
Title Play it again, Sam! Recommending familiar music in fresh ways

Authors Gabbolini, Giovanni;Bridge, Derek G.

Publication date 2021-09-13

Original Citation Gabbolini, G. and Bridge, D. (2021) 'Play it again, Sam!
Recommending familiar music in fresh ways', RecSys '21:
Fifteenth ACM Conference on Recommender Systems,
Amsterdam, Netherlands, 27 September - 1 October, pp. 697-701.
doi: 10.1145/3460231.3478866

Type of publication Conference item

Link to publisher's
version

10.1145/3460231.3478866

Rights © 2021, the Authors. Published by the Association for Computing
Machinery (ACM).

Download date 2025-04-24 15:47:55

Item downloaded
from

https://hdl.handle.net/10468/12318

https://hdl.handle.net/10468/12318

Play It Again, Sam! Recommending Familiar Music in Fresh
Ways

Giovanni Gabbolini
Insight Centre for Data Analytics, School of Computer

Science & IT
University College Cork, Ireland

giovanni.gabbolini@insight-centre.org

Derek Bridge
Insight Centre for Data Analytics, School of Computer

Science & IT
University College Cork, Ireland

d.bridge@cs.ucc.ie

ABSTRACT
In the music domain, repeated consumption is not uncommon. In
this work, we explore how to recommend familiar music in fresh
ways. Specifically, we design algorithms that can produce ‘tours’
through a small personal collection of songs. The tours are deco-
rated with segues, which are textual connections between consecu-
tive songs, chosen for their interestingness. We present three such
algorithms, and we outline their strengths and weaknesses based
on a comparative offline evaluation. This preliminary algorithmic
work is a prelude to upcoming user-centric investigations.

CCS CONCEPTS
• Information systems→ Recommender systems.

KEYWORDS
recommender systems, repeated consumption, segues
ACM Reference Format:
Giovanni Gabbolini and Derek Bridge. 2021. Play It Again, Sam! Recom-
mending Familiar Music in Fresh Ways. In Fifteenth ACM Conference on
Recommender Systems (RecSys ’21), September 27-October 1, 2021, Amsterdam,
Netherlands. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/
3460231.3478866

1 INTRODUCTION
Repeated consumption of music is a behavioural pattern that can be
observed in users of music streaming services [2]. One way users
may access familiar music is from a personal collection. For example,
the streaming service Spotify offers its users the opportunity to
create a virtual library of “saved” music.

Patterns of repeated consumption are sometimes used by music
recommender systems to increase user engagement. For example,
a recommender may deliberately surface songs that are familiar
to a user, as well as novel songs [8]. The recommender may find
interesting reasons to accompany the recommendation, for example
“the last time you listened to this song was one year ago” [10].

In this work, we investigate one strategy to present users with
their personal music collections in music streaming services. We
strive to find an arrangement of the songs, and interesting textual

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8458-2/21/09.
https://doi.org/10.1145/3460231.3478866

links between those songs. We refer to the textual connections as
segues. We refer to an arrangement of songs decorated by segues as
a tour. An example of a short tour is in Figure 1. Our goal is to offer
users a way to enjoy their music again, by presenting the songs in
a fresh way, connected by interesting segues.

Here, we tackle the problem of finding tours through personal
music collections in music streaming services. We formalise the
problem and we propose three algorithms to solve the problem.
Later, we offer an offline evaluation where we compare the charac-
teristics of tours produced by those algorithms. Our offline evalua-
tion is a preliminary analysis that does not yet take into account
the user perspective. But, we have ethical approval for a first user
trial that will build on the results of this paper. The source code
supporting this study is freely available.1

2 RELATEDWORK
Segues were first introduced in [1], and defined in [4] as “short
texts that connect two items”. Both [1] and [4] focus on the music
domain and, in particular, the case where the items connected by the
segues are songs. In [1], the authors developed a simple prototype
able to find song-to-song segues for consecutive songs in an input
playlist, to produce a list of segues to decorate the playlist. Our
work in this paper is different from [1], as we do not consider the
order of the songs to be fixed in advance. Instead, we strive to
arrange the songs, and to produce a list of interesting segues to
decorate this arrangement of the songs. In [4], the authors propose
a domain-independent method to generate item-to-item segues
from a knowledge graph. A distinguishing feature of their work is
the introduction of a scoring function for segues, based on their
interestingness. They evaluate their work in a user trial involving
song-to-song segues. Our work in this paper builds on [4], as we
describe in detail in Section 4.1.

