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Abstract—Advancements in sensing technology and artificial
intelligence have revolutionized industrial settings by introducing
robots that work alongside humans, enhancing productivity and
flexibility. However, ensuring safety in human-robot interactions
has become more challenging. Established safety standards
emphasize risk assessment, protective measures, and real-time
monitoring systems, where safety complexities arise from intri-
cate industrial interactions. The study focuses on ”Speed and
Separation Monitoring” (SSM), a collaborative type defined by
ISO/TS 15066. The research addresses unknowns within SSM,
particularly on the parameter accounting for the robot system to
respond to the operator’s presence, crucial for decision-making
on speed and separation limits. A proximity sensor was utilized
to assess the overall delay of a classic industrial network between
the sensing node for the operator detection (AI-based vision
system) and the triggering of the safety node to the robot.
The methodology was tested on a cohort of 23 subjects and
evaluated under various lighting conditions. The study identified
bottlenecks and the impact of each subsystem composing typical
industrial control networks, highlighting the need for precise
methodologies to assess latency as a critical factor in safety
and productivity as sensing technology, collaborative robots and
safety networks keep evolving.

Index Terms—Latency, collaborative robotics, safety, speed and
separation monitoring

I. INTRODUCTION

Human-robot collaboration is rapidly gaining traction within
the evolving field of robotics, serving as a pivotal enabler for a
wide array of applications [1]. This collaborative dynamic not
only enhances existing scenarios where robots work alongside

This work was carried out with the support of Enterprise Ireland and Sci-
ence foundation Ireland through the DTIF project SafetyBot (DT20200274),
the SFI Centre VistaMilk (SFI 16/RC/3835) and the student mobility schol-
arship of Politecnico di Torino.

human operators but also extends into traditionally human-
exclusive domains. While safety remains a paramount concern
whenever humans and robots share a common workspace, the
increasing integration of collaborative robots (cobots) with ad-
vanced AI-driven sensing technology presents new challenges
for policymakers and legislators in developing robust and
adaptable safety standards. The high repeatability, precision,
and velocity in cobots, coupled with advancements in AI-
driven sensing, underscores the need for proactive measures
to ensure safe and sustainable deployment of collaborative
robotic systems [2].

Safety in human-robot interaction (HRI) can be broadly
categorized into two crucial dimensions [3]. The first and more
intuitive dimension is physical safety. Here, the overarching
objective is to prevent any undesired contact between humans
and robots. However, if contact is required or not avoidable by
the task for other reasons, the forces exerted by the robot on
the human must be meticulously controlled to remain within
limits that preclude discomfort or injury.

The second, often underestimated dimension is psycholog-
ical safety. In the context of human-robot interaction, this
usually refers to excessive stress and discomfort that could
be induced by collaborative tasks over extended periods. Con-
sider, for instance, a hypothetical robot operating with a sharp
end effector capable of swift movements in close proximity
to a human operator’s hand. While physical barriers or light
curtains may effectively prevent physical contact, therefore
any chance of injury, the constant stress and discomfort
experienced by the human operator pose significant long-term
health concerns [4].

Several standards are being implemented to address safety
in collaborative robotics scenarios, such as the ISO/TS 15066



[5] that identifies four types of collaboration, including ”Speed
and Separation Monitoring” (SSM), which is the focus of this
research. In this collaborative scenario, a minimum protective
distance SP between a robot and an operator within the col-
laborative workspace, is established by the following equation:

SP(t0) ≥

(∫ τ=t0+TR+TS

τ=t0

vH(τ) dτ

)
+

+

(∫ τ=t0+TR

τ=t0

vR(τ) dτ

)
+

(∫ τ=t0+TR+TS

τ=t0+TR

vS(τ) dτ

)
+

+C + ZS + ZR

where vH is the directed speed of the operator, vR is the
directed speed of the robot in the direction of the operator, and
vS is the directed speed of the robot in the course of stopping.
TR is the time for the robot system to respond to the operator’s
presence, while TS is the time to bring the robot to a safe,
controlled stop. The remaining terms capture measurement
uncertainty, where C is an intrusion distance safety margin
based on the expected human reach, ZR is the robot position
uncertainty, and ZS is the operator position uncertainty [8].

