and densely packed structures. Therefore, 

they usually had the higher bulk density and lower porosity. The different granule 

�J�U�R�Z�W�K�� �S�U�R�F�H�V�V�H�V�� �F�U�H�D�W�H�G�� �W�K�H�� �J�U�D�Q�X�O�H�V�� �Z�L�W�K�� �F�R�P�S�O�H�[�� �³�K�L�H�U�D�U�F�K�L�F�D�O�´�� �V�W�U�X�F�W�X�U�H�V���� �7�K�H��

small nuclei firstly formed by fusing standard MPI together and displayed the more 

compacted structures after solidification. Then they coalesced to form irregular 

secondary agglomerates with lower density and higher porosity until they were 

deformed by agitation again. 
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These modifications made powders that were more easily wetted by water, 

especially for the large granules. At the same time, they also resulted in poorer 

dissolution due to prolonged water penetration into the denser structures. 

Comparatively, the large granules exhibited quicker release of materials into water 

until reaching a critical size, below which may require more mechanical energy to 

further break down the particles. Overall for MPI powder, high shear granulation 

produced granules with superior wetting characteristics in comparison to both 

standard MPI powder and granules produced by fluid bed granulation. However 

these granules proved more difficult to dissolve. Considering this, high shear 

granulation may have potential to improve the rehydration ability of poor wetting 

powders that dissolve easily.    
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CHAPTER SIX 

The effects of fluidized bed and High Shear mixer granulat ion 
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Abstract  

The effect of fluidised bed (FB) and high shear mixer (HS) granulation processes on 

water adsorption and flow properties of milk protein isolate powder (MPI) was 

investigated and compared. The agglomerated granules were characterised by 

different size fractions. It was found that granules produced from the HS process 

adsorbed less moisture, with slower adsorption kinetics, compared to those produced 

from using the FB. Granulation reduced the cohesiveness of the MPI powder, with 

HS having a significant greater impact due to the formation of the particles with 

higher bulk density and larger size. Particle size played a critical role that influenced 

water adsorption and flowability. Granulation processes contributed to different 

degrees to reducing the minimum outlet diameters of hoppers based on either mass-

flow or core-flow discharges. HS granules had large wall friction angles, suggesting a 

need for steeper hopper walls for effective discharge. 

Keywords:  Milk protein isolate, Fluidised bed granulation, High shear mixer 

granulation, Flowability, Water adsorption, Hopper design 
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1 Introduction  

Milk protein concentrates, manufactured from ultrafiltered skim milk, are widely 

used in nutritional beverages, sports nutrition bars and other dairy based products 

due to their high nutritional values. These powders provide a supply of milk solids in 

a stable and convenient form, especially for preservation and transportation (Ann 

Augustin and Clarke, 2011; Selomulya et al., 2013). However, milk protein based 

powders usually have fine particle size and dense structures, causing poor flow 

behaviour during conveying (Crowley et al., 2014; Ilari, 2002) and susceptibility to 

moisture adsorption during storage (Foster et al., 2005; Kinsella and Fox, 1986). 

Granulation is a size enlargement process that results in the formation of large 

granules with modified physical structure. Thus, it can be used as a potential process 

to improve the flow behaviour of bulk solids and influence the water adsorption 

behaviour (Szulc and Lenart, 2010, 2012).  

Fluidised bed and high shear mixer agglomeration are the most widely used wet 

granulation processes (Jacob, 2007). Due to the different mechanisms of granule 

growth, the use of binders and intensity of solidification, the granules produced by 

these two processes have the completely different structures (Barrera-Medrano et al., 

2007; Litster and Ennis, 2013). Generally, using a fluidised bed, binding liquids are 

atomized and converted into free-flowing solids, which then coalesce and 

agglomerate together by creating bonds between primary particles (Cuq et al., 2013). 

Granules, thus formed, without mechanical consolidation, usually have more irregular 

shape and high porosity, including large interstitial space and also internal pores 

inside single granules (Ji et al., 2015). In comparison, a high shear mixer granulation 

process provides strong agitation forces through an impeller with compacts particles 

so that the created granules are highly-packed, increasing bulk density and reducing 

porosity (Ji et al., 2016a; Reynolds et al., 2006). Furthermore, even granule growth 
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processes during the granulation process are also believed to influence physical 

characteristics (Hapgood et al., 2007). Generally, wetting and nucleation, as the first 

step of granulation, wets the powders by binders and forms nuclei aggregates with 

loose structures; the subsequent coalescence process produces secondary 

agglomerates from the nuclei, which have the comparatively less spherical shape 

and rougher surface; finally, consolidation compresses the agglomerates uniformly to 

squeeze out entrapped air and decreases the pore volume and porosity (Cuq et al., 

2013; Litster and Ennis, 2013). However, fluidised bed granulation exhibits different 

granule growth mechanisms. As the binding liquid is sprayed as small droplets 

(which are much smaller than primary powders), coalescence mostly occurs by 

layering of materials on the surface of wet particles (Barkouti et al., 2013). The 

resulting particles are less consolidated due to their motion in air, and not by 

mechanical agitation (Jacob, 2007). Consequently, granules formed using a fluidised 

bed is often more porous than those from high shear mixer granulators. For these 

reasons, the different structures modified by these two processes are believed to 

contribute to the different functionalities of the bulk solids.  

Moisture adsorption refers to a phenomena occurring at the physical interface 

between the bulk solids and their surrounding humid environment. It contributes to 

moisture content during storage and thus has an important role to play in physical 

and chemical stability of powders. The behaviour depends to a large extent on the 

powder particle surface area, i.e., sorption area, composition and porosity; these 

factors affect the rate and extent of entry and exit of water molecules into the solid 

matrix (Al-Muhtaseb et al., 2002). Commercial dairy powders, especially high protein 

powders, typically have small particle size and large surface area (Schuck et al., 

2012). Hence, they are prone to adsorb moisture during storage, handling and 

processing, which can easily cause the undesired caking, crystallization and loss of 
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production (Fitzpatrick et al., 2008). Granulation can influence the water diffusion 

process by increasing particle size and modifying powder structures (Barrera-

Medrano et al., 2007), altering storage and handling characteristics. 

Flowability is another important parameter of milk protein powders and it has 

been suggested that small powder particles are generally regarded as less flowable 

compared to larger particles  (Crowley et al., 2014). It is reported that materials with 

small particles and dense structures form cohesive arches by consolidation and 

interparticle adhesive forces, which can restrict discharge from silos (Schulze, 2007), 

effecting throughput and product quality. In general, there are two patterns for the 

flow of a powder out of a silo: 1) mass flow and 2) core flow (Fitzpatrick et al., 2004b). 

Mass flow is the desirable flow pattern where all the solids are in motion to give a 

first-in and first-�R�X�W���G�L�V�F�K�D�U�J�H���U�H�J�L�P�H�����+�R�Z�H�Y�H�U�����I�R�U���D���F�R�K�H�V�L�Y�H���S�R�Z�G�H�U�����µ�D�U�F�K�L�Q�J�¶���P�D�\��

still occurs at the hopper outlet, where a stable powder arch forms across the outlet, 

blocking the exit funnel. In addition, most flow problems happen in the core flow 

pattern, as cohesive powders will move out through a central funnel, which is formed 

by the no-flow particles remaining at the internal walls of hopper. This phenomenon 

may give rise to the formation of a stable rat-hole (Schulze, 2007). Thus, in order to 

make powders flow smoothly and discharge reliably, it is desirable to design for mass 

flow pattern. While studies (Fitzpatrick, 2007; Fitzpatrick et al., 2004a) report that 

particle size is a key determinant affecting flowability of powders, others claim 

particle shape and densities are also potential factors as they influence physical 

properties of surface contacts between particles (Cleary, 2008; Schulze, 2007). Thus, 

as an effective technique to modify these physical properties, the effect of 

granulation on the flowability of powders is important to investigate. So far, studies 

reporting granulation are mainly about pharmaceutical materials (Ennis, 2010; Gao et 

al., 2002; Iveson et al., 2001; Palzer, 2011); very few focus on dairy protein powders.  
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The objective of this study was to investigate the effect of two granulation 

processes, fluidised bed and high shear granulation, on water adsorption and 

flowability of milk protein powders. Powder granules formed by these two processes 

were analysed and their data was compared. The flow function and wall friction 

results were used to specify appropriate hopper outlet dimensions and hopper wall 

angles for both mass and core flow discharges. 

2 Materials and method  

2.1 Materials  

In this study, Kerry Ingredients (Kerry, Ireland) supplied milk protein isolate 

powder (MPI) as a model powder, which consists of 86% milk protein, 5.2% moisture, 

1.5% fat, 6% ash and less than 1% lactose. The lactose used as binders in fluidised 

bed and high shear mixer granulation, was purchased from Food Ingredients (Viby J, 

Aarhus, Demark). 

2.2 Methods  

2.2.1 Fluidised bed granulation 

The agglomeration process of MPI was performed in a top-spray fluidised bed 

granulator (VFC-Lab Micro flo-coater, Vector Corporation, Iowa, USA). Each batch 

comprised of 200 g powder which was fluidised in the product vessel by upward 

flowing air stream from the bottom, at a flow rate of 200 L min-1. The powders were 

preheated by a 50 �(�� air stream for 10 minutes, before 15% (w/v) lactose solution 

was introduced as a binding liquid. The liquid was injected via a peristaltic pump 

(1mL min-1) and sprayed as small droplets by a two-fluid spray nozzle, located on the 

top of the vessel. The air pressure on the nozzle was 1 bar. After addition of 150 g of 
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lactose solution, drying was continued for 20 minutes at a reduced flow rate of 100L 

min-1. Three batches of MPI granules were produced as replicates. 

2.2.2 High shear granulation  

A high shear granulator (4M8, Procept, Zelzate, Belgium) was also used in this 

study to agglomerate the MPI powders. As in 2.2.1, 200 g MPI powder for each batch 

was fed into a glass bowel, where an impeller and a chopper were both used to 

agitate the powders at a speed of 300 rpm and 500 rpm, respectively. The binding 

liquid in this granulation process was also 150 g 15% w/v lactose solution, which was 

injected into the bowel as droplets with a dosing speed of 4 mL min-1. The impeller 

and chopper continued to mix the products at the same speed for 10 minutes. Finally, 

the fluidised bed in 2.2.1 was again used to dry the granules with air (50 �(�;�� at a flow 

rate of 100 L min-1 (Ji et al., 2016a). Three batches samples were prepared for the 

repeated measurements. 

2.3 Powder characterisation  

As different granule growth mechanisms occur in the fluidised bed and high 

shear mixer granulation processes, variations in particle size, shape and porosity of 

the formed granulated MPI is expected. Therefore, prior to comparison, the 

agglomerates were sieved into different size fractions. Two size fractions for 

�D�J�J�O�R�P�H�U�D�W�H�V�� �I�U�R�P�� �I�O�X�L�G�L�V�H�G�� �E�H�G�� �J�U�D�Q�X�O�D�W�L�R�Q�� �Z�H�U�H�� �S�U�H�S�D�U�H�G�� �E�\�� ���������P���� ���������P�� �D�Q�G��

���������P�� �O�H�Y�H�O�� �V�L�H�Y�H�V�� ���(�Q�G�H�F�R�W�W�V���� �/�R�Q�G�R�Q���� �8�.���� ���)�%1�����������P�� �a�� ���������P�� �D�Q�G�� �)�%2: 

���������P�a���������P������ �)�L�Y�H�� �V�L�]�H�� �I�U�D�F�W�L�R�Q�V�� �I�R�U�� �D�J�J�O�R�P�H�U�D�W�H�V�� �I�U�R�P�� �K�L�J�K�� �V�K�H�D�U�� �P�L�[�H�U��

granulation were prepared by 75 µm, 106 µm, 180 µm, 425 µm, 850 µm and 1000 

µm level sieves (HS1: 850 µm ~1000 µm; HS2: 425 µm ~ 850 µm; HS3: 180 µm ~ 425 

µm; HS4: 106 µm ~ 180 µm and HS5: 75 µm ~ 106 µm). The particles that were not in 
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these fractions were removed. The non-agglomerated standard MPI (ST) used as the 

controlled samples. All the samples were further dried in a vacuum oven (Jeiotech, 

Seoul, Korea) at 60 �(�� for 24 hours and cooled down in desiccators to ambient 

temperature before measurements. The final moisture content of the powders can 

influence water adsorption and flow behaviour and therefore a value ranging 

between 2~3% was targeted. The measurement was carried out in the preliminary 

study (Ji et al., 2016a). Malvern Masterszier 3000 (Malvern Instruments Ltd, 

Worcestershire, UK), which applies laser light scattering technique, was used to 

measure the particle size of the samples. Three repetitions were carried out; D(10), 

D(50) and D(90) parameters were used as a measure of particle size.  

2.4 Water adsorption analysis  

Water adsorption isotherms were carried out by the static gravimetric method. 

Approximately 1 g powder was weighed into small glass vials of known weight. 

Triplicate samples for each powder were firstly dried in a vacuum oven at 50 �(  for 24 

hours to remove the residual moisture. The measurement was carried out in the 

preliminary study to make sure the residual moisture as low as possible (Ji et al., 

2016a). Powders were kept in desiccators containing P2O5, equilibrated at room 

temperature, before placing in the desiccators with a stable relative humidity, which 

ranged from 11% to 65%. Different saturated salt solutions: LiCl (11%), CH3COOK 

(22%), MgCl2 (33%), K2CO3 (43%), Mg(NO3)2 (53%), and NaNO2 (65%) were used to 

provide varied hygroscopic environments, respectively. During the equilibration, the 

desiccators were stored in two 25 �(  incubators. The weight of powder was 

measured for at least 96 hours until it reached a constant value. The results were 

expressed as equilibrated moisture content as a function of water activity to show the 

adsorption isotherms. At the same time, the sorption kinetics was also conducted by 
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continuous measurement of mass increase (Schuck et al., 2012). The weight of 

powder was measured at 0, 3, 6, 9, 12 and 24 hours, and then at 24-hours intervals 

until equilibration. The results were exhibited as the moisture content for every 100 g 

dry matters as a function of time. 

2.5 Powder flow analysis  

The flowability of powders were quantified and analysed by a powder flow tester 

from Brookfield (Brookfield Engineering Laboratories, Middleboro, MA, USA). Flow 

functions and angles of wall friction were both measured to assess the flow 

behaviour of milk protein powder and its agglomerates. During the measurements, 

axial and torsional speeds for the tester were 1.0 mm s -1 and 1 rev h -1 (approx. 

0.0167 rpm). The aluminium trough (230 cm3, 15.2 cm internal diameter) of the 

annular shear cell was filled by the samples, which were levelled by different shaping 

blades (curved- and flat-) to create the smooth powder surface. The mass of solids 

based on the different bulk densities were recorded. Vane- or flat-profiled lids with 

15.2 cm external diameter were attached to the compression plate of the tester for 

flow function and wall friction tests, respectively. All the measurements were 

repeated three times. 

2.5.1 Flow function test 

The flow function test is the primary measurement of powder flowability, which 

gives a measure of the strength of the bulk solids retained at a stress free surface 

following consolidation to a given stress level (Teunou et al., 1999). Hence, in this 

study, the unconfined failure test was carried out and five normal stresses between 

0.2 and 4.8 kPa were applied to calculate the unconfined failure strength and major 

principle consolidation stress, based on Mohr circles from specific yield locus. The 
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flow function was then constructed by plotting the failure strength versus the 

consolidation stress, which can be quantified as the flow index (ffc) (Schulze, 2007). 

Normally, the standard classification of this index is: 1) if ffc <1, powder is non-flowing; 

2) if 1< ffc <2, powder is very cohesive; 3) if 2< ffc <4, powder is general cohesive; 4) 

if 4< ffc <10, powder is easy to flow; 5) and if ffc >10, powder is very free flowing. 

Meanwhile, bulk density curve is also evaluated to describe bulk density changes as 

a function of stress acting on the powder. The compressibility index ( �%�+) was 

calculated as follows: 

�%�+�¨ 
L��
�é�Ö
F�é�Õ

�é�Ö

H�s�r�r 

Where �é�Õ is loose bulk density without compressing (kg m-3); �é�Ö��is compressed bulk 

density at 4.838 kPa major principle consolidation stress (kg m-3). 

2.5.2 Wall friction test 

Wall friction is the friction between materials surface (e.g. the wall of a bin or silo) 

and bulk solids (powders). The angle of wall friction represents the angle to which a 

wall surface must be inclined to cause powder to slip (Teunou et al., 1999). It is an 

important index for silo design for flow, which also can be considered as chute angle. 

In this study, a flat plate of stainless steel AISI 304 attached in the tester was used to 

measure the angles. In total 10 normal stresses (0.48, 0.97, 1.45, 1.93, 2.41, 2.89, 

3.37, 3.86, 4.34, 4.82 kPa) were applied. Finally, the angles were obtained from the 

slope of a line drawn from the origin to a point on the maximum wall yield locus at a 

normal stress of 4.82 kPa. 

2.5.3 Two forms of flow obstructions for conical hopper design 
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There are two forms of flow obstruction problems for bulk solids that may occur 

in a silo: arching in mass-flow pattern and rat-holing in core-flow pattern, which are 

illustrated in Fig.6-1. Hence, a hopper is usually designed for reliable flow aiming to 

avoid arching in mass-flow silos and rat-holing in core-flow silos. Critical arching 

diameter and hopper half angle are commonly used parameters to determine the 

outlet size of mass-flow silos. The critical arching diameter�� �_�p�a�f�g�l�e (m) was calculated 

as follows (Chen et al., 2012; Crowley et al., 2014): 

�� �_�p�a�f�g�l�e
L��
�t 
H�P�_ 
H�s�r�r�r

�O�_ 
H�‰
 

Where �P�Ô is critical arching stress (kPa); �é�Ô is critical arching bulk density (kg m-3); �C 

is gravity acceleration (m s-2).  

 

Fig.6-1 Schematically illustration of arching and rat-holing problems in hoppers 

during A:  mass-flowing discharge pattern and B:  core-flowing discharge pattern, 

respectively (Darching: minimum outlet diameter to prevent arching; �à�å: critical hopper 
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half-angle to prevent arching; �� �p�f: minimum outlet diameter to prevent a stable rat-

hole; �à�å: critical hopper half-angle to prevent a stable rat-hole). 

 

The critical hopper half angle (�à�Ô) can be derived from the effective angle of 

internal friction ( �Î �c�; and the angle of wall friction �:�Î �u �; for a conical hopper (Schulze, 

2007): 

�à�Ô 
L
�s

�t
�H�s�z�r�¹
F �…�‘�•
F�s�F

�s
F �•�‹�•�Î �ƒ

�t �•�‹�•�Î �ƒ
�G
F �Î �™
F�•�‹�•
F�s �F

�•�‹�•�Î �™�ƒ

�•�‹�•�Î �ƒ
�G�I 

Where �Î �_  is the critical angle of internal friction at the corresponding critical 

consolidation stress for arching (°); �Î �u�_  is critical angle of wall frictions at the 

corresponding critical consolidation stress for arching (°). 

For core-flow silos, the critical rat-hole diameter ( �� �p�f) and the maximum 

inclination of the hopper walls to the vertical (�à�å) were used to design the conical 

hopper dimensions (Schulze, 2007). �� �p�f can be obtained for a conical silo, assuming 

a silo diameter of 2 m and a height of 8 m:  

�� �p�f 
L
�
 �:�Î �;
H�P�å
H�s�r�r�r

�é�å 
H�C
 

Where �
 �:�Î �; 
L �r�ä�y�y�y�s
H�A�4�ä�4�7�<�5�Î �Ý; �Î �å is critical angle of internal friction (°); �P�å is critical 

rat-holing stress (kPa); �é�å is critical rat-hole bulk density (kg m-3).  

Also, �à�å was assessed by���Î �™�”: 

�à�å 
L �x�w�¹
F �Î �™�”��(If bulk solids are poorly flowing) 

�à�å 
L �{�r�¹
F �:�Î �™�”
E�s�r�¹�; (If bulk solids are easy-flowing, i.e. granules) 
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Where �Î �u�p is critical angle of wall frictions at the corresponding critical consolidation 

stress for rat-holing (°). 

2.6 Statistical analysis  

All the measurements were repeated three times and results were showed as 

mean ± standard deviations. One-way analysis of variance (ANOVA) was conducted 

by SPSS software (PASW, Statistics 1.8, 2009). The least significant difference (LSD) 

test, in relation to the applied variable using F-test, was used to compare the 

statistical differences of values relating to flow properties and hopper design. 

Significantly differences were considered when P<0.05.  

3 Results and discussion  

3.1 Structural characteristics  

The physical and structural properties of the different granules, including particle 

size, density, porosity and morphology parameters are shown in Table 6-1. It can be 

seen that independent of granulation process used, injecting binders to promote 

adherence of primary particles, produces significantly (p < 0.05) larger particles. As 

milk protein powders are cohesive, high air velocity was required during FB 

agglomeration resulting in granules only 2 to 4 times (100 µm to 200 µm) in size of 

the primary powders. However, granules produced by HS can reach sizes of more 

than 1000 µm, which are ~ 20 times that of the primary powders. At the same time, 

the FB granules had lower bulk density and higher porosity than the HS granules. 

They also exhibited less rounded, rougher surface and higher ratio of length to width 

shapes based on the significantly lower values of circularity, convexity and higher 

values of elongation (Table 6-1). It can be more clearly observed from SEM images 

in Fig.6-2. The primary particles were highly-packed in the granule structures that 
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Table 6-1 Physical and structural properties of powders 

a  Adapted from Ji et al. (2015 & 2016a) 

b Data are expressed as mean ± standard deviation; values followed by a different superscript letter in the same line are significantly different at P 

< 0.05. 

 

 

Samples 
Particle size 

D10 (µm) 

Particle size 

D50 (µm) 

Particle size D90 

(µm) 

Bulk density 

(g/mL) 

Porosity 

(%) 

Circularity 

(0.5) 

Convexity 

(0.5) 

Elongation 

(0.5) 

ST 18.1 ± 0.2a 49.4 ± 0.2a 112 ± 2.1a 0.298 ± 0.0a 72.85 ± 0.1a 0.816 ± 0.023a 0.931 ± 0.009a 0.301 ± 0.012a 

FB1 50.8 ± 0.3b 188.7 ± 1.0b 346.5 ± 3.5b 0.179 ± 0.0b 84.43 ± 0.1b 0.630 ± 0.015b 0.761 ± 0.017b 0.266 ± 0.001b 

FB2 40.1 ± 0.2c 102.5 ± 0.3c 190.5 ± 1.5c 0.221 ± 0.0c 79.33 ± 0.3c 0.669 ± 0.008c 0.814 ± 0.005c 0.301 ± 0.001a 

HS1 778 ± 11.2d 1075 ± 15.7d 1565 ± 35.1d 0.538 ± 0.0d 51.8 ± 0.2d 0.862 ± 0.018d 0.931 ± 0.015a 0.262 ± 0.000c 

HS2 456 ± 10.1e 681 ± 9.6e 1029.5 ± 20.9e 0.500 ± 0.0e 53.0 ± 0.2e 0.870 ± 0.004d 0.933 ± 0.001a 0.258 ± 0.004c 

HS3 119.6 ± 1.5f 263 ± 5.2f 482 ± 8.0f 0.431 ± 0.0f 61.0 ± 0.1f 0.767 ± 0.015e 0.866 ± 0.013d 0.262 ± 0.010bc 

HS4 67.6 ± 0.2g 111 ± 2.1g 178.5 ± 0.5g 0.450 ± 0.0g 60.3 ± 0.1g 0.820 ± 0.006a 0.908 ± 0.005e 0.263 ± 0.002bc 

HS5 52.2 ± 0.3h 75.0 ± 1.0h 107.5 ± 0.5h 0.526 ± 0.0h 53.8 ± 0.1h 0.891 ± 0.001f 0.965 ± 0.001f 0.263 ± 0.006bc 
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formed by HS process while FB process created irregular agglomerates containing 

large interstitial pores resulting in larger specific volumes. It is commonly believed 

that the granules without consolidation will grow progressively by layering materials 

on the surface, while consolidation supplied by strong mechanical agitation will lead 

to plastic deformation of granules via a process of squeezing-out entrapped air, 

increased internal pore saturation and reduced porosity (Cuq et al., 2013). These 

significant differences in physical and structural properties can be attributed to 

different granule growth mechanisms as influenced by process type and equipment 

used (Jacob, 2007). 

 

Fig.6-2 SEM Images of MPI granules produced from fluidised bed and high shear 

mixer granulation, A:  Fluidised bed (FB); B:  High shear mixer (HS). 

3.2 Water adsorption  

Fig.6-3 displays water adsorption isotherms of MPI powder and its granules 

made using the FB and HS processes, under different humidly controlled 

environments. For the water activity range of 0.11 to 0.65, the isotherms all had a 

linear slope, regardless of the type of granulation process used, including the non-

agglomerated MPI. There was no significant difference between the standard MPI 
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(ST) and the granules from fluidised bed (FB1 & FB2), which adsorbed almost the 

same quantity of water. However, the granules from high shear mixer (HS1 to HS5) 

were found to adsorb less water from the surrounding environment, suggesting that 

moisture vapour is more difficult to penetrate into the structures and form layers on 

the surface of internal primary particles. In Fig.6-4, the water adsorption kinetics at 

varying humidity are given; FB1 and FB2 exhibited similar adsorption behaviour as 

standard MPI, which all equilibrated at about 12 hours. In comparison, the HS 

granules took longer time to reach constant weight and an effect that is more 

pronounced at the lower relative humidity environment (Aw: 0.22, 0.33 and 0.44). 

HS1 and HS2 powders, which had largest particle sizes (Table 6-1), adsorbed the 

least amount of water but continued to increase in weight until at least 24 hours, 

especially at the low relative humidity e.g. 0.22, 0.33 and 0.44 (Fig. 6-4). It is 

interesting to note that HS3 and HS4 adsorbed more water than HS1 and HS2, and 

required shorter time to reach equilibrium. This effect was again more evident at the 

lower relative humidity environment. 

 

Fig.6-3. Water vapours adsorption isotherms of powders (ST, FB & HS) at 25 �(  

environment.  
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As shown previously, FB granules have high porosity, which is suggested to 

facilitate penetration of water into the granule matrix (Hapgood et al., 2007). The 

interior porous structures had no significant effect on the rate and extent of hydration, 

and water molecules seemed to enter and exit as easily as that occurring in non-

agglomerated MPI. On the other hand, the agglomerated MPI produced from by the 

HS process had more compacted structure, restricting diffusion of water into the 

internal surface  as a result of reduction of surface-binding sites for water to adsorb 

(Al-Muhtaseb et al., 2002), compared to those granules which are less compacted. 

In this case, the large particles with low specific surface area were believed to retard 

the moisture adsorption behaviour, which was the reason why HS1 and HS2 

exhibited the prolonged process. However, granule size does not always correlate 

with total sorption area, e.g., FB2 was not different than FB1, even though it had a 

smaller particle size. Furthermore, HS3 and HS4 had different results, where more 

moisture content was adsorbed by them rather than HS5, but they had large sizes on 

the contrary. It can be explained by the granules produced by coalescence process, 

with comparatively rougher surface and porous structures than other granules from 

high shear mixer (Fig.6-2), which may cause the larger surface area to contact the 

water molecules (Murrieta-Pazos et al., 2011). The nuclei granules HS5 after 

solidification had high granule strength and more dense structures. Therefore, it may 

be more difficult for water molecules to access all internal primary particles, 

particularly those towards the centre of a granule. It is interesting to see that the 

kinetics of water adsorption was also influenced by the gradient of different 

hygroscopic environments. When equilibrium relative humidity was increased, 

additional water was progressively adsorbed by the protein powders. Condensational 

wetting may occur if relative humidity is higher than 0.5 and moisture may diffuse 

into these interior sites via capillary force (Ji et al., 2016b; Mathlouthi and Roge, 
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2003). Consequently, the difference of moisture content within HS granules was not 

significant and the difference between FB and HS was also reduced. 

 

Fig.6-4. Kinetics of water vapour adsorption for the powders (ST, FB & HS) at six 

different hygroscopic environments (aw: 0.11; 0.22; 0.33; 0.43; 0.53; 0.65). 
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3.3 Flow proper ties  

3.3.1 Flow function   

The powders in a hopper are usually consolidated by stress, which is based on 

their own self-weights and varied from their positions in different regions of hopper or 

at different fill heights. Thus, the flowability of powders is often stress-dependent 

(Teunou et al., 1999). Fig.6-5 illustrates that the standard MPI powder was a poor-

flowing powder and it was very cohesive when consolidating stress was lower than 

1.2 kPa. Even if the stress increased to 13 kPa, the standard MPI was still 

considered as a cohesive powder. However, the applied granulation processes, i.e., 

FB and HS, were found to significantly improve the flow behaviour of milk protein 

powders. Firstly, FB1 and FB2, produced from fluidised bed, had a lower unconfined 

failure strength at the same consolidating stress, indicating they had comparatively 

better flowability and can be classified as easy-flowing powders. Particle size also 

displayed a beneficial role as is demonstrated when FB1 and FB2 are directly 

comparing at higher stresses than 3.2 kPa. The granules formed by the HS process 

were all free flowing in the annular shear cell, regardless of size fraction or the 

stresses that consolidated them. Only HS3 exhibited slightly higher unconfined 

failure strength than other HS granules.  
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Fig.6-5 Flow function curves for unconfined failure strength as a function of major 

principle consolidation stress for the powders (ST, FB & HS). 

It is commonly believed that adhesive forces are usually the source of such flow 

problems for fine-grained dry bulk solids. The major adhesive forces are based on 

van der Waals interactions and the intensity of the forces mainly depend on the 

particle size as well as the distance between individual particles (Fitzpatrick, 2007; 

Schulze, 2007). When the distances are small or the surfaces of particles are in 

contact, van der Waals forces have a large influence. Therefore, plastic deformation 

and rearrangement occurring at contact points may cause an increase in adhesive 

forces (Aarons and Sundaresan, 2006). This can be the reason why standard MPI 

powders with small size have poor flowability. For FB1 and FB2, their large sizes and 

rough surfaces resulted in an increase in distance and thus a reduction of adhesive 

forces. The granules of HS1 to HS5 also presented similar behaviour, as their 
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adhesive forces were no longer dominant compared to the gravity force. The dense 

packed structures allowed the granules to flow more freely (Schulze, 2007). In 

addition, smooth and spherical particles usually flow better than rough and non-

spherical particles (Cleary, 2008) which may explain why HS3 showed the slightly 

poorer flowability than the other HS granules.  

3.3.2 Bulk density 

Different from solid density, bulk density is determined by the voids that exist 

between or within the individual particles, which also depends on the magnitude of 

the consolidation stress acting on them. The results of bulk density in Fig.6-6 

showed that FB1 and FB2 had the lowest bulk density due to their significantly (p < 

0.05) higher porosity compared to the other powder granules (Table 6-1). Their 

densities are lower than 200 kg·m-3 when no stress is applied. In contrast, the 

granules of HS1 to HS5 showed much higher values of at least 400 kg·m-3, as their 

structures were consolidated by agitation forces in the high shear mixer. For 

compressibility indexes, shown in Table 6-2, a significantly (p<0.05) higher value 

(39.5%) was observed for standard MPI powders compared to the granules. FB1 

and FB2 were prone to be compressed by stresses, while HS1 to HS5 displayed the 

least plastic deformation. For example, for the HS1 and HS2 treatments, which had 

the largest granule size, their compressibility indexes were less than 10%, which 

indicates comparatively higher bulk strength. It is believed that the index is closely 

related to the volume of interstitial air as well as the internal occluded air (Bhandari 

et al., 2013). Therefore, the porous structures are considered as the major reason to 

influence the compressibility of powders. Meanwhile, high index values indicated that 

those powders were more likely to be compressed by self-weight in hoppers during 
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storage, which may cause the altered bulk density and also subsequently affect the 

handling properties (Crowley et al., 2014; Schulze, 2007). 

 

Fig.6-6 Bulk density as a function of major principal consolidating stress for the 

powders (ST, FB & HS) 

3.3.3 Wall friction angle 

If considering the friction between bulk solids and solid surfaces, e.g. the wall of 

a hopper, the angle of wall friction as a function of stress is important when 

quantifying the wall friction during hopper design. In Fig.6-7, FB1 and FB2 kept a 

constant angle of approximately 15° under the effect of different normal stresses. 

Standard MPI powder had a higher angle of 25° at the beginning of a 0.5 kPa stress 

and then followed by a slight decrease with increasing stress. Significant changes 

were observed for the granules of the HS process, which not only present large wall 

friction angles, but also varied as granule size changed. It is clear that decreasing 

particle size resulted in increased wall friction angles, regardless of the normal 
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stresses applied. HS4 and HS5 had the greatest angles of all, due to their high bulk 

density caused more force transferring through wall shear stress, which meant the 

large wall friction force and thus attained the big angles of wall friction (Aarons and 

Sundaresan, 2008; Artoni et al., 2009). Meanwhile, comparing with other granules 

from the HS granulation process, the smaller sizes of HS4 and HS5 have increased 

specific surface areas, which may produce stronger particle-wall interactions. There 

is a greater tendency for the granules with high wall friction angles to undergo 

deposition or segregation in a hopper, as the particles near the hopper walls move 

slower than that in the centre. Thus high wall friction may lead to the material near 

the walls discharging finally (Schulze, 2007).   