Over the years, researchers have proposed many user interfaces
to help users explore their personal music collections; see [5]. Our
idea of using segues in this context is, to the best of our knowledge,
a novel direction. Even so, there exist some user interfaces similar
to ours. For example, Pohle et al. [7] arrange songs in a circle by
solving a Travelling Salesman Problem, where the distances are
determined by song-to-song similarity. Our work is similar to [7],
because we also arrange songs one after the other. But our work is
also different, because we include segues from one song to the next
and the arrangement of the songs is based on the interestingness
of the segues, not the similarity of the songs.

1https://github.com/GiovanniGabbolini/play-it-again-sam

697

https://orcid.org/0000-0001-7914-9999
https://doi.org/10.1145/3460231.3478866
https://doi.org/10.1145/3460231.3478866
https://doi.org/10.1145/3460231.3478866
https://github.com/GiovanniGabbolini/play-it-again-sam

RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands Giovanni Gabbolini and Derek Bridge

Interstellar Love
by Thundercat

“Interstellar Love
was produced by
Flying Lotus.”

Post Requisite
by Flying Lotus

“Flying Lotus
is the grandson of
Alice Coltrane.”

Wisdom Eye by
Alice Coltrane

Figure 1: A tour in a personal collection of three songs. Circles are songs; rectangles are segues.

3 METHOD
3.1 Problem formulation
Let I be all or part of a person’s music collection in a music stream-
ing service. It is reasonable to assume I to be a ‘small’ set of songs,
e.g. several order of magnitudes smaller than the whole catalogue
of songs. Our goal is to find a tour of the songs in I , so as to obtain
a solution of the kind shown in Figure 1.

More formally, given two songs i, i ′ ∈ I , let seдues(i, i ′) be the set
of segues from i to i ′. We assume that seдues(i, i ′) always contains
at least one segue, as it is always possible to find a null segue [1].
Let Lj be the jth element in a list L, given that j ∈ {0, ... , |L| − 1}.
Let P(I) be the permutations of set I . Then let T(I) be decorated
permutations of I :

T(I) = {⟨O, S⟩ : Sj ∈ seдues(O j−1,O j),
∀j ∈ {1, . . . , |I | − 1},∀O ∈ P(I)} (1)

In other words, T(I) is all the candidate solutions, and a given
candidate solution ⟨O, S⟩ ∈ T (I) comprises an ordering O of the
items in I , and a corresponding sequence of segues S .

Problem 3.1 (Tour Finding Problem). Given a set of songs I ,
find a solution ⟨O, S⟩ ∈ T (I) that maximises some utility(⟨O, S⟩).

In this paper, we define utility(⟨O, S⟩) in a simple way, based
only on the interestingness scores for the segues, S . Let score(s) be
a real number ranging from zero to one. Then we define the utility
of a solution ⟨O, S⟩ as the mean score of the segues:

utility(⟨O, S⟩) =
∑
s ∈S score(s)
|I | − 1

utility(⟨O, S⟩) is a real number ranging from zero to one.
More sophisticated definitions of utility are, of course possible.

For example, we might reward solutions in which similar songs
are near each other in O , or where similar segues are more distant
from each other in S . These are matters for future exploration with
users. In this paper, we focus on obtaining insights into different
algorithms for finding segues with high utility, rather than on the
best definition of utility.

Notice that, even though our focus in this work is on repeated
consumption of music, Problem 3.1 can be solved to find a tour of
any set of songs, including ones that are new to the user. Also, notice
that Problem 3.1 is NP-hard; intuitively it is related to the Travelling
Salesman Problem. We make the analogy clearer in Section 3.2.3.

