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Abstract
Preference Inference involves inferring additional
user preferences from elicited or observed prefer-
ences, based on assumptions regarding the form of
the user’s preference relation. In this paper we con-
sider a situation in which alternatives have an asso-
ciated vector of costs, each component correspond-
ing to a different criterion, and are compared using
a kind of lexicographic order, similar to the way
alternatives are compared in a Hierarchical Con-
straint Logic Programming model. It is assumed
that the user has some (unknown) importance or-
dering on criteria, and that to compare two alterna-
tives, firstly, the combined cost of each alternative
with respect to the most important criteria are com-
pared; only if these combined costs are equal, are
the next most important criteria considered. The
preference inference problem then consists of de-
termining whether a preference statement can be
inferred from a set of input preferences. We show
that this problem is coNP-complete, even if one re-
stricts the cardinality of the equal-importance sets
to have at most two elements, and one only con-
siders non-strict preferences. However, it is poly-
nomial if it is assumed that the user’s ordering of
criteria is a total ordering; it is also polynomial if
the sets of equally important criteria are all equiva-
lence classes of a given fixed equivalence relation.
We give an efficient polynomial algorithm for these
cases, which also throws light on the structure of
the inference.

1 Introduction
There are increasing opportunities for decision mak-
ing/support systems to take into account the preferences of in-
dividual users, with the user preferences being elicited or ob-
served from the user’s behaviour. However, users tend to have
limited patience for preference elicitation, so such a system
will tend to have a very incomplete picture of the user pref-
erences. Preference Inference involves inferring additional
user preferences from elicited or observed preferences, based
on assumptions regarding the form of the user’s preference
relation. More specifically, given a set of input preferences Γ,

and a set of preference modelsM (considered as candidates
for the user’s preference model), we infer a preference state-
ment ϕ if every model inM that satisfies Γ also satisfies ϕ.
Preference Inference can take many forms, depending on the
choice ofM, and on the choices of language(s) for the input
and inferred statements. For instance, if we just assume that
the user model is a total order (or total pre-order), we can set
M as the set of total [pre-]orders over a set of alternatives.
This leads to a relatively cautious form of inference (based
on transitive closure), including, for instance, the dominance
relation for CP-nets and some related systems, e.g., [Boutilier
et al., 2004; Brafman et al., 2006; Bouveret et al., 2009;
Bienvenu et al., 2010].

Often it can be valuable to obtain a much less cautious form
of inference, for example, in order to have some help in decid-
ing which options to show to the user next in a recommender
system [Bridge and Ricci, 2007; Trabelsi et al., 2011]. This
includes assuming that the user’s preference relation in a
multi-objective context is based on a simple weighted sum
of objectives (as in a simple form of a Multi-Attribute Util-
ity Theory model [Figueira et al., 2005]); this kind of pref-
erence inference is considered in [Bridge and Ricci, 2007;
Marinescu et al., 2013]; or alternatively, assuming different
lexicographic forms for the preference models as in [Wil-
son, 2009; Trabelsi et al., 2011; Wilson, 2014]. Note that all
these systems involve reasoning about what holds in a set of
preference models. This contrasts with work in preference
learning [Fürnkranz and (eds.), 2010; Dombi et al., 2007;
Flach and Matsubara, 2007; Bräuning and Hüllermeier, 2012;
Booth et al., 2010] that typically learns a single model.

In this paper we consider a situation in which alternatives
have an associated vector of costs, each component corre-
sponding to a different criterion, and are compared using a
kind of lexicographic order, similar to the way alternatives
are compared in a Hierarchical Constraint Logic Program-
ming (HCLP) model [Wilson and Borning, 1993]. It is as-
sumed that the user has some (unknown) importance order-
ing on criteria, and that to compare two alternatives, firstly,
the combined cost of each alternative with respect to the most
important criteria are compared; only if these combined costs
are equal, are the next most important criteria considered.

We consider the case where the input preference statements
are of a simple form that one alternative is preferred to an-
other alternative, where we allow the expression of both strict



and non-strict preferences (in contrast to most related prefer-
ence logics, such as [Wilson, 2011; Boutilier et al., 2004;
Wilson, 2009; 2014]). This form of preference is natural
in many contexts, including for conversational recommender
systems [Bridge and Ricci, 2007]. The preference inference
problem then consists of determining whether a preference
statement can be inferred from a set of input preferences, i.e.,
if every model (of the assumed form) satisfying the inputs
also satisfies the query. We show that this problem is coNP-
complete, even if one restricts the cardinality of the equal-
importance sets to have at most two elements, and one only
considers non-strict preferences. However, it is polynomial
if it is assumed that the user’s ordering of criteria is a total
ordering; it is also polynomial if the sets of equally important
criteria are all equivalence classes of a given fixed equiva-
lence relation. We give an efficient polynomial algorithm for
these cases, which also throws light on the structure of the
inference.

Section 2 defines our simple preference logic based on hi-
erarchical models, along with some associated preference in-
ference problems. Section 3 shows that in general the pref-
erence inference problem is coNP-complete. Section 4 con-
siders the case where the importance ordering on criteria is a
total order, and gives a polynomial algorithm for consistency.
Section 5 concludes.