Most of the literature implementing SSM, is focused on
identifying and avoiding potential collisions (e.g. [6], [7]). Due
to the non-linear nature of the human tracking issue, accurately
forecasting the response time of a human-detection system is
challenging. Presently, there exists no standardized approach
for assessing the reaction time of a human-detecting sensor.
Instead, it is typically regarded as a fixed value or buffer
that the integrator is responsible for determining. However,
a more accurate evaluation of the whole chain of latency,
from the sensor trigger to the command to the robot to stop
(TR), is becoming more and more crucial as collaborative
robotics expands and evolves. In such context, while safety
remains paramount, there is the need for maximizing robot
performance (productivity) while collaborating alongside hu-
man operators. In fact, poor estimation of TR can poses a
substantial safety risk if the actual value is too large, or, in
contrast, inefficiency in the human-robot collaboration and
downtime if too small, regardless of the accuracy and precision
of the reported data.

The TR parameter plays a crucial role in the equations
governing SSM, effectively influencing the decision-making
process related to the thresholds to set for the maximum
speed and maximum separation. Few works have focused on
some of the elements of the SSM equation, proposing ad-hoc
methodologies for their assessment.

Marvel et al. [8] evaluate the reaction time for rail-mounted,
6 degree of freedom robot manipulator by using, a system
(e.g., a pressure-sensitive mat) that monitors the boundary of
the protected zone and a timer that is then stopped when the
signal from the safety system is received. Szabo et al. [9]
conduct experiments aimed at estimating reaction times of the
robot by setting up a linear motion test in which the robot
interrupted a laser beam connected to a safety relay. Rashid
et al. [10] propose a method to concurrently determine the

safety parameters of intrusion distance for sensors and the
reaction time for robot controllers. To the best of the authors’
knowledge, no prior work has proposed methods for evaluating
the parameter TR within a typical industrial use case, while
implementing SSM.

This work presents an approach to the assessment of latency
as a critical factor in industrial network that adopt safe
communication standards between nodes of elements of a
collaborative robotic system. Beyond physical safety consider-
ations, we incorporate the dimension of psychological safety
to underscore the significance of a holistic safety approach
in HRI. Furthermore, we introduce productivity as a third
element, emphasizing the imperative to limit downtime of
collaborative robots for enhanced overall efficiency in their
operational environments.
This work is structured as follows: Section II describes the
experimental setup and methodology for the evaluation of
the time parameter TR. Section III discusses the results of
our approach. Finally, Section IV and V respectively provide
conclusions and discuss limitations.

II. METHODOLOGY

To assess TR in a physical environment simulating the
typical industrial network controlling a cobot, both hardware
and software tools have been used. Below the equipment
utilized, the experimental setup and the final assessment are
described

A. Equipment

The hardware and software components utilized to conduct
the assessment of the time required for a robot system to
respond to the presence of an operator (TR) are the following:

1) Hardware:

• NDIVIA’s Jetson Nano Developer kit (NVIDIA, Santa
Clara, California, United States) [16]. This development
platform is equipped with a 128-core Maxwell Architec-
ture GPU and a CPU operating at a maximum frequency
of 1.43 GHz. The Jetson Nano provides the computa-
tional power necessary for training neural networks and
executing multiple neural networks simultaneously;

• Safety remote I/O device based on Ixxat Safe T100 (HMS
Networks, Halmstad, Sweden). This product, although
not yet available on the market, serves as an essential
component for implementing safety communication pro-
tocols;

• Arducam Time-of-Flight (ToF) camera (Arducam, Nan-
jing, China) [17]. Utilizing a Vertical-Cavity Surface-
Emitting Laser in continuous-wave modulation mode, this
camera measures the distance of an object (in this case a
human) with respect to the sensor by emitting modulated
light and evaluating the round-trip time for the light to
be reflected back from the object into the sensor;

• GuardLogix Safety Programmable Logic Controller
(PLC) 5380 from Rockwell Automation (Rockwell Au-
tomation, Milwaukee, Wisconsin, United States) [18].