3.2 Algorithms
We introduce three algorithms for Problem 3.1: two are heuristic
methods (Greedy and Hill-Climbing) and one is an exact algo-
rithm (Optimal).

3.2.1 Greedy. The Greedy algorithm builds a solution iteratively,
by choosing the next song to be the one with the segue of highest
score. We give pseudo-code in Algorithm 1.

3.2.2 Hill-Climbing. Hill-climbing is a local search algorithm that
starts from a random candidate solution, then iteratively replaces
that candidate by a neighbouring candidate whose utility is highest;
it stops if no neighbour would result in an improvement in utility.
Many flavours of hill-climbing exist, e.g. see [9]. We adopt the
version with two parameters: restarts and patience. So, we run the
algorithm multiple times (the restarts) and, for a certain number
of iterations (the patience), we tolerate replacement by neighbours
even if none of them improves the utility.

In order to use hill-climbing for Problem 3.1, we have to decide
how to define the neighbourhood of a candidate solution. In this
paper, we define the neighbourhood of a solution (a tour) as all
the solutions that can be obtained by swapping two consecutive
songs at random. More formally, given a candidate solution ⟨O, S⟩
and a random r ∈ {2, . . . , |I |}, the neighbourhood of the candidate
induced by r is:

N (⟨O, S⟩, r) = {⟨O ′, S ′⟩ ∈ T (I) :
O ′ = [O1, . . . ,Or ,Or−1, . . . ,O |I |]}

The members of this set of neighbours share the same new ordering
of the items but they differ in their segues.

We give pseudo-code for Hill-Climbing in Algorithm 2.

3.2.3 Optimal. The Optimal algorithm finds an optimal solution
t∗ to Problem 3.1, i.e. a solution to Problem 3.1 with maximum
utility.

Given a set of songs I , the algorithm builds a complete and
weighted graph G(I). The nodes of G(I) are the songs I . G(I) is
complete, so between every two songs there is an edge. G(I) is
weighted, so every edge has a weight, equal to one minus the score
of the highest-scoring segue between the two songs. More formally,
the weight of the edge between two nodes (songs) i, i ′ ∈ I is:

w(i, i ′) = 1 − maxs ∈seдues(i,i′)score(s). (2)

A Hamiltonian path H = [i1, ... i |I |] in G(I) is a path in G(I) that
visits every song exactly once. The set of all H in G(I) is equal to
the permutations of I , and so it follows that H ∈ P(I). We define
the weightW of H as:

W (H) =
|I |−1∑
j=1

w(Hj ,Hj+1) (3)

Intuitively, anH corresponds to a solution t ∈ T (I). Also intuitively,
a Hamiltonian path with minimum weight H∗ corresponds to the

698

Play It Again, Sam! Recommending Familiar Music in Fresh Ways RecSys ’21, September 27-October 1, 2021, Amsterdam, NetherlandsRecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands Giovanni Gabbolini and Derek Bridge

Algorithm 1: Greedy
1 𝑂 ← empty list
2 𝑖 ← random element from 𝐼

3 append 𝑖 to 𝑂 ; remove 𝑖 from 𝐼

4 while |𝐼 | > 0 do
5 𝑖∗ ←

𝑎𝑟𝑔𝑚𝑎𝑥𝑖′∈𝐼 (𝑚𝑎𝑥𝑠∈𝑠𝑒𝑔𝑢𝑒𝑠 (𝑖,𝑖′)𝑠𝑐𝑜𝑟𝑒 (𝑠))
6 𝑠∗ ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑠∈𝑠𝑒𝑔𝑢𝑒𝑠 (𝑖,𝑖∗)𝑠𝑐𝑜𝑟𝑒 (𝑠)
7 append 𝑖∗ to 𝑂 ; remove 𝑖∗ from 𝐼

8 append 𝑠∗ to 𝑆
9 𝑖 ← 𝑖∗

10 return ⟨𝑂, 𝑆⟩

Algorithm 2: Hill-Climbing
1 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 ← empty list
2 while 𝑟𝑒𝑠𝑡𝑎𝑟𝑡𝑠 > 0 do
3 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒_𝑙𝑒 𝑓 𝑡 ← 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒

4 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← random element from T (𝐼)
5 while True do
6 𝑟 ← random element from {2, ... , |𝐼 |}
7 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑡 ∈𝑁 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑟)𝑢𝑡𝑖𝑙𝑖𝑡𝑦 (𝑡)
8 if 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 (𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟) ≥ 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) then
9 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒_𝑙𝑒 𝑓 𝑡 ← 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒

10 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟

11 else
12 if 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒_𝑙𝑒 𝑓 𝑡 > 0 then
13 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒_𝑙𝑒 𝑓 𝑡 ← 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒_𝑙𝑒 𝑓 𝑡 − 1
14 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟

15 else
16 break
17 append 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 to 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠
18 return 𝑎𝑟𝑔𝑚𝑎𝑥𝑡 ∈𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠𝑢𝑡𝑖𝑙𝑖𝑡𝑦 (𝑡)

Given a set of songs 𝐼 , the algorithm builds a complete and weighted graph G(𝐼). The nodes of G(𝐼) are the songs 𝐼 .
G(𝐼) is complete, so between every two songs there is an edge. G(𝐼) is weighted, so every edge has a weight, equal
to one minus the score of the highest-scoring segue between the two songs. More formally, the weight of the edge
between two nodes (songs) 𝑖, 𝑖 ′ ∈ 𝐼 is:

𝑤 (𝑖, 𝑖 ′) = 1 − 𝑚𝑎𝑥𝑠∈𝑠𝑒𝑔𝑢𝑒𝑠 (𝑖,𝑖′)𝑠𝑐𝑜𝑟𝑒 (𝑠) . (2)

A Hamiltonian path 𝐻 = [𝑖1, ... 𝑖 |𝐼 |] in G(𝐼) is a path in G(𝐼) that visits every song exactly once. The set of all 𝐻 in
G(𝐼) is equal to the permutations of 𝐼 , and so it follows that 𝐻 ∈ P(𝐼). We define the weight𝑊 of 𝐻 as:

𝑊 (𝐻) =
|𝐼 |−1∑
𝑗=1

𝑤 (𝐻 𝑗 , 𝐻 𝑗+1) (3)

Intuitively, an 𝐻 corresponds to a solution 𝑡 ∈ T (𝐼). Also intuitively, a Hamiltonian path with minimum weight 𝐻∗

corresponds to the optimal solution 𝑡∗. More formally, it is possible to define a function 𝑓 to map an 𝐻 to a 𝑡 , as follows:

𝑓 (𝐻) = ⟨𝐻, 𝑆⟩ 𝑤ℎ𝑒𝑟𝑒
𝑆 𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑠∈𝑠𝑒𝑔𝑢𝑒𝑠 (𝐻 𝑗 ,𝐻 𝑗+1)𝑠𝑐𝑜𝑟𝑒 (𝑠), ∀𝑗 ∈ {1, ... , |𝐼 | − 1}

𝑓 (𝐻) satisfies the membership conditions expressed in Equation 1, so 𝑓 (𝐻) ∈ T (𝐼).

Lemma 3.2. There is an 𝐻 such that 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 (𝑓 (𝐻)) = 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 (𝑡∗).

Proof. Let 𝑡∗ = ⟨𝑂, 𝑆⟩.𝑂 is a permutation of 𝐼 and so it is a validHamiltonian path𝐻 . By construction,𝑢𝑡𝑖𝑙𝑖𝑡𝑦 (𝑓 (𝐻)) =
𝑢𝑡𝑖𝑙𝑖𝑡𝑦 (𝑡∗). □

Lemma 3.3. 𝐻∗ is such that 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 (𝑓 (𝐻∗)) = 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 (𝑡∗).
4

optimal solution t∗. More formally, it is possible to define a function
f to map an H to a t , as follows:

f (H) = ⟨H , S⟩ where
Sj = arдmaxs ∈seдues(Hj ,Hj+1)score(s), ∀j ∈ {1, ... , |I | − 1}

f (H) satisfies the membership conditions expressed in Equation 1,
so f (H) ∈ T (I).

Lemma 3.2. There is an H such that utility(f (H)) = utility(t∗).