Proofs are included in a longer version of the paper avail-
able online [Wilson et al., 2015].

2 A Preference Logic Based on Hierarchical
Models

We consider preference models, based on an importance or-
dering of criteria, that is basically lexicographic, but involv-
ing a combination of criteria which are at the same level in the
importance ordering. We call these “HCLP models”, because
models of a similar kind appear in the HCLP system [Wilson
and Borning, 1993] (though we have abstracted away some
details from the latter system).

HCLP structures: Define an HCLP structure to be a tuple
S = 〈A,⊕, C〉, where A (the set of alternatives) is a finite
set; ⊕ is an associative, commutative and monotonic opera-
tion (x ⊕ y ≤ z ⊕ y if x ≤ z) on the non-negative rational
numbers Q+, with identity element 0; and C (known as the set
of (A-)evaluations) is a set of functions from A to Q+. We
also assume that operation ⊕ can be computed in linear time
(which holds for natural definitions of ⊕, including addition
and max). The evaluations in C may be considered as repre-
senting criteria or objectives under which the alternatives are
evaluated. For c ∈ C and α ∈ A, if c(α) = 0 then α fully
satisfies the objective corresponding to c; more generally, the
smaller the value of c(α), the better α satisfies the c-objective.

With each subset C of C we define ordering 4⊕C on A by
α 4⊕C β if and only if

⊕
c∈C c(α) ≤

⊕
c∈C c(β). Relation

4⊕C represents how well the alternatives satisfy the multi-set
of evaluationsC if the latter are considered equally important.
4⊕C is a total pre-order (a weak order, i.e., a transitive and
complete binary relation). If α 4⊕C β, we might also write

β <⊕C α. We write≡⊕C for the associated equivalence relation
on A, given by α ≡⊕C β ⇐⇒ α 4⊕C β and β 4⊕C α. We
write ≺⊕C for the associated strict weak ordering, defined by
α ≺⊕C β ⇐⇒ α 4⊕C β and β 64⊕C α. Thus, α ≡⊕C β if and
only if

⊕
c∈C c(α) =

⊕
c∈C c(β); and α ≺⊕C β if and only if⊕

c∈C c(α) <
⊕

c∈C c(β).

HCLP models: An HCLP model H based on 〈A,⊕, C〉 is
defined to be an ordered partition (C1, . . . , Ck) of a (possibly
empty) subset σ(H) of C. The sets Ci are called the levels of
H , which are thus non-empty, disjoint and have union σ(H).
If c ∈ Ci and c′ ∈ Cj , and i < j, then we say that c appears
before c′ (and c′ appears after c) in H . Associated with H is
an ordering relation 4⊕H on A given by:
α 4⊕H β if and only if either:

(I) for all i = 1, . . . , k, α ≡⊕Ci
β; or

(II) there exists some i ∈ {1, . . . , k} such that (i) α ≺⊕Ci
β

and (ii) for all j with 1 ≤ j < i, α ≡⊕Cj
β.

Relation 4⊕H is a kind of lexicographic order on A, where
the multi-set Ci of evaluations at the same level are first com-
bined into a single evaluation. 4⊕H is a weak order on A. We
write≡⊕H for the associated equivalence relation (correspond-
ing with condition (I)), and ≺⊕H for the associated strict weak
order (corresponding with condition (II)), so that 4⊕H is the
disjoint union of ≺⊕H and ≡⊕H . If σ(H) = ∅ then then the
first condition for α 4⊕H β holds vacuously (since k = 0),
so we have α 4⊕H β for all α, β ∈ A, and ≺⊕H is the empty
relation.

Preference Language Inputs: Let A be a set of alterna-
tives. We define LA≤ to be the set of statements of the form
α ≤ β, for α, β ∈ A (the non-strict statements), we write LA<
for the set of statements of the form α < β, for α, β ∈ A (the
strict statements), and let LA = LA≤ ∪ LA<. If ϕ is the prefer-
ence statement α ≤ β then ¬ϕ is defined to be the preference
statement β < α. If ϕ is the preference statement α < β then
¬ϕ is defined to be the preference statement β ≤ α.

Satisfaction of preference statements: For HCLP model
H over HCLP structure 〈A,⊕, C〉, we say that H satisfies
α ≤ β (written H |=⊕ α ≤ β) if α 4⊕H β holds. Similarly,
we say that H satisfies α < β (written H |=⊕ α < β) if
α ≺⊕H β. For Γ ⊆ LA, we say that H satisfies Γ (written
H |=⊕ Γ) if H satisfies ϕ for all ϕ ∈ Γ.

Preference Inference/Deduction relation: We are inter-
ested in different restrictions on the set of models, and the
corresponding inference relations. LetM be a set of HCLP
models over HCLP structure 〈A,⊕, C〉. For Γ ⊆ LA, and
ϕ ∈ LA, we say that Γ |=⊕M ϕ, if H satisfies ϕ for every
H ∈ M satisfying Γ. Thus, if we elicit some preference
statements Γ of a user, and we assume that their preference



relation is an HCLP model inM (based on the HCLP struc-
ture), then Γ |=⊕M ϕ holds if and only if we can deduce that
the user’s HCLP model H satisfies ϕ.