 

Fig.6-7 The angles of wall friction as a function of normal stress for the powders (ST, FB & 

HS) 

3.3.4 Conical hopper design 

The outlet diameter of conical hoppers and the inclination of the hopper wall to 

the vertical are very important parameters to determining bulk solids discharge from 
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hoppers (Fig.6-1) (Fitzpatrick et al., 2004b). As shown in Table 6-2, the minimum 

outlet diameters for preventing both arching in mass-flow discharge or rat-holing in 

core-flow discharge were compared for the different granules. The �� �_�p�a�f�g�l�e values of 

granules were significantly lower than that of the standard powder, which had at 

least 0.26 m to avoid the occurrence of an arch at the outlet. The HS granules 

required the smallest hopper outlet diameters while the granules from fluidised bed 

needed slightly bigger diameters of about 0.1 m. In addition, the corresponding 

maximum hopper half angle of standard MPI that ensured mass-flow was 18.7°, 

which was lower than the values present by FB1 and FB2 with 34.4° or 32.7° 

respectively. However, there seemed no special requirements on half angles for HS 

granules, as they already displayed free flowing behaviours in the hopper. Similarly, 

for the core-flowing, HS granules need a hopper with smallest outlet diameter (0.2 m 

or even less) to ensure discharge smoothly. On the other hand, 0.75m and 0.8 m 

diameters were calculated for FB1 and FB2, respectively, which were still 

significantly lower than that of standard powder (1.5 m). The results were consistent 

with the previous flow function results, which indicated that the free flowing granules 

could discharge completely by gravity alone due to the strength of bulk solids being 

too weak to achieve a stable rat-hole. Therefore, comparatively smaller outlet 

dimension can be designed to support the ideal mass flow for those free- or easy-

flow bulk solids (Fitzpatrick et al., 2004b). However, for maximum inclination of the 

hopper walls to vertical, the granules of fluidised bed showed the largest angles of 

65°, while HS5 needed the steepest wall for the hopper, which had smallest angle. It 

is believed that the maximum inclination of hopper can be estimated based on 

�-�H�Q�L�N�H�¶�V���P�H�W�K�R�G�R�O�R�J�\���D�V���D���I�X�Q�F�W�L�R�Q���R�I���Z�D�O�O���I�U�L�Ftion angle (Schulze, 2007). Likewise, it 

is not surprising to see that the granules with high bulk density led to lower 

inclination because of their large angles of wall friction.   
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Table 6-2 Values for compressibility index and flow properties for conical hopper 

design, derived from shear cell testing  

 

 

 

 

 

 

 

 

 

 

* Values followed by a different superscript letter in the same line are significantly 

different at P < 0.05. 

**�%�+: compressibility index;���à�Ô: critical hopper half-angle to prevent arching; �� �_�p�a�f�g�l�e: 

minimum outlet diameter to prevent arching;  �à�å: critical hopper half-angle to prevent 

a stable rat-hole; �� �p�f: minimum outlet diameter to prevent a stable rat-hole. 

*** Rathole diameter was derived for a conical silo, assuming a diameter of 2 m and 

a height of 8 m. 

4 Conclusion  

In summary, both methods produced MPI granules with significantly large 

particle sizes. High shear mixer granulator made granules with densely packed 

structures, which adsorbed least moisture and showed the slowest adsorption 

kinetics during storage at different relative humidity. The granules with loose and 

porous structures created by fluidised bed granulation, exhibited no significant 

Sample �%�+  (%) �à�Ô (°) �� �_�p�a�f�g�l�e (m) �à�å (°) �� �p�f (m) 

ST 39.5 ± 4.8a 18.7 ± 4.1a 0.26 ± 0.03a 43.2 ± 0.7a 1.49 ± 0.20a 

FB1 18.9 ± 2.4b 34.4 ± 5.7b 0.12 ± 0.02b 65.9 ± 0.1b 0.75 ± 0.07b 

FB2 21.5 ± 2.1b 32.7 ± 5.3b 0.10 ± 0.00c 65.4 ± 0.1c 0.83 ± 0.11b 

HS1 5.3 ± 0.2c Free flow 0.01 ± 0.00d 55.4 ± 0.3d 0 ± 0.00c 

HS2 7.7 ± 0.4d Free flow 0.03 ± 0.01e 51.9 ± 0.3e 0 ± 0.00c 

HS3 11.5 ± 0.9e Free flow 0.03 ± 0.01e 47.3 ± 0.9f 0.20 ± 0.03d 

HS4 10.0 ± 0.7e Free flow 0.02 ± 0.00de 40.1 ± 1.0g 0.04 ± 0.00e 

HS5 8.1 ± 0.4d Free flow 0.02 ± 0.00de 37.8 ± 0.8h 0.02 ± 0.00f 
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difference in water adsorption measurements when compared to the non-

agglomerated powder. Large MPI granules were found to have significantly better 

powder flow behaviour. Besides the effect of particle size, bulk density and shape 

properties may both play important roles in flowability of powders, however further 

studies are needed to validate their individual influence on flowability. Overall, 

granulation processes can effectively reduce the minimum outlet diameters of 

hoppers for reliable flow from both mass-flow or core-flow hoppers. However, large 

wall friction angles caused by the HS granules (especially the smaller granules) may 

also require steeper hopper walls to discharge bulk solids and avoid them remaining 

at rest.   
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Abstract  

The effect of lecithin addition on the wettability of whey protein isolate (WPI) powders 

was investigated in this study. Different concentrations of lecithin solution (0.5%, 2% 

and 5% w/v) were added by fluidised bed agglomeration and Wurster coating 

processes. The formed WPI powders, with different particle sizes, were used to 

compare the densities, porosity and shapes properties, as well as the wetting 

behaviours, including wetting time, contact angles, water absorption by capillary flow 

and the strength of films formed at the powder / water interfaces. It was found that, if 

lecithin was used as bridges to adhere primary particle in agglomeration, the formed 

granules had large particle size, lower bulk density, higher porosity and more 

irregular shapes. The influences of the coating process on these properties were 

shown to be less significant, as lecithin was layered on the outside of the particle 

surfaces. Those physical and structural modifications in WPI powders caused the 

improvements in the wettability by different degrees. High coverage of lecithin by 

coating process gave the particles a more advantageous first step of wetting, 

showing smaller initial contact angles and weaker protein films; while the porous 

structures by agglomeration process resulted in quicker water penetration by 

capillary flow. They were both rate-controlling factors for wetting process, as the 

limited contribution was found if only controlled by any one of these factors. 

Consequently, high coverage of lecithin, high porosity of particles and large particle 

sizes were all necessary for enhancing the wetting behaviours of WPI powders. 

Key words:  lecithin addition, wetting behaviour, agglomeration, coating, whey 

protein isolates 
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1 Introduction  

Whey protein isolate powder is widely used in the value-added food products, 

e.g. infant formula, reconstituted dairy products and beverages, due to its high 

percentage of pure protein and the ease of transportation and storage (Ann Augustin 

& Clarke, 2011). In general, full rehydration is of primary importance for powders due 

to its significant influence on the other functional properties. For dairy powders, they 

�D�U�H�� �D�O�O�� �U�H�T�X�L�U�H�G�� �W�R�� �E�H�� �³�L�Q�V�W�D�Q�W�´���� �U�H�I�H�U�U�L�Q�J�� �W�R�� �Gispersing quickly with a minimum of 

stirring and without the formation of lumps (Freudig, Hogekamp, & Schubert, 1999). 

Good wettability is a necessary property for dairy powders, as it is a prerequisite for 

the subsequent rehydration process (Hogekamp & Schubert, 2003; Richard, et al., 

2013). However, WPI powders usually exhibit extremely poor wettability and they are 

prone to form lumps and float on the surface of solution (Gaiani, Schuck, Scher, 

Desobry, & Banon, 2007). A recent study has shown that there can be a gelatinous 

impermeable layer formed on the interface between the solids and solution when 

WPI powders contact water (Ji, Fitzpatrick, Cronin, Maguire, et al., 2016). Thereby, 

water was difficult to break through the barrier and penetrate into the materials 

matrix. The powder remains on the surface of the liquid and thus caused the 

prolonged rehydration process. For that reason, wetting is considered as a rate-

controlling step for WPI powders. To shorten the whole rehydration process, 

improving wetting behaviour of WPI becomes important and necessary.  

Wettability is the ability of particles to overcome the surface tension between 

liquid and themselves. The process is usually described as the dynamic penetration 

of a liquid into the pore network of particles due to capillary forces (Depalo & 

Santomaso, 2013; Yuan & Lee, 2013). It is mainly dependent on three factors: i) 

small contact angles; ii) high porosity with big interstitial voids volume; and iii) large 
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particle size (Fang, Selomulya, & Chen, 2007). Contact angle is a commonly used 

parameter to indicate the degree of hydrophobicity of powder surfaces. Small angle 

(<90°) means high hydrophilicity with good wettability for powders; while large angle 

(>90°) corresponds to high hydrophobicity, showing poor wetting behaviour (Forny, 

Marabi, & Palzer, 2011). It is believed that the repulsion of whey protein and water 

leads to large contact angles, owing to the nature of the non-polar protein molecules. 

Therefore, WPI powder surfaces contact poorly with water, which minimizes its 

contact area and causes the slow wetting process. In addition, the structures of 

powders are also known to significantly influence the capillary flow of water inside 

(Yuan, et al., 2013). As shown by the Washburn equation, big capillary radius may 

result in deeper depth of liquid intrusion (Washburn, 1921). This means liquid will 

more easily and more quickly move into the powders if they have porous 

architectures. However, WPI powders produced by spray drying usually have small 

particle sizes and dense structures, which result in the small capillary radius which 

limits capillary flow. Consequently, using surfactant to lower surface tension between 

water and WPI powders, as well as increasing particle size and porosity can be used 

to improve the wettability of WPI powders.  

As a natural food grade surface-active agent, soy lecithin has the amphiphilic 

property which enables it to combine with both a water-soluble component and an 

oil-soluble component (Dashiell, 1989). It helps to decrease the surface tension 

between whey protein and water; thus WPI particles will be easier to adhere with 

water molecules. Fluidised bed granulation and Wurster coating are the two most 

used techniques, which can effectively transport lecithin solution onto powder 

particles (Cuq, et al., 2013; Sharma, Jana, & Chavan, 2012). The bottom-sprayed 

Wurster coating process atomizes the solution into small droplets and then evenly 
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forms a film on the surface of powders (Saleh & Guigon, 2007). It enables lecithin to 

cover the surfaces of whey protein powders, and contact water first during the 

wetting process. However, in agglomeration process, lecithin solution is used as 

bridges to adhere primary particles together. So the formed agglomerates not only 

have significantly big particle sizes, but also exhibit large internal pores within single 

particles and big interstitial voids between particles (Ji, Cronin, Fitzpatrick, Fenelon, 

& Miao, 2015). Hence, these two methods for adding lecithin and modifying the 

structures may make WPI powders easier to be wetted by water based on different 

approaches. To the best of our knowledge, few studies have used lecithin via 

fluidised bed Wurster coating and agglomeration processes to improve the wettability 

of whey protein powders. Therefore, it is of interest to explore if they play a 

significant beneficial role on the wetting behaviour of WPI powders and also if 

possible, on the formation of whey protein films, which restrain the wetting process 

(Crowley, et al., 2015; Gaiani, et al., 2006; Ji, Fitzpatrick, Cronin, Crean, & Miao, 

2016).  

The objective of this study is to improve the wettability of WPI powders, by 

adding lecithin with different solution concentrations, via fluidised bed agglomeration 

and Wurster coating processes. The effects of these two different processes on the 

wetting process of WPI particles and the formation of whey protein films was 

investigated. In addition, their modifications on the physical and structural properties 

(density, porosity and morphology) were also compared.  

2 Materials and methods  

2.1 Materials  

WPI powders were supplied by Davisco Food International (Le Sueur, MN, 

USA). The composition is 90% protein, 3% ashes, 5% moisture, 1% fat and less than 
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1% lactose. Lecithin powders used in coating and agglomeration processes were 

purchased from Cargill (Trafford Park, Manchester, UK). 

2.2 Fluidised bed agglomeration and coating  

The agglomeration and coating processes were conducted by a fluid bed 

granulator/coater (VFC-Lab Micro flo-coater, Vector Corporation, Iowa, USA). The 

agglomerated WPI was produced by a top-sprayed fluidised bed. Three different 

concentrations lecithin solution (0.5%, 2% and 5%, w/v) were used as binding liquids. 

100 g WPI of each batch was fed into the product vessel and fluidised by an upward 

flowing air stream, which had a flow rate of 70 L min-1 and a temperature of 50 �(�ä��

After preheating the powders for 10 min, 50 g binding liquid was injected by a 

peristaltic pump at a speed of 1mL min-1. The liquid was sprayed into small droplets 

via a two-fluid spray nozzle, which was placed on the top of vessel. The air pressure 

for the nozzle was set to 1 bar. When all the binding liquid had been added to 

powders, the product continued to be dried for 15 min at 50 �(�ä��Three batches of 

agglomerated WPI were produced for other triplicate measurements.   

The Wurster process was applied to coat the lecithin solution on the surface of 

WPI particles. Different from agglomeration, the fluidised bed with bottom spray 

configuration was used as coating equipment in this study. Powders were coated by 

same concentration of lecithin solution (0.5%, 2% and 5%, w/v) in a cylindrical 

central tube (the draft tube). The rate of the upward flowing air stream was changed 

to 40 L min-1 for the appropriate circulation. The temperature of air was 50 �(�� and the 

spraying air pressure was 1 bar with injecting rate of 1mL min-1. After that, the 

products were also dried for 15 min at 50 �(�� after removing the central tube. Three 

batches of coated WPI were prepared for measurements.   
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2.3 Powder characterisation  

According to the particle size distributions of the obtained products, the 

agglomerated and coated WPI powders were sieved into two different size fractions. 

�����������P���D�Q�G�������������P���O�H�Y�H�O���V�L�H�Y�H�V�����(�Q�G�H�F�R�W�W�V�����/�R�Q�G�R�Q�����8�.�����Z�H�U�H���X�V�H�G���W�R���V�H�S�D�U�D�W�H���W�K�H��

agglomerated and coated particles (A1 & C1���������������P���a���������� ���P�����$2 & C2�����������������P������

respectively. The remaining particles were removed if they were not in these 

fractions. Counting standard WPI powder, there are a total of 13 samples together 

based on three different concentration of lecithin solutions (ST, 0.5%A1, 0.5%A2, 

2%A1, 2%A2, 5%A1, 5%A2, 0.5%C1, 0.5%C2, 2% C1, 2%C2, 5%C1, 5%C2). All the 

samples were dried in a vacuum oven (Jeiotech, Seoul, Korea) at 40 �(�� overnight, 

before they were stored in desiccators and prepared for the further measurements. 

2.4 Physical and structural properties  

2.4.1 Particle size, density and porosity 

The median particle size of the powders D(50) was measured by the Malvern 

Masterszier 3000 (Malvern Instruments Ltd, Worcestershire, UK) using light 

scattering technology. The machine was equipped with a 4mW He-Ne laser, which 

had a wavelength of 632.8 nm. Samples were feed by a standard powder disperser 

(Aero S) with a controlled rate, in order to reach the appropriate obscuration level of 

6%. Triplicated measurements for each sample were carried out. . 

A graduated cylinder and a tapping machine (Funke Gerber, Berlin, Germany) 

were used to measure loose bulk density and tapped bulk density of the powders. 

The volume occupied of 50 g of samples was measured to evaluate the loose bulk 

density; while the volume after 100 taps was used for the tapped bulk density. In 

addition, the particle density of powders in this study was measured by Gas 

Pycnometer (AccuPyc II 1340, Micromeritics Instrument Corporation, Georgia, USA), 
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which degased the sample cell via purging with a flow of helium for ten 

pressurisation cycles. Therefore, the porosity also can be calculated by particle and 

tapped bulk densities (Ji, et al., 2015). All the measurements were repeated for three 

times.  

2.4.2 Particle shape 

Circularity, convexity and elongation descriptors were used to quantify the 

morphology of a particle. Malvern Morphology G3 (Malvern Instruments Ltd, 

Worcestershire, UK) can use these parameters to determine the shape properties of 

powders by scanning and observing thousands of single particles. The study of Ji, et 

al. (2015) has described the details of the method. Briefly, 15 mm3 volume samples 

were firstly dispersed into a single uniformly layer by a dispersion unit. After that, the 

microscope scanned all the particles gradually and then gave out the average values 

of circularity, convexity and elongation for bulk population distribution. 

Measurements were repeated five times.  

2.5 Wetting behaviour  

2.5.1 Wetting time by immersional wetting procedure 

Wetting time is defined as the time needed for complete wetting of a specified 

mass of powder, which is gently discharged onto the surface of water and then 

immersed and wetted spontaneously without agitation (Schuck, Jeantet, & Dolivet, 

2012). Thus, the recorded wetting time can be used to quantify the wettability of 

dairy powders. 6 g of powder was dropped into a 400 mL beaker containing 100 mL 

of distilled water at a temperature of 20 �(�ä��The beaker had a diameter of 70 mm and 

a surface area of about 38.5 cm2. The test was repeated three times. The powders 

were considered to have good wettability if they needed wetting times less than 60 s. 
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In addition, an optical microscope (Olympus BX51M) was also used to capture the 

images to show the formation of external films on the surface of whey protein 

particles, when the materials just contacted water. Different bulk volumes of standard 

WPI powders (approx. 5 mm3 and 100 mm3) were dispersed by water on the glass 

slides, before they were observed by the microscope at a temperature of 20 �( . 

2.5.2 The dynamic contact angles by spreading wetting procedure 

�6�W�D�W�L�F���F�R�Q�W�D�F�W���D�Q�J�O�H�����������L�V���D�Q���L�P�S�R�U�W�D�Q�W���L�Q�G�H�[���R�I���W�K�H���Z�H�W�W�D�E�L�O�L�W�\���R�I���S�R�Z�G�H�U�V�����,�W���L�V��

the tangent angle at the contact point of liquid, solid and air phases. In general, small 

�F�R�Q�W�D�F�W�� �D�Q�J�O�H�� �����������ƒ���� �P�H�D�Q�V�� �J�R�R�G�� �Z�H�W�W�D�E�L�O�L�W�\�� �Z�K�L�O�H�� �S�R�R�U�� �Z�H�W�W�D�E�L�O�L�W�\�� �F�R�U�U�H�V�S�R�Q�G�V�� �W�R��

�O�D�U�J�H�� �D�Q�J�O�H�V�� �����!�����ƒ����(Yuan, et al., 2013). However, for dairy powders, the dynamic 

wetting behaviour is believed to be the process that a droplet penetrates into powder 

bed (Ji, Fitzpatrick, Cronin, Maguire, et al., 2016). Therefore, the change of contact 

angle is usually used to quantify the wetting process. In this study, the change of 

contact angle was monitored by an optical tensiometer (Attension Theta, Biolin 

Scientific Ltd., Espoo, Finland), based on sessile drop spread wetting procedure. 

Before the measurement, powders are firstly loaded on an aluminium pan with a 

diameter of 100 mm. A powder bed with a smooth surface was formed by passing a 

leveller across the surface. After that, a set volume of 12 mL deionised water droplet 

was gently dropped onto the surface of the powder bed and the change of angles 

was recorded by the machine as a function of penetrating time. Measurements were 

repeated five times. 

2.6 Capillary flo w 

Water penetration process by capillary flow can be described by the Washburn 

method (Washburn, 1921), which records the penetration depth of the liquid inside 
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the capillary as a function of time. In this study, the penetration depth was replaced 

by the mass of adsorbed water (Ji, Fitzpatrick, Cronin, Crean, et al., 2016). A 

cylindrical glass tube used as the powder holder had an open base bottom, which 

was covered by filter paper and a piece of gauze. Then 2 g samples were loaded 

into the tube and set just above the surface of water. Time was recorded when the 

bottom touched the water (25 �(�;�ä��The additional mass of wetted samples was 

measured after 10 min. All measurements were repeated three times.  

2.7 Film strength at powder / water interface  

Films are formed at the interface of WPI solid and water phases that restrain the 

wetting process. The measurement for strength of films is thus necessary to be 

developed if investigating the effects of agglomeration and coating processes on the 

film formation. In this study, a force-displacement test was used to evaluate the 

strength of films formed by samples and water interface. A glass beaker with a 

diameter of 65 mm and a height of 37 mm was filled by 100 mL 25 �(�� deionised 

water. Powders were sieved onto water surface until filling the beaker. A smooth 

surface was created by a leveller via removing excess powders. Then a cylindrical 

stainless steel probes with a diameter of 35 mm was set centrally and moved axially 

downwards through the powders at a constant speed of 0.1 mm/s. The 

force/displacement was measured by the texture analyser (TA-HDi, Stable Micro 

Systems, Godalming, UK) equipped with a 5 kg load cell. During the measurement, a 

noticeable peak appeared as displayed in Fig. 7-1. It is caused by the peak force 

required to break through the films, which can be used as an index of the film 

strength. The films were formed by two different powder contact times (1min and 10 

min). All the measurements were repeated 5 times.  
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Fig.7-1 Scheme of force-displacement test for the film strength (A:  plunger was 

moving axially through WPI powders; B:  example result of the force-displacement 

test for standard WPI powder). The noticeable peak appeared in B is the force 

required to break through the films, which was used as the index of the film strength. 

2.8 Microstructures of agglomerated and coated powders  

Confocal scanning laser microscopy was performed to observe the lecithin 

distribution on these processed powders, using a Leica TCS SP5 microscope (Leica 

Microsystems GmbH, Wetzlar, Germany). A small amount of particles were carefully 

transferred to a glas�V���V�O�L�G�H���D�Q�G���I�R�U�P�H�G���D���V�L�Q�J�O�H�� �O�D�\�H�U�����$���P�L�[�W�X�U�H���R�I�� �1�L�O�H���U�H�G���������������/��

�R�I�������������������L�Q���G�L�V�W�L�O�O�H�G���Z�D�W�H�U�����D�Q�G���I�D�V�W���J�U�H�H�Q���������������/���R�I�����������������L�Q���G�L�V�W�L�O�O�H�G���Z�D�W�H�U�����D�W���D��
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ratio of 1:1 was used to stain the powders. Samples were then covered by a 

coverslip before they were observed by the microscopy at room temperature. Images 

of representative areas were taken and analysed using a 63× oil immersion objective 

(numerical aperture = 1.4) at an excitation wavelength of 633 nm, which was 

provided by a He�±Ne laser. Similar microscope settings were maintained for 

agglomerated and coated samples for comparison.  

3 Results and discussion  

3.1 Effects on the physical and structural properties of WPI powders  

3.1.1 Particle size, density and porosity 

Table 7-1 shows how the agglomeration and coating processes affected the 

physical and structural properties of WPI powders. Firstly, the standard WPI particles 

(ST) had a median particle size of about 55 µm. The agglomerated WPI powders for 

both size fractions showed significant (P<0.05) larger particle sizes than ST. 

However, a large difference in particle sizes can be observed by the lecithin coated 

WPI powders with different size fractions. Even though the large coated particles (C1) 

had the similar sizes as those of the large agglomerates (more than 100 µm), the 

coated particles within small sizes fraction (C2) still only had about 40 or 50 µm in 

diameters, which was close to the size of ST. Their densities displayed the different 

results. The agglomerated WPI display significantly lower bulk and tapped densities 

than the other samples (both standard and the coated ones). It was also found that 

0.5% C and 2% C had slightly lower bulk and tapped density values than that of 

standard WPI. But for particle density, all samples appeared to have almost same 

values, which were about 1.05 g·cm-3. Therefore, on the basis of tapped and particle 

densities, porosity properties of powders were calculated and presented in Table 7-1. 

The agglomerated WPI had the highest porosity values, which were even
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Table 7-1 Physical and Morphological properties of WPI powders * 

* Data are expressed as mean ± standard deviation; values followed by a different superscript letter in the same line are significantly 

different at P < 0.05. 

Sample ST 0.5%A1 0.5%A2 0.5%C1 0.5%C2 2%A1 2%A2 2%C1 2%C2 5%A1 5%A2 5%C1 5%C2 

Particle size 
D(50) (µm) 

54.5 ± 
1.8a 

109.0 ± 
2.1b 

86.2 ± 
0.4c 

103 ± 
3.0d 

41.3 ± 
0.6e 

110.8 ± 
1.0b 

81.3 ± 
1.1f 

118.0 ± 
0.7g 

49.5 ± 
0.5h 

115.0 ± 
1.1i 

81.4 ± 
0.7f 

114.4 ± 
1.2i 

56.1 ± 
1.0a 

Bulk density 
(g/cm3) 

0.340 ± 
0.003a 

0.205 ± 
0.003b 

0.261± 
0.004c 

0.318 ± 
0.004d 

0.329 ± 
0.002e 

0.182 ± 
0.005f 

0.257 ± 
0.004c 

0.331 ± 
0.007ae 

0.339 ± 
0.006ae 

0.168 ± 
0.006g 

0.241 ± 
0.005h 

0.392 ± 
0.005i 

0.409 ± 
0.006j 

Tapped density 
(g/cm3) 

0.417 ± 
0.001a 

0.236 ± 
0.000b 

0.279 ± 
0.000c 

0.346 ± 
0.001d 

0.385 ± 
0.001e 

0.204 ± 
0.000f 

0.275 ± 
0.000g 

0.357 ± 
0.001h 

0.400 ± 
0.001i 

0.192 ± 
0.001j 

0.263 ± 
0.000k 

0.408 ± 
0.001l 

0.477 ± 
0.001m 

Particle   
density (g/cm3) 

1.057 ± 
0.008a 

1.038 ± 
0.011a 

1.058 ± 
0.023a 

1.051 ± 
0.015a 

1.052 ± 
0.009a 

1.045 ± 
0.025a 

1.051 ± 
0.021a 

1.076 ± 
0.034a 

1.058 ± 
0.036a 

1.058 ± 
0.011a 

1.053 ± 
0.016a 

1.049 ± 
0.016a 

1.064 ± 
0.017a 

Porosity (%) 
67.9 ± 
0.9a 

80.3 ± 
1.0b 

75.4 ± 
1.9c 

69.7 ± 
1.2a 

68.7 ± 
0.8a 

82.6 ± 
1.6b 

75.5 ± 
1.4c 

69.2 ± 
2.5a 

67.9 ± 
2.6a 

81.9 ± 
0.8b 

75.0 ± 
1.1c 

62.6 ± 
1.2d 

61.6 ± 
1.2d 

Circularity 
0.884 ± 
0.003a 

0.729 ± 
0.004b 

0.732 ± 
0.001b 

0.812 ± 
0.002c 

0.875 ± 
0.006a 

0.764 ± 
0.001d 

0.746 ± 
0.008e 

0.813 ± 
0.001c 

0.885 ± 
0.003a 

0.793 ± 
0.009f 

0.767 ± 
0.007d 

0.841 ± 
0.007g 

0.893 ± 
0.001h 

Convexity 
0.965 ± 
0.002af 

0.860 ± 
0.002b 

0.868 ± 
0.002c 

0.921 ± 
0.002d 

0.961 ± 
0.002a 

0.891 ± 
0.003e 

0.880 ± 
0.006e 

0.920 ± 
0.001d 

0.967 ± 
0.001f 

0.909 ± 
0.009dg 

0.893 ± 
0.007eg 

0.941 ± 
0.004h 

0.972 ± 
0.001i 

Elongation 
0.233 ± 
0.004a 

0.279 ± 
0.007b 

0.295 ± 
0.002c 

0.259 ± 
0.000d 

0.253 ± 
0.004ef 

0.285 ± 
0.004b 

0.295 ± 
0.005c 

0.255 ± 
0.000e 

0.249 ± 
0.003f 

0.270 ± 
0.000g 

0.291 ± 
0.004bc 

0.264 ± 
0.002h 

0.249 ± 
0.002f 
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higher than 80%. This means the agglomeration process created granules with 

porous structures and large pores existed inside the powder material matrix. On the 

other hand, it is interesting to note that, though the coated WPI also had large 

particle size, their porosity had no significant improvement compared to standard 

WPI. The powders formed by 5% concentration lecithin solution even had the lower 

porosity values of about 62%. 

Agglomeration processes use small liquid droplets as binding bridges to adhere 

primary particles and thus enlarges the granule size (Jacob, 2007; Litster & Ennis, 

2013). Loose structures are usually achieved in fluidised bed agglomeration, which 

are motivated by air rather than mechanical agitation. In that case, thus the 

agglomerated WPI particles exhibited much lower loose bulk density and tapped 

density, as well as higher porosity caused by the large interstitial spaces. However, 

the Wurster coating process is different from agglomeration, as the liquid droplets 

are uniformly distributed on the surface of individual primary particles by layering 

(Dewettinck & Huyghebaert, 1999; Saleh, et al., 2007). Therefore, compared to ST, 

the coated particles had no significant difference in bulk density and porosity values, 

though some of them had bigger sizes. In addition, the higher concentration of liquid 

in the coating process results in the formation of thicker layers with high 

compactness. That is possibly the reason why 5% lecithin solution caused a slightly 

higher bulk density and lower porosity. However, no matter whether agglomeration 

or coating, the small amount of lecithin added had no significant effect on the true 

density of WPI powders.  

3.1.2 Particle morphology 

The results of three parameters to describe the morphology of particles 

(circularity, convexity and elongation) are also presented in Table 7-1. Firstly, ST had 
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values of 0.884, 0.965 and 0.233 for these three parameters, respectively. The 

agglomerated granules were shown to have the more irregular shape properties, 

which include the lower values of circularity and convexity as well as higher values of 

elongation. This indicates that the fluidised bed agglomeration process caused less 

rounded shape particles, with rougher surface and higher ratio of height and width (Ji, 

et al., 2015). Some large agglomerated particles (e.g. 0.5% A1) can even have the 

smallest circularity and convexity values, which were approx. 0.73 and 0.86, 

respectively. The Wurster coating process also modified the shapes of powders, but 

the influences were less significant than those of agglomeration. In addition, 

comparing the effect of particle size, it is found that the larger size for coated 

particles was relevant to their lower circularity and convexity. It is interesting to see 

that the particles formed by lower concentration lecithin solution (e.g. 0.5%A & 

0.5%C) had the comparatively more irregular shape properties. As it is shown in 

Table 7-1, high concentration solution used in both agglomeration and coating 

processes produced more spheroidal and smooth particles. 

The standard WPI powder is spray dried from small liquid droplets; thus its 

particle shape is more like a circle with a flat surface (Sadek, et al., 2015; Sadek, et 

al., 2013). However, when these primary particles aggregated together by liquid, the 

�Q�H�Z�� �S�R�U�R�X�V�� �³�U�D�V�S�E�H�U�U�\�´�� �V�W�U�X�F�W�X�U�H�V�� �Z�H�U�H�� �I�R�U�P�H�G��(Christelle Turchiuli, Eloualia, El 

Mansouri, & Dumoulin, 2005). As shown in Fig. 7-2AB, the lecithin can be observed 

and it distributed among the particles, acting as binding bridges. Therefore, their 

shapes were modified irregularly. Meanwhile, as the small nuclei progressively grew 

during the agglomeration process, the intermediate agglomerates may adhere again, 

which caused the less rounded and rougher granules than the nuclei (C. Turchiuli, 

Smail, & Dumoulin, 2013). Some other studies reported that milk protein powders 

agglomerated by lactose or sucrose solution also had similarly shaped particles (Ji, 
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et al., 2015; Szulc & Lenart, 2013). The effects were more significant for those large 

milk protein agglomerates. However, in the coating process, lecithin was uniformly 

layered on the surface of WPI particles (Fig. 7-2CD). The shapes of new particles 

were less modified than the agglomerated particles, as they grew based on the 

shape properties of the primary particles (Teunou & Poncelet, 2002). 

 

Fig.7-2 Confocal microscopy images of agglomerated and coated WPI powders by 5% 

(w/v) lecithin solution (A&B:  agglomerated WPI; C&D:  coated WPI). Green presents 

the lecithin and red is whey protein. Lecithin used as binding bridges in A&B  while 
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more coverage can be observed on the surface of particles in C&D. The bars indicate 

���������P���L�Q���O�H�Q�J�W�K�� 

3.2 Effects on the wetting process of WPI powders  

3.2.1 Wetting time by immersional wetting procedure 

The wettability of WPI powders were assessed by wetting time in Table 7-2. It is 

clear to see that standard WPI was extremely difficult to be wetted by water. Even 

after 20 min, there were still a great number of particles floating on the surface of 

water. This is due to when particles contacted water, the materials quickly formed 

skins on the interface between the wetted particles and water, which can be 

observed in Fig.7-3AB. The skins were believed to prevent water from further 

penetrating into the powder matrix (Ji, Fitzpatrick, Cronin, Maguire, et al., 2016). The 

coating process seemed to play no significant beneficial role in decreasing the 

wetting time, as 0.5%C and 2%C present the same wetting time as standard 

powders. Only the coated powders by 5% lecithin required shorter time of about 7 or 

8 min, which was still considered as the poor wettability. However, the agglomerated 

powders exhibited completely different results. Most agglomerated WPI, especially 

for those large agglomerates, needed much shorter wetting time. When their binding 

liquid for agglomeration contains enough lecithin (e.g. 2%A & 5%A), they only took 

less than 10 seconds to be fully wetted. This means they were very quickly 

penetrated by water, and they can be considered as instant powders. In addition, 

particle size also greatly influenced the immersional wetting behaviours, as A1 

powders were found to expend have significant less wetting time than A2 powders. 

