<table>
<thead>
<tr>
<th>Title</th>
<th>Directly observing squeezed phonon states with femtosecond x-ray diffraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>Johnson, Steve L.; Beaud, Paul; Vorobeva, Ekaterina; Milne, Christopher J.; Murray, Éamonn D.; Fahy, Stephen B.; Ingold, Gerhard</td>
</tr>
<tr>
<td>Publication date</td>
<td>2009</td>
</tr>
<tr>
<td>Type of publication</td>
<td>Article (peer-reviewed)</td>
</tr>
<tr>
<td>Link to publisher’s version</td>
<td>https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.102.175503</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2009, American Physical Society</td>
</tr>
<tr>
<td>Download date</td>
<td>2024-03-25 18:48:36</td>
</tr>
<tr>
<td>Item downloaded from</td>
<td>https://hdl.handle.net/10468/4642</td>
</tr>
</tbody>
</table>
EPAPS for “Directly observing squeezed phonon number states with femtosecond x-ray diffraction”

S. L. Johnson, 1,* P. Beaud, 1 E. Vorobeva, 1 C. J. Milne, 2 É. D. Murray, 3 S. Fahy, 4 and G. Ingold 1

1Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland

2Laboratoire de Spectroscopie Ultrarapide, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

3Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey, USA

4Tyndall National Institute and Department of Physics, University College, Cork, Ireland

(Dated: January 20, 2009)

Abstract

This document serves as a supplement to the article “Directly observing squeezed phonon number states with femtosecond x-ray diffraction” [1]. It contains additional details regarding the experimental technique and some details of the mathematical analysis of the data.
EXPERIMENTAL DETAILS

The sample under investigation is a single crystal of bismuth, cut at an angle of 54° from the (111) lattice planes toward the [211] direction. The sample was kept in a vacuum environment for all measurements, and a closed-loop He cryostat controlled the temperature for the 170 K measurement.

The data were collected in a pump-probe scheme, measuring alternately “pumped” and “unpumped” diffracted intensities to obtain the normalized diffraction change as a function of pump-probe delay time, and averaged over multiple scans. The optical pump pulses (115 fs, 800 nm, 1 kHz) hit the surface of the crystal at a grazing incidence of 10° with π-polarization. The absorbed fluence was \(1.37 \pm 0.14 \text{ mJ/cm}^2\).

The femtosecond probe x-rays were produced using the electron beam slicing facility at the Swiss Light Source to generate \(140 \pm 30 \text{ fs}\) duration x-ray pulses at a repetition rate of 2 kHz, synchronized to the optical pump pulses. Two grazing incidence mirrors focused the beam onto the sample, producing a beam size of 7 µm vertically and 250 µm horizontally at the position of the crystal, but with a grazing incidence angle of 0.55° with σ-polarization. As described in an earlier work [2], this small incidence angle sets the effective probe depth of the x-rays to 50 nm due to photoabsorption. Diffraction from a single multilayer mirror (Mo/B\(_4\)C, 25 Å period, \(\gamma = 0.5\)) placed just before the sample set the energy of the x-rays to 7.15 keV with a bandwidth of 1.3%.
RECURSION RELATIONS

To solve
\[
\langle (\hat{u}_j \cdot \mathbf{G})^2 \rangle = \sum_{k,s'} C_{k,s'} \left| \sum_s \frac{\mathbf{e}^j_s(t) \cdot \mathbf{G}}{\sqrt{\omega_{ks}(t)}} [U_{kss'}(t) + V_{kss'}(t)^*] \right|^2
\]
(1)
for arbitrary time-dependent phonon eigenvectors \(\mathbf{e}^j_{ks}(t) \) and frequencies \(\omega_{ks} \), we employ a recursion relation solution method modeled after the work of Kiss et al. [3] Under this scheme, we consider the time-dependence of the frequencies and eigenvectors as a series of closely spaced step-functions:

\[
\omega_{ks}(t) = \begin{cases}
\omega^{(0)}_{ks} & t_0 < t < t_1 \\
\omega^{(1)}_{ks} & t_1 < t < t_2 \\
\omega^{(2)}_{ks} & t_2 < t < t_3 \\
\vdots & \\
\omega^{(n)}_{ks} & t_n < t < t_{n+1} \\
\vdots &
\end{cases}
\]
(2)

\[
\mathbf{e}^j_{ks}(t) = \begin{cases}
\mathbf{e}^{j(0)}_{ks} & t_0 < t < t_1 \\
\mathbf{e}^{j(1)}_{ks} & t_1 < t < t_2 \\
\mathbf{e}^{j(2)}_{ks} & t_2 < t < t_3 \\
\vdots & \\
\mathbf{e}^{j(n)}_{ks} & t_n < t < t_{n+1} \\
\vdots &
\end{cases}
\]
(3)

We then solve for the quantities \(U_{kss'}(t) \) and \(V_{kss'}(t) \) in equation (4) in ref. [1] over each interval.