Consistency: For set of HCLP models M over HCLP
structure 〈A,⊕, C〉, and set of preference statements Γ ⊆ LA,
we say that Γ is (M,⊕)-consistent if there exists H ∈ M
such that H |=⊕ Γ; otherwise, we say that Γ is (M,⊕)-
inconsistent. In the usual way, because of the existence of
a negation operator, deduction can be reduced to checking
(in)consistency.

Proposition 1 Γ |=⊕M ϕ if and only if Γ ∪ {¬ϕ} is (M,⊕)-
inconsistent.

Let t be some number in {1, 2, . . . , |C|}. We define C(t) to
be the set of all HCLP models (C1, . . . , Ck) based on HCLP
structure 〈A,⊕, C〉 such that |Ci| ≤ t, for all i = 1, . . . , k.
An element of C(1) thus corresponds to a sequence of sin-
gleton sets of evaluations; we identify it with a sequence of
evaluations (c1, . . . , ck) in C. Thus, Γ |=⊕C(t) ϕ if and only
if H |=⊕ ϕ for all H ∈ C(t) such that H |=⊕ Γ. Note that
for t = 1, these definitions do not depend on ⊕ (since there
is no combination of evaluations involved), so we may drop
any mention of ⊕.

Let ≡ be an equivalence relation on C. We define C(≡) to
be the set of all HCLP models (C1, . . . , Ck) such that eachCi

is an equivalence class with respect to≡. It is easy to see that
the relation |=⊕C(≡) is the same as the relation |=C′(1) where
C ′ is defined as follows. C ′ is in 1-1 correspondence with the
set of ≡-equivalence classes of C. If E is the ≡-equivalence
class of C corresponding with c′ ∈ C ′ then, for α ∈ A, c′(α)
is defined to be

⊕
c∈E c(α).

For |= either being |=⊕C(t) for some t ∈ {1, 2, . . . , |C|}, or
being |=⊕C(≡) for some equivalence relation ≡ on C, we con-
sider the following decision problem.

HCLP-DEDUCTION FOR |=: Given C, Γ and ϕ is it the case
that Γ |= ϕ?

In Section 4, we will show that this problem is polynomial
for |= being |=⊕C(t) when t = 1. Thus it is polynomial also for
|=⊕C(≡), for any equivalence relation ≡. It is coNP-complete
for |= being |=⊕C(t) when t > 1, as shown below in Section 3.

Theorem 1 HCLP-DEDUCTION FOR |=⊕C(t) is polynomial
when t = 1, and is coNP-complete for any t > 1, even if
we restrict the language to non-strict preference statements.
HCLP-DEDUCTION FOR |=⊕C(≡) is polynomial for any equiv-
alence relation ≡.

Example
We consider an example with alternatives A = {α, β, γ},
using ⊕ as + (ordinary addition), and with evaluations C =
{c1, c2, c3}, defined as follows.
c1(α) = 0; c1(β) = 2; c1(γ) = 1;
c2(α) = 2; c2(β) = 0; c2(γ) = 2;
c3(α) = 1; c3(β) = 0; c3(γ) = 0.

Suppose that the user tells us that they consider α to be at least
as good as β. We represent this as the non-strict preference
α ≤ β. This eliminates some models; for instance, α ≤ β
is not satisfied by model H equalling ({c1, c2}, {c3}), since
c1(α) ⊕ c2(α) = 2 = c1(β) ⊕ c2(β), and c3(β) < c3(α),
which implies that β ≺⊕H α, and thus H |= β < α and
H 6|= α ≤ β.

Now, α ≤ β does not entail any preference between β and
γ, as can be seen by considering the two models ({c1}) and
({c1, c2}), each with just a single level, and both satisfying
α ≤ β. Model ({c1, c2}) satisfies β < γ, since c1(β) ⊕
c2(β) = 2 < 3 = c1(γ) ⊕ c2(γ), whereas model ({c1})
satisfies γ < β, since c1(γ) < c1(β). However, it can be
shown that α ≤ β |=⊕C(3) α ≤ γ, so we infer that α is non-
strictly preferred to γ.

A strict preference for α over β entails additional infer-
ences, for instance, α < β |=⊕C(3) γ < β. If we restrict the set
of models to C(1) (thus assuming that the importance order-
ing on C is a total order) we get slightly stronger inferences
still, obtaining in addition: α < β |=C(1) α < γ.

3 Proving coNP-completeness of
HCLP-Deduction for |=⊕C(t) for t > 1

Given an arbitrary 3-SAT instance we will show that we can
construct a set Γ and a statement α ≤ β such that the 3-
SAT instance has a satisfying truth assignment if and only if
Γ 6|=⊕C(t) α ≤ β (see Proposition 2). This then implies that
determining if Γ 6|=⊕C(t) α ≤ β holds is NP-hard.

We have that Γ 6|=⊕C(t) α ≤ β if and only if there exists
an HCLP-model H ∈ C(t) such that H |=⊕ Γ and H 6|=⊕
α ≤ β. For any given H , checking that H |=⊕ Γ and H 6|=⊕
α ≤ β can be performed in polynomial time. This implies
that determining if Γ |=⊕C(t) α ≤ β holds is coNP-complete.