This effect was more obvious for the powders that were agglomerated by the higher 

concentration of lecithin solution (e.g. 2%A & 5%A).  
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Table 7-2 Wetting time of WPI powders by immersional wetting procedure 

 

 

Fig.7-3 Optical microscopy images of WPI particles, showing the impermeable 

layers formed at the interface of particles / water, as white arrows indicated in A; the 

thicker films can be observed in B when more WPI particles were wetted by water. 

The particles were dispersed in water on glass slides before observation. (Scaled 

�E�D�U�V��� �������������P�� 

3.2.2 Contact angles by spreading wetting procedure 

In Fig. 7-4A, for the 0.5%A and 0.5%C, water droplets took a long time to 

penetrate into the powder beds. They not only had the large initial contact angles, 

which were all higher than 130°; but also required more than 300 seconds to reach 

the angles of about 100°. Only the A1 samples showed relatively quicker changes, as 

they needed 100 seconds to reduce the contact angle to 50°. However, when the 

concentration of lecithin increased to 2% (Fig.7-4 B), the agglomerated WPI, for 

Sample ST 0.5%A 0.5%C  2%A 2%C 5%A 5%C 

Large size 
fraction > 20 

min 

15 min ± 
2.4 min > 20 min 

10 s ± 2 
s > 20 min 

3 s ±   
1 s 

7 min ± 
1 min 

Small size 
fraction 

> 20 min > 20 min 12 min  ± 
4 min 

> 20 min 4 min ± 
1.5 min 

8 min ± 
2 min 
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different particle sizes, were both immediately penetrated by droplets in just 2 or 3 

seconds. The 2%C1 also displayed much better wetting behaviour, while the 2%C2 

displayed a wettability as poor as ST. Even at the condition of highest concentration 

of lecithin (Fig.7-4 C), the 5%C2 still had almost no changes for its contact angles, 

although its initial angle was much smaller than that of ST. But for the agglomerated 

or coated WPI with large sizes, the dramatic reductions of the penetration times were 

observed in Fig.7-4 C. Comparing the effect of particle size, it is clear to find that the 

larger particles corresponded to the quicker wetting by water droplets, especially for 

the coated particles using 2% and 5% lecithin solution. In addition, there were some 

notable phenomena for the coated WPI powders. Firstly, they displayed the smaller 

initial contact angles than other samples, including the agglomerates. Meanwhile, it 

is also interesting to see that the coated powders with large sizes (e.g. 2%C1 & 

5%C1) had the different angle changes at the end of penetration process. Their 

angles stopped decreasing and even increased until the droplet reached an 

equilibrium state. 

For the immersional wetting or spreading wetting procedures, both of 

agglomeration and coating processes using lecithin solution improved the wettability 

of WPI by different degrees. It is due to lecithin as a surface-active agent, which can 

effectively bind protein and water molecules together and thus reduce the surface 

tension at the interfaces of solids and liquid (Whitehurst, 2008). Some studies 

reported that agglomeration, using lactose or sucrose solutions as binding liquid, had 

no significant effect on the wetting of milk protein isolate and WPI powders (Ji, et al., 

2015; Ji, Fitzpatrick, Cronin, Maguire, et al., 2016). Therefore, lecithin used in those 

processes is believed to positively influence the wetting behaviours of WPI powders. 

The influences are more significant if more lecithin is used, as higher surface energy 
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is achieved, which enhances wetting ability. However, lowering surface tension is not 

the only factor to control the wettability, as agglomeration was shown to play a much 

better beneficial role than coating, even though they both contain same amount of 

lecithin. The porous loose structures and large particle formed by agglomeration 

have more advantages for water to flow inside of powder particles (Depalo, et al., 

2013; Forny, et al., 2011). In the other words, limited capillary flow may happen for 

the coated particles with relatively low porosity or small sizes, as shown in Fig.7-4D. 
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Fig.7-4 The change of contact angle (°) as a function of penetration time for ST, 

agglomerated and coated WPI powders using the sessile drop technique at approx. 

20 �(  temperatures. A:  powders produced by 0.5% (w/v) lecithin solution; B:  by 2% 
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(w/v) lecithin solution; C: by 5% (w/v) lecithin solution; D: example images of 

standard, agglomerated and coated WPI powders formed by 5% (w/v) lecithin 

solution to show how the water droplets penetrated into powder beds by the different 

time intervals.  

3.3 Effects on the capillary flow and the film formation  

As a prerequisite of good wettability of WPI, overcoming the barrier caused by 

the layers on the interface of WPI and water as well as accelerating the capillary flow 

become the two most important steps. Consequently, the effect of agglomeration 

and coating processes on the capillary flow behaviour and the formation of layers are 

necessary to investigate. This will help to explain why these processes facilitate 

water to wet the problematic WPI powders. 

3.3.1 Capillary flow 

As mentioned previously, capillary flow may be one of the rate-controlling 

factors for the wetting process of WPI powders. Thus, the results based on modified 

Washburn method are presented in Fig.7-5. It can be seen that ST only absorbed 

0.05 g water in 10 min; the coated WPI powders all exhibited similar water 

absorption ability, regardless of the particle size or the lecithin solution used in the 

coating process. However, a significant increase was founded for the agglomerates, 

which gained more weight after 10 min water absorption. These influences were 

more obvious for the agglomerates with large size fractions (e.g. 0.5%, 2% and 5% 

A1), as their additional weight can reach over 0.1 g. At the same time, the absorbed 

water also increased at the higher concentration of lecithin, as the agglomerates 

formed by 5% lecithin had the best capillary flow behaviours of all. This means water 

more easily penetrates into the matrix of large agglomerates with high porous 
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structures and more lecithin. It can be validated by Washburn capillary model 

(Washburn, 1921) as Eq.: 

�H�6 
L
�…�‘�•�E�®�N�®�@�®�–

�t �®�D
 

Where���” is radius of pores; �E is the contact angle; �Ž is the penetration depth; �D is 

water viscosity; �@ is the water surface tension and �– is time for capillary flow. Thus, it 

is clear to see that the penetration behaviour of WPI are positively related to the 

radius of pores, which are influenced by the porosity of the powder and the particle 

size (Forny, et al., 2011). Therefore, this is the reason why agglomerated WPI 

showed better wetting behaviour than coated WPI, as the agglomerates had bigger 

pore radii  to allow faster water penetration. In addition, more lecithin added to the 

powders may also lead to the smaller contact angle���E, and greater penetration depth.  

 

Fig.7-5 Weight of absorbed water by capillary flow for standard, agglomerated and 

coated WPI powders after 10 min. 
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3.3.2 The effects of agglomeration and coating on the film strength  

The film formed by the hydration of WPI particles is believed to seriously 

impede and delay water penetration during the wetting process (Ji, Fitzpatrick, 

Cronin, Maguire, et al., 2016; Kim, Chen, & Pearce, 2002). The results of film 

strength formed by different samples at 2 and 10 min are presented in Table 7-3. 

The ST formed the strongest films for both 2 and 10 min contact times. The strength 

of films reached approx. 70 and 86 mN, respectively. All the agglomerated or coated 

WPI had significantly weaker films.  

Table 7-3 Film strengths at WPI particles / water interface after 2 or 10 min contact 

times* 

*Data are expressed as mean ± standard deviation; values followed by a different 

superscript letter in the same line or by different numbers of star symbols in the 

same column are significantly different at P < 0.05. 

 

Considering the results for the coated powders, the addition of a small amount 

of lecithin, i.e. 0.5%C, had a significant impact on reducing film strength in 

comparison to the ST powder. Increasing the lecithin addition to 2% further reduced 

the film strength, especially at 2 min contact time. However, increasing further to 5% 

showed no significant improvement. Consequently, it was advantageous, in terms of 

reducing film strength, to add lecithin to somewhere in between 0.5 and 2%. There 

was no additional benefit to adding higher amounts because the particle surfaces 

were possibly saturated with lecithin from a wetting perspective. These results are 

Sample ST 0.5%
A1 

0.5%
A2 

0.5%
C1 

0.5
%C2 

2%
A1 

2% 
A2 

2% 
C1 

2% 
C2 

5%
A1 

5%
A2 

5% 
C1 

5% 
C2 

2 min 
(mN) 

70 ± 
4 a* 

62 ± 
3 b* 

64 ± 
1 b* 

41 ± 2 
c* 

40 ± 
4 c* 

0 
28 ± 
2 de* 

24 ± 
3 d* 

30 ± 
3 de* 

0 0 
26 ± 
1 d* 

31 ± 
2 e* 

10 min 
(mN) 

86 ± 
6 a** 

27± 
7 bd** 

41 ± 
4 c** 

28 ± 6 
bd** 

38 ± 
3 c* 

0 27 ± 
2 bd* 

25 ± 
1 b* 

30 ± 
2 d* 

0 0 28 ± 
3 bd* 

38 ± 
3 c** 
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similar to the results of capillary flow shown previously, where the effect of different 

amount of lecithin on the coated powders was not significant.  

     Considering the results for the agglomerated powders, the low lecithin, 0.5%A, 

showed only a small reduction in film strength at 2 min contact time, although it did 

reduce substantially at 10 min. The reduction in film strength at 2 min. is a much 

smaller than that for the corresponding coated powders (0.5%C). This is most likely 

because there is less lecithin on the particle surfaces in comparison to the coated 

particles because much of the lecithin is in the bridges. Increasing the lecithin 

content further had a major impact on reducing the film strength of the agglomerates. 

For agglomerates with higher lecithin contents (2%A and 5%A), there were no 

measureable film strengths, except for the small particle size fraction at 2% lecithin 

(2%A2). The zero film strengths are simply because the powders had fully wetted by 

2 min and there were no films remaining; the wettability of these powders had greatly 

improved in comparison to the ST powder. Particle size also played an important role 

on the formation of WPI films. Except for the agglomerates containing high amount 

of lecithin (5%A1 & 5%A2), the powders from large size fraction created the weaker 

films and the difference was more obvious after 10 min.  

The film strength is believed to directly connect to the difficulty of water penetrating 

through the films. The higher strength of the films may result in the s lower water 

penetration and thus prolong the wetting process. In that case, the lower strength of 

films formed by the hydration of coated WPI was believed to weaken the negative 

influence of films from acting as barriers to delaying of powder wetting (Kim, et al., 

2002). The agglomeration and coating processes were found to contribute differently 

to the wetting behaviours of WPI. On the basis of the results presented, it is believed 

that the coated WPI powders allow water to more easily contact the powders at the 

beginning of the wetting process, as lecithin can be better distributed on the surface 



Chapter seven 
    

219 
 

of particles. More surface area of coated particles is covered by lecithin if compared 

to the agglomerated particles. Therefore, it results in smaller initial contact angles 

and weaker WPI films. Agglomeration process seems to contribute somewhat 

differently to improving the wettability of WPI. Lecithin addition does have a major 

impact; however the large volumes inside the particles and between particles formed 

by agglomeration allowed quicker water penetration into the powder by capillary flow. 

So, the change of contact angles and the decrease of film strength were more rapid 

than that of coated powders. The only challenge for the agglomerated WPI is to 

overcome the surface tension where there is little or no lecithin present.  

4 Conclusion  

The fluidised bed agglomeration and Wurster coating processes were believed 

to modify the physical and structural properties by different particle growth 

mechanisms. As binding liquid was used as bridges between primary particles, 

agglomeration produced large granules with lower bulk density and higher porosity; 

while the coating process created powders with comparatively higher bulk density 

and lower porosity. More irregular shapes by lower circularity and convexity as well 

as higher elongation were found for the agglomerated WPI. These kinds of structural 

modifications influenced the wetting process of WPI powders. Lecithin addition by 

those processes improved the wettability of WPI powders by different degrees. Even 

the distribution of lecithin on the surface of particles by coating gave them a more 

advantageous first step of wetting by lowering the surface tension and weakening 

the films. However, it was difficult for water to penetrate into the bed of coated 

particles because their low porosity leads to the slow capillary flow process. 

Agglomeration can be used as an effective method to solve the problems of capillary 

flow, due to the highly porous structures of the agglomerated powders. Large particle 
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size can also positively affect water penetration via increasing the radius of particle 

pores. Overall, the collaborative effects of lecithin addition (high coverage on the 

surfaces), high porosity and large particle size are all contributing to improving the 

wetting process of WPI powders.  
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In the current study, it firstly investigated the effects of agglomeration and 

coating processes on the structural and physical characteristics of milk protein 

powders. Chapter 4 indicated the effect of different liquid binders (water, lactose 

solution, sucrose solution) used in fluidised bed agglomeration on the particle size, 

shape, density and porosity of milk protein isolate powder; while Chapter 5 present 

the influence of different granule growth processes. In addition, it also compared the 

difference between the physical properties of agglomerated MPI, which are produced 

by fluidised bed and high shear agglomeration, respectively. Chapter 7 focused on 

lecithin addition by fluidised bed agglomeration and Wurster coating, as well as their 

effects on the structural modification of whey protein isolate powder.  

Furthermore, this study paid more attentions on the subsequent functionalities 

of high protein dairy powders, including rehydration behaviours (wetting, dispersing 

and dissolving), flowability and water adsorption. Chapter 2 firstly carried out the 

assessment of rehydration measurements of different milk protein powders, so as to 

find out the suitable methods to quantify the dynamic rehydration processes. After 

that, Chapter 3 investigated the effects of fluidised bed agglomeration on the 

wettability, dispersability and solubility of different kinds of milk protein powders (MPI, 

WPI, MC, SC, and CC). In addition, high shear mixer agglomeration was also used 

to try to improve the rehydration abilities of milk protein isolate powder in Chapter 5; 

Wurster coating was also used as an alternative method to add lecithin onto the 

difficult-to-wet WPI powders (Chapter 7). Moreover, the study of Chapter 6 reported 

the effects of agglomeration processes on the improvement of MPI powder 

flowability and also the influence on water adsorption behaviours.    
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1 The effects on the structural and physical properties  

It was found that agglomeration and coating processes played critical roles in 

determining the structural and physical properties of milk protein powders. The 

effects are mainly influenced by different process types, granule growth and different 

liquid binders used as discussed below. 

1.1 The effect of differ ent process types  

Based on Chapter 4, 5 and 7, the results show the fluidised bed granulator 

creates agglomerated MPI that is 2 to 4 times (100 mm - 200 mm) greater in size 

than that of the primary MPI powders. The formed agglomerated MPI powder is very 

irregular, showing with less rounded shapes and rougher surfaces than that of non-

agglomerated particles. Meanwhile, large interstitial volume and internal pores are 

also found in the structures generated by fluidised bed, which means low bulk 

density and high porosity values for those agglomerates. However, MPI granules 

produced by HS can reach sizes of more than 1000 mm, which are ~20 times that of 

the primary powders. This is due to the binding bridges being comparatively weak in 

the agglomerates produced by fluidised bed; while the HS granules are consolidated 

by strong mechanical agitation, which lead to much stronger adhesive forces and 

thus tend to adhere more particles (Cuq et al., 2013). This kind of physical 

compaction results in the plastic deformation of agglomerates via a process of 

squeezing-out entrapped air, increased internal pore saturation and reduced porosity 

(Iveson et al., 2001; Reynolds et al., 2006). On the contrary, the Wurster coating 

process is different from agglomeration, as the liquid droplets are uniformly 

distributed on the surface of individual primary particles by layering (Saleh and 

Guigon, 2007). Therefore, compared to agglomerated WPI, the coated WPI had no 
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significant difference in bulk density and porosity values, though some of them may 

have bigger sizes based on their partial agglomeration.   

1.2 The effect of granule growth  

As it is mainly described in Chapter 4 & 5, the effects of different agglomerate 

sizes have been identified. For the agglomerated MPI produced by fluidised bed, the 

larger size is corresponding to more irregular shape properties, having lower 

circularity and convexity. This is believed to be caused by low deformation system 

that contributes to the steady growth behaviour. After the sprayed droplets wet the 

surface of MPI particles, the primary particles start to adhere to each other and form 

the nuclei agglomerates. Then the size continues to grow via the layering of the 

primary particles, where the phenomenon known �D�V�� �³�V�Q�R�Z�E�D�O�O�L�Q�J�´ occurs, which 

finally forms �W�K�H���³�U�D�V�S�E�H�U�U�\�´���V�W�U�X�F�W�X�U�H�V��(Mörl et al., 2007). Bigger size agglomerates 

are usually found to have more porous structures, with more irregular shapes, lower 

bulk density and higher porosity. However, the high shear mixer agglomeration 

exhibits completely different behaviours in the granule growth process, as 

mechanical agitation tends to rapidly coalescence the MPI particles. Firstly, the 

nuclei agglomerates are solidified by the force of agitation, which resulted in the less 

air entrapped and the small interstitial spaces in the matrix. When the nuclei 

granules continued to grow, they coalesced together to create the bigger secondary 

agglomerates, based on the strong bridges that were produced by mechanical forces. 

This process produced the more irregular particles, which increased the void 

volumes among these particles. When the secondary agglomerates reached the 

critical size, the bonds were not strong enough to bind other particles (Hapgood et al., 

2007; Litster and Ennis, 2013). In that case, the granules stopped growing and they 

were highly deformed again by the mechanical solidification. These are the reasons 
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why the granules from HS and FB present the different physical and structural 

characteristics, shown in Table 6-1.   

1.3 The effect of different binders  

The impact of liquid binders on the structural modifications of MPI agglomerates 

are not significant, compared to the factors of processing types and granule growth. 

The different binders including water, 5% lactose and sucrose solution, appeared to 

have no particular effect on bulk loose and tapped densities as well as porosity value. 

Only the small difference in the particle density was found for the agglomerated MPI 

using different liquid binders. In addition, water binding agglomerates had 

comparatively less similarity of a circle and lower convexity, due to higher binder 

liquid concentration resulted in the higher compactness of agglomerates (Szulc and 

Lenart, 2013). Similar results are also observed for agglomerated and coated WPI 

powders in Table 7-1, which shows the particles agglomerated or coated by lower 

concentration lecithin solution (0.5%) had the comparatively more irregular shape 

properties. At the same time, 5 % lecithin solution caused a slightly higher bulk 

density and lower porosity of WPI powders, as the higher concentration of liquid in 

the coating process results in the formation of thicker layers with high compactness. 

2  The effects on rehydration behaviours  

The influences of agglomeration and coating processes on the dynamic 

rehydration processes, including wetting, dispersing and dissolving, have been 

investigated. According to the study, different processes, granule growth and 

different binders (coating materials) are found to contribute differently to the 

rehydration behaviours of different milk protein powders.  
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2.1 The effect of different processes  

The agglomerated casein-dominant powders (MPI & MC) exhibit the 

significantly better wettability, by needing much shorter wetting time, being quickly 

penetrated by water droplets and absorbing more water by capillary force (Chapter 3 

& 4). The small particle size and dense structures are believed to be the rate-limiting 

factors to control the dynamic wetting process of the casein-dominant powders 

(Crowley et al., 2016). Thus, the increases of particle size and powder porosity, 

caused by fluidised bed agglomeration, play beneficial roles in the improving 

wettability. However, some other milk protein powders, e.g. WPI and SC, appear to 

form an impermeable layer at the powder/water interface when they are ready to 

contact water. This results in non-hydrated regions, where water is difficult to break 

through and then penetrate into the particles, due to the special water holding 

capacity for these milk proteins (Peters, 2016). Instead of particle size and porosity, 

the natural physicochemical characteristic of WPI and SC is the main factor that 

determines their wettability. In that case, the structural modifications induced by the 

agglomeration have no obvious influences on accelerating the disappearance of the 

gel-like skins surrounding the particles. On the other hand, as the much larger 

granules with bigger interstitial spaces are produced by high shear granulator, the 

MPI granules are found to be very quickly wetted by water. These granules with high 

particle density are very easily immersed below the water surface by their gravity 

and then water can also penetrate into the interstitial spaces between particles by 

capillary force.  

However, when taking into consideration the solubilisation process, including 

dispersing and dissolving, the study in chapter 3 & 4 has shown that there was no 

significant difference, between the dispersibility and solubility of the agglomerated 
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and non-agglomerated MPI. It is not surprising, as the prolonged solubilisation 

process of milk protein powders are mainly determined by the casein micelles, which 

are very difficult to be collapsed and dispersed under the effect of water erosion 

(Fig.3-6) (Mimouni et al., 2010; Schuck et al., 2007). Therefore, the use of fluidised 

bed agglomeration does not influence the disintegration of micellar structures. 

Furthermore, the densely packed structures generated by high shear mixer 

agglomeration require much longer time to break down into small solids, before they 

are totally solubilised into water. Consequently, the agglomerated MPI makes the 

dispersibility even worse, especially for those primary aggregates of granules 

(nucleus), which led to the slowest release rate of materials. 

2.2 The effect of granule growth  

The effect of granule growth on the rehydration process is actually based on the 

different extents of the physical and structural modifications. According to the 

research in chapter 4 & 5, the larger FB agglomerates with higher porosity are 

related to the more water uptake by capillary rise. Similar results were also observed 

for the large HS granules, which absorbed the greatest amount of water, had the 

least wetting time, as well as caused quickest disappearance of water droplets. It 

can be explained by Washburn equation, as larger particle size combining with big 

interstitial pores resulted in greater mass of liquid by spontaneous intrusion (Lazghab 

et al., 2005; Washburn, 1921). However, as it is discussed previously, the impact of 

agglomeration on the solubilisation is not positive. In Fig.4-6, there is no clear 

relationship between the FB agglomerate size and the dispersibility of MPI. For high 

shear mixer agglomeration process, different granule growth processes delayed the 

release of materials by different degrees. Of these granules, the nuclei granules 

present the greatest granule strength that can resist the agitation force, as highest 
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mechanical energy is required to separate the primary aggregates and disperse 

them into the medium (Fig.5-4). It is believed that the strength of formed granules 

was weaker than that of primary nuclei structures, because of the final granules 

consisting of several nuclei granules, layering and filling by the primary particles and 

the particles that broke down from other granules by attrition. More adhesive forces 

are needed for the formation of larger granules, which thus are more easily to break 

down. 

2.3 The effect of different binders  

As the effect of different binders on the structures of milk protein powder is not 

significant, thus the subsequent influence on the rehydration process is also limited, 

which is reported by the study of chapter 4. In that case, the only possible approach 

is regarding to the chemical functionality of the added material itself. For example, as 

the most used food grade surfactant, lecithin can be potentially used to improve the 

rehydration of milk protein powders (Dashiell, 1989). In chapter 7, the study 

demonstrates that the addition of lecithin dramatically shortens the wetting time for 

WPI powder, which is believed to be one of the most difficult-to-wet milk protein 

powders (Schuck et al., 2012). Especially when adding lecithin solution by fluidised 

bed agglomeration, WPI powder only requires several seconds to be completely 

wetted. Meanwhile, the WPI coated by lecithin solution appear to form the weaker 

layers, where water more easily penetrates through and wets the particles. It is due 

to the ideal wettability of a powder depends on the particle size, porous structures 

and surface tensions (contact angles by water), which are all necessary factors to 

determine the dynamic wetting behaviour (Crowley et al., 2016). On the other hand, 

the effects of different binders on the dispersing and dissolving processes can be 

ignored, as the micelle structures are the main reason to delay the rehydration 



Chapter eight 
    

231 
 

process of casein-dominate powders. However, it will be also interesting to see if 

lecithin still plays a beneficial role on the solubilisation after powders are wetted. It 

may need further study in the future.  

3 The effects  on flowability and water adsorption  

It is commonly believed that adhesive forces are usually the source of such flow 

problems for fine-grained dry bulk solids. The major adhesive forces are based on 

van der Waals interactions and the intensity of the forces mainly depend on the 

particle size as well as the distances between individual particles (Fitzpatrick, 2013; 

Schulze, 2007). When the distances are small or the surfaces of particles are in 

contact, van der Waals forces have a large influence. This can be the reason why 

the non-agglomerated MPI powders with small size have poor flowability. The FB 

agglomerates have large sizes and rough surfaces, which result in an increase in 

distance and thus a reduction of adhesive forces. The granules from HS also 

presented similar behaviours, as their adhesive forces were no longer dominant 

compared to the gravity force. The dense packed structures allow the granules to 

flow more freely. If considering the friction between bulk solids and solid surfaces, 

e.g. the wall of a hopper, the angle of wall friction as a function of stress is important 

for quantifying the wall friction during hopper design. Significant differences were 

observed for the HS granules associated with various sizes, presenting the large wall 

friction angles with different degrees. It is due to their high bulk density caused more 

force transferring through wall shear stress, which meant the large wall friction force 

and thus attained the big angles of wall friction.  

Isotherms and kinetics are the two most used methods to evaluate the water 

adsorption behaviours of dairy powders. In Fig.6-3, the water adsorption isotherms 

all have a linear slope, regardless of the type of granulation process. There was no 



Chapter eight 
    

232 
 

significant difference between the non-agglomerated MPI and the FB agglomerates, 

which adsorbed almost the same quantity of water. The interior porous structures 

formed by fluidised bed had no significant effect on the rate and extent of hydration, 

and water molecules seemed to enter and exit as easily as that occurring in non-

agglomerated MPI. However, the HS granules were found to adsorb less water from 

the surrounding environment, suggesting that moisture vapour is more difficult to 

penetrate into the structures and form layers on the surface of internal primary 

particles. On the other hand, the HS MPI granules had more compacted structures, 

restricting diffusion of water into the internal surface as a result of reduction of 

surface-binding sites for water to adsorb (Al-Muhtaseb et al., 2002). Therefore, the 

large particles with low specific surface area are believed to retard the moisture 

adsorption behaviour of milk protein powders. 

4 Overall conclusion  

�x Based on the different agglomeration mechanisms, the MPI powders 

agglomerated by FB generally present a 2 to 4 times (100 mm - 200 mm) 

increase in size over the primary powders. The formed agglomerates have the 

most irregular morphology by showing the least spherical shapes and 

roughest surfaces. It also results in porous structures with lowest bulk density 

(both loose and tapped) and highest porosity values. 

 

�x MPI granules produced by HS can reach sizes of more than 1000 mm, which 

are ~20 times that of the primary powders. Under the effects of high shear 

agitation forces, the granu�O�H�¶�V�� �V�K�D�S�H�� �L�V�� �P�R�U�H�� �O�L�N�H��a sphere and its surface is 

comparatively smooth. In addition, the densely packed structures for those HS 

granules cause the highest bulk density and lowest porosity values.  
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�x Poor wettability was the rate-limiting factor for WPI and SC rehydration, while 

poor dispersibility was the main problem for MC rehydration. Both MPI and 

CC displayed both poor wettability and poor dispersion. Special water holding 

capacity is the main reason for the poor wettability of WPI and SC, which tend 

to form an impermeable layer at the powder/water interface when contacting 

with water; while the prolonged solubilisation of MC and MPI are due to the 

strong interactions in micellar structures, where the casein micelles are 

difficult to be collapsed and dispersed under the effect of water erosion. 

 

�x Fluidised bed agglomeration has the beneficial role of improving the dynamic 

wetting process of MPI and MC powders, by requiring shorter wetting times, 

being more quickly penetrated by water droplets and absorbing more water by 

capillary force. The MPI granules based on high shear mixer agglomeration 

appear to be more easily wetted by water. The effects are more significant if 

the larger MPI granules are produced and bigger interstitial spaces are 

formed. 

 

�x When using lecithin solution as a liquid binder, the agglomerated WPI only 

requires several seconds to be completely wetted and also allows quick water 

penetration. However, high coverage of lecithin by coating process gives a 

more advantageous first wetting step. The ideal wettability of a powder 

depends on the particle size, porous structures and surface tensions (contact 

angles by water), which are all necessary factors to determine the dynamic 

wetting behaviour. 
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�x Agglomeration processes showed no beneficial influence on the solubilisation 

process of different milk protein powders. In fact, the densely packed 

structures created by high shear mixer largely delayed the release of 

materials during the rehydration of MPI powders.  

 

�x The MPI with densely packed structures made by high shear mixer granulator 

adsorbed least moisture and showed the slowest adsorption kinetics during 

storage at different relative humidities. The agglomerated MPI with loose and 

porous structures by FB exhibited no significant difference, compared to the 

non-agglomerated powder.  

 

�x Large MPI granules have significantly better powder flow behaviours. 

Agglomeration processes can effectively reduce the minimum outlet 

diameters of hoppers for reliable flow from both mass-flow or core-flow 

hoppers. However, large wall friction angles caused by the HS granules 

(especially the smaller granules) may also require steeper hopper walls to 

discharge bulk solids and avoid them remaining at rest. 

5 Future work  

Based on the current research, it is found that agglomeration and coating processes 

play critical roles in modifying the structures and surface composition of dairy 

powders. They may be considered to link to other functionalities, e.g. caking, particle 

breakage (friability) or viscoelastic behaviour and thermo-mechanical transitions, 

which are also very important to the production of dairy powders in industry. For 

example, caking behaviour is the undesired phenomenon for lactose-based dairy 

powder, which often occurs by forming bridges between lactose particles. It is mainly 
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dependent on surface composition, particle size and shape as well as the 

consolidation environment with relative humidity and temperature. In that case, the 

post-dehydration process can not only increase the particle size and surface 

roughness (decrease contact area), but also change lactose distribution on the 

surface of particles. Therefore, it presents potential effects to reduce the caking 

behaviours of lactose-based dairy powders.  

Relationships between the post-dehydration process and the final functionality of 

dairy powders are necessary to study by establishing statistical models, which 

enable the prediction and control of functionality. So far, a great number of statistical 

models have been set up for pharmaceutical powders, thus there is scope for 

application to food powders. At the same time, with the rapid development of 3D 

printing technology, the structural design for powders may become possible in the 

future. The unified particles with the controlled particle size distribution, shape, 

density and porosity can be designed and used to validate the models tailored for 

powder rehydration, water adsorption and other food powder functionalities. 

C�R�Q�V�H�T�X�H�Q�W�O�\���� �L�W�� �L�V�� �E�H�O�L�H�Y�H�G�� �W�R�� �E�H�� �D�� �Q�H�Z�� �R�S�S�R�U�W�X�Q�L�W�\�� �I�R�U�� �³�V�P�D�U�W�� �S�U�R�F�H�V�V�´�� �L�Q�� �I�R�R�G��

technology.  
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a b s t r a c t

Rehydration is an important powder property and is regarded as a critical issue by the dairy industry.
Traditional powder rehydration measurements are relatively empirical with poor reproducibility. Thus,
more reliable techniques tailored for dairy powders should be developed based on varied rehydration
behaviours and applications. In this paper, a critical assessment to identify the measurement charac-
teristics of milk protein powder rehydration is presented. Milk protein based powders were used as
model systems. Four different wettability measurements (Immersion, Capillary rise, Condensation and
Spreading) and four different dispersibility measurements (Dispersibility Index, Light scattering of par-
ticles in suspension, Light transmission and Conductivity of suspension) are compared and analysed. The
results show that the method based on immersional wetting procedure is only appropriate for skimmed
milk powder while the method for capillary rise wetting is more useful for the agglomerated milk
protein powders with porous structures. Contact angle changes in the spreading wetting approach is
found to be a straightforward technique to show the hydrophobicity or hydrophilicity of milk protein
powders. If compared with traditional dispersibility measurements, light transmission of suspension is
suitable to re � ect optical properties of slow dispersion process. Light scattering methods can also be used
to measure the dynamic size change of particles during the dispersion process. Furthermore, the con-
ductivity of suspensions is a useful indicator to quantify the dispersibility indirectly by the release of
minerals during rehydration. In summary, it is necessary to understand the specialities and applications
of dairy powders before choosing the appropriate rehydration measurement methods.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Rehydration properties are considered as an important bench-
mark to determine the overall quality of powder products. In the
dairy industry, powder rehydration is regarded as a critical issue as
some powders exhibit poor wettability with the materials � oating
on the surface of solution and others dispersing very slowly
accompanied by lump formation, which is especially the case for
high-protein-containing powders ( Anema, Pinder, Hunter, &
Hemar, 2006; Havea, 2006). Traditional dairy powder rehydration
measurements, which were often designed for the analysis of
instant skimmed milk powder or whole milk powder, are thus
relatively crude with poor reproducibility for other specialty milk

protein products (i.e., micellar casein, whey protein or milk protein
isolate powders). Therefore, more analytical approaches have been
developed to observe each dynamic step and to � nd the methods to
quantify the kinetics of powder rehydration process ( Crowley et al.,
2015; Fang, Selomulya, & Chen, 2010; Forny, Marabi, & Palzer, 2011;
Freudig, Hogekamp, & Schubert, 1999; Gaiani, Scher, Schuck,
Desobry, & Banon, 2009; Marabi et al., 2008; Mimouni, Deeth,
Whittaker, Gidley, & Bhandari, 2009). However, it is a challenge
to � nd a universal method to measure the rehydration abilities of
varied dairy powders, as they present signi � cantly different be-
haviours during the rehydration process. Recent studies have
shown that whey protein isolate powder has poor wettability and
that the wetting stage is the main limiting factor for whey protein
rehydration. In comparison, the slow dispersion of micellar casein
is responsible for its extended rehydration time. Whereas for milk
protein isolate, both wetting and dispersing processes are rate-
limiting steps ( Gaiani, Schuck, Scher, Desobry, & Banon, 2007;
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Schuck et al., 2007). Consequently, it is necessary to examine the
feasibility of the existing techniques for determination of the
rehydration of milk protein powders and to validate the every
typical powder and technique case by case in order to � nd the most
appropriate one.