Proof. Let t∗ = ⟨O, S⟩.O is a permutation of I and so it is a valid
Hamiltonian path H . By construction, utility(f (H)) = utility(t∗).

□

Lemma 3.3. H∗ is such that utility(f (H∗)) = utility(t∗).

Proof. By contradiction, we assume that utility(f (H∗)) ,
utility(t∗). t∗ is the optimal solution, soutility(f (H∗)) < utility(t∗).
Because of Lemma 3.2, there is an H such that utility(f (H)) =
utility(t∗).H , H∗, asutility(f (H)) = utility(t∗) , utility(f (H∗)).
Also,W (H∗) ≤ W (H), because H∗ is the Hamiltonian path with
minimum weight. From Equations 3 and 2, we get the following:

|I |−1∑
j=1

1 − maxs∗∈seдues(H ∗j ,H ∗j+1)score(s
∗)

≤
|I |−1∑
j=1

1 − maxs ∈seдues(H j ,H j+1)score(s)

|I |−1∑
j=1

maxs∗∈seдues(H ∗j ,H ∗j+1)score(s
∗)

≥
|I |−1∑
j=1

maxs ∈seдues(H j ,H j+1)score(s)

and so utility(f (H∗)) ≥ utility(f (H)) = utility(t∗), which contra-
dicts the hypothesis. □

In conclusion, it is enough to compute f (H∗) to obtain an optimal
solution t∗. One way of finding H∗ is by solving a Travelling Sales-
man Problem, or TSP. As suggested by [6], we can add a dummy
node n to G(I) with zero-weighted edges to all the songs, then
solve the TSP with start and end in n, and finally exclude n from
the solution to obtain H∗. In the experiments that we run in this
paper, we use the Concorde TSP solver.2

4 EXPERIMENTS
4.1 Implementation
The algorithms of Section 3 assume the existence of two functions:
seдues and score . We resort to the implementation of those two
function proposed in [4]. In [4], the score function is based on the
interestingness of the segues. Their seдues function can find segues
of two kinds: informative (based on a knowledge graph) and funny
(based on simple word-play). In the work reported in this paper,
we restrict to informative segues. In a user trial, [4] finds that the
interestingness of informative segues is correlated with human
perceptions of segue quality.

4.2 Dataset
We build a dataset from the Spotify Million Playlists Dataset (MPD).
[3]. TheMPD dataset contains user-created playlists. A user-created
playlist is typically a subset of a user’s personal music collection,
which is what our algorithms take as input. Of course, we ignore the
ordering of the playlist, treating it as a set rather than a list, because
our algorithms impose a fresh ordering, as well as decorating with
segues.

2https://github.com/jingw2/pyconcorde

699

https://github.com/jingw2/pyconcorde

RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands Giovanni Gabbolini and Derek Bridge

Figure 2: Average utility of Hill-Climbing, as a function of
the restarts and of the patience.

We limit ourselves to playlists of maximum 50 songs. We believe
longer inputs to be unlikely in practice, as it would lead to a listening
time of more than three hours, assuming every song to last four
minutes. We sample the MPD with stratified random sampling by
playlist length: we sample at random 20 playlists of length 50, 20 of
length 49, and so on, down to 20 playlists of length five, as five is the
minimum length of MPD playlists. In fact, we apply this procedure
twice, with two different random seeds, to obtain a main dataset
and a side dataset.

4.3 Parameter tuning
Hill-Climbing has two parameters, as described in Section 3.2.2:
the patience and the restarts. We set the parameters by choosing the
configuration that maximises the average utility of solutions. We
run Hill-Climbing on the side dataset of Section 4.2, with various
parameter configurations, and we measure the average utility of
the solutions. We report the results in Figure 2. We notice that the
average utility grows with patience and restarts, until it saturates.
We choose the parameter values to be those before saturation, and
so we set the patience to 10 and the restarts to 40.