For simplicity, we describe the construction for the t = 2
case. This construction also works for all t ≥ 2 if 1⊕ 1 > 1.
We indicate below how the construction is modified for the
case when t ≥ 3.

Consider an arbitrary 3-SAT instance based on proposi-
tional variables p1, . . . , pr, consisting of clauses Λj , for j =
1, . . . , s. For each propositional variable pi we associate two
evaluations q+

i and q−i , where q−i corresponds with literal ¬pi
and q+

i corresponds with literal pi.
The idea behind the construction is as follows: we generate

a (polynomial size) set Γ ⊆ LA≤ as the disjoint union of sets
Γ1, Γ2 and Γ3. Γ1 is chosen so that if H |=⊕ Γ1 then, for
each i = 1, . . . , r, σ(H) cannot contain both q+

i and q−i , i.e.,
q+
i and q−i do not both appear in H . (Recall H is an ordered

partition of σ(H), so that σ(H) is the subset of C that appears
in H .) If H |=⊕ Γ2 and H |=⊕ β < α then σ(H) contains
either q+

i or q−i . Together, this implies that if H |=⊕ Γ and
H 6|=⊕ α ≤ β then for each propositional variable pi, model
H involves either q+

i or q−i , but not both. Γ3 is used to make
the correspondence with the clauses. For instance, if one of
the clauses is p2 ∨¬p5 ∨ p6 then any HCLP model H ∈ C(t)
of Γ ∪ {β < α} will involve either q+

2 , q−5 , or q+
6 .



Suppose that H satisfies Γ but not α ≤ β. We can generate
a satisfying assignment of the 3-SAT instance, by assigning
pi to 1 (TRUE) if and only if q+

i appears in H .

We describe the construction more formally below.

Defining A and C: The set of alternatives A is de-
fined to be: {α, β} ∪ {δi, γi, αi, βi : i = 1, . . . , r} ∪
{θj , τj : j = 1, . . . , s}. We define the set of evaluations C
to be {c∗} ∪ {ai, q+

i , q
−
i : i = 1, . . . , r}. Both A and C are

of polynomial size.

Satisfying β < α: The evaluations on α and β are defined
as follows:

• c∗(α) = 1, and for all c ∈ C − {c∗}, c(α) = 0.

• For all c ∈ C, c(β) = 0.

It immediately follows that: H |=⊕ β < α ⇐⇒ σ(H) 3 c∗.

The construction of Γ1: For each i = 1, . . . , r, we define
Γi

1 = {δi ≤ γi, γi ≤ δi}, and we let Γ1 =
⋃r

i=1 Γi
1. We

make use of auxiliary evaluation ai. The values of the evalu-
ations on γi and δi are defined as follows:

• ai(γi) = 1, and for all c ∈ C − {ai} we set c(γi) = 0.

• q+
i (δi) = q−i (δi) = 1, and for other c ∈ C, c(δi) = 0.

Thus (ai⊕q+
i )(δi) = ai(δi)⊕q+

i (δi) = 0⊕1 = 1. Similarly,
(ai ⊕ q−i )(δi) = 1, and (ai ⊕ q+

i )(γi) = (ai ⊕ q−i )(γi) =
1⊕ 0 = 1.

Lemma 1 H |=⊕ Γi
1 if and only if either (i) σ(H) does not

contain ai or q+
i or q−i , i.e., σ(H)∩{ai, q+

i , q
−
i } = ∅; or (ii)

{ai, q+
i } is a level of H , and σ(H) 63 q−i ; or (iii) {ai, q−i }

is a level of H , and σ(H) 63 q+
i . In particular, if H |=⊕ Γi

1

then σ(H) does not contain both q+
i and q−i .

This holds because if ai appears in H before q+
i and q−i

then we will have that H 6|=⊕ γi ≤ δi. If q+
i or q−i appear in

H before ai then we will have H 6|=⊕ δi ≤ γi. Also, if e.g.,
{ai, q+

i } is a level of H and q−i appears later in H then we
will have H 6|=⊕ δi ≤ γi.

(For the case when t ≥ 3, we need a slightly more com-
plex construction, involving evaluations aki and alternatives
δki and γki for k = 1 . . . , t − 1, with similar definitions as
given above.)

The construction of Γ2: For each i = 1, . . . , r, define ϕi

to be αi ≤ βi. We let Γ2 = {ϕi : i = 1, . . . , r}. The values
of the evaluations on αi and βi are defined as follows. We
define c∗(αi) = 1, and for all c ∈ C − {c∗}, c(αi) = 0.
Define q+

i (βi) = q−i (βi) = 1, and for all c ∈ C − {q+
i , q

−
i },

c(βi) = 0. The following result easily follows.

Lemma 2 If q+
i or q−i appears before (or in the same level

as) c∗ in H then H |=⊕ ϕi. If σ(H) 3 c∗ and H |=⊕ ϕi then
σ(H) 3 q+

i or σ(H) 3 q−i .