It is commonly believed that wetting is the critical step in
powder rehydration process, as powder materials with poor
wettability have limited access to contact with water which then
causes the formation of non-hydration regions. In general, wetting
behaviour can be assessed through different procedures including
immersional wetting, capillary wetting, condensational wetting
and spreading wetting in Fig. 1, which was modi � ed and developed
from the other researches ( Israelachvili, 2011; Lazghab, Saleh,
Pezron, Guigon, & Komunjer, 2005 ). The immersional wetting
process uses the time required for a given mass of powder to
submerge fully below the liquid surface as a measure of wettability.
But it is mainly of practical use for dairy powders that are easy to
wet whereas milk protein based powders tend to � oat on the sur-
face of the liquid and so wetting time is no longer a useful measure.
Thus, it is interesting to assess which kind of dairy powders will be
suitable for characterisation by this traditional immersional wet-
ting process. Secondly, capillary rise wetting is a process whereby
the liquid penetrates into the solid porous structure by capillary
force. For this case, the Washburn method is mostly used, which
can be quanti � ed by the mass of adsorbed liquid as a function of
time ( Ji, Cronin, Fitzpatrick, Fenelon, & Miao, 2015; Thakker, Karde,
Shah, Shukla, & Ghoroi, 2013; Washburn, 1921 ). However, the
feasibility of this approach for dairy powders is still not validated,
as some researches have shown that spontaneous liquid penetra-
tion only occurs if the contact angle between the liquid and solid is
lower than 90 � (Yuan & Lee, 2013). Also the wetting behaviour by

capillary rise is not only in � uenced by the actual wettability but
also by the porous architectures of solids ( Buckton & Newton,
1986). Thirdly, the condensational wetting process concerns the
adsorption of moisture vapour on a solid surface and faster wetting
usually corresponds to higher rates of vapour sorption
(Israelachvili, 2011 ). The method uses different salts solution in
desiccators to provide varied relative humidity environment for
powder adsorption ( Schuck, Jeantet,& Dolivet, 2012 ). Hence uptake
of water vapour may represent totally different wetting behaviours
for milk protein powders compared to wetting by liquid water
where surface tension effects need to be considered. Finally, the
spreading wetting process focuses on the contact angle when a
given amount of a liquid spreads over a solid substrate
(Israelachvili, 2011; Rouquerol, Rouquerol, Llewellyn, Maurin, &
Sing, 2013). The method examines a single liquid drop pene-
trating into solids and thus evaluates the wettability by monitoring
the changes in contact angles over time. In summary, all four
methods corresponding to different wetting procedures have been
widely used in pharmaceutical research, however few applied in
dairy powder research. Therefore, it is important to identify
whether the analytical methods based on these four wetting pro-
cedures are suitable for the typical milk protein powders.

Dispersibility is also believed to be an important step in the
rehydration process, as it is necessary for particles to be dispersed
into the liquid before dissolving ( Galet, Vu, Oulahna,& Fages, 2004;
Goalard, Samimi, Galet, Dodds, & Ghadiri, 2006 ). The dispersion
process is accompanied by the transfer of particle mass, particle
size and particle energy, which can be used as the indicators to
quantify the process ( Forny et al., 2011). The use of the dispersibility
index is the traditional standard method to measure the amount of
dry matter combining simple mixing in a liquid followed by sieving.

Fig. 1. Different wetting procedures.
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Limitations of this method are that it cannot monitor the dynamic
dispersing process and it is often in � uenced by the wetting
behaviour of powders as they need to be wetted � rst. Therefore,
more effective methods have been found for improved monitoring
of the particles dispersibility. The most common method is the use
of an optical � bre sensor to collect the intensity of light scattering of
particles in suspension. Based on the principles of forward light
scattering, it has been used to measure the particle size distribution
over the mixing time and to monitor the dispersibility of powders
in terms of the variation in particle size ( Chen & Lloyd, 1994; Galet
et al., 2004). Moreover, transmission of near-infrared light has also
been used to exhibit the dynamic process of solids dispersing in the
suspension during centrifugation ( Crowley et al., 2015 ). Although
some studies have shown light scattering and transmission to be
reliable methods to monitor dispersion behaviour for food powders
and milk protein powder ( Crowley, Kelly, & O'Mahony, 2014; Fang,
Selomulya, & Chen, 2007), it is still required to examine and
investigate the selectivity of these methods with other dairy
powders as they present completely different dispersion behav-
iours. Additionally, conductivity is another possible approach to
express the kinetics of dispersing process via the release of min-
erals in suspension ( Zhuang, Zhou, Nguyen, & Hourigan, 1997 ).
Numerous studies reported that some minerals had approximately
the same dissolution rate as micellar casein ( Holt, 1997; Mimouni,
Deeth, Whittaker, Gidley, & Bhandari, 2010). However, it is still
not fully understood whether the conductivity method is capable of
quantifying the dispersion of MPI or MC and other non-casein dairy
powders.

In this paper, four wettability methods and four dispersion
methods are applied to measure the rehydration behaviour of six
milk protein powders, which are whey protein isolate (WPI),
micellar casein (MC), sodium caseinate (SC), milk protein isolate
(MPI), MPI agglomerate and skimmed milk powder (SMP). The
objective is to evaluate the advantages, drawbacks and limitations
of each of the methods and to identify which methods are more
suitable for assessing the rehydration behaviour of milk protein
powders.

2. Materials and methods

2.1. Materials

MPI, SC and SMP were supplied by Kerry Ingredients (County
Kerry, Ireland). WPI was supplied by Davisco Food International (Le
Sueur, MN, USA). MC was produced from skimmed milk powder by
� rstly micro � ltration with 100 kDa molecular weight membranes.
The retentate is concentrated by vacuum evaporation and the
concentration process was performed at a temperature of 65 � C.
The solid concentration of about 38% was then obtained by the
water removal. Finally, the concentrated solution was spray dried to
obtain the MC powders. The inlet and outlet temperatures were
180 � C and 85 � C, respectively, and the drying air- � ow rate is
750 m 3 h� 1. The manufacture of agglomerated MPI powder was
described in details in the study of Ji et al. (2015). Brie� y, 100 g 15%

lactose solution was used as the binding liquid which was pro-
gressively added to 200 g MPI powder (1 mL min � 1) in a top-spray
� uidised bed granulator (VFC-Lab Micro � o-coater, Vector Corpo-
ration, Lowa, USA). The temperature of injected air was 50 � C and
the air � ow rate was 200 L min � 1. After the addition of lactose
solution, the obtained powder was dried with hot air at 100 L min � 1

� ow rate and 50 � C temperature for a further 15 min. The compo-
sitions of the milk protein powders are shown in Table 1. All the
powders were dried in a vacuum oven (Jeiotech, Seoul, Korea) at
45 � C overnight to obtain the � nal moisture content of about 1.5%.
They were kept in the desiccators before the wettability and dis-
persibility measurements.

2.2. Wettability measurements

2.2.1. Wetting time by immersional wetting procedure
This method is used to quantify the wettability of dairy powders

by the time needed to achieve complete wetting of a given quantity
of powder, when powder is gently dropped on the surface of water
and immersed without any agitation ( Schuck et al., 2012). In this
study, 6 g powder samples were � lled into a standard 400 mL
beaker, which contained 100 mL of distilled water with 20 � C
temperature. Powder was considered as wettable if wetting time
was less than 60 s and non-wettable if wetting time was greater
than 120 s ( GEA Niro, 2005). All the measurements were repeated
three times.

2.2.2. Modi� ed Washburn method by capillary rise wetting
Washburn method is a common technique to measure the

wettability of powders based on capillary rise wetting behaviour. It
usually monitors the rate that a liquid penetrates into powders or
granules by recording the penetration depth of the liquid inside the
capillary as a function of time ( Washburn, 1921 ). However, the
method can be derived and developed into other forms, e.g. the
depth of penetrated liquid is instead of mass. The principle of the
instrument was described in the study of Ji et al. (2015). A 2 g
powder sample was loaded into a cylindrical glass tube with an
open base bottom covered by � lter paper and gauze. The tube was
set just above the surface of distilled water at 25 � C. The wettability
of powder was quanti � ed by the additional mass of the wetted
powder in 10 min, which was the weight of adsorbed water by the
powder. Each sample was measured � ve times.

2.2.3. Water adsorption by condensational wetting
Condensational wetting procedure can be considered as water

vapour adsorption and was determined by static-gravimetric
method. Triplicate 1 g powder samples of each dairy powder
were stored in empty glass vials of known weight. The powders
were kept in desiccators with a stable relative humidity, which
ranged from 11% to 75%, until equilibrated. The hygroscopic envi-
ronment (R.H.) was provided by different saturated salt solutions
which were LiCl (11%), CH3COOK (22%), MgCl2 (33%), K2CO3 (43%),
Mg(NO3)2 (53%), NaNO2 (65%) and NaCl (75%). The desiccators were
evacuated before they were stored in a 25 � C incubator. The weight

Table 1
Composition of dairy powders investigated in this study.

Dairy powder Protein (%, w/w) Moisture (%, w/w) Lactose (%, w/w) Fat (%, w/w) Ash (%, w/w)

MPI 86.0 4.0 <1.0 1.5 6.0
Agglomerated MPI 82.0 5.0 6.2 1.4 5.6
WPI 90.0 5.0 <1.0 1.0 3.0
MC 84.0 5.0 2.0 1.0 7.5
SC 88.0 5.7 <1.0 0.7 4.7
SMP 36.0 4.0 51.0 0.8 8.2
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of powder was measured for at least 96 h until it reached a constant
value. The results were expressed as equilibrated moisture content
as a function of water activity to show the water vapour adsorption
isotherms.

2.2.4. Contact angles by spreading wetting
The measurement of contact angle is a direct method to mea-

sure the tangent angle at the contact point of three phases. Due to
the dynamic process for the wetting behaviour, it is usually to
monitor the rate of change of contact angle to quantify the wetta-
bility of powders ( Crowley et al., 2015 ). Thus, an optical tensiometer
(Attension Theta, Biolin Scienti � c Ltd., Espoo, Finland) was used to
measure contact angle ( q) of 12 mL deionised water droplet by the
sessile drop technique with dynamic live measurements at a tem-
perature of 20 � C. Before measurement powders were loaded into
an aluminium pan (ø ¼ 100 mm, h ¼ 7 mm) and a smooth surface
was formed by passing a leveller across the surface. The volume of
the remaining water droplet above the solids during the wetting
process was also evaluated (Yuan & Lee, 2013). The measurements
for each sample were repeated at least 5 times.

2.3. Dispersibility measurements

2.3.1. Dispersibility index
The Dispersibility Index (DI) is de � ned as the percentage (%) of

dry matter that passes through a sieve after mixing for a short time
with a spatula. The sieve with mesh size of 250 mm is used to
separate the dispersed particles from the suspension based on the
extent of dispersion ( Schuck et al., 2012). In this study, 10 g powder
was added into a 250 mL beaker with 100 mL deionised water at
25 � C and then mixed vigorously with a spatula for 15 s in order to
make 25 complete circle stirring movements along the diameter of
the beaker. After that, the reconstituted samples were then poured
onto the 250 mm sieve to separate the dispersed particles in the
suspension based on the extent of dispersion, and the samples that
passed through the sieve were collected in a bottle for further
drying at 105 � C temperature overnight in an oven. The extracted
dry matter was weighed and used to calculate the DI as following
Equation (1):

DI ¼
Wd$ð100 þ wÞ

w$100� Wm
100

(1)

where w is the weight of sample, Wd (%, w/w) is the dry matter after
sieving, Wm (%, w/w) is the free moisture content of the powder.
The measurements for each sample were repeated 3 times.

2.3.2. Particle size measurements by laser light scattering method
Laser light scattering method based on Malvern Mastersizer

3000 (Malvern Instruments Ltd, Worcestershire, UK), was used to
quantify the powder dispersion process in term of decreasing rate
of particle size. The detailed measurement principle of the machine
was described in the study of Ji et al. (2015). In order to reach the
ideal obscuration range of the machine, approximately 5 mg MPI,
MC, SMP and 100 mg WPI and SC were added into dispersion unit
with 120 mL distilled water at a temperature of 25 � C ± 2 � C and
then agitated at 2000 rpm. Triplicate measurements were carried
out for each powder. Particle size distributions were recorded every
2 min until D (50) reached ~1 mm (the diameter of 50% particles was
just lower than 1 mm) ( Ji et al., 2015; Mimouni et al., 2009 ).

2.3.3. NIR transmission measurements by Lumisizer
Lumisizer (L.U.M. GmbH, Berlin, Germany) is an analytical

centrifuge, which was used to quantify the dispersibility of milk

protein powders by measuring the intensity of transmitted near-
infrared light in suspension. 1.5 g samples were rehydrated into
100 mL deionised water at a temperature of 25 � C. 1.5% (w/v)
concentration suspension was then obtained through agitating by a
magnetic stirring bar (length 2.5 cm) with a rate of 400 rpm for
30 min. After that, 400 mL suspensions were sampled by 16 gauge
needles to � ll into polycarbonate cells. The sampling positions al-
ways had a constant distance (approximate 1 cm) from bottom of
the beaker. The measurements were carried out by two different
centrifugations; � rstly 36 g for 10 min and then followed by 168 g
for further 10 min. The intensity of the transmission of NIR light
was measured in the distinct regions of the sample cell and was
related to the different phases of dispersion, including stable so-
lution, initial sediment and compressed sediment, which created
the varied optical densities. The transmission pro � les were pre-
sented every 10 s for the � rst 10 min 36 g centrifugation and then
every 60 s for next 10 min 168 g centrifugation. Integral trans-
mission of each pro � le was calculated by software SepView 4.1
(L.U.M. GmbH, Berlin, Germany) and is shown as a function of time.
Meanwhile, compressed sediment height under 36 g and 168 g of
centrifugation was determined by the area of greatest optical
density, which means the area of lowest transmission but sub-
tracting the steady-state value caused by the cell bottom ( Crowley
et al., 2015).

2.3.4. Conductivity measurements during particles dispersing
Conductivity meter (FE30-Kit e FiveEasy™ conductivity, Mettler

Toledo Ltd., Greifensee, Switzerland) was used to measure the
release of minerals accompanied by the rehydration of powders
and showed the ionic strength of reconstituted powders. Each
sample weighting 8 g was poured into 400 mL deionised water and
wetted by the vortex as rapidly as possible. A 2% w/v solid sus-
pension was created and mixed at 500 rpm in a 25 � C water bath.
Deionised water was used and had a conductivity value of
67 ms cm� 1. The probe was calibrated at 25 � C with a standard so-
lution of known conductivity value of 1314 ms cm� 1 before placed in
the suspension. The values were recorded every 10 s for the � rst
2 min, followed by every 60 s for next 10 min and every 10 min for
� nal 90 min. The measurements for each sample were repeated at
least 3 times.

3. Results and discussion

3.1. Wetting behaviours of milk protein powders based on different
wetting procedures

3.1.1. Wetting time by immersional wetting
As can be seen from Table 2, only the skimmed milk powder can

be considered to be wettable with a wetting time of 22 s. The other
powders required very long times in excess of 20 min (although the
agglomerated MPI did have a time of 8 min). The result is not
surprising because skimmed milk powder contains high content
hydrophilic lactose, which allows water easily penetrating into the
particles and thus sinking and dispersing quickly in the water. But
for other high protein powders, there was an impermeable hy-
drophobic layer formed between the water surface and powders.
This layer separated the water and the powder so that water had no
access to penetrate into powder particles and caused the formation
of non-hydration regions ( Gaiani et al., 2007; Schubert, 1993 ). In
that case, the interface of solid and gas was dif � cult to be replaced
by the interface of solid and water due to the high content of hy-
drophobic milk protein powder with low porosity. Therefore, the
traditional method based on immersional wetting procedure was
not suited for the milk protein powders with poor wettability.
Moreover, as powder wetting behaviour is a dynamic process, it is
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better to measure the kinetics of wettability, which usually can be
quanti � ed by the associated free energy change when the type of
interface is transformed ( Yuan & Lee, 2013).

3.1.2. Modi� ed Washburn capillary rise wetting method
It is obvious to see that capillary rise wetting method is largely

dependent on the inter-particle pores of powder samples and the
choice of liquid, which determines the surface tension and viscosity
(Forny et al., 2011). Hence, it is the reason why agglomerated MPI
with porous structure showed the greatest wettability in Fig. 2,
which absorbed more than 1 g water in 10 min ( Ji et al., 2015). At
the same time, MC powder also showed comparatively good wet-
ting behaviour as it absorbed nearly 0.5 g water. But for SC and WPI
powders, they were only slightly wetted by water because water
cannot penetrate into a powder spontaneously if high contact angle
(q > 90� C) and negative capillary pressure ( Lazghab et al., 2005;
Palzer, Sommer, & Hiebl, 2003; Yuan & Lee, 2013). Moreover, it is
interesting to � nd that SMP powder only gained about 0.1 g weight
after 10 min of the capillary wetting procedure, which should be
wetted by water much more easily. However, SMP might dissolve
quickly in the measuring water during measurement so that pure
water was replaced by the drops of solution saturated with SMP. It
caused the viscosity of liquid to increase, which decreased the rate
of water uptake at the point at which the weight of water balances
the capillary pressure ( Stamm, Gissinger, & Boymond, 1984 ).
Consequently, the modi � ed Washburn method based on capillary
effect was concluded to be sensitive to agglomerates with high
porosity but not applicable for dairy powders that are easy-
dissolved.

3.1.3. Water adsorption by condensational wetting
In Fig. 3, WPI and SC powders were found to adsorb the greatest

mass of moisture at relative humidity value from 11% to 75%. It is
inconsistent with the results measured by other wettability
methods, which showed WPI and SC powders had extremely poor
wettability. It is explained previously as the formation of an
impermeable layer at the powder e water interface. However, for
condensational wetting behaviour, the water vapour seemed to
more easily penetrate into powdered solids and wetted them
without creating any � lms or layers, although the vapour may
condense into liquid droplets during the process ( Depalo &
Santomaso, 2013; Lazghab et al., 2005). Hence, WPI and SC may
have the higher rates of vapour adsorption and better wettability by

the condensational wetting mechanism. Fig. 3 also illustrates that
unagglomerated MPI and agglomerated MPI powders have no
obvious difference in the isotherm data, which means that
agglomeration process played no special role on MPI's water
sorption behaviour. SMP exhibited different water adsorption
isothermal behaviour from other powders, with no increase in
moisture adsorption between the water activity values of 44% and
53%. This behaviour is consistent with previous reports that
demonstrated lactose content in SMP reduced water adsorption
due to crystallisation ( Bronlund & Paterson, 2004; Jouppila & Roos,
1994; Shrestha, Howes, Adhikari, & Bhandari, 2007).

Water adsorption phenomenon of different milk protein pow-
ders has been discussed many times elsewhere ( Berlin, Anderson, &
Pallansch, 1968; Foster, Bronlund, & Paterson, 2005; Kinsella & Fox,
1986; Murrieta-Pazos et al., 2011 ). Few of them mentioned the
adsorption properties as an indicator of powder wettability.
Generally, wetting behaviour is evaluated as the critical � rst step of
rehydration process of powders ( Depalo & Santomaso, 2013;
Hogekamp & Schubert, 2003). But in this study, condensational
wetting was discussed as an exceptional issue due to solids being
wetted by water vapour instead of contacting water or water
droplets directly. This method is different from other three wetting
methods (immersion, capillary rise and spreading) based on the
contact angle of liquid phase and solid phase ( Kwok & Neumann,
1999), while condensational wetting procedure focused on the
adsorption of saturated vapour, where the interfacial effects are less
pronounced. Therefore, though this static-gravimetric method for
water sorption measurement could quantify the vapour wetting
with high accuracy and good reproducibility, it is not able to assess
the wettability regarding powder rehydration process. But vapour
wetting may still provide some insights into general wettability of
dairy powders.

3.1.4. Contact angles by spread wetting
Contact angle is usually used as a primary parameter to indicate

the degree of wetting process with a small contact angle ( q < 90� )
representing good wettability and large angle ( q > 90� ) corre-
sponding to poor wettability ( Gao& McCarthy, 2006; Mittal, 2006 ).
As the surface of liquid is exposed to wet the fresh surface of solid

Table 2
Wetting time of dairy powders by immersional wetting procedure.

SC WPI MPI Agglomerated MPI MC SMP

Wetting time >20 min >20 min >20 min 8 min ± 2 min >20 min 22 s ± 3 s

Fig. 2. Mean weight of absorbed water for samples (SC, WPI, MPI, Agglomerated MPI,
MC and SMP) after 10 min.

Fig. 3. Water vapour adsorption isotherms of dairy powders (MPI, WPI, MC, SC, SMP
and Agglomerated MPI) at 25 � C environment.
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after liquid drop and solid interact, it is important to monitor the
rate of change of contact angle until reaching an equilibrium angle.
It means wetting behaviour is dynamic procedure other than a
static state ( Link & Schlünder, 1996). Thus, in this study, it showed
how the contact angle of samples changed and also the volume of
droplets above the substrate decreased as a function of time.

According to Fig. 4A, B, the contact angle of SMP reduced
dramatically in just 5 s with a � nal angle of 60 � and 3.5 mL water
volumes remained. MC powder was second fastest, which took
about 15 s to reach the equilibrium. Meanwhile, agglomerated MPI
was found to be more easily and quickly penetrated by water
droplet than that of unagglomerated MPI, because of the signi � cant
effect of agglomeration process on improving the wettability of MPI
(Ji et al., 2015). WPI and SC powders exhibited extremely poor
wetting behaviours with contact angles changing only by about 40 �

and 10� in 5 min, respectively. This method showed advantages due
to its simple operation, straightforward observation and high
selectivity for dairy powders ( Crowley et al., 2015 ). It only needs a
small amount of liquid and a small powder contact surface area
(Letellier, Mayaffre, & Turmine, 2007 ). However, there are still some
limitations for the optical tensiometer method. Firstly, the dynamic
contact angles were dif � cult to measure with high reproducibility
and accuracy at high speed rate ( Hunter, 2001 ), this was noted for
the results of SMP, MC and agglomerated MPI. Also granule beds
with rough surfaces can also pose problems in the assignment of
the tangent line, as non-smooth surface is likely to cause variations
of contact point along the contact line ( Rotenberg, Boruvka, &
Neumann, 1983 ). Although the limitations regarding of how � at
the surface should be for measurements are unknown, there are a
series of techniques for powder presentation to prepare the surface

as smooth as possible, including solid compacts by a hydraulic press
(Crowley et al., 2015 ), dip coating ( Spelt & Vargha-Butler, 1996 ) and
surface polishing ( Vargha-Butler, Kashi, Hamza, & Neumann, 1986 ).
Care should be taken to minimize alteration in the physical archi-
tecture of the powder particles during generation of a powder bed
with a smooth surface.

3.2. Dispersing behaviours of typical dairy powders based on
different measurements

3.2.1. Dispersibility index
DI is most widely used parameter to describe the dispersibility

of powder particles by measuring the mass percentage of dry
matter that pass through the sieve after simple stirring. This
method is easy to operate and can quantify the dispersion behav-
iour of dairy powders directly with low-cost.

Fig. 5 shows the dispersibility of SMP and MC was the highest
with 95% and 49% DI values, respectively. The result of SMP was
similar to that reported by Schuck et al. (2012), but not for MC,
which is only 24% DI value according to their research. It is due to
some drawbacks in the selectivity of this traditional method as it is
not suitable for other milk protein powders with poor wetting
behaviour. The results in Fig. 5 show the DI values of WPI and SC
were only 39.58% and 6.63% respectively, which were lower than
expected. This was caused by samples not being properly wetted
before they began to disperse in the suspension. The periphery of
most WPI and SC particles were surrounded by impermeable layers
during the simple stirring process which restrained materials from
contacting with water. Therefore, the feasibility of the DI method is
believed to be largely dependent on the wettability of dairy pow-
ders. Besides that, the reproducibility and accuracy of the mea-
surements also rely on the consistency of multiple operators in
treatment of stirring and transferring suspension into sieves, even
if there are clear guidelines to follow. Furthermore, the DI param-
eter is not adequate to quantify the whole dispersion process as it
only shows the � nal state of dispersed particles. Whereas, disper-
sion is a dynamic process accompanied by the release of materials
and the transfer of particle size, particle mass and energy ( Forny
et al., 2011).

3.2.2. Particle size measurements by light scattering
Light scattering method has been shown to be an applicable tool

to measure the dispersibility of powders based on the change of
particle size and the undissolved particle volume concentration
(Chen & Lloyd, 1994; Ji et al., 2015; Mimouni et al., 2009; Richard
et al., 2013). It is commonly believed, during the rehydration pro-
cess, the size of dispersing particles is decreasing and thus the

Fig. 4. AB. A: The change of contact angle (� ) as a function of time using the sessile
drop technique in approx.20 � C temperature. B: The change in the volume of droplet
(mL) above the solids as a function of time during the wetting process in approx.20 � C
temperature. The initial volume of water droplet was approx.12 mL.

Fig. 5. Dispersibility index for samples. (SC, WPI, MPI, Agglomerated MPI, MC and
SMP).
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dispersibility can be quanti � ed by the decrease rate of particle size.
Meanwhile, it is necessary to evaluate the volume concentration
due to powders consist of thousands of single particles. Thus,
Fig. 6A showed how the volume concentration of undissolved
particles decreased during the dispersion as a function of time.
Using standard MPI powder as an example, the initial particle size
of MPI was about 70 mm with high volume concentration (Single
peak A) at the � rst stage of rehydration. As dispersion proceeds, the
migration of peak and a bimodal distribution of particle size is
observed, which results from the continuous release of particle
materials into the surrounding aqueous phase ( Fang, Selomulya,
Ainsworth, Palmer, & Chen, 2011). With further rehydration, the
volume concentration of small particles increased until another
primary peak (Peak B) appeared and thus remained at a constant
size of 0.3 mm at 60 min mixing time. The relationship of the par-
ticle size distribution of different dairy powders and the mixing
time are present in Fig. 6B. Based on these results carried out by the
light scattering, the migration of particles size of casein-dominant
powders (MC, unagglomerated MPI and agglomerated MPI) with
a slow-dispersion process can be clearly observed. MC powder took
approximately 20 min to be mostly solubilised while MPI needed
40 min. There was no signi � cant difference between agglomerated
and unagglomerated MPI, which was previously explained in the
study of Ji et al. (2015). At the same time, it was dif � cult to quantify
the dispersibility of SMP by this method as it dispersed into water
rapidly within less than 2 min. The same situation was found for SC,
which formed lumps with big particle size initially but then
collapsed quickly. Moreover, it is interesting to � nd that Mastersizer
cannot detect any signals of scattered light from WPI suspension. It
is because WPI particles had already dissolved in a very short time
just after wetted by water entirely. Consequently, it was concluded
that the static light scattering method was useful to monitor the
slow-dispersing process of MC and MPI powders but it could not
accurately quantify the quickness of the easy-dispersing dairy
powders.

3.2.3. NIR transmission measurements by Lumisizer
In Fig. 7A, different regions of sample cell were identi � ed based

on the different light transmission properties of the suspension
during a centrifugation process. For example, stable transmission
value meant the stable supernatant, which was caused by dissolved
small particles, while sediment formation of primary particles was
explained by the low transmission value. Thus, it is possible to
evaluate the dispersion behaviour of dairy powders by using the
Lumisizer, according to the intensity of light transmission of

different dispersion phases along the sample cell ( Crowley et al.,
2014). Meanwhile, the height of sediment under two different
centrifuge speeds (36g and 168g) can also be calculated to show the
� nal solubility of powders at the 30 min mixing time ( Fig. 7B). It is
not surprising to see that there was no sediment for WPI, SC and
SMP powders, as they have good dispersibility and solubility. This
was also shown by the previous results in Fig. 6B. Almost the same
sediment height was observed for MPI and MC powders under the
effect of 36 g centrifugation, while MC had slightly more com-
pressed sediment when using 168 g centrifugation. In addition,
when MPI powders were agglomerated by � uidised bed granula-
tion process, there appeared to be a greater number of particles
dissolved into water and less sediment was formed. But these re-
sults were only based on one speci � c time point, which was at
30 min mixing time. Dispersion and dissolution are kinetic pro-
cessed and thus it is suggested to be advantageous to measure the
sedimentation behaviour as a function of time until powders were
completely solubilised ( Fang et al., 2007; Hogekamp & Schubert,
2003; Ji et al., 2015). On the other hand, integral transmissions
(%) were calculated and provided by the software of Lumisizer in
Fig. 7C to evaluate the dispersion behaviour of powders. Each in-
tegral transmission value was used to stand for one transmission
pro � le based on different centrifugation time. Fewer primary par-
ticles were found for the agglomerated MPI dispersion compared to
the non-agglomerated MPI dispersion, due to higher transmission
value showed in Fig. 7C. It meant agglomerated MPI particles were
comparatively more easily to disperse into water at 30 min mixing
time. Even though this method is regarded as a simple way to
measure the dispersibility and solubility together, however, there is
an important drawback that needs to be mentioned. The actual
intensity of light transmission is largely dependent on the type of
dairy powders. In other words, it is pointless to compare the
disperse behaviours of dairy powders with different compositions,
as they have different spectroscopy behaviour and NIR trans-
mission in solutions. It is only of feasible to compare the non-
agglomerated MPI and agglomerated MPI, which had very similar
constituents. For this reason, the transmission values of WPI, SC and
SMP were completely different, although they all dissolved within
30 min.

3.2.4. Conductivity measurements
The conductivity method is considered as a possible way to

quantify the solubilisation process of casein-dominant powders.
The primary species that contributed to conductivity were believed
to be soluble minerals, while the contribution of proteins and

Fig. 6. AB. A: Volume density (%) based particle size distributions of dispersing MPI particles measured as a function of time (every 2 min for 60 min mixing tim e) during the
rehydration process at 25 � C± 2 � C and 2000 rpm. The size of initial large primary particles with large volume (Peak A) decreased with an increase in small dissolved particles (Peak
B). B: Particle size D (50) measurements of dispersed particles of SC, MPI, Agglomerated MPI, MC and SMP. (WPI sample cannot be measured by Mastersizer as WPI dissolved rapidly
and the dissolved solids is nanoscale).
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lactose can be ignored due to big molecular size or uncharged
material respectively ( Mucchetti, Gatti, & Neviani, 1994; Zhuang
et al., 1997). At the same time, some studies believe that calcium,
phosphorus, magnesium together with caseins all belong to the
slow-dissolving fraction ( Mimouni et al., 2010 ) because most of
them come from the casein micelle structures and exist as colloids
in typical milk ( Holt, 1997 ). These slow-dissolving salt constituents
also exhibited similar kinetics of solubilisation with caseins
(Mimouni et al., 2010 ). Therefore, this is the reason why the con-
ductivity of MPI and MC suspension increased slowly but contin-
uously over time just as the solubilisation progress ( Fig. 8). The
conductivity meter was used to monitor the dispersion process of

particles by measuring the release of slow-dissolving salts in sus-
pension. It is thus, possible to compare the kinetics of solubilisation
of these two dairy powders based on the changes in conductivity.
At the same time, the conductivity of agglomerated MPI was found
to increase faster than unagglomerated MPI at � rst 80 s while for
the next 90 min, they present the almost same kinetics. It is because
agglomerated MPI is more easily wetted and thus fast-dissolving
salts are more quickly dissolved into water than that of unag-
glomerated MPI. SMP and WPI powders, which also belong to fast-
dissolving samples, reached the individual steady conductivity
values in very short time (less than 10 min) as shown in Fig. 8. It is
not possible to evaluate their dispersion process corresponding to
the conductivity values because there is no proof yet to show the
relationships of salts and these fast-dissolving dairy constituents,
even though Marabi et al. (2008) reported that the � nal steady-
state conductivity meant the complete rehydration of these pow-
ders. Besides that, it is obvious to see that the initial conductivity of
all samples increased quickly at � rst, which was considered to be
caused by the release of fast-dissolving salts in suspension, e.g.
sodium and potassium, when samples were wetted by water pro-
gressively (Mimouni et al., 2010 ). Furthermore, it is remarkable that
the speci� c conductivity values of these dairy powders depend on
how much salts remain in the powders during the manufacturing
process. Consequently, conductivity methods for casein-dominant
powder dispersion should only focus on the kinetics of conduc-
tivity instead of the value itself, which are always determined by
varied membrane processes and different batches ( de la Fuente,
1998).

Fig. 7. ABC. A: A schematic illustration explaining the sedimentation behaviour of MPI suspension was showed by the transmission (%) of NIR light through the sample cells by
centrifugation time. Pro � les were measured every 10 s for � rst 10 min with 36g centrifugation and every 60 s for next 10 min with 168g centrifugation. Each measurement pro � le
showed the distinct regions corresponding the different positions along the sample cell. The different transmissions represented the regions of di spersed particles and undissolved
primary particles, which respectively formed stable supernatant, initial sediment and compressed sediment after centrifugation. Representativ e pro� les based on different time (1:
10 s, 2: 10 min, 3: 20 min) were showed as examples. B: The sediment formed by 1.5% ( w/v ) sample suspension, which were rehydrated by 400 rpm stirring condition for 30 min
at25 � C distilled water, after 36g and 168g centrifugation for both 10 min. The height of sediment was determined by the regions of low transmission subtract ed the steady-state
value that caused by cell bottom (from 129 mm). C: Integral transmission was calculated by the software of SepView 4.1 (L.U.M. GmbH, Berlin, Germany). Each integral transmission
value (%) represented the overall transmission through the sample cell (from 109 mm to 129 mm) by a function of centrifugation time.