4.4 Performance
We benchmark the algorithms bymonitoring the score of the segues
in the tours they produce using themain dataset. We construct four
curves showing the mean of: average score; standard deviation;
maximum; and minimum score of segues in the solutions, as a
function of the input size. The average score of the segues in a
solution is equivalent to theutility of the solution. For presentation
purposes, we do a least square fitting and plot the fitted curves in
Figure 3.3

Greedy, by construction, produces segues of high score at the
beginning of a solution, and of low score at the end of a solution.
That is, the segues in the solutions found by Greedy exhibit falling
average score , with highest values of maximum score , and lowest
values of minimum score , which result in the highest standard devi-
ation. The other two algorithms, Hill-Climbing and Optimal, do
not share the characteristic of falling average score , and produce
solutions that are different from those produced by Greedy. The
solutions found by Optimal are characterised by highest average
score , and high values of maximum and minimum score , which
contribute to the lowest values of standard deviation. Figure 3

3We use a polynomial of degree three, as we find empirically that it produces a good
fit.

Figure 3: Performance of the algorithms, as a function of the
input size.

Figure 4: Granular runtimes of the algorithms, as a function
of the input size.

provide some indication that Hill-Climbing and Optimal pro-
duce, in general, the same solutions for small inputs. In the case
of Hill-Climbing, as the input size grows, the average score falls,
the maximum stops increasing, and the minimum falls, causing an
increase in standard deviation. As we see, Hill-Climbing struggles
for large inputs, but it is likely to find the optimal solution for small
inputs. On the other hand, Greedy behaves similarly for small and
large inputs, but it is unlikely to find the optimal solution for both
small and large inputs.

4.5 Runtime
We compare the times each algorithm requires from taking an input
to producing an output. More specifically, we carry out what we
will call a granular analysis. By this, we mean that we consider
the time required by calls to the functions seдues and score . All

700

Play It Again, Sam! Recommending Familiar Music in Fresh Ways RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands

the algorithms call these functions, but they call them a different
number of times. There are other parts of each algorithm which are
not shared, and that arewritten in different programming languages,
e.g. the optimal TSP solver is in C, while the hill-climber is in Python.
We found that the granular runtimes, computed as above, differ
from the full runtimes by only a small extent, and so we believe
that the granular runtimes give us a fair comparison.

We run the algorithms on the main dataset of Section 4.2. We
construct a curve featuring the granular runtimes as a function of
the input size. For presentation purposes, we do a least square fitting,
as in Section 4.4. We report the fitted curve in Figure 4. We find that
Greedy is the fastest, while Optimal is the slowest.Hill-Climbing
is slightly faster than Optimal, and much slower than Greedy.
The runtime of Hill-Climbing might decrease if we decrease the
values of its parameters, at the cost of lower performances, as we
discussed in Section 4.4.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we introduce a novel strategy to present users with
their personal music collections, based on what we call tours. A
tour is an arrangement of the songs, with segues between consecu-
tive songs. We introduce three algorithms that can find tours: two
heuristics methods (Greedy and Hill-Climbing) and one exact
algorithm (Optimal). The results of our experiments highlight that
Greedy produces tours that are substantially different from those
found by Hill-Climbing and Optimal. Tours found by Greedy
have segues with falling scores but highest maximum scores. Hill-
Climbing and Optimal find similar tours to each other for small
input sizes, and do not have falling scores.

Future work will involve user-centric evaluation; we have ethical
approval for a first user trial that will build on the results of this
paper. We plan to gather human opinions on the different tours
produced by the algorithms, with a focus on the practical impli-
cation of the results found in this paper. Also, we plan to gather
human opinions on possible improvements to the tours, and on the
potential impact of tours on repeated consumption of music.

ACKNOWLEDGMENTS
This publication has emanated from research conducted with the fi-
nancial support of Science Foundation Ireland under Grant number
12/RC/2289-P2 which is co-funded under the European Regional De-
velopment Fund. For the purpose of Open Access, the authors have
applied a CC BY public copyright licence to any Author Accepted
Manuscript version arising from this submission.