The construction of Γ3: For each i = 1, . . . , r, define
Q(pi) = q+

i and Q(¬pi) = q−i . This defines the function
Q over all literals. Let us write the jth clause as l1 ∨ l2 ∨ l3
for literals l1, l2 and l3. Define Qj = {Q(l1), Q(l2), Q(l3)}.
For example, if the jth clause were p2 ∨ ¬p5 ∨ p6 then
Qj = {q+

2 , q
−
5 , q

+
6 }. We define ψj to be θj ≤ τj , and

Γ3 = {ψj : j = 1, . . . s}. Define c∗(θj) = 1 and c(θj) = 0
for all c ∈ C −{c∗}. Define q(τj) = 1 for q ∈ Qj , and for all
other c (i.e., c ∈ C −Qj), define c(τi) = 0. This leads to the
following properties.
Lemma 3 If some element ofQj appears inH before c∗ then
H |=⊕ ψj . If σ(H) 3 c∗ and H |=⊕ ψj then σ(H) contains
some element of Qj .

We set Γ = Γ1 ∪ Γ2 ∪ Γ3. The following result implies
that the HCLP deduction problem is coNP-hard (even if we
restrict to the case when Γ ∪ {ϕ} ⊆ LA≤).
Proposition 2 Using the notation defined above, the 3-SAT
instance is satisfiable if and only if Γ 6|=⊕C(t) α ≤ β.

Proof: First let us assume that Γ 6|=⊕C(t) α ≤ β. Then by
definition, there exists an HCLP modelH ∈ C(t) withH |=⊕
Γ and H 6|=⊕ α ≤ β. Since H 6|=⊕ α ≤ β ⇐⇒ H |=⊕ β <
α, we have H |=⊕ Γ ∪ {β < α}. Because H |=⊕ β < α,
σ(H) 3 c∗.

Because also H |=⊕ Γi
2, either σ(H) 3 q+

i or σ(H) 3 q−i ,
by Lemma 2. SinceH |=⊕ Γi

1, the set σ(H) does not contain
both q+

i and q−i , by Lemma 1.
Let us define a truth function f : P → {0, 1} as follows:

f(pi) = 1 ⇐⇒ σ(H) 3 q+
i . Since σ(H) contains exactly

one of q+
i and q−i , we have f(pi) = 0 ⇐⇒ σ(H) 3 q−i . We

extend f to negative literals in the obvious way: f(¬pi) =
1− f(pi).

Since H |=⊕ Γ3 ∪ {β < α}, σ(H) contains at least one
element of each Qj , by Lemma 3. Thus for each j, f(l) = 1
for at least one literal l in the jth clause, and hence f satisfies
clause Λj . We have shown that f satisfies each clause of the
3-SAT instance, proving that the instance is satisfiable.

Conversely, suppose that the 3-SAT instance is satisfiable,
so there exists a truth function f satisfying it.

We will construct an HCLP model H ∈ C(t) such that
H |=⊕ Γ ∪ {β < α}, and thus H 6|=⊕ α ≤ β, proving that
Γ 6|=⊕C(t) α ≤ β.

For i = 1, . . . , r, let Si = {ai, q+
i } if f(pi) = 1, and

otherwise, let Si = {ai, q−i }. We then define H to be the
sequence S1, S2, . . . , Sr, {c∗}. Since σ(H) 3 c∗, we have
that H |=⊕ β < α.

By Lemma 1, for all i = 1, . . . , r,H |=⊕ Γi
1 and soH |=⊕

Γ1. By Lemma 2, for all i = 1, . . . , r, H |=⊕ ϕi, so H |=⊕
Γ2.

Consider any j ∈ {1, . . . , s}, and, as above, write the jth
clause as l1 ∨ l2 ∨ l3. Truth assignment f satisfies this clause,
so there exists k ∈ {1, 2, 3} such that f(lk) = 1, where f is
extended to literals in the usual way. Then Q(lk) appears in
H before c∗, so, by Lemma 3, H |=⊕ ψj . Thus H |=⊕ Γ3.

Since Γ = Γ1 ∪ Γ2 ∪ Γ3, we have shown that H |=⊕
Γ ∪ {β < α}, completing the proof. 2



4 Sequence-of-Evaluations Models
In this section, we consider the case where we restrict to
HCLP models which consist of a sequence of singletons; thus
each model corresponds to a sequence of evaluations, and
generates a lexicographic order based on these.

Let C be a set of evaluations on A. A C(1)-model is a
sequence of different elements of C. The operation ⊕ plays
no part, so we can harmlessly abbreviate ordering 4⊕H to just
4H , for any C(1)-model H , and similarly for ≺H and ≡H .

4.1 Some Basic Definitions and Results
We write ϕ ∈ LA as αϕ < βϕ, if ϕ is strict, or as
αϕ ≤ βϕ, if ϕ is non-strict. We consider a set Γ ⊆
LA, and a set C of evaluations on A. For ϕ ∈ Γ, de-
fine SuppϕC to be {c ∈ C : c(αϕ) < c(βϕ)}; define Oppϕ

C
to be {c ∈ C : c(αϕ) > c(βϕ)}; and define IndϕC to be
{c ∈ C : c(αϕ) = c(βϕ)}. We may sometimes abbreviate
SuppϕC to Suppϕ, and similarly for Oppϕ

C and Indϕ
C . Suppϕ are

the evaluations that support ϕ; Oppϕ are the evaluations that
oppose ϕ. Indϕ are the other evaluations, that are indifferent
regarding ϕ. For a model H to satisfy ϕ it is necessary that
no evaluation that opposes ϕ appears before all evaluations
that support ϕ.

