Linearity analysis and comparison study on the epoc® point-of-care blood analysis system in cardiopulmonary bypass patients

Chen, Jianing; Gorman, Monique; O’Reilly, Bill; Chen, Yu

2016-01-30

Article (peer-reviewed)

10.1016/j.dib.2016.01.040

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). - http://creativecommons.org/licenses/by/4.0/

2023-08-16 00:18:57

https://hdl.handle.net/10468/3443
Data Article

Linearity analysis and comparison study on the epoc® point-of-care blood analysis system in cardiopulmonary bypass patients

Jianing Chena,b, Monique Gormanc, Bill O’Reillyd, Yu Chena,e,*

a Department of Laboratory Medicine, Dr. Everett Chalmers Regional Hospital, Horizon Health Network, Fredericton, NB, Canada
b Faculty of Medicine, University College Cork, Cork, Ireland
c Department of Laboratory Medicine, Saint John Regional Hospital, Horizon Health Network, Saint John, NB, Canada
d Division of Cardiac Perfusion, Saint John Regional Hospital, Horizon Health Network, Saint John, NB, Canada
e Department of Pathology, Dalhousie University, Halifax, NS, Canada

Articlen Info

Article history:
Received 16 December 2015
Received in revised form
6 January 2016
Accepted 19 January 2016
Available online 30 January 2016

Abstract

The epoc® blood analysis system (Epocal Inc., Ottawa, Ontario, Canada) is a newly developed in vitro diagnostic hand-held analyzer for testing whole blood samples at point-of-care, which provides blood gas, electrolytes, ionized calcium, glucose, lactate, and hematocrit/calculated hemoglobin rapidly. The analytical performance of the epoc® system was evaluated in a tertiary hospital, see related research article “Analytical evaluation of the epoc® point-of-care blood analysis system in cardiopulmonary bypass patients” [1]. Data presented are the linearity analysis for 9 parameters and the comparison study in 40 cardiopulmonary bypass patients on 3 epoc® meters, Instrumentation Laboratory GEM4000, Abbott iSTAT, Nova CCX, and Roche Accu-Chek Inform II and Performa glucose meters.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

* Corresponding author at: Department of Laboratory Medicine, Dr. Everett Chalmers Regional Hospital, Horizon Health Network, Fredericton, NB, Canada.
E-mail address: yu.chen@horizonNB.ca (Y. Chen).

http://dx.doi.org/10.1016/j.dib.2016.01.040
2352-3409/© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Value of the data

- Detailed analytical linearity analysis for 9 parameters on the epoc® meters was presented.
- Comparison study was conducted on 40 cardiopulmonary bypass patients.
- The data helps medical laboratories and point-of-care testing users to make an informed decision on blood gas analyzer selection.

1. Data

The data contains information on the analytical linearity performances for 9 parameters on 3 epoc® meters (Supplementary Fig. 1). It also contains information on the cardiopulmonary bypass patient sample comparison study for analytical accuracy performance for 8 parameters on 3 epoc® meters (Figs. 1–4).

2. Experimental design, materials and methods

2.1. The epoc® blood analysis system

The epoc® blood analysis system (Epocal Inc., Ottawa, Ontario, Canada) is a newly developed hand-held analyzer for testing whole blood samples at point-of-care, which provides blood gas, electrolytes, ionized calcium, glucose, lactate, and hematocrit/calculated hemoglobin in 30 seconds. This system contains a test card, a wireless card reader, and a host mobile computer. pH, pCO₂, sodium, potassium, and ionized calcium are measured potentiometrically; pO₂, glucose, and lactate are measured amperometrically, whereas hematocrit is determined conductometrically [2]. Hemoglobin is calculated from...
Fig. 1. The comparison study of the ePOC™ point-of-care blood analysis system with the GEM4000 in cardiopulmonary bypass patients.
Fig. 2. The comparison study of the epoc® point-of-care blood analysis system with the iSTAT in cardiopulmonary bypass patients.
the measured hematocrit using the formula: Hemoglobin (g/L) = Hematocrit (decimal fraction) \times 340 [3,4].

2.2. Linearity study

The epoce point-of-care blood analysis system was evaluated using several Clinical and Laboratory Standards Institute (CLSI) evaluation protocols for testing the linearity (EP6) [5]. Five levels of Eurotrol epoc Calibration Verification Fluids (Eurotrol B.V., Keplerlaan, The Netherlands, lot183-B407), and 5 levels of Eurotrol epoc Hematocrit Verification Fluids (Eurotrol B.V., Keplerlaan, The Netherlands, lot190-B404) were measured on all three epoce blood analysis systems. These linearity materials were analyzed in triplicate on each system respectively.
2.3. Comparison study

The epoc point-of-care blood analysis system was evaluated using several Clinical and Laboratory Standards Institute (CLSI) evaluation protocols for testing the accuracy (EP15) [6] and bias (EP9) [7]. Remnant specimens from 40 heparinized CPB patients collected in plain 3 mL syringe (Becton Dickinson, Franklin Lakes, New Jersey) for routine clinical analysis on GEM4000 (Instrumentation Laboratory, Bedford, MA, USA) in the cardiovascular operating room of the Saint John Regional Hospital, Horizon Health Network, were used for this study. Samples collected were of arterial, mixed venous, and venous types. After being analyzed on GEM4000 and all 3 epoc meters (therefore total epoc measurements were up to 118), samples were analyzed in Abbott iSTAT (Abbott Point of Care, Princeton, NJ, USA), Nova CCX analyzer (Nova Biomedical Corporation, Waltham, MA, USA), Accu-Chek Inform II and Performa glucose meters (Roche Diagnostics, Basel, Switzerland) side by side, with all measurements performed within 5 min. All testing devices were run according to manufacturers’ instructions by a medical laboratory technologist. These arrangements attempted to eliminate pre-analytical errors associated with blood analysis, such as different sample collection containers and sensitive specimen stability [8,9].

2.4. Statistical method

Statistical analysis was carried out using Microsoft Excel. The best fit line by linear regression was used to evaluate assay linearity (Supplementary Fig. 1). Regression analysis was used to evaluate method comparisons (Figs. 1–4). Bland–Altman analysis was constructed to assess systematic bias between methods (see Ref. [1]). Comparison studies on hemoglobin measurements see Fig. 1 in Ref. [1].

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2016.01.040.

References