REFERENCES
[1] Morteza Behrooz, Sarah Mennicken, Jennifer Thom, Rohit Kumar, and Henriette

Cramer. 2019. Augmenting Music Listening Experiences on Voice Assistants.
In Proceedings of the 20th International Society for Music Information Retrieval
Conference, ISMIR 2019, Delft, The Netherlands, November 4-8, 2019, Arthur Flexer,
Geoffroy Peeters, Julián Urbano, and Anja Volk (Eds.). 303–310. http://archives.
ismir.net/ismir2019/paper/000035.pdf

[2] Austin R. Benson, Ravi Kumar, and Andrew Tomkins. 2016. Modeling User
Consumption Sequences. In Proceedings of the 25th International Conference on
World Wide Web (Montréal, Québec, Canada) (WWW ’16). International World
Wide Web Conferences Steering Committee, Republic and Canton of Geneva,
CHE, 519–529. https://doi.org/10.1145/2872427.2883024

[3] Ching-Wei Chen, Paul Lamere, Markus Schedl, and Hamed Zamani. 2018. Recsys
Challenge 2018: Automatic Music Playlist Continuation. In Proceedings of the
12th ACM Conference on Recommender Systems (Vancouver, British Columbia,
Canada) (RecSys ’18). Association for Computing Machinery, New York, NY, USA,
527–528. https://doi.org/10.1145/3240323.3240342

[4] Giovanni Gabbolini and Derek Bridge. 2021. Generating Interesting Song-to-Song
Segues With Dave (UMAP ’21). Association for Computing Machinery, New York,
NY, USA, 98–107. https://doi.org/10.1145/3450613.3456819

[5] Peter Knees, Markus Schedl, and Masataka Goto. 2020. Intelligent User Interfaces
forMusic Discovery. Transactions of the International Society forMusic Information
Retrieval 3(1) (2020), 165–179.

[6] J. K. Lenstra and A. H. G. Rinnooy Kan. 1975. Some Simple Applications of the
Travelling Salesman Problem. Journal of the Operational Research Society 26, 4
(1975), 717–733. https://doi.org/10.1057/jors.1975.151

[7] T. Pohle, P. Knees, M. Schedl, E. Pampalk, and G. Widmer. 2007. “Reinventing
the Wheel”: A Novel Approach to Music Player Interfaces. IEEE Transactions on
Multimedia 9, 3 (2007), 567–575. https://doi.org/10.1109/TMM.2006.887991

[8] Pengjie Ren, Zhumin Chen, Jing Li, Zhaochun Ren, Jun Ma, and Maarten de
Rijke. 2019. RepeatNet: A Repeat Aware Neural Recommendation Machine for
Session-Based Recommendation. Proceedings of the AAAI Conference on Artificial
Intelligence 33, 01 (Jul. 2019), 4806–4813. https://doi.org/10.1609/aaai.v33i01.
33014806

[9] Stuart Russell and Peter Norvig. 2010. Beyond Classical Search. In Artificial
Intelligence: A Modern Approach 3rd Ed. Prentice Hall, Upper Saddle River, NJ,
120–160.

[10] Kosetsu Tsukuda and Masataka Goto. 2020. Explainable Recommendation for
Repeat Consumption. In Fourteenth ACM Conference on Recommender Systems
(Virtual Event, Brazil) (RecSys ’20). Association for Computing Machinery, New
York, NY, USA, 462–467. https://doi.org/10.1145/3383313.3412230

701

http://archives.ismir.net/ismir2019/paper/000035.pdf
http://archives.ismir.net/ismir2019/paper/000035.pdf
https://doi.org/10.1145/2872427.2883024
https://doi.org/10.1145/3240323.3240342
https://doi.org/10.1145/3450613.3456819
https://doi.org/10.1057/jors.1975.151
https://doi.org/10.1109/TMM.2006.887991
https://doi.org/10.1609/aaai.v33i01.33014806
https://doi.org/10.1609/aaai.v33i01.33014806
https://doi.org/10.1145/3383313.3412230

	Abstract
	1 Introduction
	2 Related work
	3 Method
	3.1 Problem formulation
	3.2 Algorithms

	4 Experiments
	4.1 Implementation
	4.2 Dataset
	4.3 Parameter tuning
	4.4 Performance
	4.5 Runtime

	5 Conclusions and future work
	Acknowledgments
	References