The following defines inconsistency bases, which are con-
cerned with evaluations that cannot appear in any model sat-
isfying the set of preference statements Γ (see Proposition 3
below).

Definition 1 Let Γ ⊆ LA, and let C be a set of A-
evaluations. We say that (Γ′, C ′) is an inconsistency base
for (Γ, C) if Γ′ ⊆ Γ, and C ′ ⊆ C, and

(i) for all ϕ ∈ Γ′, Suppϕ
C ∪Oppϕ

C ⊆ C ′ (and thus C −C ′ ⊆
Indϕ
C ); and

(ii) for all c ∈ C ′, there exists ϕ ∈ Γ′ such that Oppϕ
C 3 c.

Thus, for all ϕ ∈ Γ′, C ′ contains all evaluations that are
not indifferent regarding ϕ, and for all c ∈ C ′ there is some
element of Γ′ that is opposed by c. The following result mo-
tivates the definition:

Proposition 3 Let H be an element of C(1). Suppose that
H |= Γ, and let (Γ′, C ′) be an inconsistency base for (Γ, C).
Then C ′ ∩ σ(H) = ∅. Thus no C(1) model of Γ can involve
any element of C ′. Also, we have for any ϕ ∈ Γ′, αϕ ≡H βϕ,
so H 6|= αϕ < βϕ.

Thus H does not strictly satisfy any element of Γ′.
For inconsistency bases (Γ1, C1) and (Γ2, C2) for (Γ, C),

define (Γ1, C1)∪(Γ2, C2) to be (Γ1∪Γ2, C1∪C2). It is easy
to show that if (Γ1, C1) and (Γ2, C2) are both inconsistency
bases for (Γ, C) then (Γ1, C1) ∪ (Γ2, C2) is one also. De-
fine MIB(Γ, C), the Maximal Inconsistency Base for (Γ, C),
to be the union of all inconsistency bases for (Γ, C), i.e.,⋃
{(Γ1, C1) ∈ I}, where I is the set of inconsistency bases

for (Γ, C). The next result follows.

Proposition 4 MIB(Γ, C) always exists, and is an inconsis-
tency base for (Γ, C), which is maximal in the following
sense: if (Γ1, C1) is an inconsistency base for (Γ, C) then
Γ1 ⊆ Γ⊥ and C1 ⊆ C⊥, where MIB(Γ, C) = (Γ⊥, C⊥).

It can also be easily shown that if Γ is C(1)-consistent then
Γ⊥ contains no strict elements. Theorem 2 below implies the
converse of this result.

4.2 A Polynomial Algorithm for Consistency and
Deduction

Throughout this section we consider a set Γ ⊆ LA of input
preference statements, and a set C of A-evaluations.

Define OppΓ(c) (abbreviated to Opp(c)) to be the set of
elements opposed by c, i.e., ϕ ∈ Γ such that c(αϕ) > c(βϕ),
and define SuppΓ(c) (usually abbreviated to Supp(c)) to be
the set of elements ϕ of Γ supported by c, (i.e., c(αϕ) <
c(βϕ)). Also, for sequence of evaluations (c1, . . . , ck), we
define Supp(c1, . . . , ck) to be

⋃k
i=1 Supp(ci).

The idea behind the algorithm is as follows: suppose that
we have picked a sequence of elements of C, C ′ being the
set picked so far. We need to choose next an evaluation c
such that, if c opposes some ϕ in Γ, then ϕ is supported by
some evaluation in C ′ (or else the generated sequence will
not satisfy ϕ).

The Algorithm
H is initialised as the empty list () of evaluations. H ← H+c
means that evaluation c is added to the end of H .

Function Cons-check(Γ, C)
H ← ()
for k = 1, . . . , |C| do

if ∃ c ∈ C − σ(H) such that Opp(c) ⊆ Supp(H)
then choose some such c; H ← H + c
else stop

end for
return H

The algorithm involves often non-unique choices. How-
ever, if we wish, the choosing of c can be done based on an
ordering c1, . . . , cm of C, where, if there exists more than one
c ∈ C − σ(H) such that Opp(c) ⊆ Supp(H), we choose the
element ci with smallest index i. The algorithm then becomes
deterministic, with a unique result following from the given
inputs.

A straight-forward implementation runs in O(|Γ||C|2)
time; however, a more careful implementation runs in
O(|Γ||C|) time.

Properties of the Algorithm
Any ϕ ∈ Γ which is opposed by some evaluation c in H
is supported by some earlier evaluation in H . Consider any
ϕ in Supp(H). Let cj be the earliest evaluation in H that
supports ϕ. None of the earlier evaluations than cj oppose
ϕ, and thus H strictly satisfies ϕ. A similar argument shows
that H satisfies Γ(≤), defined to be {αϕ ≤ βϕ : ϕ ∈ Γ}, i.e.,
Γ where the strict statements are replaced by corresponding
non-strict statements.