This safety programmable logic controller ensures the
execution of safety functions within the system;

• Universal Robot UR16e (Universal Robots, Odense, Den-
mark) [19];

• SICK WL9-3P2232 Infrared sensor (SICK Sensor In-
telligence, Waldkirch, Germany) [20]. A through-beam
photoelectric sensor with a response time of less than
0.5 ms and a switching frequency of 1000 Hz, used for
detecting the presence of the operator;

• Tektronix TDS-3032C Digital oscilloscope (Beaverton,
Oregon, United States) [21]. It features a sample rate of
up to 5 GS/s and a time base accuracy of ±20 ppm over
any 1 ms time interval.

2) Software:
• Wireshark v4.0.10. Open-source packet analyzer em-

ployed for network analysis;
• Studio5000 v35. This software is utilized for program-

ming Allen-Bradley controllers;
• Ubuntu v18.04. An open-source operating system based

on the Linux kernel, serving as the default operating
system for the NVIDIA platform.

B. Participants and Ethics Statement

A total of 23 subjects (15 male and 8 female) were recruited
for the data collection, with age ranges from 20-60 years.
Before commencing the trial, a comprehensive briefing of the
nature of the study was given, followed by the opportunity
to confirm consent. No information that can directly identify
participants was included in the data collection, in accordance
with the General Data Protection Regulation 2018 of the EU.
Ethics authorization from the University College Cork Ethics
Committee was secured before starting the data acquisition, as
per the law in force.

C. Experimental Setup

To evaluate the time parameter TR within the SSM frame-
work, it is important to understand the system down to
component level. The experimental setup, as depicted in Fig. 1,
is used to perform this analysis.

Fig. 1: The illustration depicts the experimental setup employed
in this study, providing insight into the essential components and
the operational definitions of TR and TS within the context of the
analyzed configuration.

Below is a concise overview of the functionalities of the
different blocks depicted in Fig. 1, along with insights into
their interconnections.
The camera-based system is responsible for detecting the
operator and determining their distance in relation to the robot.

This system comprises the Jetson Nano Developer kit and
the Arducam ToF camera mounted on it. Human detection
is achieved through the utilization of the YOLO v8n model,
developed by Ultralytics [11] , to ensure robustness and
stability in object recognition processes. Distance calculation
relies on data obtained from the ToF Camera and processed
via Python environment.
The safety remote device implements the CIP safety commu-
nication protocols. One of the general-purpose input/outputs
(GPIO) pin of the Jetson Nano board is connected to the input
of the safety remote device (via voltage step-up to bring the
3.3V to 24V) and configured to switch state when the operator
approaches within a distance of 1.2m from the robot (arbitrary
distance that consider a safety margin respect to the maximum
reach of the robot arm). In turn, the activation of the safety
remote device input triggers the Safety PLC through ladder
code, thereby regulating the speed of the UR16e universal
robot.
In this configuration, the total time parameter, TR, is deter-
mined as the sum of the processing time of the camera-based
system and the safety remote I/O device (Fig. 1). Latency
analysis for the camera-based system is conducted employing
the infrared sensor and the digital oscilloscope. Similarly, for
the safety remote device, latency assessment is carried out
using the open-source packet analyzer Wireshark v4.0.10.

D. TR Assessment

1) Safety Remote I/O device: Performance analysis of in-
dustrial networks and the automation systems that employ
them is conducted either through hardware tools [12], [13]
or via software [14], [15].

In this paper, for latency assessment of the safety remote I/O
device, the examination of the exchanged messages between
the Safety PLC and the Ixxat device is conducted, specifically
focusing on the analysis of CIP safety messages. This type of
analysis is selected to assess the device’s latency with only
the input connected, representing the scenario employed in
the designated setup. Fig. 2 illustrates the timeline between
the activation of the input of the safety remote I/O device and
the subsequent received CIP Safety message.

Fig. 2: Timeline when only the input of the remote IO device is
activated.

In order to make this analysis, Wireshark v4.0.10 is chosen
as software tool and a square wave signal with a 24 V
amplitude serves as the input to the device (Fig. 3).