Fig. 8. The change of conductivity by a function of mixing time for the 2% ( w/v )
concentration sample suspension, with 500 rpm stirring condition at 25 � C. (Distilled
water was used in suspension, which had conductivity value of 67 ms cm� 1.)
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Table 3
Summary of the methods characteristics of dairy powders wettability and dispersibility a.

Method Accuracy? Speed? Reproducible? Dynamic
method?

Suitable dairy powders? Application limits Industrial
setting?

Equipment Potential bene � ts

Immersional
wetting method

1 3 2 No SMP or other easy-wet
milk protein powders

Not be able to distinguish
the wetting behaviour of
poor wetting powders

Yes Beaker and slide Cheap; fast measuring

Washburn method 3 3 3 No b MC, MPI and
agglomerates

Used for Newtonian
liquids only and not
suitable for easy-solubilising
powders

Yes Cylinder glass tube Quantitative method; fast measuring

Water adsorption
static method

3 1 2 Yes No dairy powders c Moisture vapour wetting by
different mechanism

Yes Desiccators and
incubators

Automotive; no operator-dependent

Contact angle 3 3 2 Yes All milk protein powders Need the surface of powdered
samples as smooth as possible

Yes Optical tensiometer Direct method; fast measuring;
small sample amount

Dispersibility Index 2 1 1 No Easy-wet dairy powders
without lump formation

Bad reproducibility with
multiple operators and not
capable for poor-wetting
powders

Yes Spatula and sieve Cheap; easy to operate

Light scattering 3 3 2 Yes Slow-disperse milk
protein powders

Dif � cult to measure fast-disperse
milk protein powders

Yes Online measuring
equipment

Direct method; automotive;
small sample amount

Light transmission
of suspension

2 3 2 No Slow-disperse milk
protein powders

Not suitable for fast-disperse
milk protein powders

Dif � cult NIR light equipment Automotive; quantitative method

Conductivity of
suspension

3 3 2 Yes Only casein-dominant
powders

Only useful with the premise
of same release rate of salts
and protein particles

Yes Online measuring
equipment

Automotive; quantitative method

a 1: low level; 2: medium level; 3: high level.
b It could be developed into a dynamic method.
c Not suitable for the wettability of powder rehydration.
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4. Conclusion

The measurement characteristics of wettability and dis-
persibility of milk protein based powders were discussed in this
paper. Due to the different potential use for the dairy powders, such
as, MPI and WPI can be used in nutritional beverages or infant
formula while MC and SC are the important materials in cheese
making, an overall assessment of the methods based on these dairy
powders was summarized in Table 3 with their advantages, draw-
backs and limitations.

For the wettability measurements, the traditional method with
immersion wetting process may be used as an initial screening and
can differentiate between powders that wet reasonably well from
those that are poor wetting. Contact angle methods are believed to
be very useful for quantifying and comparing the wettability of
milk protein powders. But it still needs to ensure the surface of
powdered sample is as smooth as possible so that more accurate
contact angles can be observed. Washburn method based on
capillary rise wetting is also capable of assessing the wettability of
some dairy powders. The major problem with this approach is with
powders that readily solubilise when contacted with water, as they
may form a solubilised viscous layer at the water e powder interface
that inhibits capillary rise. This can lead to misleading results, for
example, SMP is a good wetting powder but has a low capillary rise
in the Washburn test.

For the dispersibility measurements, particle size measure-
ments by light scattering method is suitable for all the powders
tested, especially for slow-dispersing milk protein powders, e.g. MC
and MPI powders. One problem with this approach is it cannot
accurately measure how quickly the fast dispersing powders are
dissolving, such as SMP, because of the time required to do the
measurement. The poor dispersibility of some powders at a speci � c
stirring time is also possibly described by the light transmission of
the suspension using an analytical centrifuge. However, once again
the fast-dispersing dairy powders, like SMP, WPI or SC, are dif � cult
to quantify their dispersing process in water as they dissolve
quickly once wetted completely. The DI method is only useful for
assessing powders that wetted well and dispersed fairly quickly,
such as SMP. It is not suited for powders that wetted poorly because
they form lumps and disperse slowly because of poor wetting. For
example, WPI has poor DI, due to its poor wettability, even though
it is a good dispersing powder. Conductivity method is believed to
have potential for casein-dominant dairy powders due to the
similar release rate of colloidal salts and micellar casein.
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a b s t r a c t

Five common high protein dairy powders and their agglomerates produced by � uidised bed granulation
were evaluated and compared for their rehydration characteristics in this study. Wettability of powders
was measured by immersion wetting time, capillary rise wetting and contact angles methods, while
dispersion and solubilisation processes were quanti � ed by the change of particle size and the sediment
height after centrifugation. The results showed that these high protein dairy powders generally had poor
wettability, especially for whey protein isolate and the caseinates, which formed an impermeable layer
separating the water surface and powders just after they contacted the water. However, the casein-
micellar dominant powders exhibited prolonged dispersion due to strong interactions inside the
micellar structures. The agglomerates with large particle size and high porosity are expected to exhibit
increased wettability. However, agglomeration only caused the external structural modi � cation and thus
is dif � cult to accelerate the dispersion process of micellar casein, which can be explained by the milk
protein isolate rehydration mechanism. The micellar structure inhibits the release of materials into
surrounding liquid phase, which is mainly responsible for the extended rehydration time.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The production of milk protein is growing rapidly worldwide
due to its advantageous nutritional and functional properties. As
milk protein consists of casein and whey protein, different milk
protein materials can be produced using different manufacturing
processes (Oftedal, 2013). For example, milk protein is obtained
from skimmed milk by ultra � ltration to remove lactose and min-
erals; subsequently micellar casein can be achieved by micro-
� ltration to further separate whey protein; therefore, whey protein
is also produced from the permeate ( Chandan, 2011; Kilara, 2011;
O'Mahony & Fox, 2013). In addition, some non-micellar caseinate,
e.g. sodium caseinate and calcium caseinate, can be produced from
acid casein by adding alkali solution (sodium hydroxide or calcium
hydroxide respectively) ( Farrell, Brown, & Malin, 2013; Pitkowski,
Nicolai, & Durand, 2009 ). These milk protein materials are widely
used in dairy products and infant formula, or used as emulsi � ers
and stabilisers in food and beverages ( Chandan, 2011; Moughal,

Munro, & Singh, 2000). However, no matter what the type of
milk protein, liquid materials are usually spray-dried into the
powdered forms for the ease of handling, storage and trans-
portation (Ann Augustin & Clarke, 2011; Selomulya et al., 2013 ). In
that case, the various milk protein powders are necessarily required
to be rapidly and completely rehydrated again before use, as
complete rehydration is a prerequisite for expressing the func-
tionality of the dried ingredients. The literature has already re-
ported that micellar casein powders were dif � cult to disperse in
water and whey protein powders also have very poor wettability
(Gaiani et al., 2006; Gaiani, Schuck, Scher, Desobry,& Banon, 2007;
Schuck et al., 2007). Comprehensive assessment is still needed for
the rehydration characteristics of these common milk protein
powders. Consequently, it is of interest to investigate their rehy-
dration ability and understand their rehydration mechanism.

It is commonly believed that the rehydration process mainly
consists of three sequential stages, which are wetting, dispersing
and solubilisation. Wetting is the � rst step where the particles
contact liquid while dispersing and solubilisation are the critical
phases where primary particles start to release materials from the
particle surface into the liquid ( Forny, Marabi, & Palzer, 2011; Ji,
Fitzpatrick, Cronin, Crean, & Miao, 2016; Richard et al., 2013 ).
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Once any of these three processes is limited, the time for the whole
rehydration is prolonged. Casein-dominated powders are believed
to be poorly-dispersible due to the strong interactions among the
micellar structures. Hence, they usually take a longer time to totally
dissolve in water ( Baldwin & Truong, 2007; Havea, 2006; Schokker
et al., 2011). However, whey protein powders demonstrate poor
wetting behaviour where the material � oats on the surface of the
solution, which is considered to be the rate-limiting factor for whey
protein rehydration ( Gaiani, Scher, Schuck, Desobry, & Banon,
2009). Therefore, it is necessary to characterise the individual be-
haviours of milk protein powders during wetting, dispersion and
solubilisation processes as different milk protein powders exhibit
completely different wettability, dispersibility and solubility
(Schuck, Jeantet,& Dolivet, 2012 ).

Agglomeration is a particle size enlargement process that cre-
ates granulates by adding a binder and forming bridges to link
primary particles together. The process is used to change the
structural and physical properties by increasing the size of the
particles and the voids between particles, and also by decreasing
the bulk density of powders ( Rajniak et al., 2007). Hence, the
modi � ed structure is believed to in � uence the rehydration char-
acteristics of powders. For example, the wetting phase is affected by
large particles with large pores, which allow water to penetrate into
particles more easily ( Hogekamp & Schubert, 2003). Dispersibility
is also related to the particle size and the density of powders
(Goalard, Samimi, Galet, Dodds, & Ghadiri, 2006 ). Some studies
reported that the agglomeration process played a bene � cial role in
the wetting behaviour of milk protein isolate powders but no sig-
ni � cant improvement for dispersion ( Gaiani et al., 2007; Ji, Cronin,
Fitzpatrick, Fenelon, & Miao, 2015 ). Therefore, it is of interest to � nd
out if the agglomerated powders can positively affect the rehy-
dration behaviours for the cases of other protein powders. The
rehydration process of milk protein can be described generally in
the following mechanism: wetting of the powders; detachment of
powders into primary particles; release of materials from particles
into the aqueous phase and simultancously continuous erosion of
the surface layer until the collapse of particles and their complete
dissolution ( Mimouni, Deeth, Whittaker, Gidley, & Bhandari, 2009).
The agglomerated powders may also have an additional step which
is the dissolution of the solid bridges linking the particles with the
resulting granules dispersing into primary particles ( Forny et al.,
2011). To the best of our knowledge, few reports have investi-
gated this mechanism for the rehydration kinetics of milk protein
and compared with its agglomerated form.

The objective of this study is to investigate the effect of
agglomeration on the rehydration properties of high protein dairy
powders (protein content >80%). Milk protein isolates (MPI), whey
protein isolates (WPI), micellar casein (MC), sodium caseinate (SC),
and calcium caseinate (CC) are used as the model systems. The
results will be used to exhibit the rehydration characteristics and
also to better explain the rehydration mechanism of milk protein
powders and their agglomerates.

2. Materials and methods

2.1. Materials

The composition of the milk protein powders used in this study
is showed in Table 1. MPI and SC were supplied by Kerry Ingredients
(County Kerry, Ireland). WPI was supplied by Davisco Food Inter-
national (Le Sueur, MN, USA). CC was produced by Teagasc (County
Cork, Ireland). Skim milk (Kerry Ingredients, County Kerry, Ireland)
was used to produce MC by a pressure driven process with 100 kDa
molecular weight membranes and then the obtained retentate was
vacuum evaporated to increase the solid content to approximately

38%. The concentration process was performed at 65 � C. Finally, the
MC powders were obtained by a spray drying process, where the
inlet and outlet temperatures were 180 � C and 85 � C, and the drying
air- � ow rate was 750 m 3 h� 1. Before the measurements, all the
powders were dried in a vacuum oven (Jeiotech, Seoul, Korea) at
45 � C overnight to obtain the � nal moisture content of about 1.5%
and then kept in the desiccators.

2.2. Agglomeration process

The agglomeration process of all these milk protein powders
was carried out by a top-spray � uid bed granulator (VFC-Lab Micro
� o-coater, Vector Corporation, Lowa, USA). 50 g of each model
powder was fed into the product vessel. As different milk powders
have different � uidisation behaviours in the � uidised bed, the
appropriate upward � owing air streams from 30 L min � 1 to
250 L min � 1 were adjusted for the � uidisation of each powder
(MPI: 200 L min � 1; WPI: 70 L min � 1; MC: 250 L min � 1; SC:
30 L min � 1; CC: 40 L min� 1). Meanwhile, the adjustable amount of
15% lactose solution binders, based on the different granulation
behaviours of these milk protein powders, were injected by a
peristaltic pump (1 mL min � 1). (25 g liquid was used for MPI, MC
and CC granulation process, while WPI and SC needed 20 g and 10 g
binders respectively.) The air pressure on the nozzle was 1 Bar.
When the lactose binders had been used up, the agglomerates were
dried by air for another 15 min at 50 � C. After that, all agglomerated
powders continued to be dried in the vacuum oven together with
the standard powders to ensure similar moisture content.

2.3. Wettability measurements

Wetting process can be described as: � rstly, the interface of solid
and gas is replaced by the interface of solid and water; secondly,
inward diffusion of the liquid through the capillary structures of the
porous powder particle ( Yuan & Lee, 2013). Three methods were
used to quantify the wettability of powders. Wetting time by
immersional wetting procedures can be used as an initial screening
and distinguish between powders with general good or poor
wettability. Modi � ed Washburn method by capillary rise wetting
was used to describe the water diffusion capacity of these powders,
while contact angle in spreading wetting procedure is a widely
used index to evaluate the wettability by water droplet overcoming
interfacial tensions between the solid and gaseous phase.

2.3.1. Wetting time
This traditional method evaluates the wettability by measuring

the time required to achieve complete wetting. A set quantity of
powder is gently discharged onto the surface of water and allowed
to immerse spontaneously without agitation. Powder wetted in less
than 60 s is usually considered easy to wet while powder which
takes longer than 120 s is considered non-wettable. Thus, in this
study, 6 g of each sample was dropped into a 400 ml beaker con-
taining 100 ml of distilled water at 20 � C (GEANiro, 2005 ). The
beakers were chosen as the same size with a diameter of 70 mm
and a surface area of approx. 38.48 cm 2. Wetting time was recorded
by a timer and all the measurements were repeated three times.
Images of WPI particles were also captured by an optical micro-
scope (Olympus BX51M) just after the particles contacted with
water on glass slides. Images taken at different magni � cations were
used to show the formation of external layers outside the particles
surface, which restrained the water from further wetting of the
particles.

2.3.2. Modi� ed Washburn method
The wettability of powders can also be measured by the
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Washburn method ( Washburn, 1921 ). The detailed principles of a
modi � ed Washburn method including the instrument was
described in the study of Ji et al. (2015). It is based on a capillary rise
wetting procedure which quanti � es the wettability by the weigh-
ing of the additional mass of wetted powder as a function of time. A
2 g sample was used each time in this study and was loaded into a
cylindrical glass tube with an open base bottom, which was covered
by both a piece of � lter paper and gauze. After that, the tube was
� xed just above the surface of water which allowed the water to
penetrate into the particles by capillary force. Finally, the additional
mass of wetted powder was recorded at 10 min. All the measure-
ments for each sample were repeated three times.

2.3.3. Contact angle
Contact angle (q) is a widely used primary parameter to quantify

the wettability of a solid surface by a liquid ( Yuan & Lee, 2013). A
small contact angle ( q < 90� ) represents good wettability for the
solid, and a large contact angle ( q > 90� ) represents poor wetting
behaviour. As the wetting behaviour is a dynamic process that
liquid penetrate into powder bed, in this study, it was followed by
observing the changes of contact angles. An optical tensiometer
(Attension Theta, Biolin Scienti � c Ltd., Espoo, Finland) was used to
measure the contact angle based on sessile drop spread wetting. A
12 mL deionised water droplet was gently dripped on the surface of
the powder substrate to carry out the dynamic live measurements
at a temperature of 20 � C. The powder substrate was prepared by a
leveller to ensure a smooth surface formed when measuring the
tangent angle at the contact point of the three phases. The change
of contact angle was recorded as a function of time and each sample
was measured � ve times.

2.4. Dispersibility and solubility measurements

2.4.1. Particle size measurements
In general, the dispersion process corresponds to the decrease of

particle size, due to the release of materials from the surface of
primary particles ( Fang, Selomulya, Ainsworth, Palmer, & Chen,
2011). Thus, the change of particle size distribution (PSD) of the
suspension during agitation is an applicable method to monitor the
dispersion process of milk protein powders, especially for the case
of casein-dominant powders with poor dispersibility ( Mimouni
et al., 2009). A Malvern Mastersizer 3000 (Malvern Instruments
Ltd, Worcestershire, UK) equipped with a 4 mW He e Ne laser
operating at a wavelength of 632.8 nm was used to measure the
PSD in this study. The samples were diluted in a 120 ml dispersion
unit, which was � lled with 25 � C± 2 � C distilled water and agitated
at a speed of 2000 rpm. The appropriate amount of each milk
protein powder was weighed out in order to reach the ideal level
obscuration of 8% for the machine. 5 mg of MPI, agglomerated MPI
and MC were precisely weighed to make sure the results of speci � c
surface area (SSA) are comparable, while WPI, SC, CC and their
agglomerates were weighed 100 mg for the measurements. Both
PSD and SSA were continuously measured by 2 min intervals as the

particles were mixed, until D (50) reached approx.1 mm (D (50) is
de� ned as the diameter of 50% particles). Triplicate measurements
were carried out for each powder.

2.4.2. Sediment height
Light transmission technology together with an analytical

centrifuge (L.U.M. GmbH, Berlin, Germany) was used to measure
the sedimentation behaviour of samples. Initial sediment and
compressed sediment can be exhibited by the varied intensities
of the transmission of NIR light based on different optical
density in suspension along the sample cell during the centri-
fugation ( Crowley et al., 2015 ). The sediment height was deter-
mined by the area of greatest optical density, which is the area of
lowest transmission value having subtracted the steady-state
value caused by the cell bottom. In this study, 1.5 g of each of
the samples was rehydrated into 100 mL 25 � C deionised water
to create 1.5% (w/v) concentration suspension. A magnetic stir-
ring bar (length 2.5 cm) was used to agitate the suspension at
400 rpm for 30 min, and then followed by sampling 400 mL at a
constant distance (1 cm) from bottom of the beaker to � ll
into polycarbonate cells. Two centrifugations were set up for
the measurements, which included � rstly 36 g for 10 min
and then followed by 168 g for a further 10 min. The measure-
ments were performed every 10 s for the � rst 10 min 36 g
centrifugation and then every 60 s for next 10 min 168 g
centrifugation.

2.5. Scanning electron microscopy

2 g of standard MPI powder were added to 100 mL distilled
water to create the 2% ( w/v) suspension. Stirring was performed by
an overhead mixer (Eurostar 40 digital, IKA, Staufen, Germany) and
a 4-bladed stirrer of 50 mm diameter (R 1342, IKA) for different
rehydration time at 25 � C (60 min, 90 min and 150 min). One or two
drops of each MPI suspension was deposited for 5 min on the sili-
con substrates, which were rinsed by 100 mM phosphate buffer
(pH ¼ 7) in advance. 3% glutaraldehyde solution was used to � x the
chemical structures of rehydrated milk protein for 15 min
(Mimouni, Deeth, Whittaker, Gidley, & Bhandari, 2010a). After that,
distilled water was used to wash the samples to remove the � xing
chemicals. The samples were dehydrated by graded ethanol, which
were 50%, 70%, 90% and 100% (Dalgleish, Spagnuolo, & Goff, 2004),
and then they were further dried in a desiccator with P 2O5 until
they were suitable to be observed by scanning electron microscopy
in a vacuum environment (~5 � 10� 6 mbar). A � eld emission

Table 1
Composition and particle size of milk protein powders.

MPI WPI MC SC CC

NA A NA A NA A NA A NA A

Protein (%, w/w) 86.0 82.0 90.0 84.0 84.0 80.1 88.0 86.0 87.0 81.4
Lactose (%, w/w) 1.0 6.2 1.0 6.5 2.0 7.3 0.1 2.4 0.2 6.6
Moisture (%, w/w) 4.0 5.0 5.0 5.2 5.0 6.8 5.7 5.9 5.5 6.3
Particle size D(50) ( mm) 49.3 ± 1.5 188.0 ± 2.0 54.5 ± 1.8 179.0 ± 4.0 50.0 ± 1.4 220.0 ± 6.0 85.0 ± 1.0 208.0 ± 3.0 65.7 ± 2.1 194.0 ± 3.0

*NA ¼ non-agglomerated; A ¼ agglomerated.

Table 2
Wetting time of milk protein powders.

MPI WPI MC SC CC

Wetting time (seconds) NA >1200 >1200 >1200 >1200 >1200
A 480 ± 120 >1200 320 ± 14 >1200 >1200

*NA ¼ non-agglomerated; A ¼ agglomerated.
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scanning electron microscope (Zeiss Supra, Carl Zeiss Microscopy
GmbH, Jena, Germany) was used for imaging at 1.5 kV.

3. Results and discussion

3.1. The wettability of high milk protein powders

According to the results of the immersion wetting procedure
(Table 2), all of the milk protein powders are dif � cult to wet with
water, due to their particles � oating on the surface of the water and
not sinking completely below the surface even after 20 min. It is not
surprising because dairy powders with high protein content ( >80%)
are usually hydrophobic ( Havea, 2006; Hussain, Gaiani, & Scher,
2012). Fig. 1 shows the WPI particles coated by layers just after
contacting water. An impermeable layer was formed at the powder/
water interface. This may result in the non-hydrated regions, where
water had no access to penetrate into the particles. The traditional
wettability method based on immersion wetting process provides
an initial screening of the milk protein powders. The Washburn
method was used to further differentiate these powders with poor
wetting behaviours, as illustrated in Fig. 2. This shows that MC and
CC uptake the most weight of water among all the milk protein
powders, which were 0.469 g and 0.555 g, respectively. WPI and SC
only adsorbed less than 0.1 g water in 10 min because water cannot
penetrate into these powders spontaneously under the high con-
tact angle ( q > 90� ) and negative capillary pressure ( Lazghab, Saleh,

Pezron, Guigon, & Komunjer, 2005; Palzer, Sommer, & Hiebl, 2003 ).
Therefore, milk protein powders, especially WPI and SC, are
believed to very quickly reach the point at which the weight of
water balances the capillary pressure.

Contact angle (q) based on the droplet spreading wetting is
also a commonly used index to evaluate the wettability of
powders ( Gao & McCarthy, 2006 ). It considers the changes in q
values as a function of time to quantify the dynamic process
other than a static state ( Mittal, 2006 ). As shown in Fig. 3A, it can
be seen that the contact angle of MC reduced signi � cantly with a
� nal angle of 20 � in just about 10 s, which showed the best
wetting behaviours of all powders. However, for MPI powder, the
water droplet took a much longer time (280 s) to reach an
equilibrium angle. Moreover, in Fig. 3B, CC, SC and WPI were
believed to have extremely poor wettability, due to the high
initial contact angles only changing by about 10 � (CC & SC) and
40� (WPI) respectively, even after 300 s of measurement. The
contact angle results were consistent with the results based on
Washburn measurements, except for CC, which took up the most
water weight by capillary force. This may be because when CC
particles contacted water, they seemed to quickly adsorb water
and form a thick gel-like � lm. That may cause a certain amount of
water to combine with CC particles and the formed � lm was
likely to prevent further water penetration. However, the precise
explanation is still unknown and needs further study in the
future.

Fig. 1. Optical microscopy images of WPI particles, upon which formed the impermeable hydrophobic layers when wetted by water. The particles were dispersed in water on glass
slides. (Left: scale ¼ 200 mm; Right: scale ¼ 50 mm).

Fig. 2. Weight of adsorbed water for samples (MPI, WPI, MC, SC, CC and their agglomerates) by capillary rise wetting after 10 min.
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3.2. The dispersibility and solubility of high milk protein powders

The dispersibility of milk protein powders can be quanti � ed by
the light scattering method, as it is used to measure the changes of
particle size during powder dispersion ( Ji et al., 2015). In Fig. 4A&B,
MC and MPI powders exhibited slow dispersion, based on the long
mixing time required for the migration of particle size from the
original size (about 50 mm) to the size when particles were mostly
solubilised (below 1 mm). MC took approximately 20 min to reach
an equilibrium size while MPI needed 40 min to reach complete
dissolution. The particle size (D50) of CC powder remained at about
80 mm, which suggests that the CC particles were mostly not dis-
solving into water during the 90 min. In Fig. 4B, SC exhibited very
good dispersion behaviour as its particle size decreased dramati-
cally below a size of 1 mm within just 6 min. WPI disappeared very
quickly within 2 min, as the machine did not detect any signals of
particles after 2 min mixing. (The dissolved WPI are nanoscale,
which is out of detecting range.) At the same time, it is interesting
to see that the particle sizes of MC, MPI and CC increased over the

initial couple of minutes. This is due to particles absorbing water
just following the wetting stage and this swelling process leads to
the increase in particle size at the � rst stage of dispersion. The same
phenomenon was presented by others ( Bhandari, Bansal, Zhang,&
Schuck, 2013; Gaiani et al., 2006).

Besides the measurement of particle size, sedimentation is also
used to describe the solubilisation behaviour of powders. As
explained in the Methods section, sediment formation is deter-
mined according to the intensity of light transmission, due to the
compressed sediment created the area of greatest optical density
(Crowley et al., 2015 ). Thus, the lowest transmission value is
observed and used to calculate the sediment height in Table 3. It can
be seen that WPI and SC have no sediment at all after 30 min
rehydration and no matter 36 g or 168 g centrifugation. These
� ndings were consistent with the previous results based on the rate
of change of particle size, which means that WPI and SC are both
powders with good dispersibility from the initial particle size to the
lower measurement limit of the machine. MC, MPI and CC all had
sediment with a height higher than 3 mm under 36 g centrifugation

Fig. 3. A: The change of contact angle ( � ) as a function of time for MPI, MC and their agglomerates using the sessile drop technique in approx. 20 � C temperature. B: The change of
contact angle ( � ) as a function of time for WPI, SC, CC and their agglomerates. C: Images of MPI, WPI and MC as examples to show how the water droplets penetrated into powders
by the different time intervals.
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and about 2.5 mm height under the 168 g centrifugation, after
30 min rehydration. This shows that micellar casein-dominant
powders, including MPI and MC, require long times to be
completely rehydrated because of the strong interactions between
the micellar structures, and this has also been concluded by others
(Crowley et al., 2015; Mimouni, Deeth, Whittaker, Gidley, &
Bhandari, 2010b; Schuck et al., 2007 ). The structures mainly
consist of casein micelles, linked together by calcium phosphate
bridges and surrounded by a layer of casein molecules which helps
to stabilize the micelle in solution ( Farrell et al., 2013; McMahon &
Oommen, 2013; Schokker et al., 2011 ). Thus, the release of micelles
from powder particles is time-consuming. However, the arti � cial
non-micellar form of caseinate powders, e.g. SC, are more easily
dissolved into water ( Pitkowski et al., 2009 ). It is surprising to � nd
that CC showed extremely poor solubility in water at a temperature

of 25 � C, which is totally different from the behaviour of SC. Some
papers report similar results, including calcium induced aggrega-
tion and precipitation of caseinate solution due to the speci � c
binding of calcium which results in aggregation and precipitation
that is considered to be hydrophobic ( Guo, Campbell, Chen, Lenhoff,
& Velev, 2003; Thomar, Benyahia, Durand, & Nicolai, 2014 ).
Consequently, CC powders may be dif � cult to reconstitute into
water again, but this still depends on pH and temperature
(Moughal et al., 2000 ).

3.3. The effect of agglomeration on the wettability and dispersibility
of high milk protein powders

3.3.1. The effect of agglomeration on wetting behaviours
Firstly, Fig. 2, which is based on the capillary rise wetting pro-

cedure, shows that all the agglomerated powders adsorbed more
water than the standard powders. Even if the agglomerated WPI, SC
and CC formed similar impermeable � lms as they formed on the
surface of the standard powders when contacting the water, the
agglomerates still presented comparatively better wetting behav-
iours. The agglomerated MC was shown to improve in wettability
by the most, with a water uptake of 4.9 g in 10 min. The agglom-
erated MPI also showed an increase of about 0.8 g. The agglomer-
ation process not only largely increased the sizes of milk protein
particles, but also created the granules with high porosity due to
the formation of void structures ( Turchiuli & Castillo-Castaneda,
2009). Hence, agglomerated powders usually have better wetta-
bility than standard powders, as liquid is more easily able to
permeate between the powder particles and wet them more
quickly ( Lazghab et al., 2005). Similar results were observed from
Fig. 3ABC, which compared the droplet contact angles of agglom-
erated powders and standard powders. The agglomerated MPI took
about 50 s to obtain the equilibrium angle of 40 � , which was a
signi � cant decrease in time when compared to the non-
agglomerated powder. A similar trend was found for agglomer-
ated WPI, which displayed lower contact angles over the 300 s
measurement time. In comparison to WPI and MPI, the agglomer-
ation process appeared to only slightly enhance the wettability of
MC, but this is because the contact angle changed so much more
rapidly for MC. For agglomerated CC powder, only a small differ-
ence of 20� was found after water contacting particles for 300 s, and
there was no obvious difference between SC and its agglomerate for
the whole process, as the external layer prevented the droplet
penetrating into the particles.

Although large particles with loose and porous structures
potentially explain the bene � cial in � uence of agglomeration on the
wettability of these milk protein powders ( Ji et al., 2015; Yuan &
Lee, 2013), Table 2 shows that most of the agglomerated powders
still needed longer than 20 min for completely wetting (only
agglomerated MPI and MC had signi � cantly shorter wetting times
of about 480 s and 320 s, respectively). This is because wetting
behaviour depends mainly on the hydrophobicity of milk protein
powders, more than their physical and structural properties. In
other words, it is not surprising to see that agglomerated WPI, SC
and CC maintained long wetting times, as agglomeration can't

Fig. 4. A: Particle size D (50) measurements of dispersed particles of MPI, CC and their
agglomerates for every 2 min in 25 ± 2 � C water. B: Particle size D (50) measurements
of SC, MC and their agglomerates. (WPI quickly dispersed into water and Mastersizer
cannot detect its particle size. Even agglomerated WPI can only be measured for the
� rst 4 min).

Table 3
Sediment height after 36 g and 168 g centrifugation for both 10 min.

MPI WPI MC SC CC

NA A NA A NA A NA A NA A

Sediment height (mm) 36 g � 10 min 3.25 ± 0.05 2.75 ± 0.11 0 0 3.23 ± 0.12 3.65 ± 0.23 0 0 3.63 ± 0.17 3.87 ± 0.17
168 g � 10 min 2.45 ± 0.05 1.95 ± 0.10 0 0 2.62 ± 0.10 2.78 ± 0.15 0 0 2.57 ± 0.12 2.70 ± 0.06

*NA ¼ non-agglomerated; A ¼ agglomerated.
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change the native properties of milk protein powders or completely
change the dif � cult-to-wet powders into easy-to-wet ones ( Forny
et al., 2011).

3.3.2. The effect of agglomeration on dispersion and solubilisation
behaviours

As described previously, SC and WPI powders dispersed rapidly
into water. The effect of agglomeration on these two powders was
not signi � cant, as it is dif � cult to see differences in the dispersion
process for the agglomerates and the standard powders based on
the measurements of particle size changes ( Fig. 4B). Same conclu-
sions are determined from Table 3, where there were no sediments
detected after 30 min rehydration with 36 g or 168 g centrifugation.
Therefore, it can be concluded that the in � uence of agglomeration
process on the WPI and SC is limited as they already had good
dispersibility and solubility. For the slow-dispersing powders
(Fig. 4A), there was no measured size increase or swelling at the

beginning of the dispersion process, which means that agglomer-
ates have shorter swelling time based on their quicker penetration
by water ( Ji et al., 2015). Besides that, the rate of change of MPI and
CC agglomerate size were shown as being almost the same as their
non-agglomerated powders. The agglomerated MC took signi � -
cantly longer to disperse than the non-agglomerated MC, which
means agglomeration prolonged the MC dispersion process ( Gaiani
et al., 2007; Schuck et al., 2007). It is commonly believed that the
slow dispersion process of MPI or MC is caused by the slow water
transfer into the “skin” of inter-linked casein micelles ( Mimouni
et al., 2010a). The agglomeration process just modi � es the phys-
ical structures by binding particles together but does not accelerate
the release of materials from the primary particles, which is
responsible for the extended dispersion time of micellar casein
powders. Generally, the possible ways to increase the dispersion
rate are based on the destruction of the micellar structure by
adding mineral salts, e.g. phosphate or citrates solutions ( Schuck

Fig. 5. A: Schematic of MPI and agglomerated MPI particles rehydration in water, based on the change of particle size D (50) and speci � c surface area as a function of time. B:
Volume density (%) based size distributions of dispersing MPI particles measured as a function of time. It showed the volume concentration of both und issolved and dissolved
powder particles.
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et al., 2002), or by the physical approach of ultrasonication
(McCarthy, Kelly, Maher, & Fenelon, 2014). The casein micelles are
dissociated and then quickly dissolved into water. Therefore, � ui-
dised bed agglomeration process played no signi � cant bene� cial
role on the dispersion of micellar casein powders. Similarly, the
solubility of CC precipitate is also in � uenced by the chemical
environment rather than the physical structural modi � cation pro-
duced by agglomeration ( Thomar et al., 2014 ).

Consequently, it may be concluded that the effect of agglomer-
ation on the wettability and dispersibility of dairy powders are
different. According to the results of � ve dairy powders that were
investigated in this study, their wetting behaviours were found to
be dependent on the modi � cation of physical properties while their
dispersing behaviours were mainly controlled by the native dis-
persibility of primary particles. Thus, the agglomeration process
may accelerate the rehydration of powders whose wetting process
is their rate-limiting step, such as WPI. If for the powders with
dispersing as their rate-limiting step, such as MC, agglomeration
plays no positive role and may even negatively in � uence rehydra-
tion. However for MPI, both wetting and dispersing processes are
rate-limiting steps. Hence, it is necessary to evaluate the effect of
agglomeration on a complete rehydration process to � nd out
whether it shortens or prolongs the rehydration time ( Ji et al.,
2015). Some other powders like SC and CC may have problems in
wetting or dispersing due to the individual native hydration be-
haviours ( Post, Arnold, Weiss, & Hinrichs, 2012 ). Therefore,
agglomeration is believed not to signi � cantly change their rehy-
dration properties.