The algorithm will always generate an HCLP model satis-
fying Γ if Γ is consistent. It can also be used for computing
the Maximal Inconsistency Base. The following result sums
up some properties related to the algorithm.



Theorem 2 Let H be a sequence returned by the algorithm
with inputs Γ and C, and write MIB(Γ, C) as (Γ⊥, C⊥). Then
C⊥ = C − σ(H) (i.e., the evaluations that don’t appear in
H), and Γ⊥ = Γ− Supp(H). We have that H |= Γ(≤). Also,
Γ is C(1)-consistent if and only if Supp(H) contains all the
strict elements of Γ, which is if and only if Γ⊥ ∩ LA< = ∅. If
Γ is C(1)-consistent then H |= Γ.

The algorithm therefore determines C(1)-consistency, and
hence C(1)-deduction (because of Proposition 1), in poly-
nomial time, and also generates the Maximal Inconsistency
Base. For the case when Γ is not C(1)-consistent, the out-
put H of the algorithm is a model which, in a sense, comes
closest to satisfying Γ: it always satisfies Γ(≤), the non-strict
version of Γ, and if any model H ′ ∈ C(1) satisfies Γ(≤) and
any element ϕ of Γ, then H also satisfies ϕ. These properties
suggest the following way of reasoning with inconsistent Γ.
Let us define Γ′ to be equal to (Γ − Γ⊥) ∪ Γ(≤). By Theo-
rem 2, this is equal to Supp(H) ∪ Γ(≤), where H is a model
generated by the algorithm, enabling easy computation of Γ′.
Γ′ is consistent, since it is satisfied by H . We might then (re-
)define the (non-monotonic) deductions from inconsistent Γ
to be the deductions from Γ′.

4.3 Strong Consistency
In the set of models C(1), we allow models involving any sub-
set of C, the set of evaluations. We could alternatively con-
sider a semantics where we only allow modelsH that involve
all elements of C, i.e., with σ(H) = C.

Let C(1∗) be the set of elements H of C(1) with σ(H) =
C. Γ is defined to be strongly C(1)-consistent if and only
if there exists a model H ∈ C(1∗) such that H |= Γ. Let
MIB(Γ, C) = (Γ⊥, C⊥). Proposition 3 implies that, if Γ is
strongly C(1)-consistent then C⊥ is empty, and Γ⊥ consists
of all the elements of Γ that are indifferent to all of C, i.e., the
set of ϕ ∈ Γ such that c(αϕ) = c(βϕ) for all c ∈ C.

We write Γ |=C(1∗) ϕ if H |= ϕ holds for every H ∈
C(1∗) such that H |= Γ. The next result shows that the non-
strict |=C(1∗) inferences are the same as the non-strict |=C(1)

inferences, and that (in contrast to the case of |=C(1)), the
strict |=C(1∗) inferences almost correspond with the non-strict
ones. The result also implies that the algorithm in Section 4.2
can be used to efficiently determine the |=C(1∗) inferences.

Proposition 5 Let MIB(Γ, C) = (Γ⊥, C⊥). Γ is strongly
C(1)-consistent if and only if C⊥ = ∅. Suppose that Γ is
strongly C(1)-consistent. Then,

(i) Γ |=C(1) α ≤ β ⇐⇒ Γ |=C(1∗) α ≤ β;

(ii) Γ |=C(1∗) α ≡ β if and only if α and β agree on all of C,
i.e., for all c ∈ C, c(α) = c(β);

(iii) Γ |=C(1∗) α < β if and only if Γ |=C(1) α ≤ β and α
and β differ on some element of C, i.e., there exists c ∈ C
such that c(α) 6= c(β).

We obtain a similar (and generalisation of this) result, if
we consider only the maximal models in C(1) that satisfy Γ
(these all have the same cardinality: |C| − |C⊥|).

The next result shows that |=C(1) inference is not affected
if one removes the evaluations in the MIB.

Proposition 6 Suppose that Γ is C(1)-consistent, let
MIB(Γ, C) = (Γ⊥, C⊥), and let C ′ = C − C⊥. Then Γ
is strongly C ′(1)-consistent, and Γ |=C(1) ϕ if and only if
Γ |=C′(1) ϕ.

4.4 Orderings on evaluations
The preference logic defined here is closely related to a logic
based on disjunctive ordering statements. Given set of eval-
uations C, we consider the set of statements OC of the form
C1 < C2, and of C1 ≤ C2, where C1 and C2 are disjoint
subsets of C.

We say that H |= C1 < C2 if some evaluation in C1 ap-
pears in H before every element of C2, that is, there exists
some element of C1 in H (i.e., C1 ∩ σ(H) 6= ∅) and the
earliest element of C1 ∪ C2 to appear in H is in C1.

We say that H |= C1 ≤ C2 if either H |= C1 < C2 or no
element of C1 or C2 appears in H: (C1 ∪ C2) ∩ σ(H) = ∅.
Then we have that
H |= αϕ < βϕ ⇐⇒ H |= Suppϕ

C < Oppϕ
C ,

and H |= αϕ ≤ βϕ ⇐⇒ H |= SuppϕC ≤ Oppϕ
C .