The initial step involves collecting messages and their
corresponding timestamps from Wireshark, utilizing suitable



Fig. 3: Schematic diagram of the setup used.

filters. Following this, the device frequency is calculated in
MATLAB using these data, achieved by identifying the total
number of peaks and dividing them by the overall period.
This methodology is replicated for different input Requested
Packet Intervals (RPIs) (5ms, 10ms, and 20ms). This approach
allows for a comparison between the input frequency of the
theoretical square wave and the frequency of the safety remote
I/O device and thus the computation of the corresponding
latency.

2) Camera-based System: To evaluate the contribution of
the camera-based system in assessing TR, an external infrared
sensor is employed. The infrared sensor and its reflector are
positioned at a distance of 1.2m from the camera. When the
camera detects that the subject is closer to 1.2m, the state of
the GPIO of the Jetson Nano is switched and consequently
the input of the safety remote device is changed to 24V.
This approach enables the estimation of the time required for
the camera-based system to detect the presence of a person,
estimating their distance, and activate the safety remote device
input if the person gets closer than 1.2m . For this evaluation,
the output of the infrared sensor and the input of the safety
remote device are connected via probes to the oscilloscope for
activation time comparison. Both the infrared sensor and the
ToF system are triggered upon the passage of a subject at the
1.2m mark from the camera. Such setup, represented in Fig. 4,
facilitates the assessment of the delay between the activation
of the sensor, indicating the presence of a person within range,
and the subsequent activation of the safety remote device input
by the camera-based system.

Fig. 4: TR assessment setup.

The testing procedure is structured as follows: Four distinct

conditions of typical indoor neon lighting are defined:
1) Condition 1: Both lights turned on
2) Condition 2: Left light turned on (refer to Fig. 4)
3) Condition 3: Right light turned on
4) Condition 4: Both lights turned off
For each participant, the maximum distance from which the

camera could effectively recognize the person is determined
under each of the four lighting conditions. Subsequently,
participants are instructed to take walk back and forth 20 times
across the 1.2m range mark ( Fig. 5). This process ensures that
both the signal coming from the infrared sensor output and the
signal fed into the input to the safety remote device generated
by the Jetson Nano change state when the individual crosses
the predetermined range.

Fig. 5: TR assessment setup - Top view.

By employing this method, the latency between the ac-
tivation of the individual’s presence and the activation of
the safety remote device input could be evaluated using an
oscilloscope. This process is repeated for each of the four
lighting conditions.

III. RESULTS AND DISCUSSION

1) Safety remote I/O device:
The results indicate the safety remote I/O device has a cutoff

frequency, which is contingent on factors such as the input
RPI, input filtering (e.g., debounce filter), and the number
of safety inputs utilized, consistent with the specification.
Specifically, the percentage of received signal at the variation
of input frequency over three different RPI, keeping one single
safe input of the safety remote I/O device and the debounce
filter set to its minimum value of 1.2ms, are shown in Fig. 6.

According to the different RPI, once such cutoff frequency
is surpassed, the device’s ability to accurately track the input
diminishes, resulting in a noticeable drop in performance.
Consequently, latency Tsafety device can be calculated as:

Tsafety device =
1

flimit
(1)



Fig. 6: Overall performance of the safety remote I/O device for
different RPIinput. The x-axis represents the input frequency and
the y-axis denotes ratio between the frequency of the safety remote
I/O device and the input frequency in percentage.

For instance, when the input RPI is set to 5ms, the debounce
filter is configured at 1.2ms, and only one input is active, the
calculated latency amounts to 20.3ms± 1.7ms.

2) Camera-based system:
Fig. 7 presents the latency analysis conducted on the

camera-based system. Specifically, the mean latency and corre-
sponding standard deviation are reported for male and female
subjects across various light conditions. Notably, a discernible
disparity in values based on gender is observed. This variance
could predominantly stems from the dataset used for model
training, which is known to exhibit a pronounced skew towards
male subjects [22] .

Fig. 7: Obtained Latency Results for camera-based system.