3.4. The mechanism for the rehydration process of MPI powders

The MPI powder exhibited how the speci � c surface area (SSA)
and D (50) of particles changed as they dispersed and dissolved into
water, which can be observed in Fig. 5A. Different from the grad-
ually decrease of D (50), it is interesting to � nd that the SSA
increased very slowly for the � rst 20 min but it is followed by

dramatic growth for the next 40 min. It can be attributed to the
disruption of the aggregates and the release of the primary particles
with smaller size at the beginning of the dispersion process, but it
only caused a slight increase in SSA. However, after 20 min of
stirring time, the materials from micellar structures started to be
released into the surrounding water. In that case, the SSA increased
signi � cantly as more and more materials dissolved. It also can be
explained by Fig. 5B, which exhibited the volume density of non-
agglomerated MPI particles with different sizes for the different
stirring time. Similarly, the volume of large particles decreased
slowly at � rst 20 min but decreased sharply due to the collapse of
the structures. Therefore, the dissolved small particles appeared
from 20 min and the volume of these particles increased rapidly
during the solubilisation process.

The dissolution mechanism of standard milk protein isolate can
be described in the following steps: i) powder particles contact
with water; ii) particles start to de-agglomerate from aggregates
into the individual primary particles; iii) the continuous release of
materials from the surface of these primary particles into aqueous
phase; iv) erosion of the external layer of particles and � nally full
dissolution. It considers that milk protein powder produced by
atomization in a spray-dryer usually consists of primary particles
and these particles contain internal vacuoles based on the spray dry
process (Bhandari et al., 2013; Fang et al., 2011). Thus, the disper-
sion process of milk protein isolate is mainly contributed by the
disappearance of the aggregates of primary particles and also the
release of micellar casein materials ( McKenna, 2000).

The SEM images in Fig. 6 clearly demonstrate the erosion of the
particle surface under the effect of water transfer during the
rehydration process. Before wetting by water, MPI particles have
smooth surfaces, which can be seen from Fig. 6A. After wetting and
dispersing for a period of time, the most signi � cant difference is the
increase in the roughness of the surface of the rehydrating particles.
This is due to water beginning to penetrate the external layer of
micellar casein ( Fig. 6B). For the longer rehydration periods, a much
rougher surface was observed and large breaches appeared to

Fig. 6. SEM images of MPI particles after different rehydration time. A: spray-dried particles before rehydration (1.4 kV); B: particles after 60 min rehydration (1.5 kV); C: particles
after 90 min rehydration (1.5 kV); D: particles after 150 min rehydration (1.5 kV). The white arrow in panels C indicates the presence of large breaches caused by water erosion.
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indicate the further erosion of the outer skin by water ( Fig. 6C), but
the particle still did not completely break down due to the strong
interactions between the micellar structures. Finally, suf � cient
materials were solubilised and the insides of micelles were exposed
leading to the eventual collapse of the structures ( Fig. 6D). There-
fore, it is believed that the compactness skin outside of micellar
casein particles is responsible for restraining the individual mi-
celles into the surrounding liquid phase.

The agglomerated MPI were found to undergo a very similar
solubilisation process as the non-agglomerated MPI with the only
difference being at the beginning of the dispersion ( Fig. 5A). The
size of the agglomerates decreased sharply to about 75 mm, which is
almost the same as the non-agglomerated particles after swelling.
It is due to the lactose solid bridges linking the particles being easily
dissolved and the agglomerates being quickly dispersed into the
non-agglomerated particles. This is exhibited by the schematic of
agglomerated MPI rehydration in Fig. 5A (Forny et al., 2011;
Schubert, 1987). After that, there was no signi � cant difference be-
tween agglomerates and non-agglomerates during the solubilisa-
tion process. Consequently, agglomerated MPI is believed to have
one additional step at � rst, which is the dissolution of the solid
bridges.

4. Conclusion

The rehydration properties of � ve common high protein milk
powders and their agglomerates were investigated in this study.
The application of a variety of measurement techniques provided a
more complete insight into the rehydration behaviour of the
powders which exhibited different wetting and dispersion behav-
iours. Poor wettability was the rate-limiting factor for WPI and SC
rehydration, while poor dispersibility was the main problem for MC
rehydration. Both MPI and CC displayed both poor wettability and
poor dispersion. Agglomeration had a bene � cial role on the droplet
penetration process, and this was more signi � cant for WPI and MPI
powders. In capillary rise wetting procedure, agglomerated MPI
and MC present the signi � cantly better wettability. Agglomeration
had no bene� cial effect on dispersibility as it does not in � uence the
structure of the primary particles. In fact, it may even have slowed
dispersion by adding the additional step of dissolving the solid
bridges between the particles.
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a b s t r a c t

The effects of agglomeration on the density, morphology and subsequent reconstitution behaviours of
milk powders were investigated. In this study, milk protein isolate, as a model system, was agglomerated
in a ”uid bed granulator with three different binders: water, lactose and sucrose solution ( 15% w/v).
Morphology was quanti“ed by circularity, convexity and elongation. Wettability was measured by the
modi“ed Washburn method. Powders solubilisation was quanti“ed by dynamic particle size measure-
ment and the kinetics of dissolved solids concentration in solution. The results showed that granules with
water as the binder produced signi“cantly lowest circularity and convexity and highest elongation. An
increase in the size of the agglomerated MPI corresponded with an increase in the wettability but a
decrease in the ability of solubilisation in water. Granules agglomerated with hydrophilic sugars were
found to contribute differently which improved the wettability signi“cantly but no improvement for
the kinetics of dissolution.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Fluidized bed agglomeration, as one of the most used granula-
tion methods, is a process by which granulated particles are
obtained by spraying a binder as solution, suspension, or melt onto
a ”uidized powder bed ( Rajniak et al., 2007a; Turchiuli et al., 2013;
Weber et al., 2007 ). In the food industry, powders are usually
required to have good handling properties (dust-free, good ”owa-
bility and easy to rehydrate). Milk protein isolate powder (MPI), as
a widely used dairy ingredient, not only has “ne particles and
dense structures but is also dif“cult to rehydrate ( Gaiani et al.,
2007). The process of ”uid bed agglomeration is applied to opti-
mise the physical and structural properties of dairy powers, such
as, particle size, densities, porosity, shape ( Szulc and Lenart,
2013) and subsequently the reconstitution behaviour ( Knight,
2001). Because there is strong interaction between the ”uid bed
process and the properties of obtained powders ( Knight, 2001 ),
controlling the process conditions is a potential way to improve
the quality of MPI powders.

The use of binders in ”uid bed agglomeration is one of the most
frequent methods to modify the structure of agglomerates. They
form solid bridges adhering primary particles and create new

structures with pores and voids. Therefore, they affect the rate of
particles size enlargement, densities and morphology of the gran-
ules (Keningley et al., 1997; Mills et al., 2000 ). However, different
binders have different bonding ef“ciency due to varied chemical
compositions, mechanical properties, concentration, viscosity and
inter-particular interactions between the particles and the binders.
For example, sucrose or glucose usually produces hard and brittle
bridges while gelatin and acacia gum provide slow disintegration
and high hardness to the agglomerates ( Barbosa-Cánovas and
Juliano, 2005). In food systems, aqueous solutions of lactose and
sucrose are the most used binders in ”uid bed agglomeration. Thus,
the relationship between types of binders and agglomerates struc-
tural properties needs to be clearly identi“ed. Although some phar-
maceutical research related to agglomerate behaviour in ”uidized
beds has been published ( Abberger et al., 2002; Chua et al., 2011;
Parveen et al., 2013; Rajniak et al., 2007b; Seo et al., 2002 ), less
attention has been given to milk powder systems, especially high
protein-based powders which also present great potential for
improvement to the quality of dairy powder structures.

The reconstitution ability of milk protein powders is an essential
attribute as most of them are dissolved before use. It is commonly
believed that the whole reconstitution process mainly consists of
three sequential stages which are wetting, dispersing and dissolving
phases (Forny et al., 2011; Gaiani et al., 2007; Hogekamp and
Schubert, 2003; Richard et al., 2012 ). Each stage is affected by the

http://dx.doi.org/10.1016/j.jfoodeng.2015.01.012
0260-8774/ � 2015 Elsevier Ltd. All rights reserved.

� Corresponding author. Tel.: +353 25 42468; fax: +353 25 42340.

E-mail address: song.miao@teagasc.ie(S. Miao).

Journal of Food Engineering 167 (2015) 175…182

Contents lists available at ScienceDirect

Journal of Food Engineering

journa l homepage: www.e lsev ie r .com/ locate / j foodeng



different physical properties. Generally, wettability depends on
large particles with large pores in between and also small contact
angles (Hogekamp and Schubert, 2003 ); dispersibility is in”uenced
by particle size, porosity and density ( Goalard et al., 2006 ); dissolu-
tion is favoured by the presence of small hydrophilic molecules on
the surface ( Lillford and Fryer, 1998 ). Using sugar solutions as bin-
ders in agglomeration modi“es the powders• structure and surface
composition and in”uences the interaction with water. Consequent-
ly, the performances of different binders on the reconstitution abil-
ity should be investigated. Furthermore, as the reconstitution
process is dynamic and powders with high protein content have
relatively poor wettability and dispersibility ( Gaiani et al., 2007;
Richard et al., 2012 ), it is impossible to quantify the total process
according to traditional standard methods. Moreover, different
reconstitution stages often overlap ( Fang et al., 2007) and it is a chal-
lenge to observe each stage independently, particularly dispersing
and dissolving stages. Hence new methods were developed to better
quantify the reconstitution ability of powders in this study. For
example, the modi“ed Washburn method, as a dynamic wettability
measurement, was found to describe the ability of the powder par-
ticles to overcome the surface tension between themselves and the
liquid ( Depalo and Santomaso, 2013). Meanwhile, particle size mea-
surement by static light scattering was used to monitor the
solubilisation (both dispersing and dissolving) of powders during
rehydration process ( Richard et al., 2012 ). Final solubility was
expressed as the kinetics of dissolved solids concentration (w/w%)
in water.

The overall aim of this study was to acquire a better under-
standing of the in”uence of ”uid bed agglomeration of milk protein
isolate (MPI) powder, using three different binders and two
agglomerate size fractions, on improving the reconstitution ability
of MPI. Within this study, the in”uence of the three binders on the
physical properties of the agglomerates, including powder densi-
ties, porosity and morphology, was also investigated.

2. Materials and methods

2.1. Materials

Milk protein isolate (MPI) was supplied by Kerry Ingredients
(County Kerry, Ireland). The composition of MPI is 86% protein,
1.5% fat, 6% ash and <1% carbohydrate. The binding liquids used
in the ”uid bed agglomeration were: distilled water; aqueous solu-
tions of lactose, 15% w/v (Arla Food Ingredients, Viby J, Aarhus,
Demark) and aqueous solutions of sucrose, 15% w/v (Sigma Aldrich,
USA).

2.2. Fluid bed agglomeration

A top-spray ”uidised bed granulator (VFC-Lab Micro ”o-coater,
Vector Corporation, Lowa, USA) was used to carry out the agglom-
eration of MPI. 200 g MPI powder was fed into the bottom of pro-
duct vessel and ”uidised by upward ”owing air stream. The
temperature of injected air was 50 � C and the air ”ow rate was
200 L min � 1. 100 g binding liquid was injected from the top of ves-
sel by a peristaltic pump (1 mL min � 1) and sprayed into small dro-
plets by a two-”uid spray nozzle. The air pressure on the nozzle
was 1 bar. When the binding solution had been used up, the pro-
duct was dried for 15 min at 50 � C and the air ”ow was reduced
to 100 L min � 1.

2.3. Powder characterisation

Three different samples were obtained based on three different
binders in the ”uid bed granulation (A 1: Water binding, A 2: Lactose

solution binding, and A 3: Sucrose solution binding). The 106 l m,
180 l m and 300 l m level sieves (Endecotts, London, UK) were
used to obtain two different agglomerate size fractions (P 1:
106 l m � 180 l m and P2:180 l m � 300 l m). Including unagglom-
erated MPI standard powder (MSP), a total of 7 powders (MSP,
A1P1, A1P2, A2P1, A2P2, A3P1, and A3P2) were investigated in this
study. The obtained samples were dried overnight in the vacuum
oven (Jeiotech, Seoul, Korea) at 60 � C temperature and then kept
in the desiccator to cool down into room temperature.

2.4. Density and porosity

Loose and tapped bulk densities were measured using a
graduated cylinder and a tapped machine (Funke Gerber, Berlin,
Germany). The volume occupied by a given mass of powder
(50 g) after 100 taps was measured three times to calculate the
tapped bulk density. Gas Pycnometer (AccuPyc II 1340,
Micromeritics Instrument Corporation, Georgia, USA) was used to
measure the apparent density of samples, which were placed in
the sample cell and purging with a ”ow of helium to degas the cell
by ten pressurisation cycles. Furthermore, porosity ( e) was calcu-
lated using tapped bulk density qT and apparent density qA. The
relation shows as Eq. (1):

e¼ ðqA � qTÞ=qT � 100 ð1Þ

2.5. Particle shape

The shape properties were described by Malvern Morphology
G3 (Malvern Instruments Ltd, Worcestershire, UK). 15 mm 3 vol-
ume samples were placed in the dispersion unit to be dispersed
into single layer on the glass plate so that they can be observed
by the microscope. Generally, three parameters were used to quan-
tify and indicate the shape properties of powders ( Fig. 1). Firstly,
the circularity value between 0 and 1 was de“ned as the ratio of
the perimeter of the surface equivalent disc ( Pe) to the real perime-
ter of the particle silhouette ( Pr). The bigger value means the more
alike to the equivalent circle. Secondly, the convexity describes the
compactness of a particle. The maximum theoretical convexity is 1
that means the surface of particle is very smooth. Finally, elonga-
tion stands for aspect ratio of particles and a needle shape has a
high value which is close to 1. These indicators were usually
expressed as average value for bulk population distribution. Each
sample was measured “ve times to obtain the average value.

2.6. Reconstitution properties

2.6.1. Wettability
Dynamic wettability measurement was based on the Washburn

method ( Washburn, 1921 ) which applied the capillary force to wet
the powder ( Fig. 2). In this study, 2 g samples were added into a
glass tube without bottom (powder holder), and covered by “lter
paper and a piece of gauze at the bottom of the tube to prevent
the powders falling down. Then the tube was “xed just above
the distilled water (24 � C) surface. After 10 min, an analytical bal-
ance was used to measure the additional mass of wetted powder.
Each sample was measured “ve times.

2.6.2. Solubilisation
Due to it is dif“cult to observe the dispersing and dissolving

phases independently, solubilisation ability of the powders, includ-
ing dispersibility and dissolution, was expressed as the reduction
rate of particle size in dispersant based on granule erosion and
break-up ( Chen and Lloyd, 1994; Goalard et al., 2006; Richard
et al., 2012). An optical “bre sensor ( Fig. 3) (Galet et al., 2004;
Larsen et al., 2003), which collected the light backscattering of
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the particles, was used to determine the kinetics of solubilisation
and re”ect the quality of powder•s reconstitution behaviour.
Another used method to quantify the solubility of powder was

the measurement of the concentration of dissolved powder (w/
w%) in distilled water by time under the stirring.

2.6.2.1. Particle size measurement of dispersed particles.Particle size
measurement of dispersed particles was measured by laser light
scattering using Malvern Masterszier 3000 (Malvern Instruments
Ltd, Worcestershire, UK) equipped with a 4 mW He…Ne laser oper-
ating at a wavelength of 632.8 nm. Samples were diluted into
120 ml dispersion unit with distilled water to reach obscuration
of 8%. Refractive indexes for solvent, particle and adsorption were
set as 1.33, 1.45 and 0.01, respectively. In this study, in order to be
within the ideal obscuration range of machine, a constant mass of
samples (approximate 5 mg) were introduced into dispersion unit
with 2000 rpm agitation and 25 � C ± 2� C temperature range. The
solid in liquid concentration was set at 0.004%. During the tripli-
cate measurements, samples were detected every 2 min until D
(50) reached � 1 l m (the diameter of 50% particles was just lower
than 1 l m). The average results were used to monitor the particle
size reduction as powders dispersed and dissolved.

2.6.2.2. Dissolved solids measurement.For dissolved powder con-
centration measurement, samples weighing 1 g were added into
50 ml water in the beakers and slightly mixed by a spoon to make
the powders wet completely and sink below the surface of water.
Then samples were placed in 24 � C water bath and stirred by
3-pitched-blade impellers (impeller diameter: 4 cm) at a rate of
300 rpm for different mixing time (30 min, 60 min, 90 min,
120 min, 150 min, 180 min, 210 min, 240 min). After that, the sus-
pensions were put into 50 ml centrifuge tubes and centrifuged at
3000 g and 24 � C for 10 min (Eppendorf Centrifuge 5810R,
Hamburg, Germany). 2 ml supernatant was taken and analysed
by solid analyser machine (Smart System 5, CEM, North Carolina,
USA), to evaluate the concentration of solids (w/w%) in the solu-
tion. All the results were repeated three times.

2.7. Statistical analysis

Results were expressed as mean ± standard deviations (SD).
One-way analysis of variance (ANOVA) was carried out by SPSS
software (PASW, Statistics 1.8). It was used to perform statistical
differences by the least signi“cant difference (LSD) test, in relation
to the applied variable using F-test. Differences were considered to
be signi“cant at P< 0.05.

Fig. 1. De“nition of the shapes factors: circularity, convexity and elongation measured by Malvern Morphology G3.

Fig. 2. Scheme of modi“ed Washburn method to quantify the wettability of MPI
powders by measuring the weight of adsorbed water (24 � C) in 2 g powders after
10 min.

Fig. 3. Scheme of Light scattering method to quantify the solubilise ability of MPI
powders to monitor the particle size of dispersed particles every 2 min in 25 ± 2 � C
water at mixing condition of 2000 rpm.
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3. Results and discussion

3.1. In”uence of binders on physical properties of agglomerates

3.1.1. Density and porosity
Bulk density is de“ned as the mass of powders divided by the

total volume occupied by them. The total volume includes particle
volume, inter-particle void volume, and internal pore volume.
Tapped density corresponds to the occupied volume after packing
by tapping the container, which means voids between particles are
reduced ( Turchiuli and Castillo-Castaneda, 2009 ). It is commonly
believed that agglomeration creates granules with lower bulk den-
sity due to the formation of voids structures ( Kowalska and Lenart,
2005; Szulc and Lenart, 2010 ). Same trends were observed in
Table 1, where loose and tapped bulk density of unagglomerated
MPI powders were 0.298 g/cm 3 and 0.356 g/cm 3 respectively,
which were signi“cantly ( p < 0.05) higher than those of agglomer-
ated MPI powders. Furthermore, if compared with the bulk densi-
ties of six agglomerated samples, an increase in the size of the
agglomerate was found to correspond to a decrease of bulk density.
But the different binders appeared to have no particular effect on
bulk loose and tapped densities for both particle size fractions.
The loose bulk densities of samples were all about 0.21 g/cm 3

and 0.18 g/cm 3 for small and large size fractions respectively.
And the tapped bulk densities were about 0.26 g/cm 3 and 0.20 g/
cm3 respectively. For apparent density, the agglomerates formed
by distilled water were similar to that of MSP while those formed
by lactose and sucrose had lower apparent densities, which were
lower than 1.3 g/cm 3. Similar results were shown by Szulc and
Lenart (2013) , where values of apparent density were in”uenced
by the type of binder liquid and the composition of samples.
Besides that, Jinapong et al. (2008) also reported that agglomerated
soymilk powders resulted in the lower apparent density than the
standard unagglomerated ones.

Porosity is de“ned as the ratio of void volume to total volume of
the powder and void volume is the difference between the total
volume and particles volume ( Turchiuli and Castillo-Castaneda,
2009). Thus, porosity is largely dependent on the measurement
of total and particles volumes. Generally, an increase in porosity
of the agglomerated powders was observed in comparison with
the primary ones ( Werner et al., 2007 ). In this study, the porosity
values of MPI samples showed in Table 1 can reach around 80%
based on the low bulk density. Agglomerated skim milk powders
(Hogekamp and Pohl, 2003 ) and agglomerated soymilk powders
(Jinapong et al., 2008) were also reported the similar porosity val-

ues. As the same trends to bulk density, agglomerated MPI samples
also had signi“cantly higher porosity than unagglomerated ones
and larger particle size corresponded to higher porosity. Mean-
while, there was no big difference among the agglomerates with
different binders in the same particle size fraction.

3.1.2. Morphology
The effect of the binders in ”uid bed agglomeration on the mor-

phological properties of powders was also investigated. Three mor-
phological descriptors (Circularity, Convexity, and Elongation)
followed by Malvern Morphology G3 identi“ed the bulk shape
properties. Examining Table 2, compared to the unagglomerated
MPI powders, it is clear to “nd that agglomerated granules had sig-
ni“cantly ( p < 0.05) lower circularity and convexity but higher
elongation, which means the particles had less rounded shape,
rougher surface and lower ratio of width/length. As it is seen in
Fig. 4, more irregular shapes were observed in agglomerates with
larger particle size. It is due to initial primary particles ( Fig. 4A)
rapidly aggregated into intermediate structures to create small
agglomerates ( Fig. 4B) and then progressively grew to the big por-
ous agglomerates ( Fig. 4C). Thus, the shape factors of particles
were signi“cantly changed. If focusing on the effect of different
binders, water binding agglomerates had least similarity of a circle
and most surface area among the three for both small and large
particle size fractions. Even for the sugars binders, there still was
signi“cant difference between them in convexity and elongation.
It is not surprised to the results because the higher binder liquid
concentration resulted in the high compactness of agglomerates
(Szulc and Lenart, 2013 ). Thicker bridges or layers were formed
on the surface of agglomerates obtained by higher binder concen-
trations. Same tendency was found in soymilk powders ( Dacanal
and Menegalli, 2010; Jinapong et al., 2008 ) and also in other
agglomerated spray-dried powders ( Fuchs et al., 2006; Turchiuli
et al., 2005). However, morphology of agglomerates is very dif“cult
to predict because it also depends on the droplet deposition, dro-
plet spreading, bridge breakage and the amount and the way that
binders are introduced ( Werner et al., 2007 ).

3.2. In”uence of binders and agglomerate size on reconstitution
behaviour

3.2.1. Wettability
Wettability is the ability of the powder particles to imbibe a liq-

uid and overcome the surface tension between them based on cap-
illary force. Generally, the GEA Niro method is used to measure the

Table 1
Bulk density, apparent density and porosity of powders. a

Samples MSP A1P1 A1P2 A2P1 A2P2 A3P1 A3P2

Particle size D(50) ( l m) 49.4 ± 0.2 a 106.2 ± 0.5b 199.0 ± 1.2c 102.5 ± 0.3d 188.7 ± 1.0e 103.4 ± 0.3f 191.2 ± 1.4e

Bulk Loose density (g/cm 3) 0.298 ± 0.007a 0.206 ± 0.009b 0.184 ± 0.006c 0.221 ± 0.006b 0.179 ± 0.005c 0.215 ± 0.007b 0.181 ± 0.004c

Bulk Tapped density (g/cm 3) 0.356 ± 0.001a 0.262 ± 0.000b 0.198 ± 0.000c 0.265 ± 0.001b 0.199 ± 0.000c 0.252 ± 0.001d 0.207 ± 0.000e

Apparent density (g/cm 3) 1.311 ± 0.004ab 1.335 ± 0.020a 1.302 ± 0.016bc 1.282 ± 0.024bc 1.278 ± 0.003cd 1.254 ± 0.035de 1.246 ± 0.027e

Porosity (%) 72.85 ± 0.12a 80.37 ± 0.30b 84.79 ± 0.23c 79.33 ± 0.32d 84.43 ± 0.10c 79.90 ± 0.41bd 83.39 ± 0.34e

a Data are expressed as mean ± standard deviation; values followed by a different superscript letter in the same line are signi“cantly different at P< 0.05.

Table 2
Morphological descriptors of powders. a

Powder morphology MSP A 1P1 A1P2 A2P1 A2P2 A3P1 A3P2

Circularity 0.826 ± 0.015 a 0.642 ± 0.006b 0.592 ± 0.014c 0.669 ± 0.008de 0.630 ± 0.015bc 0.688 ± 0.004d 0.668 ± 0.002e

Convexity 0.937 ± 0.008 a 0.796 ± 0.005b 0.728 ± 0.010c 0.814 ± 0.005d 0.761 ± 0.017e 0.829 ± 0.005f 0.789 ± 0.007b

Elongation 0.262 ± 0.010 a 0.317 ± 0.004b 0.293 ± 0.003c 0.301 ± 0.001d 0.266 ± 0.001a 0.309 ± 0.001e 0.281 ± 0.005f

a Data are expressed as mean ± standard deviation; values followed by a different superscript letter in the same line are signi“cantly different at P< 0.05.
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wettability of ••easy-wet•• powders. However, for some powders
with poor wetting ability, such as high protein powders in this
study, it can be determined by the additional weight of powder
after absorbing liquid in a speci“ed time.

Wettability results are illustrated in Fig. 5 for MSP and the six
agglomerated powders. Agglomeration had a major improvement
on the wettability of MPI, as the agglomerated powders absorbed
signi“cantly more water than that of MSP in 10 min. A major rea-
son for this improvement was due to the increase in particle size,
as presented in Table 1. Good wettability was generally favoured
by the presence of large particles, resulting in larger voids between
the particles which allowed water to penetrate more easily into the
powders ( Freudig et al., 1999; Hogekamp and Pohl, 2003 ). And also
for each binder, the larger particle size fraction produced the high-
est wettability.

Fig. 5 also shows that binder type has an in”uence on wetta-
bility. The 15% lactose solution binder had the best wettability
for both size fractions. For the smaller size fraction, the 15% sucrose
solution binder was slightly better than the distilled water but
worse for the larger size fraction. It is because the in”uence of bin-
der composition on wettability is complex. The chemical nature of

Fig. 4. Comparison of images obtained by Malvern Morphology G3. ( � 25, scale = 400 l m; � 100, scale = 100 l m) (A1 & A2: MPI standard powders; B1 & B2: small size
fractions of agglomerates binding with water; C1 & C2: large size fraction of agglomerates binding with water.).

Fig. 5. Mean weight of absorbed water for samples (MSP, A 1P1, A1P2, A2P1, A2P2,
A3P1 and A3P2) after 10 min.
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composition plays an important role, e.g. hydrophilic and
hydrophobic nature ( Fang et al., 2007; Freudig et al., 1999 ). Pow-
ders agglomerated with lactose and sucrose solution contain
hydrophilic carbohydrates that results in the development of more
hydrophilic bridge surfaces that make powder wetting by water
more easy. The binder composition will also in”uence the mor-
phology of agglomerates produced, as seen in Table 2, and this in
turn will in”uence how water penetrates into the powder.

It is commonly believed that particles with rounder and
rougher surfaces lead to higher wettability whereas smoother
and elongated powders have lower wettability ( Gaiani et al.,
2011; Perea et al., 2009; Yekeler et al., 2004 ). This is due to the
lower roundness and higher elongation which result in a higher
wetting angle than equivalent round particles; longer contact lines
also cause stronger adhesion force of prismatic particles ( Oliver
et al., 1977). Comparing the hydrophilic lactose and sucrose bin-
ders, samples agglomerated with lactose showed rounder (lower
elongation) and rougher (lower convexity) which may in part
explain the better wettability. However, due to a complex in”u-
ence on wetting behaviour, the precise explanation of the effect

of morphology is still unknown and needs further study in the
future.

3.2.2. Solubilisation
3.2.2.1. Particle size measurement of dispersed particles.This
approach measured the evolution of particle size of wetted parti-
cles over time (as described in materials and methods).
Figs. 6ABC illustrate the in”uence of initial particle size on the
solubilisation of particles over time (as illustrated by the decrease
in D(90), D(50) and D(10) size values). Figs. 6ABC show an initial
rapid decrease in particle size of the larger sized agglomerates. This
is due to water easily penetrating into the agglomerate pore net-
work, solubilising the solid bridges between the primary MPI par-
ticles and releasing them into solution. After this initial period of
about 4 min, the particles attained a similar size, independent of
initial agglomerated size fraction. This provides further evidence
that the agglomerates have been broken down into their primary
MPI particles.

This initial time period was followed by much slower solubilisa-
tion and it took around 60 min for the particles to mostly

Fig. 6. Particle size measurement of dispersed particles versus time (every 2 min) in 25 ± 2 � C water at mixing condition of 2000 rpm (A = water binding agglomerates and
MSP; B = lactose solution binding agglomerates and MSP; C = sucrose solution binding agglomerates and MSP.).
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solubilise, as evidenced by the D90 values approaching zero.
Figs. 6ABC show that agglomeration with any of the binders had
no signi“cant bene“cial impact on the solubilisation rate of MPI.
This appears to be due to the solubilisation rate being controlled
by the solubilisation of the primary MPI particles ( Mimouni
et al., 2009). This suggests that the primary MPI particles solubilise
very slowly, possibly due to strong attractions between casein
micelles within the powder. In fact, it may marginally increase
the solubilisation time, because a few minutes may be required
to break down the agglomerates into MPI primary particles. In
addition, there also appears to be some differences based on the
type of binder used, however it is not of major signi“cance. Overall,
the solubilisation of the MPI powder was insensitive to agglom-
eration and the choice of binders.

In Figs. 6ABC, it is interesting to see that the particle sizes of
MSP increased over the “rst 4 min. This is because particles usually
sorb water following the wetting stage and this behaviour is called
swelling. Same phenomenon was founded in others• papers ( Gaiani
et al., 2009, 2007; Goalard et al., 2006 ). On the other hand,
Figs. 6ABC do not show swelling with the agglomerates as they
had much shorter swelling time due to their quicker penetration
by water ( Gaiani et al., 2009 ). Furthermore, swelling of agglomer-
ates and primary particles occurred when the agglomerates were
disintegrating, so any increase in size due to swelling was counter-
acted by the large reduction in agglomerate size.

3.2.2.2. Dissolved solids measurement.Solubilisation is also
expressed as the amount of solids that are dissolved into solution
over time. As with Figs. 6ABC, Fig. 7 shows that agglomeration
did not have a signi“cant bene“cial impact on the solubilisation
rate of MPI. In fact, agglomerate solubilisation was slower than
that of MSP when using distilled water as a binder. This is in agree-
ment with the work by Schuck et al. (2007) and Gaiani et al. (2007) .
They found that granulation increased the solubilisation time of
native phosphocasein powders. This is due to casein micelles inter-
acting strongly within the primary particles and developing attrac-
tions that are dif“cult to break down ( McKenna, 2000). Thus, water
takes a long time to solubilise the powder particles and results in
the slow solubilisation rate. In relation to agglomeration, water
has to “rst penetrate into the agglomerates to release the primary
MPI particles and this takes some additional time. Agglomerates
formed by lactose and sucrose binders showed a somewhat similar
progression to MSP, with similar dissolved solids concentrations

above 200 min. The presence of lactose and sucrose on the surface
of protein particles is believed to inhibit the interaction between
casein micelles because they are more hydrophilic. Consequently,
MPI powders agglomerated with lactose and sucrose solution are
comparatively more easily dissolved into water than that agglom-
erated with water, as evidenced in Fig. 7.

It is interesting to observe that there is a big increase in dis-
solved solids content of the MSP and agglomerates over the initial
30 min where it increased form 0% to around 0.6%, whereas for the
following 300 min, solids concentration continued to reach only
1%. This is most likely due to mass transfer considerations where
at the beginning, the concentration gradient between particle sur-
face and water is greatest and the particle size, surface area and
in”uence of turbulence are greatest. Meanwhile, the results in
Fig. 7 showed that it took 300 min to reach 1% solids concentration,
which represented about 50% of the initial mass of particles added.
But in Figs. 6ABC the dissolution took about 60 min to totally dis-
solve the particles as the D90 value were nearly at zero. The huge
difference is due to the different agitation speeds which it is com-
monly believed to signi“cantly in”uence the rehydration time
(Richard et al., 2012; Schober and Fitzpatrick, 2005 ). This may be
a potential factor that can improve the reconstitution properties
of MPI powders.

4. Conclusion

In summary, ”uid bed agglomeration with different binding liq-
uids was found to modify the structures and physical properties of
MPI powders. Agglomeration signi“cantly decreased the bulk den-
sity; increased the porosity of powders; and formed particles with
lower circularity and convexity but higher elongation values. The
type of binder also in”uenced the shape factors of agglomerates.
Using water as binder created more irregular particles than using
the other two sugar binders.

Both the agglomerate size and the binder type had signi“cant
in”uences on the improvement in wettability. Overall, the larger
agglomerate size fraction produced with the lactose binder provid-
ed the best wettability. In relation to solubilisation of the wetted
particles, agglomeration had no bene“cial effect with any of the bin-
ders used. This low rate of solubilisation is because it is controlled by
the solubilisation of the primary MPI particles, which appears to be
very slow due to the strong interaction between casein micelles in
the primary particles. Consequently, it would be interesting to
explore how the size of these primary particles in”uences the rehy-
dration behaviour and if this could be manipulated to greatly
improve the solubilisation rate in particular.
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a b s t r a c t

The effects of granule growth in high shear granulation on the structures and rehydration abilities of milk
protein powders were investigated. In this study, milk protein isolate, as a model powder, was
agglomerated in a high shear granulator. The formed granules with different sizes were used to compare
the densities, granule shapes and subsequently the wettability, dispersibility and solubility. It is found
that the small nuclei showed the most compacted structures. Then the primary agglomerates coalesced
to create irregular secondary structures with lower density and higher porosity until the � nal agglom-
erates formed. The densely packed structures allowed the granules to be more easily wetted by water.
The large granules showed quicker release of materials into water until reaching a critical size, where
more mechanical energy is potentially required for further granule break down. All the agglomerated
MPI granules solubilised much more slowly than the standard MPI powder.