This shows that the language OC can express anything that
can be expressed in LA. It can be shown, conversely, that for
any statement τ in OC , one can define αϕ and βϕ, and the
values of elements of C on these, such that for all H ∈ C(1),
H |= τ if and only if H |= ϕ. For instance, if τ is the
statement C1 < C2, we can define c(αϕ) = 1 for all c ∈ C2,
and c(αϕ) = 0 for c ∈ C − C2; and define c(βϕ) = 1 for all
c ∈ C1, and c(βϕ) = 0 for c ∈ C − C1.

The algorithm adapts in the obvious way to the case where
we have Γ consisting of (or including) elements inOC . When
viewed in this way, the algorithm can be seen as a simple
extension of a topological sort algorithm; the standard case
corresponds to when the ordering statements only consist of
singleton sets.

5 Discussion and Conclusions
We defined a class of relatively simple preference logics
based on hierarchical models. These generate an adventurous
form of inference, which can be helpful if there is only rel-
atively sparse input preference information. We showed that
the complexity of preference deduction is coNP-complete in
general, and polynomial for the case where the criteria are
assumed to be totally ordered (the sequence-of-evaluations
case, Section 4).

The latter logic has strong connections with the preference
inference formalism described in [Wilson, 2014]. To clarify
the connection, for each evaluation c ∈ C we can generate
a variable Xc, and let V be the set of these variables. For
each alternative α ∈ A we generate a complete assignment
α∗ on the variables V (i.e., an outcome as defined in [Wilson,
2014]) by α∗(Xc) = c(α) for each Xc ∈ V . Note that values
of α∗(Xc) are non-negative numbers, and thus have a fixed
ordering, with zero being the best value. A preference state-
ment α ≤ β in LA≤ then corresponds with a basic preference
formula α∗ ≥ β∗ in [Wilson, 2014]. Each model H ∈ C(1)
corresponds to a sequence of evaluations, and thus has an as-
sociated sequence of variables; this sequence together with



the fixed value orderings, generates a lexicographic model as
defined in [Wilson, 2014].

In contrast with the lexicographic inference system in [Wil-
son, 2014], the logic developed in this paper allows strict (as
well as non-strict) preference statements, and allows more
than one variable at the same level. However, the lexico-
graphic inference logic from [Wilson, 2014] does not assume
a fixed value ordering (which, translated into the current for-
malism, corresponds to not assuming that the values of the
evaluation function are known); it also allows a richer lan-
guage of preference statements, where a statement can be a
compact representation for a (possibly exponentially large)
set of basic preference statements of the form α ≤ β. Many
of the results of Section 4 immediately extend to richer pref-
erence languages (by replacing a preference statement by a
corresponding set of basic preference statements). In future
work we will determine under what circumstances deduc-
tion remains polynomial when extending the language, and
when removing the assumption that the evaluation functions
are known.

The coNP-hardness result for the general case (and for the
|=⊕C(t) systems with t ≥ 2) is notable and perhaps surpris-
ing, since these preference logics are relatively simple ones.
The result obviously extends to more general systems. The
preference inference system described in [Wilson, 2009] is
based on much more complex forms of lexicographic mod-
els, allowing conditional dependencies, as well as having lo-
cal orderings on sets of variables (with bounded cardinality).
Theorem 1 implies that the (polynomial) deduction system in
[Wilson, 2009] is not more general than the system described
here (assuming P 6= NP). It also implies that if one were to
extend the system from [Wilson, 2009] to allow a richer form
of equivalence, generalising e.g., the |=⊕C(2) system, then the
preference inference will no longer be polynomial.
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[Bräuning and Hüllermeier, 2012] M. Bräuning and
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E. Hüllermeier (eds.). Preference Learning. Springer-
Verlag, 2010.

[Marinescu et al., 2013] R. Marinescu, A. Razak, and
N. Wilson. Multi-objective constraint optimization with
tradeoffs. In Proc. CP-2013, pages 497–512, 2013.

[Trabelsi et al., 2011] W. Trabelsi, N. Wilson, D. Bridge,
and F. Ricci. Preference dominance reasoning for con-
versational recommender systems: a comparison between
a comparative preferences and a sum of weights ap-
proach. International Journal on Artificial Intelligence
Tools, 20(4):591–616, 2011.

[Wilson and Borning, 1993] Molly Wilson and Alan Born-
ing. Hierarchical constraint logic programming. The Jour-
nal of Logic Programming, 16(34):277–318, 1993.

[Wilson et al., 2015] N. Wilson, A.-M. George, and
B. O’Sullivan. Computation and Complexity of Preference
Inference Based on Hierarchical Models (extended version
of current paper including proofs). http://ucc.insight-
centre.org/nwilson/PrefInfHCLPproofs.pdf), 2015.

[Wilson, 2009] N. Wilson. Efficient inference for expres-
sive comparative preference languages. In Proc. IJCAI-09,
pages 961–966, 2009.

[Wilson, 2011] N. Wilson. Computational techniques for a
simple theory of conditional preferences. Artificial Intelli-
gence, 175(7-8):1053–1091, 2011.

[Wilson, 2014] N. Wilson. Preference inference based on
lexicographic models. In Proc. ECAI-2014, pages 921–
926, 2014.