Moreover, the outcomes reveal that the longest latency oc-
curs when both lights are illuminated, resulting in heightened
brightness. In such instances, the maximum latency value
recorded is 533.3ms ± 60.1ms. It is evident that artificial
illumination acts as a noise factor in the distance processing
phase within the utilized setup. This observation aligns with

the operational principle of ToF cameras, where ambient light
can have a significant impact on the Signal-to-Noise Ratio of
reflected signals, particularly in environments with excessive
ambient light [23]. This inference is further substantiated by
the data presented in Fig. 8, illustrating the mean and standard
deviation of the maximum distance at which the system can
detect individuals across different light conditions, with higher
values observed in the absence of artificial light.

Fig. 8: Max distance results.

It should be noted that the results obtained are also af-
fected by the oscilloscope cursor resolution, which, with the
employed configuration, stands at ±4ms. Remarkably, this ac-
counts for less than one percent of the overall results obtained.
To gain deeper insights into the primary factors influencing
such latency, the cumulative pre-processing, inference, and
post-processing time incurred by the model is considered.
Such time period is determined to be 188.5ms ± 1.9ms with
the utilized setup (Jetson Nano timestamp). Moreover, such
image processing duration inherently constrains the number
of frames per second pulled from the ToF camera to 5. In our
specific context, the low fps value does not significantly impact
our results due to several factors. Firstly, participants were
executing steps at a moderate pace within the sensor range to
activate the camera-based system. Moreover, the camera-based
system triggers when individuals enter a specified range rather
than requiring precise distance measurements.

IV. CONCLUSIONS

This work delves into the assessment of latency as a
critical factor in optimizing the SSM standard in collaborative
robotics. Beyond physical safety considerations, we incorpo-
rate the dimension of psychological safety to underscore the
significance of a holistic safety approach in HRI. Furthermore,
we introduce productivity as a third element, emphasizing
the imperative to limit downtime of collaborative robots for
enhanced overall efficiency in their operational environments.
As technology continues to advance, particularly with the in-
tegration of sensing technologies for enhanced self-awareness
and autonomy in cobots, it becomes imperative for safety
standards to evolve in parallel.



We presented an ad-hoc methodology for assessing the
critical yet unexplored aspect of the time required for a robot
system to respond to the presence of an operator (TR). By fo-
cusing on a collaborative robotics network featuring a camera-
based human tracking and distance calculation device (ToF
camera module and Jetson Nano board), a PLC controlling
a UR16e, and a safety I/O remote device implementing CIP
safety, we have evaluated TR with a high degree of preci-
sion. Through software-based methodologies and comparative
analysis with a retro-reflective sensor, we determined, for the
worst-case performance, a TR of 553.3ms± 61.7ms.

This estimation of response time is a substantial improve-
ment in determining the appropriate robot speed to prevent
collisions with operators, which is otherwise obtained by
considering high estimated tolerances. Moreover, our proposed
methodology can be applied to various network configurations,
thereby offering insights to better set the SSM parameters. By
providing a more accurate assessment of the overall reaction
time of the system, our methodology not only enhances
safety but could also minimize robot underperformance and
downtime.

V. LIMITATIONS AND FUTURE WORKS

While our study has provided an insight into the evaluation
of the TR parameter within the SSM framework, it is important
to note that the focus of this work is not on the sensing
technology part, including improving the performance of the
model for object recognition, but rather finding a method-
ology to evaluate latency within a typical industrial context.
Nevertheless, few limitations have been identified, suggesting
venues for future research. What affects latency the most is
the performance of the YOLO v8n model for object detection,
that is heavily influenced by the hardware on which it operates.
Variability in hardware specifications can result in significant
fluctuations in the model real-time processing capabilities,
compounded by the challenge of low frames per second.
Addressing this limitation requires further investigation into
optimizing the model performance across different hardware
configurations to ensure consistent and reliable object detec-
tion service. Additionally, another hardware limitation is the
use of a low resolution ToF camera, which may impact the
system’s capabilities and overall performance. In subsequent
phases, our focus will shift towards the integration of dual-
camera setups, either for stereo imaging or using one high
resolution camera for object detection and one ToF camera to
assess distances. Furthermore, as part of our future work, we
aim to compute the speeds of both the robot and the operator.
This data will be instrumental in implementing dynamic SSM
using the system, thereby ensuring adaptive and responsive
safety protocols in dynamic environments.
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