© 2016 Published by Elsevier Ltd.

1. Introduction

Milk protein isolate is a widely developed functional ingredient
in the production of cheese, beverages, yoghurt and other food
products. As a powder, it plays an important role in industry, due to
its convenience for process, preservation and transportation ( Ann
Augustin and Clarke, 2011 ). Milk protein isolate powders are usu-
ally produced from skimmed milk by ultra � ltration to remove
lactose and minerals and then dehydrated by spray drying
(Chandan, 2011). The obtained products after spray drying are
normally � ne particles with dense structures, thus they may bring
many problems, e.g. heterogeneity of the native structures (size,
shape and porosity) ( Cuq et al., 2013; Knight, 2001 ), and dif � cult-
to-rehydrate (poor wettability and dispersibility) ( Gaiani et al.,
2007; Selomulya et al., 2013 ). These issues potentially restrict the
applications of milk protein powders, as powders are required to
have good handling properties, as well as quick and complete

rehydration behaviours to express their functionality. Granulation
is a particle size enlargement process to form monodisperse
granules and to optimise structural and physical properties ( Cuq
et al., 2013; Salman et al., 2007). Subsequently, the structures
modi � ed by the granulation process are also believed to strongly
in � uence the rehydration properties ( Ji et al., 2015; Knight, 2001 ).

Many different granulation processes using a variety of equip-
ment have been widely developed in the applications of food and
pharmaceutical materials ( Barkouti et al., 2013; Litster and Ennis,
2013; Palzer, 2011; Rajniak et al., 2007 ). These processes result in
different granule structures, due to the main differences in the
mechanisms of particle growth and intensity of solidi � cation
(Barrera-Medrano et al., 2007 ). For example, � uidised bed wet
granulation is used to atomize binding liquids into small droplets
on the free- � owing solids without agitation ( Turchiuli et al., 2013 ).
Thus, the created granules usually show porous “raspberry ” struc-
tures, which include large inter-particle void volume and internal
pore volume, as the binding droplets play the role of bridges to
coalesce the primary particles ( Jacob, 2007; Ji et al., 2015). Another
common used wet agglomeration equipment is the high shear
granulator, which uses an impeller to vigorously agitate the
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powders during the addition of binding liquid, to produce the
densely packed granules ( Reynolds et al., 2006). These granules
have not only comparatively higher density, but also a spherical
shape and smooth surface, due to the effect of consolidation by
agitation ( Cuq et al., 2013). Although some studies have showed the
advantages of agglomerated milk protein powders that were pro-
duced from a � uidised bed granulator ( Ji et al., 2015), it is also
necessary to � nd out if the high shear granulation process displays
different bene � cial roles on the milk protein powder due to its
unique and special effects on the structural modi � cation.

High shear granulation is a complex process and commonly
consists of different groups of rate processes: 1) wetting and
nucleation; 2) coalescence and consolidation; 3) attrition and
breakage (Iveson et al., 2001; Mort, 2007 ). These competing
physical phenomena occur in the granulator and control the
granule size, shape and porosity, as well as many other important
physical properties ( Cuq et al., 2013). Wetting and nucleation is the
� rst stage of granulation that distributes the binding liquid through
the powders and then forms the nuclei aggregates, which are
loosely packed (Litster and Ennis, 2013 ). When two or several
particles collide during the liquid addition, they may stick together
to create the new secondary agglomerates, and thus modify the
structures. By the condition of high shear agitation, granules are
consolidated through collisions with the granulator or other par-
ticles due to the force of agitation ( Ennis, 2010). Plastic deformation
may occur and that will squeeze out entrapped air and increase the
internal pore saturation so as to reduce the granule size and
porosity, which signi � cantly in � uences the � nal structures of
formed granules ( Barrera-Medrano et al., 2007 ). Consequently, it is
necessary to investigate how the different granule growth pro-
cesses affect the structural formation of milk protein powders
during the high shear granulation. However, as the growth pro-
cesses always happen simultaneously and there is no clear de � ni-
tion to distinguish them, it is dif � cult to characterise the granules
by the individual growth process ( Hapgood et al., 2007). In that
case, the granules with different particle sizes, which are caused by
these growth rate processes, will be used to compare the structural
and physical properties in this study.

While much research has been conducted into the fundamentals
of granulation ( Litster and Ennis, 2013; Salman et al., 2007 ), less
attention has been given to the subsequent in � uence on func-
tionality of powders. However, the agglomerated granules with
modi � ed structures are believed to potentially in � uence the rehy-
dration behaviours, which include wetting, dispersing and dis-
solving phases (Hogekamp and Schubert, 2003; Richard et al.,
2013). Each of them is closely related to the powders ’ physical
and structural properties. Good wettability and dispersibility are
both favoured by larges particles with high inter-particle porosity
and high particle density ( Forny et al., 2011; Goalard et al., 2006 ),
while the dissolving behaviour is prone to the presence of small
hydrophilic particles on the surface ( Lillford and Fryer, 1998 ). Some
studies showed that, agglomerated milk protein powders produced
from � uidised bed display better wettability due to liquid being
more easily penetrate into solids with porous structures ( Ji et al.,
2015). But for the high shear granulation, which has completely
different granule growth mechanism from � uidised bed ( Jacob,
2007), the similar studies haven ’t been reported so far. Conse-
quently, it is essential to investigate the effect of its granule growth
processes, on the individual wetting, dispersing and dissolving
behaviours of milk protein powders.

In summary, the objective of this study is to investigate the ef-
fect of granule growth during the high shear granulation, on the
rehydration abilities (wettability, dispersibility and solubility) of
milk protein isolate powders. As part of this work, granules ’
structural modi � cations, including densities and morphology, were

also examined.

2. Materials and methods

2.1. Materials

Milk protein isolate powders (MPI) were supplied by Kerry In-
gredients (Kerry, Ireland). The composition is 86% milk protein, 1.5%
fat, 6% ash, 5.2% moisture and less than 1% lactose. The lactose used
in the high shear granulation, was purchased from Arla Food In-
gredients (Viby J, Aarhus, Demark).

2.2. High shear granulation

The MPI powders were agglomerated by a high shear granulator
(4M8, Procept, Zelzate, Belgium). 200 g batch sizes of MPI standard
powders were fed into the glass bowl and then were agitated by an
impeller at a speed of 300 rpm and a chopper at a speed of 500 rpm
during the granules formation stage. 100 mL 15% w/v lactose solu-
tion used as the binding solution was added into the bowl by
droplets at the dosing speed of 4 mL min � 1. When the binding
solution had been used up, the product continued to be consoli-
dated by the impeller and chopper at the same speed for another
10 min, which made sure the total granule size distribution was
properly mono-dispersed. After that, a � uidised bed (VFC-Lab Mi-
cro � o-coater, Vector Corporation, Lowa, USA), which provided the
air with a temperature of 50 � C and the � ow velocity of 200 L min � 1,
was used to dry the granules until the moisture content was lower
than 10%. Three batches of MPI granules were prepared respectively
for the repeated measurements.

2.3. Powder characterisation

The granules were subjected to a sieve analysis using a nest
formed from 75, 106, 180, 425, 850 and 1000 mm sieves (Endecotts,
London, UK) to obtain � ve agglomerate size fractions (S1: � 1000/
þ 850 mm; S2: � 850/þ 425 mm; S3: � 425/þ 180 mm; S4: � 180/
þ 106 mm and S5: � 106/þ 75 mm). The particles of size larger than
1000 mm or the smaller size than 75 mm were removed. Therefore,
including the standard MPI powder, six samples in total were
investigated in this study. All the powders based on the different
sizes were dried in a vacuum oven (Jeiotech, Seoul, Korea) at 60 � C
temperature for 24 h and then kept in the desiccators to reach
ambient temperature. The � nal moisture contents of samples
before measurement were about 2 e 3%.

2.4. Physical properties

2.4.1. Granule size, density and porosity
The particle sizes of granules were measured by laser light

scattering using Malvern Masterszier 3000 (Malvern Instruments
Ltd, Worcestershire, UK). At least three measurements were made
and the average D (50) value was taken. The loose and tapped bulk
densities were measured by a tapping machine with a graduated
cylinder (Funke Gerber, Berlin, Germany). The volume occupied by
30 g powder was used to calculate the loose density while the
tapped density was obtained by the volume after 100 taps. In
addition, the apparent density of powder was measured by Gas
Pycnometer (AccuPyc II 1340, Micromeritics Instrument Corpora-
tion, Georgia, USA). Sample was placed in the cell and purged with a
� ow of helium to degas the cell by ten pressurisation cycles. All the
density measurements were repeated at least three times. Finally,
the porosity was calculated using the tapped density and the
apparent density.
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2.4.2. Granule shape
The shape of a granule is usually quanti � ed by three parameters,

which are circularity, convexity and elongation. In this study, they
were measured by Malvern Morphology G3 (Malvern Instruments
Ltd, Worcestershire, UK). The detailed method was described by Ji
et al. (2015) . Brie� y, a volume of sample was dispersed uniformly
into a single layer on the glass plate. Then, the microscope was used
to observe these particles and give out the average values of
circularity, convexity and elongation. All the measurements were
repeated at least � ve times.

2.5. Wettability

2.5.1. Wetting time
Wetting time is used to quantify the wettability of powders. The

method was based on GEA Niro method ( GEA Niro, 2005), which
recorded the time needed for powders to achieve complete wetting
without agitation. In this study, 6 g samples were put into a 400 mL
beaker containing 100 mL distilled water at 20 � C temperature. All
the measurements were repeated three times.

2.5.2. Capillary rise wetting
Powder wettability can also be quanti � ed by the Washburn

method ( Washburn, 1921 ), which is based on the powder capillary
rise wetting behaviour. It measured the liquid that penetrated into
powders by recording its penetration length or absorbed weight. In
this study, 2 g of powder was loaded into a cylindrical glass tube
with an open base bottom, which was covered by � lter paper and
gauze. The tube with powders on the bottom was � xed to just touch
the distilled water at 25 � C temperature. After that, the additional
mass of wetted powder was recorded in 10 min. The measurements
for each powder were repeated three times.

2.5.3. Contact angle
Contact angle is the tangent angle at the contact point of three

phases (liquid, solid and air) and it is a widely used parameter to
describe the wettability of powders. As the wetting behaviour is
believed to be a dynamic process, the contact angle and how it
varies with time was used to quantify the wetting process directly
(Yuan and Lee, 2013). An optical tensiometer (Attension Theta,
Biolin Scienti � c Ltd., Espoo, Finland) was used to observe the
penetration of a 12 mL water droplet into powder beds and to re-
cord contact angles over time. Before that, powders were � rstly
loaded into an aluminium pan with a diameter of 100 mm. Then a
leveller was used to form a smooth surface, which is necessary for
determining the right contact points and for calculating the angles.
The contact angle was recorded as a function of time. All the
measurements were repeated at least � ve times.

2.6. Granule dispersibility

The dispersibility of granules was quanti � ed by the change of
particle size during the solubilisation process ( Mimouni et al.,
2009). The sizes of dispersed granules were measured by Malvern
Masterszier 3000 based on laser light scattering technique (Mal-
vern Instruments Ltd, Worcestershire, UK). Details of the method
were described by the study of Ji et al. (2015). Approximately 5 mg
samples were fed into 120 mL dispersion unit with 2000 rpm
agitation and the measurements were carried out every 2 min for a
total of 140 min and at 25 � C± 2 � C temperature ranges. The results
of D (50) and D (10) were presented as a function of mixing time.

2.7. Dissolution

The dissolved solids kinetics was used to describe the solubility

of granules in this study. 1 g sample was added into 50 mL water in
a standard 200 mL beaker, which was preheated in a 25 � C water
bath. Then it was stirred by a 3-pitched-blade impeller with a
diameter of 4 cm at an agitation speed of 300 rpm. After different
mixing times (15, 30, 60, 90, 120, 150, 180, 240 and 300 min), each
suspension was centrifuged at 3000 g and 25 � C for 10 min
(Eppendorf Centrifuge 5810R, Hamburg, Germany). Approximately
2 mL supernatant was taken and a solids analyser machine (Smart
System 5, CEM, North Carolina, USA) was used to measure the
dissolved MPI in the supernatant, expressed as the percentage of
overall MPI solids (%). Triplicate measurements for each sample
were presented.

2.8. Granule microstructure by SEM

A � eld emission scanning electron microscope (Zeiss Supra, Carl
Zeiss Microscopy GmbH, Jena, Germany) was used to observe the
MPI granules. They were placed on a double-sided adhesive tape
and � xed to SEM stubs before imaging at 1.35 kV. Two magni � ca-
tions (80 � and 150� ) were performed respectively, based on the
different granule sizes.

2.9. Statistical analysis

Results were expressed as mean ± standard deviations (SD).
SPSS software (PASW, Statistics 1.8) was used to carry out One-way
analysis of variance (ANOVA). Statistical differences of particle size,
density and morphology descriptors were compared by the least
signi � cant difference (LSD) test, in relation to the applied variable
using F-test. Differences were considered to be signi � cant at
P < 0.05.

3. Results and discussion

3.1. Effect of different granule sizes on the physical and structural
properties of MPI

3.1.1. Density and porosity
In Table 1, it is obviously to see that the agglomerated MPI

showed signi � cantly higher loose and tapped bulk densities than
the unagglomerated powder, which means high shear granulation
creates denser structures. It is due to the densi � cation of high shear
agitation which compressed the particle volume, squeezed out
entrapped air to remove the internal pores, and thus decreased the
total volume that granules occupied, which can be observed from
Fig. 1. The SEM images show the granules were coalesced by single
primary particles and also their structures were densely packed
and highly compacted compared to the standard MPI powders. In
addition, from looking at the granules with different sizes in Table 1,
the smallest granules S5 had the highest apparent density and the
larger granules had progressively lower apparent densities. For
bulk densities, it is interesting to � nd that largest granules S1 with
1075 mm size, present the highest loose density of 0.538 g/mL,
while the smallest granules S5 showed the highest tapped density
of 0.561 g/mL. S3 and S4, which were in the range of
106 mme 425 mm, had the lowest loose and tapped densities of all
the granules. The porosity values of all the samples are also pre-
sented in Table 1. Similarly, the MPI granules generally had signif-
icantly lower porosities than the standard MPI, as the porosity is
mainly dependent on bulk density and apparent density. Thus, S1,
S2 and S5 had relatively low porosity values, which were all below
54%, while the porosities of S3 and S4 were more than 60%.

At the beginning of process, when MPI particles were wetted by
liquid, the nuclei granules were formed as the primary aggregates
fused by the standard particles. At the same time, they were
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solidi � ed by the force of agitation, which resulted in the less air
entrapped and the small interstitial spaces in the matrix ( Cuq et al.,
2013; Knight, 2001 ). Therefore, the bulk and apparent volumes of
S5 decreased and its porosity also became lower. As the nuclei

granules continued to grow, they coalesced together to create the
bigger secondary agglomerates based on the bridges that produced
by the binding liquid ( Hapgood et al., 2007). This process produced
the more irregular particles, which increased the void volumes

Table 1
Bulk density, apparent density and porosity of powders.*

Sample Characterisation Particle size D(50) ( mm) Loose density (g/mL) Tapped density (g/mL) Apparent density (g/mL) Porosity (%)

S1 >850 mm 1075 ± 15a 0.538 ± 0.006a 0.543 ± 0.002a 1.127 ± 0.010a 51.8 ± 0.2a

S2 425 mm e 850 mm 681 ± 9b 0.500 ± 0.006b 0.538 ± 0.002a 1.145 ± 0.008ae 53.0 ± 0.2b

S3 180 mm e 425 mm 263 ± 5c 0.431 ± 0.003c 0.463 ± 0.000b 1.188 ± 0.005b 61.0 ± 0.1c

S4 106 mm e 180 mm 111 ± 2d 0.450 ± 0.000d 0.478 ± 0.000c 1.203 ± 0.004c 60.3 ± 0.1d

S5 <106 mm 75 ± 1e 0.526 ± 0.000e 0.561 ± 0.000d 1.214 ± 0.005d 53.8 ± 0.1e

Standard 33 ± 1f 0.303 ± 0.000f 0.345 ± 0.000e 1.163 ± 0.011e 70.3 ± 0.2f

*Data are expressed as mean ± standard deviation; values followed by a different superscript letter in the same line are signi � cantly different at P < 0.05.

Fig. 1. SEM images of MPI granules with different particle sizes by granule growth processes. ( A: S1; B: S2; C: S3; D: S4; E: S5; F: standard MPI).
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among these particles ( Iveson et al., 2001). It may be the reason
why S3 and S4 have the comparatively lower bulk densities and
higher porosities than other granules. When the secondary ag-
glomerates reached the critical size, the bonds were not strong
enough to connect other particles. In that case, the granules
stopped growing and they were highly deformed again by the
mechanical solidi � cation ( Reynolds et al., 2005). Hence, as it
showed in Fig. 1A&B, the more compacted large granules S1 and S2
formed and the particles were closely arranged on the surface.
However, it is dif � cult to conclude the effect of granule growth
precisely due to the formed granules may break into fragments by
breakages. That will also in � uence the structures of obtained
granules, which need further studies in the future.

3.1.2. Granule morphology
Three parameters (Circularity, Convexity and Elongation) are

used to describe the granules with different particle sizes. Exam-
ining Table 2, S5 had both highest circularity and convexity values
of 0.891 and 0.965 respectively, which were the most spheroidal
shape and smoothest surface of all the samples including the
standard MPI. As explained previously, the initial formed nuclei
granules were consolidated through collisions with other granules
and granulator. Therefore, the formed shapes were rather sphe-
roidal and smooth by the uniformly force from ploughshares and
chopper ( Litster and Ennis, 2013 ). As the granule size increased, it is
found that granules formed with signi � cantly lower circularity and
convexity values. Especially for S3, it had only 0.767 for circularity
and 0.866 for convexity, which was even lower than that of unag-
glomerated MPI. In Fig. 1 C&D, it is also clear to see that S3 and S4
had less rounded shapes. It is commonly considered that the
agglomerated secondary granules may cause irregular shaped
particles and also rougher surfaces, due to the bridges formed be-
tween particles which modi � ed the shapes (Barrera-Medrano et al.,
2007; Hapgood et al., 2007; Reynolds et al., 2006 ). Furthermore,
when granule size reached S1 or S2, the coalescence stage was no
longer the dominant growth process. Their shapes again became
more rounded and smoother than S3 or S4, by the in � uence of
further densi � cation ( Fig. 1 A&B). But for elongation, which is used
to quantify the ratio of particle length and width, there is no sig-
ni � cant difference among these granules with different particle
size, because single granule was homogenised based on the force
from high shear agitation. Thus, their elongation values were all
about 0.26, while the standard MPI had a comparatively longer
shape.

3.2. Effect of different granule sizes on the wettability of MPI

3.2.1. Wetting time by immersional wetting procedure
According to the results in Table 3, the agglomerated granules,

regardless of the particle size, took signi � cantly less time to be
wetted by water than that of standard powders. The wettability
seemed to correspond to the particle size of samples with larger

granules showing better wettability. S1 and S2 displayed the best
wettability taking less than 10 s to be fully wetted. The other
granules all had shorter wetting times than 60 s, which can be
considered as the easy wetting powders. However, the standard
powders took more than 20 min to completely immerse below the
water surface, due to an impermeable hydrophobic layer formed to
separate the water surface and dry powder ( Ji et al., 2016). This was
not a problem for the agglomerated granules after high shear
granulation process. The surface tensile strength of the assembly of
granules is reduced by the size enlargement when contacting with
water. Hence, the granules separated during wetting process rather
than adhering together as � ne particles ( Knight, 2001 ). However,
particle size is not the only factor that in � uences the wetting be-
haviours. Ji et al. (2016) demonstrated that the agglomerated MPI
produced by � uidised bed granulation, which had a median particle
size of about 180 mm, still � oated on the water surface for more than
8 min. Therefore, the densely packed granules with higher density
also signi� cantly improve the wettability of MPI due to there being
fewer pores in the matrix ( Hogekamp and Schubert, 2003 ).

3.2.2. Capillary rise wetting
From Fig. 2, it can be seen that the agglomerated MPI granules

absorbed signi � cantly more water by capillary force than the
standard powders in 10 min. The results are consistent with the
wetting time measurements, the granules with large size also have
the better wettability based on the capillary rise wetting procedure.
The standard MPI only adsorbed 0.244 g water while S1 and S2
adsorbed most, exceeding 8.5 g water. This is due to the larger void
spaces between each granule, which causes a higher pore radius
that results in a positive correlation with the depth of liquid
intrusion ( Lazghab et al., 2005; Palzer et al., 2003; Yuan and Lee,
2013). This is shown by the Washburn model as Eq. (1)
(Washburn, 1921 ):

l2 ¼
cosq$r$g$t

2$h
(1)

where l is the penetration depth of the liquid, h is liquid viscosity, g
is the liquid surface tension, r is radius of pores, q is the contact
angle and t is time for penetration. Hence, it indicates that the large
pores between the particles result in greater penetration depth or
the greater mass of liquid by spontaneous intrusion, which is also
used to explain the better wettability of the big granules. However,
it is interesting to � nd that, though the particle size of S5 was only
75 mm, it exhibited much better wetting behaviour than the stan-
dard MPI. If compared to the results presented by Ji et al. (2015), S5
still adsorbed more water than the agglomerated MPI produced by
� uidised bed with a median size of 180 mm. Similar to immersional
wetting procedure, special water bonding capacity of whey protein
also limited the behaviours of capillary rise wetting ( Gaiani et al.,
2007; Schubert, 1993 ).

3.2.3. Contact angles by spreading wetting procedure
For the droplet spreading wetting procedure, the wettability of

powdered samples was compared based on the changes of contact
angle as a function of time ( Gao and McCarthy, 2006). In Fig. 3,
� rstly, the contact angle of standard MPI powder decreased from
160� to 40 � in about 300 s, which was much longer than that of the
agglomerated MPI granules with different sizes. These granules
took less than 10 s to allow the water droplet penetrate into the
powder bed. Again, the bigger granules seemed to cause quicker
disappearance of water droplets. For example, S1 and S2 not only
had the lowest initial wetting angles of 130 � , but also required only
about 2.8 s for the contact angle to decrease to 40 � . This is not
simply due to the granules ’ high porosities, as the standard

Table 2
Morphological descriptors of powders.*

Sample Circularity (0.5) Convexity (0.5) Elongation (0.5)

S1 0.862 ± 0.018a 0.931 ± 0.015a 0.262 ± 0.000a

S2 0.870 ± 0.004a 0.933 ± 0.001a 0.258 ± 0.004a

S3 0.767 ± 0.015b 0.866 ± 0.013b 0.262 ± 0.010a

S4 0.820 ± 0.006c 0.908 ± 0.005c 0.263 ± 0.002a

S5 0.891 ± 0.001d 0.965 ± 0.001d 0.263 ± 0.006a

Standard 0.816 ± 0.023c 0.931 ± 0.009a 0.301 ± 0.012b

*Data are expressed as mean ± standard deviation; values followed by a different
superscript letter in the same line are signi � cantly different at P < 0.05.
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powders have an even higher value, as shown in Table 1. Thus, it is
believed that the granules having larger voids between the parti-
cles result in the easy-wetting behaviours ( Yuan and Lee, 2013).
Meanwhile, as explained previously, standard MPI powders with
poor wettability are usually due to the formation of impermeable
hydrophobic gel-like layers ( Ji et al., 2016). However, it appears that
this did not happen for the agglomerated granules. Overall, all the
applied wetting procedures showed that the MPI granules formed
in high shear granulation exhibited much better wettability than
the standard MPI powders.

3.3. Effect of different granule sizes on the dispersibility and
solubility of MPI

3.3.1. Particle size changes during MPI granules solubilisation
As it is seen from Fig. 4 A&B, 50% of the standard MPI particles

were completely rehydrated into water in about 32 min, while the
most of the agglomerated granules were found to be more dif � cult

to disperse based on the slower decrease of particle size. Particu-
larly, there were almost no size changes for S4 and S5 for the whole
140 min, which indicated that they both had the extremely poor
dispersibility at the condition of 2000 rpm agitation. In addition, S1,
S2 and S3 were found to slowly release the materials into the
surrounding aqueous phase by the different releasing rates. In
Fig. 4A, the largest granules S1 took the longest time of 130 min to
reach 200 mm particle size, although its dissolution rate was
quickest of all. S2 and S3 also required more than 100 min achieving
a relatively stable particle size. It is surprising to see that these
three granules all � nally decreased to a constant size, which was
about 200 mm. However for S4 and S5, which had smaller sizes
initially (111 mm and 75 mm respectively), their particle sizes were
maintained at about their initial values. At the same time, in Fig. 4B,
10% of S1 and S2 particles displayed totally different dispersing
behaviours, as their sizes decreased dramatically during the � rst
20 min and the materials were solubilised in about 120 min. S3 also
showed similar dispersion process but it began with smaller size
and still was not totally dissolved at 120 min.

Generally, the micellar casein that exists in milk protein powder
has slow dispersion behaviour, due to its complex structures of
inter-linked network of casein micelles ( Mimouni et al., 2010;
Schuck et al., 2007). However, the poor dispersibility of the
agglomerated granules is determined by other more important
factors. It can be explained as the strong interactions for the granule
structures, caused by solidi � cation in the high shear granulation
(Reynolds et al., 2006). According to the results, the agglomerated
granules were very dif � cult to break down and collapse into small
solids, which can be de � ned as poor dispersibility, at the 2000 rpm
agitation condition. Furthermore, it is concluded that the primary
aggregates of granules were the most compacted, which led to the
slowest release rate of materials ( Hapgood et al., 2007). It is
conceivable that the size of remaining particles corresponds closely
to the granule strength that can resist the agitation force, as higher
mechanical energy is required to separate the primary aggregates
and disperse them into the medium. That is also the reason why S1,
S2 and S3 have the different dispersibility during the process. It is
believed that the strength of formed granules was weaker than that
of primary nuclei structures, because of the � nal granules con-
sisting of several nuclei granules, layering and � lling by the primary
particles and the particles that broke down from other granules by
attrition ( Barrera-Medrano et al., 2007 ). Consequently, these ma-
terials were less bounded to the large granules and easier to
disperse and dissolve into water than that in the small nuclei,
which is demonstrated by the changes of D (10) particle sizes in
Fig. 4B.

On the other hand, before the powders started to solubilise into
water, their particle sizes increased over the � rst several minutes,
as they swelled up by absorbing water following the wetting stage
(Gaiani et al., 2009). It can be found that standard MPI and small
granules S4 and S5 stopped swelling by 4 min, while the large
granules took longer time to reach a peak in particle size. For
example, the size of S1 can increase to about 1500 mm in 8 min. It is
indicated that water needed more time to completely penetrate
into the large granules with the longer diameter ( Palzer, 2007).

3.3.2. Dissolution of MPI granules
Fig. 5 shows the dissolved MPI solids percentage in solution as a

Table 3
Wetting time of dairy powders by immersional wetting procedure.

S1 S2 S3 S4 S5 Standard

Wetting time 5 s ± 1 s 7 s ± 1 s 15 s ± 2 s 25 s ± 4 s 41 s ± 7 s >20 min

Fig. 2. Mean weight of absorbed water for samples (the agglomerated MPI granules S1,
S2, S3, S4, S5 and standard MPI) after 10 min.

Fig. 3. The change of contact angle ( � ) as a function of time using the sessile drop
technique in approx.20 � C temperature.
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function of mixing time. The standard MPI displays the best
dissolution behaviour compared with others, as nearly 60% of its
solids dissolved after 5 h mixing time. The agglomerated granules
displayed much lower dissolution ability with only 30% solids being
solubilised in the supernatant after 5 h mixing; S4 and S5 with the
smallest granule sizes showed the least dissolved solids of only
about 25%. It is very similar to the results of dispersibility of the
different granules where small granules also had the poorest
dispersing behaviours. It is commonly considered that good dis-
persibility is a prerequisite for particles to dissolve into liquid
quickly ( Forny et al., 2011). Therefore, when the release of materials
into water was prolonged by the dense structures and the disso-
lution ability was thus also limited.

In addition, the solid percentage of all the samples increased
comparatively quickly over the � rst 30 min and was then followed
by slower dissolution behaviour for the next 300 min. It is believed
that the � rst dissolved solids were mainly contributed by the easy-
dissolving components, e.g. whey protein and some minerals, when
water began to penetrate into the structures of granules ( Mimouni
et al., 2010). However, the agglomerated granules retarded the
release of these materials, as those easy-dissolved components did
not solubilise as much as those in standard MPI powders. This may

be due to slower water penetration of water inside the granule
matrix ( Palzer, 2007), which may cause the partial dissolution of
whey protein and minerals. This phenomenon was more obvious
for the small granules, because of their more compacted structures
(Iveson et al., 2001).

4. Conclusion

The MPI granules produced by high shear granulation process
were found to have modi � ed physical and structural properties that
in � uenced their rehydration behaviours in water. The high agita-
tion condition in the process consolidated the granules and caused
high deformation and densely packed structures. Therefore, they
usually had the higher bulk density and lower porosity. The
different granule growth processes created the granules with
complex “hierarchical ” structures. The small nuclei � rstly formed
by fusing standard MPI together and displayed the more compacted
structures after solidi � cation. Then they coalesced to form irregular
secondary agglomerates with lower density and higher porosity
until they were deformed by agitation again.

These modi� cations made powders that were more easily
wetted by water, especially for the large granules. At the same time,
they also resulted in poorer dissolution due to prolonged water
penetration into the denser structures. Comparatively, the large
granules exhibited quicker release of materials into water until
reaching a critical size, below which may require more mechanical
energy to further break down the particles. Overall for MPI powder,
high shear granulation produced granules with superior wetting
characteristics in comparison to both standard MPI powder and
granules produced by � uid bed granulation. However these gran-
ules proved more dif � cult to dissolve. Considering this, high shear
granulation may have potential to improve the rehydration ability
of poor wetting powders that dissolve easily.

Acknowledgements

The study was supported � nancially by the Food Institutional
Research Measure (FIRM) of the Department of Agriculture and
Food and Marine Ireland under the project 11-F-001 entitled
‘Formulation and Design for Food Structure and stability ’.

Fig. 4. Particle size measurements of dispersed particles of the agglomerated granules S1, S2, S3, S4, S5 and standard MPI, as a function of mixing time (every 2 min) A: D (50); B: D
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Fig. 5. Solubilisation as measured by dissolved MPI percentage (%) versus different
mixing time.
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a b s t r a c t

The effects of � uidised bed (FB) and high shear mixer (HS) granulation processes on water adsorption
and � ow properties of milk protein isolate powder (MPI) were investigated and compared. The
agglomerated granules were characterised by different size fractions. It was found that granules pro-
duced from the HS process adsorbed less moisture, with slower adsorption kinetics, compared to those
produced from using the FB. Granulation reduced the cohesiveness of the MPI powder, with HS having a
signi � cant greater impact due to the formation of the particles with higher bulk density and larger size.
Particle size played a critical role that in � uenced water adsorption and � owability. Granulation processes
contributed to different degrees to reducing the minimum outlet diameters of hoppers based on either
mass-� ow or core- � ow discharges. HS granules had large wall friction angles, suggesting a need for
steeper hopper walls for effective discharge.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Milk protein concentrates, manufactured from ultra � ltered skim
milk, are widely used in nutritional beverages, sports nutrition bars
and other dairy based products due to their high nutritional values.
These powders provide a supply of milk solids in a stable and
convenient form, especially for preservation and transportation
(Ann Augustin and Clarke, 2011; Selomulya et al., 2013 ). However,
milk protein based powders usually have � ne particle size and
dense structures, causing poor � ow behaviour during conveying
(Crowley et al., 2014; Ilari, 2002 ) and susceptibility to moisture
adsorption during storage ( Foster et al., 2005; Kinsella and Fox,
1986). Granulation is a size enlargement process that results in
the formation of large granules with modi � ed physical structures.
Thus, it can be used as a potential process to improve the � ow
behaviour of bulk solids and in � uence the water adsorption
behaviour ( Szulc and Lenart, 2010, 2012).