Between steps, the time evolution of the phonon annihilation and creation operators is that of a collection of simple harmonic oscillators with constant frequencies. Let \(\hat{a}^{(n)}_{ks} \) be \(\hat{a}_{ks} \) at a time just after \(t_n \). We may then write \(\hat{a}_{ks}(t) = \hat{a}^{(n)}_{ks} e^{-i\omega^{(n)}_{ks}(t-t_n)} \) for \(t_n < t < t_{n+1} \). Thus

\[
U_{kss'}(t) = U^{(n)}_{kss'} e^{-i\omega^{(n)}_{ks}(t-t_n)} \\
V_{kss'}(t) = V^{(n)}_{kss'} e^{-i\omega^{(n)}_{ks}(t-t_n)} \quad \text{for } t_n < t < t_{n+1}
\]
(4)
where we have used the condition $\omega_{-ks} = \omega_{ks}$.

To find $U_{kss'}^{(n+1)}$ and $V_{kss'}^{(n+1)}$ in terms of $U_{kss'}^{(n)}$ and $V_{kss'}^{(n)}$ we require that at any lattice site \mathbf{R}, the atomic displacement

$$\hat{u}_j(\mathbf{R}) = \frac{1}{\sqrt{N}} \sum_{k,s} \sqrt{\frac{\hbar}{2\omega_{ks}}} (\hat{a}_{ks} + \hat{a}_{ks}^\dagger) \epsilon_{ks}^j(t) e^{i\mathbf{k}\mathbf{R}}$$

and momentum

$$\hat{p}_j(\mathbf{R}) = -\frac{i}{\sqrt{N}} \sum_{k,s} M_j \left[\frac{\hbar \omega_{ks}(t)}{2} (\hat{a}_{ks} - \hat{a}_{ks}^\dagger) \epsilon_{ks}^j(t) e^{i\mathbf{k}\mathbf{R}} \right]$$

be continuous at t_{n+1}. Using the relation $\epsilon_{-ks}^j = (\epsilon_{ks}^j)^*$ and the eigenvector orthonormality condition $\sum_j M_j (\epsilon_{ks}^j)^* \cdot \epsilon_{ks'}^{j'} = \delta_{ss'}$ we obtain the recursion relations

$$U_{kss'}^{(n+1)} = \frac{1}{2} \sum_{j,s''} M_j \left[(\epsilon_{ks}^{(n+1)} \epsilon_{ks'}^{(n)})^* \right] \left[A_{kss''}^{(n)} U_{kss'''}^{(n)} + B_{kss''}^{(n)} V_{kss'''}^{(n)} \right]$$

$$V_{kss'}^{(n+1)} = \frac{1}{2} \sum_{j,s''} M_j \left[\epsilon_{ks}^{(n+1)} \epsilon_{ks'}^{(n)} \right] \left[A_{kss''}^{(n)} V_{kss'''}^{(n)} + B_{kss''}^{(n)} U_{kss'''}^{(n)} \right]$$

$$A_{kss''}^{(n)} = \frac{\omega_{ks}^{(n+1)} + \omega_{ks''}^{(n)} + i\omega_{ks''}^{(n)} (t_{n+1} - t_n)}{\sqrt{\omega_{ks}^{(n+1)}} \omega_{ks''}^{(n)}}$$

$$B_{kss''}^{(n)} = \frac{\omega_{ks}^{(n+1)} - \omega_{ks''}^{(n)} - i\omega_{ks''}^{(n)} (t_{n+1} - t_n)}{\sqrt{\omega_{ks}^{(n+1)}} \omega_{ks''}^{(n)}}$$

If the crystal is in thermal equilibrium at $t = t_0$, the initial conditions are $U_{kss'}^{(0)} = \delta_{ss'}$ and $V_{kss'}^{(0)} = 0$. These, in combination with equations 7 and 8, allow us to solve equation 1 for the variance in atomic position at any time t.

* steve.johnson@aps.org