Fluidised bed and high shear mixer agglomeration are the most
widely used wet granulation processes ( Jacob, 2007). Due to the

different mechanisms of granule growth, the use of binders and
intensity of solidi � cation, the granules produced by these two
processes have the completely different structures ( Barrera-
Medrano et al., 2007; Litster and Ennis, 2013 ). Generally, using a
� uidised bed, binding liquids are atomized and converted into free-
� owing solids, which then coalesce and agglomerate together by
creating bonds between primary particles ( Cuq et al., 2013).
Granules, thus formed, without mechanical consolidation, usually
have more irregular shape and high porosity, including large
interstitial space and also internal pores inside single granules ( Ji
et al., 2015). In comparison, a high shear mixer granulation pro-
cess provides strong agitation forces through an impeller with
compacts particles so that the created granules are highly-packed,
increasing bulk density and reducing porosity ( Ji et al., 2016a;
Reynolds et al., 2006). Furthermore, even granule growth pro-
cesses during the granulation process are also believed to in � uence
physical characteristics ( Hapgood et al., 2007). Generally, wetting
and nucleation, as the � rst step of granulation, wets the powders by
binders and forms nuclei aggregates with loose structures; the
subsequent coalescence process produces secondary agglomerates
from the nuclei, which have the comparatively less spherical shape
and rougher surface; � nally, consolidation compresses the ag-
glomerates uniformly to squeeze out entrapped air and decreases
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the pore volume and porosity ( Cuq et al., 2013; Litster and Ennis,
2013). However, � uidised bed granulation exhibits different
granule growth mechanisms. As the binding liquid is sprayed as
small droplets (which are much smaller than primary powders),
coalescence mostly occurs by layering of materials on the surface of
wet particles ( Barkouti et al., 2013 ). The resulting particles are less
consolidated due to their motion in air, and not by mechanical
agitation ( Jacob, 2007). Consequently, granules formed using a
� uidised bed is often more porous than those from high shear
mixer granulators. For these reasons, the different structures
modi � ed by these two processes are believed to contribute to the
different functionalities of the bulk solids.

Moisture adsorption refers to a phenomena occurring at the
physical interface between the bulk solids and their surrounding
humid environment. It contributes to moisture content during
storage and thus has an important role to play in physical and
chemical stability of powders. The behaviour depends to a large
extent on the powder particle surface area, i.e., sorption area,
composition and porosity; these factors affect the rate and extent of
entry and exit of water molecules into the solid matrix ( Al-
Muhtaseb et al., 2002 ). Commercial dairy powders, especially
high protein powders, typically have small particle size and large
surface area (Schuck et al., 2012). Hence, they are prone to adsorb
moisture during storage, handling and processing, which can easily
cause the undesired caking, crystallization and loss of production
(Fitzpatrick et al., 2008 ). Granulation can in � uence the water
diffusion process by increasing particle size and modifying powder
structures ( Barrera-Medrano et al., 2007 ), altering storage and
handling characteristics.

Flowability is another important parameter of milk protein
powders and it has been suggested that small powder particles are
generally regarded as less � owable compared to larger particles
(Crowley et al., 2014 ). It is reported that materials with small par-
ticles and dense structures form cohesive arches by consolidation
and interparticle adhesive forces, which can restrict discharge from
silos (Schulze, 2007), effecting throughput and product quality. In
general, there are two patterns for the � ow of a powder out of a
silo: 1) mass � ow and 2) core � ow ( Fitzpatrick et al., 2004b ). Mass
� ow is the desirable � ow pattern where all the solids are in motion
to give a � rst-in and � rst-out discharge regime. However, for a
cohesive powder, ‘arching ’ may still occurs at the hopper outlet,
where a stable powder arch forms across the outlet, blocking the
exit funnel. In addition, most � ow problems happen in the core
� ow pattern, as cohesive powders will move out through a central
funnel, which is formed by the no- � ow particles remaining at the
internal walls of hopper. This phenomenon may give rise to the
formation of a stable rat-hole ( Schulze, 2007). Thus, in order to
make powders � ow smoothly and discharge reliably, it is desirable
to design for mass � ow pattern. While studies ( Fitzpatrick, 2007;
Fitzpatrick et al., 2004a ) report that particle size is a key determi-
nant affecting � owability of powders, others claim particle shape
and densities are also potential factors as they in � uence physical
properties of surface contacts between particles ( Cleary, 2008;
Schulze, 2007). Thus, as an effective technique to modify these
physical properties, the effect of granulation on the � owability of
powders is important to investigate. So far, studies reporting
granulation are mainly about pharmaceutical materials ( Ennis,
2010; Gao et al., 2002; Iveson et al., 2001; Palzer, 2011 ); very few
focus on dairy protein powders.

The objective of this study was to investigate the effects of two
granulation processes, � uidised bed and high shear granulation, on
water adsorption and � owability of milk protein powders. Powder
granules formed by these two processes were analysed and their
data was compared. The � ow function and wall friction results were
used to specify appropriate hopper outlet dimensions and hopper

wall angles for both mass and core � ow discharges.

2. Materials and method

2.1. Materials

In this study, Kerry Ingredients (Kerry, Ireland) supplied milk
protein isolate powder (MPI) as a model powder, which consists of
86% milk protein, 5.2% moisture, 1.5% fat, 6% ash and less than 1%
lactose. The lactose used as binders in � uidised bed and high shear
mixer granulation, was purchased from Food Ingredients (Viby J,
Aarhus, Demark).

2.2. Methods

2.2.1. Fluidised bed granulation
The agglomeration process of MPI was performed in a top-spray

� uidised bed granulator (VFC-Lab Micro � o-coater, Vector Corpo-
ration, Iowa, USA). Each batch comprised of 200 g powder which
was � uidised in the product vessel by upward � owing air stream
from the bottom, at a � ow rate of 200 L min � 1. The powders were
preheated by a 50 � C air stream for 10 min, before 15% (w/v) lactose
solution was introduced as a binding liquid. The liquid was injected
via a peristaltic pump (1 mL min � 1) and sprayed as small droplets
by a two- � uid spray nozzle, located on the top of the vessel. The air
pressure on the nozzle was 1 bar. After addition of 150 g of lactose
solution, drying was continued for 20 min at a reduced � ow rate of
100 L min � 1. Three batches of MPI granules were produced as
replicates.

2.2.2. High shear granulation
A high shear granulator (4M8, Procept, Zelzate, Belgium) was

also used in this study to agglomerate the MPI powders. As in 2.2.1,
200 g MPI powder for each batch was fed into a glass bowel, where
an impeller and a chopper were both used to agitate the powders at
a speed of 300 rpm and 500 rpm, respectively. The binding liquid in
this granulation process was also 150 g 15% w/v lactose solution,
which was injected into the bowel as droplets with a dosing speed
of 4 mL min � 1. The impeller and chopper continued to mix the
products at the same speed for 10 min. Finally, the � uidised bed in
2.2.1 was again used to dry the granules with air (50 � C) at a � ow
rate of 100 L min � 1 (Ji et al., 2016a). Three batches samples were
prepared for the repeated measurements.

2.3. Powder characterisation

As different granule growth mechanisms occur in the � uidised
bed and high shear mixer granulation processes, variations in
particle size, shape and porosity of the formed granulated MPI are
expected. Therefore, prior to comparison, the agglomerates were
sieved into different size fractions. Two size fractions for agglom-
erates from � uidised bed granulation were prepared by 106 mm,
180 mm and 300 mm level sieves (Endecotts, London, UK) (FB1:
180 mme 300 mm and FB2: 106 mme 180 mm). Five size fractions for
agglomerates from high shear mixer granulation were prepared by
75 mm, 106 mm, 180 mm, 425 mm, 850 mm and 1000 mm level sieves
(HS1: 850 mme 1000 mm; HS2: 425 mme 850 mm; HS3:
180 mme 425 mm; HS4: 106 mme 180 mm and HS5: 75 mme 106 mm).
The particles that were not in these fractions were removed. The
non-agglomerated standard MPI (ST) used as the controlled sam-
ples. All the samples were further dried in a vacuum oven (Jeiotech,
Seoul, Korea) at 60 � C for 24 h and cooled down in desiccators to
ambient temperature before measurements. The � nal moisture
content of the powders can in � uence water adsorption and � ow
behaviour and therefore a value ranging between 2 and 3% was
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targeted. The measurement was carried out in the preliminary
study ( Ji et al., 2016a). Malvern Masterszier 3000 (Malvern In-
struments Ltd, Worcestershire, UK), which applies laser light scat-
tering technique, was used to measure the particle size of the
samples. Three repetitions were carried out; D(10), D(50) and D(90)
parameters were used as a measure of particle size.

2.4. Water adsorption analysis

Water adsorption isotherms were carried out by the static
gravimetric method. Approximately 1 g powder was weighed into
small glass vials of known weight. Triplicate samples for each
powder were � rstly dried in a vacuum oven at 50 � C for 24 h to
remove the residual moisture. The measurement was carried out in
the preliminary study to make sure the residual moisture as low as
possible (Ji et al., 2016a). Powders were kept in desiccators con-
taining P 2O5, equilibrated at room temperature, before placing in
the desiccators with a stable relative humidity, which ranged from
11% to 65%. Different saturated salt solutions: LiCl (11%), CH3COOK
(22%), MgCl2 (33%), K2CO3 (43%), Mg(NO3)2 (53%), and NaNO2 (65%)
were used to provide varied hygroscopic environments, respec-
tively. During the equilibration, the desiccators were stored in two
25 � C incubators. The weight of powder was measured for at least
96 h until it reached a constant value. The results were expressed as
equilibrated moisture content as a function of water activity to
show the adsorption isotherms. At the same time, the sorption
kinetics was also conducted by continuous measurement of mass
increase (Schuck et al., 2012). The weight of powder was measured
at 0, 3, 6, 9, 12 and 24 h, and then at 24 h intervals until equili-
bration. The results were exhibited as the moisture content for
every 100 g dry matters as a function of time.

2.5. Powder� ow analysis

The � owability of powders were quanti � ed and analysed by a
powder � ow tester from Brook � eld (Brook � eld Engineering Labo-
ratories, Middleboro, MA, USA). Flow functions and angles of wall
friction were both measured to assess the � ow behaviours of milk
protein powder and its agglomerates. During the measurements,
axial and torsional speeds for the tester were 1.0 mm s � 1 and 1 rev
h � 1 (approx. 0.0167 rpm). The aluminium trough (230 cm 3, 15.2 cm
internal diameter) of the annular shear cell was � lled by the sam-
ples, which were levelled by different shaping blades (curved- and
� at-) to create the smooth powder surface. The mass of solids based
on the different bulk densities were recorded. Vane- or � at-pro � led
lids with 15.2 cm external diameter were attached to the
compression plate of the tester for � ow function and wall friction
tests, respectively. All the measurements were repeated three
times.

2.5.1. Flow function test
The � ow function test is the primary measurement of powder

� owability, which gives a measure of the strength of the bulk solids
retained at a stress free surface following consolidation to a given
stress level (Teunou et al., 1999). Hence, in this study, the uncon-
� ned failure test was carried out and � ve normal stresses between
0.2 and 4.8 kPa were applied to calculate the uncon � ned failure
strength and major principle consolidation stress, based on Mohr
circles from speci � c yield locus. The � ow function was then con-
structed by plotting the failure strength versus the consolidation
stress, which can be quanti � ed as the � ow index ( ffc) (Schulze,
2007). Normally, the standard classi � cation of this index is: 1) if
ffc < 1, powder is non- � owing; 2) if 1 < ffc < 2, powder is very
cohesive; 3) if 2 < ffc < 4, powder is general cohesive; 4) if 4 < ffc < 10,
powder is easy to � ow; 5) and if ffc > 10, powder is very free

� owing. Meanwhile, bulk density curve is also evaluated to
describe bulk density changes as a function of stress acting on the
powder. The compressibility index ( CI) was calculated as follows:

CI%¼
r c � r b

r c
� 100

where r b is loose bulk density without compressing (kg m � 3); r c is
compressed bulk density at 4.838 kPa major principle consolidation
stress (kg m� 3).

2.5.2. Wall friction test
Wall friction is the friction between materials surface (e.g. the

wall of a bin or silo) and bulk solids (powders). The angle of wall
friction represents the angle to which a wall surface must be in-
clined to cause powder to slip ( Teunou et al., 1999). It is an
important index for silo design for � ow, which also can be
considered as chute angle. In this study, a � at plate of stainless steel
AISI 304 attached in the tester was used to measure the angles. In
total 10 normal stresses (0.48, 0.97, 1.45, 1.93, 2.41, 2.89, 3.37, 3.86,
4.34, 4.82 kPa) were applied. Finally, the angles were obtained from
the slope of a line drawn from the origin to a point on the maximum
wall yield locus at a normal stress of 4.82 kPa.

2.5.3. Two forms of� ow obstructions for conical hopper design
There are two forms of � ow obstruction problems for bulk solids

that may occur in a silo: arching in mass- � ow pattern and rat-
holing in core- � ow pattern, which are illustrated in Fig. 1. Hence,
a hopper is usually designed for reliable � ow aiming to avoid
arching in mass- � ow silos and rat-holing in core- � ow silos. Critical
arching diameter and hopper half angle are commonly used pa-
rameters to determine the outlet size of mass- � ow silos. The critical
arching diameter D arching (m) was calculated as follows ( Chen et al.,
2012; Crowley et al., 2014 ):

Fig. 1. Schematically illustration of arching and rat-holing problems in hoppers during
A: mass-� owing discharge pattern and B: core- � owing discharge pattern, respectively
(Darching : minimum outlet diameter to prevent arching; qr: critical hopper half-angle to
prevent arching; D rh: minimum outlet diameter to prevent a stable rat-hole; qr: critical
hopper half-angle to prevent a stable rat-hole).
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Darching ¼
2 � s a � 1000

r a � g

where s a is critical arching stress (kPa); r a is critical arching bulk
density (kg m � 3); g is gravity acceleration (m s � 2).

The critical hopper half angle ( qa) can be derived from the
effective angle of internal friction ( � e) and the angle of wall friction
(� w) for a conical hopper ( Schulze, 2007):

qa ¼
1
2

�
180� � cos� 1

�
1 � sin� a

2 sin� a

�
� � w � sin� 1

�
sin� wa

sin� a

��

where � a is the critical angle of internal friction at the corre-
sponding critical consolidation stress for arching ( � ); � wa is critical
angle of wall frictions at the corresponding critical consolidation
stress for arching ( � ).

For core-� ow silos, the critical rat-hole diameter (D rh) and the
maximum inclination of the hopper walls to the vertical ( qr) were
used to design the conical hopper dimensions ( Schulze, 2007). Drh

can be obtained for a conical silo, assuming a silo diameter of 2 m
and a height of 8 m:

Drh ¼
Gð� Þ � s r � 1000

r r � g

where Gð� Þ ¼0:7771 � e0:0381� r ; � r is critical angle of internal
friction for rat-holing ( � ); s r is critical rat-holing stress (kPa); r r is
critical rat-hole bulk density (kg m � 3).

Also, qr was assessed by� wr :

qr ¼ 65� � � wr ðIf bulk solids are poorly flowing Þ

qr ¼ 90� � ð � wr þ 10� Þ ðIf bulk solids are easy

� flowing ; i:e: granulesÞ

where � wr is critical angle of wall frictions at the corresponding
critical consolidation stress for rat-holing ( � ).

2.6. Statistical analysis

All the measurements were repeated three times and results
were showed as mean ± standard deviations. One-way analysis of
variance (ANOVA) was conducted by SPSS software (PASW, Statis-
tics 1.8, 2009). The least signi � cant difference (LSD) test, in relation
to the applied variable using F-test, was used to compare the sta-
tistical differences of values relating to � ow properties and hopper
design. Signi� cantly differences were considered when P < 0.05.

3. Results and discussion

3.1. Structural characteristics

The physical and structural properties of the different granules,
including particle size, density, porosity and morphology parame-
ters are shown in Table 1. It can be seen that independent of
granulation process used, injecting binders to promote adherence
of primary particles, produces signi � cantly (p < 0.05) larger parti-
cles. As milk protein powders are cohesive, high air velocity was
required during FB agglomeration resulting in granules only 2 to 4
times (100 mme 200 mm) in size of the primary powders. However,
granules produced by HS can reach sizes of more than 1000 mm,
which are ~20 times that of the primary powders. At the same time,
the FB granules had lower bulk density and higher porosity than
the HS granules. They also exhibited less rounded, rougher surface

and higher ratio of length to width shapes based on the signi � -
cantly lower values of circularity, convexity and higher values of
elongation ( Table 1). It can be more clearly observed from SEM
images in Fig. 2. The primary particles were highly-packed in the
granule structures that formed by HS process while FB process
created irregular agglomerates containing large interstitial pores
resulting in larger speci � c volumes. It is commonly believed that
the granules without consolidation will grow progressively by
layering materials on the surface, while consolidation supplied by
strong mechanical agitation will lead to plastic deformation of
granules via a process of squeezing-out entrapped air, increased
internal pore saturation and reduced porosity ( Cuq et al., 2013).
These signi� cant differences in physical and structural properties
can be attributed to different granule growth mechanisms as
in � uenced by process type and equipment used ( Jacob, 2007).

3.2. Water adsorption

Fig. 3displays water adsorption isotherms of MPI powder and its
granules made using the FB and HS processes, under different hu-
midly controlled environments. For the water activity range of
0.11e0.65, the isotherms all had a linear slope, regardless of the
type of granulation process used, including the non-agglomerated
MPI. There was no signi � cant difference between the standard
MPI (ST) and the granules from � uidised bed (FB1 & FB2), which
adsorbed almost the same quantity of water. However, the granules
from high shear mixer (HS1 to HS5) were found to adsorb less
water from the surrounding environment, suggesting that moisture
vapour is more dif � cult to penetrate into the structures and form
layers on the surface of internal primary particles. In Fig. 4, the
water adsorption kinetics at varying humidity are given; FB1 and
FB2 exhibited similar adsorption behaviour as standard MPI, which
all equilibrated at about 12 h. In comparison, the HS granules took
longer time to reach constant weight and an effect that is more
pronounced at the lower relative humidity environment (Aw: 0.22,
0.33 and 0.44). HS1 and HS2 powders, which had largest particle
sizes (Table 1), adsorbed the least amount of water but continued to
increase in weight until at least 24 h, especially at the low relative
humidity e.g. 0.22, 0.33 and 0.44 ( Fig. 4). It is interesting to note that
HS3 and HS4 adsorbed more water than HS1 and HS2, and required
shorter time to reach equilibrium. This effect was again more
evident at the lower relative humidity environment.

As shown previously, FB granules have high porosity, which is
suggested to facilitate penetration of water into the granule matrix
(Hapgood et al., 2007). The interior porous structures had no sig-
ni � cant effect on the rate and extent of hydration, and water
molecules seemed to enter and exit as easily as that occurring in
non-agglomerated MPI. On the other hand, the agglomerated MPI
produced from by the HS process had more compacted structure,
restricting diffusion of water into the internal surface as a result of
reduction of surface-binding sites for water to adsorb ( Al-Muhtaseb
et al., 2002), compared to those granules which are less compacted.
In this case, the large particles with low speci � c surface area were
believed to retard the moisture adsorption behaviour, which was
the reason why HS1 and HS2 exhibited the prolonged process.
However, granule size does not always correlate with total sorption
area, e.g., FB2 was not different from FB1, even though it had a
smaller particle size. Furthermore, HS3 and HS4 had different re-
sults, where more moisture content was adsorbed by them rather
than HS5, but they had large sizes on the contrary. It can be
explained by the granules produced by coalescence process, with
comparatively rougher surface and porous structures than other
granules from high shear mixer ( Fig. 2), which may cause the larger
surface area to contact the water molecules ( Murrieta-Pazos et al.,
2011). The nuclei granules HS5 after solidi � cation had higher
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granule strength and more dense structures. Therefore, it may be
more dif � cult for water molecules to access all internal primary
particles, particularly those towards the centre of a granule. It is
interesting to see that the kinetics of water adsorption were also
in � uenced by the gradient of different hygroscopic environments.
When the equilibrium relative humidity was increased, additional
water was progressively adsorbed by the protein powders.
Condensational wetting may occur if relative humidity is higher
than 0.5 and moisture may diffuse into these interior sites via
capillary force ( Ji et al., 2016b; Mathlouthi and Roge, 2003 ).
Consequently, the difference of moisture content within HS

granules was not signi � cant and the difference between FB and HS
was also reduced.

3.3. Flow properties

3.3.1. Flow function
The powders in a hopper are usually consolidated by stress,

which is based on their own self-weights and varied from their
positions in different regions of hopper or at different � ll heights.
Thus, the � owability of powders is often stress-dependent ( Teunou
et al., 1999). Fig. 5 illustrates that the standard MPI powder was a
poor- � owing powder and it was very cohesive when consolidating
stress was lower than 1.2 kPa. Even if the stress increased to 13 kPa,
the standard MPI was still considered as a cohesive powder.
However, the applied granulation processes, i.e., FB and HS, were
found to signi � cantly improve the � ow behaviour of milk protein
powders. Firstly, FB1 and FB2, produced from � uidised bed, had a
lower uncon � ned failure strength at the same consolidating stress,
indicating they had comparatively better � owability and can be
classi� ed as easy-� owing powders. Particle size also displayed a
bene� cial role as is demonstrated when FB1 and FB2 are directly
comparing at higher stresses than 3.2 kPa. The granules formed by
the HS process were all free � owing in the annular shear cell,
regardless of size fraction or the stresses that consolidated them.
Only HS3 exhibited slightly higher uncon � ned failure strength than
other HS granules.

It is commonly believed that adhesive forces are usually the
source of such � ow problems for � ne-grained dry bulk solids. The
major adhesive forces are based on van der Waals interactions and
the intensity of the forces mainly depend on the particle size as well
as the distances between individual particles ( Fitzpatrick, 2007;
Schulze, 2007). When the distances are small or the surfaces of
particles are in contact, van der Waals forces have a large in � uence.
Therefore, plastic deformation and rearrangement occurring at
contact points may cause an increase in adhesive forces ( Aarons

Table 1
Physical and structural properties of powders.

Samples Particle size D10 (mm) Particle size D 50 (mm) Particle size D 90 (mm) Bulk density (g/mL) Porosity (%) Circularity (0.5) Convexity (0.5) Elongation (0.5)

ST 18.1± 0.2a 49.4 ± 0.2a 112 ± 2.1a 0.298 ± 0.0a 72.85 ± 0.1a 0.816 ± 0.023a 0.931 ± 0.009a 0.301 ± 0.012a

FB1 50.8± 0.3b 188.7 ± 1.0b 346.5 ± 3.5b 0.179 ± 0.0b 84.43 ± 0.1b 0.630 ± 0.015b 0.761 ± 0.017b 0.266 ± 0.001b

FB2 40.1± 0.2c 102.5 ± 0.3c 190.5 ± 1.5c 0.221 ± 0.0c 79.33 ± 0.3c 0.669 ± 0.008c 0.814 ± 0.005c 0.301 ± 0.001a

HS1 778 ± 11.2d 1075 ± 15.7d 1565 ± 35.1d 0.538 ± 0.0d 51.8 ± 0.2d 0.862 ± 0.018d 0.931 ± 0.015a 0.262 ± 0.000c

HS2 456 ± 10.1e 681 ± 9.6e 1029.5 ± 20.9e 0.500 ± 0.0e 53.0 ± 0.2e 0.870 ± 0.004d 0.933 ± 0.001a 0.258 ± 0.004c

HS3 119.6 ± 1.5f 263 ± 5.2f 482 ± 8.0f 0.431 ± 0.0f 61.0 ± 0.1f 0.767 ± 0.015e 0.866 ± 0.013d 0.262 ± 0.010bc

HS4 67.6 ± 0.2g 111 ± 2.1g 178.5 ± 0.5g 0.450 ± 0.0g 60.3 ± 0.1g 0.820 ± 0.006a 0.908 ± 0.005e 0.263 ± 0.002bc

HS5 52.2 ± 0.3h 75.0 ± 1.0h 107.5 ± 0.5h 0.526 ± 0.0h 53.8 ± 0.1h 0.891 ± 0.001f 0.965 ± 0.001f 0.263 ± 0.006bc

a Adapted from Ji et al. (2015 & 2016a).
b Data are expressed as mean ± standard deviation; values followed by a different superscript letter in the same line are signi � cantly different at P < 0.05.

Fig. 2. SEM Images of MPI granules produced from � uidised bed and high shear mixer granulation, A: Fluidised bed (FB); B: High shear mixer (HS).

Fig. 3. Water vapours adsorption isotherms of powders (ST, FB & HS) at 25 � C
environment.
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and Sundaresan, 2006). This can be the reason why standard MPI
powders with small size have poor � owability. For FB1 and FB2,
their large sizes and rough surfaces resulted in an increase in dis-
tance and thus a reduction of adhesive forces. The granules of HS1
to HS5 also presented similar behaviours, as their adhesive forces
were no longer dominant compared to the gravity force. The dense
packed structures allowed the granules to � ow more freely
(Schulze, 2007). In addition, smooth and spherical particles usually
� ow better than rough and non-spherical particles ( Cleary, 2008)
which may explain why HS3 showed the slightly poorer � owability
than the other HS granules.

3.3.2. Bulk density
Different from solid density, bulk density is determined by the

voids that exist between or within the individual particles, which
also depends on the magnitude of the consolidation stress acting on
them. The results of bulk density in Fig. 6 showed that FB1 and FB2

had the lowest bulk density due to their signi � cantly (p < 0.05)
higher porosity compared to the other powder granules ( Table 1).
Their densities were lower than 200 kg m � 3 when no stress was
applied. In contrast, the granules of HS1 to HS5 showed much
higher values of at least 400 kg m � 3, as their structures were
consolidated by agitation forces in the high shear mixer. For
compressibility indexes, shown in Table 2, a signi� cantly (p < 0.05)
higher value (39.5%) was observed for standard MPI powders
compared to the granules. FB1 and FB2 were prone to be com-
pressed by stresses, while HS1 to HS5 displayed the least plastic
deformation. For example, for the HS1 and HS2 treatments, which
had the largest granule size, their compressibility indexes were less
than 10%, which indicates comparatively higher bulk strength. It is
believed that the index is closely related to the volume of inter-
stitial air as well as the internal occluded air ( Bhandari et al., 2013 ).
Therefore, the porous structures are considered as the major reason
to in � uence the compressibility of powders. Meanwhile, high index

Fig. 4. Kinetics of water vapour adsorption for the powders (ST, FB & HS) at six different hygroscopic environments (aw: 0.11; 0.22; 0.33; 0.43; 0.53; 0.65).
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values indicate that those powders were more likely to be com-
pressed by self-weight in hoppers during storage, which may cause
the altered bulk density and also subsequently affect the handling
properties ( Crowley et al., 2014; Schulze, 2007 ).

3.3.3. Wall friction angle
If considering the friction between bulk solids and solid sur-

faces, e.g. the wall of a hopper, the angle of wall friction as a
function of stress is important when quantifying the wall friction
during hopper design. In Fig. 7, FB1 and FB2 kept a constant angle of
approximately 15 � under the effect of different normal stresses.
Standard MPI powder had a higher angle of 25 � at the beginning of
a 0.5 kPa stress and then followed by a slight decrease with
increasing stress. Signi� cant changes were observed for the gran-
ules of the HS process, which not only present large wall friction
angles, but also varied as granule size changed. It is clear that
decreasing particle size resulted in increased wall friction angles,
regardless of the normal stresses applied. HS4 and HS5 had the
greatest angles of all, due to their high bulk density caused more
force transferring through wall shear stress, which meant the large
wall friction force and thus attained the big angles of wall friction
(Aarons and Sundaresan, 2008; Artoni et al., 2009 ). Meanwhile,
comparing with other granules from the HS granulation process,
the smaller sizes of HS4 and HS5 had increased speci� c surface
areas, which may produce stronger particle-wall interactions.
There is a greater tendency for the granules with high wall friction
angles to undergo deposition or segregation in a hopper, as the
particles near the hopper walls move slower than that in the centre.
Thus high wall friction may lead to the materials near the walls
discharging � nally ( Schulze, 2007).

3.3.4. Conical hopper design
The outlet diameter of conical hoppers and the inclination of the

hopper wall to the vertical are very important parameters to
determining bulk solids discharge from hoppers ( Fig. 1) (Fitzpatrick
et al., 2004b). As shown in Table 2, the minimum outlet diameters
for preventing both arching in mass- � ow discharge or rat-holing in
core-� ow discharge were compared for the different granules. The
Darching values of granules were signi � cantly lower than that of the
standard powder, which had at least 0.26 m to avoid the occurrence
of an arch at the outlet. The HS granules required the smallest
hopper outlet diameters while the granules from � uidised bed
needed slightly bigger diameters of about 0.1 m. In addition, the
corresponding maximum hopper half angle of standard MPI that
ensured mass-� ow was 18.7 � , which was lower than the values
present by FB1 and FB2 with 34.4 � or 32.7� respectively. However,
there seemed no special requirements on half angles for HS gran-
ules, as they already displayed free � owing behaviours in the
hopper. Similarly, for the core- � owing, HS granules needed a

Fig. 5. Flow function curves for uncon � ned failure strength as a function of major
principle consolidation stress for the powders (ST, FB & HS).

Fig. 6. Bulk density as a function of major principal consolidating stress for the
powders (ST, FB& HS).

Table 2
Values for compressibility index and � ow properties for conical hopper design,
derived from shear cell testing.

Sample CI (%) qa (� ) Darching (m) qr(� ) Drh (m)

ST 39.5± 4.8a 18.7 ± 4.1a 0.26 ± 0.03a 43.2 ± 0.7a 1.49 ± 0.20a

FB1 18.9± 2.4b 34.4 ± 5.7b 0.12 ± 0.02b 65.9 ± 0.1b 0.75 ± 0.07b

FB2 21.5± 2.1b 32.7 ± 5.3b 0.10 ± 0.00c 65.4 ± 0.1c 0.83 ± 0.11b

HS1 5.3 ± 0.2c Free � ow 0.01 ± 0.00d 55.4 ± 0.3d 0 ± 0.00c

HS2 7.7 ± 0.4d Free � ow 0.03 ± 0.01e 51.9 ± 0.3e 0 ± 0.00c

HS3 11.5 ± 0.9e Free � ow 0.03 ± 0.01e 47.3 ± 0.9f 0.20 ± 0.03d

HS4 10.0 ± 0.7e Free � ow 0.02 ± 0.00de 40.1 ± 1.0g 0.04 ± 0.00e

HS5 8.1 ± 0.4d Free � ow 0.02 ± 0.00de 37.8 ± 0.8h 0.02 ± 0.00f

*Values followed by a different superscript letter in the same line are signi � cantly
different at P < 0.05.
**CI: compressibility index; qa: critical hopper half-angle to prevent arching;
Darching : minimum outlet diameter to prevent arching; qr: critical hopper half-angle
to prevent a stable rat-hole; D rh: minimum outlet diameter to prevent a stable rat-
hole.
***Rathole diameter was derived for a conical silo, assuming a diameter of 2 m and a
height of 8 m.

Fig. 7. The angles of wall friction as a function of normal stress for the powders (ST, FB
& HS).
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hopper with smallest outlet diameter (0.2 m or even less) to ensure
discharge smoothly. On the other hand, 0.75 m and 0.8 m diameters
were calculated for FB1 and FB2, respectively, which were still
signi � cantly lower than that of standard powder (1.5 m). The re-
sults were consistent with the previous � ow function results, which
indicated that the free � owing granules could discharge completely
by gravity alone due to the strength of bulk solids being too weak to
achieve a stable rat-hole. Therefore, comparatively smaller outlet
dimension can be designed to support the ideal mass � ow for those
free- or easy- � ow bulk solids ( Fitzpatrick et al., 2004b ). However,
for maximum inclination of the hopper walls to vertical, the
granules of � uidised bed showed the largest angles of 65 � , while
HS5 needed the steepest wall for the hopper, which had smallest
angle. It is believed that the maximum inclination of hopper can be
estimated based on Jenike's methodology as a function of wall
friction angle ( Schulze, 2007). Likewise, it is not surprising to see
that the granules with high bulk density led to lower inclination
because of their large angles of wall friction.

4. Conclusion

In summary, both methods produced MPI granules with
signi � cantly large particle sizes. High shear mixer granulator made
granules with densely packed structures, which adsorbed least
moisture and showed the slowest adsorption kinetics during stor-
age at different relative humidity. The granules with loose and
porous structures created by � uidised bed granulation, exhibited
no signi � cant difference in water adsorption measurements when
compared to the non-agglomerated powder. Large MPI granules
were found to have signi � cantly better powder � ow behaviours.
Besides the effect of particle size, bulk density and shape properties
may both play important roles in � owability of powders, however
further studies are needed to validate their individual in � uences on
� owability. Overall, granulation processes can effectively reduce
the minimum outlet diameters of hoppers for reliable � ow from
both mass- � ow or core- � ow hoppers. However, large wall friction
angles caused by the HS granules (especially the smaller granules)
may also require steeper hopper walls to discharge bulk solids and
avoid them remaining at rest.
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Nomenclature

MPI Milk protein isolate
FB Fludised bed granulation
HS High shear mixer granulation
ST Non-agglomerated standard MPI
D(10) Particle size below which 10% of material volume exists

(mm)
D(50) Particle size below which 50% of material volume exists

(mm)
D(90) Particle size below which 90% of material volume exists

(mm)
CI Compressibility index (%)
ffc Flow index
r b Loose bulk density without compressing (kg m � 3)
r c Compressed bulk density (kg m � 3)
r a Critical arching bulk density (kg m � 3)
r r Critical rat-hole bulk density (kg m � 3)

Darching Critical arching diameter (m)
Drh Critical rat-hole diameter (m)
g Gravity acceleration (m s � 2)
s a Critical arching stress (kPa)
s r Critical rat-holing stress (kPa)
qa Critical hopper half angle for arching ( � )
qr Critical hopper half angle for rat-holing ( � )
� e Effective angle of internal friction ( � )
� w Angle of wall friction ( � )
� a Critical angle of internal friction for arching ( � )
� wa Critical angle of wall frictions for arching ( � )
� r Critical angle of internal friction for rat-holing ( � )
� wr Critical angle of wall frictions for rat-holing ( � )
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