
Title Distributed optimization algorithm for discrete-time
heterogeneous multi-agent systems with nonuniform stepsizes

Authors Mo, L.;Li, J.;Huang, Jian

Publication date 2019-06-27

Original Citation Mo, L., Li, J. and Huang, J. (2019) 'Distributed Optimization
Algorithm for Discrete-Time Heterogeneous Multi-Agent Systems
With Nonuniform Stepsizes', IEEE Access, 87303-87312. (7pp.)
DOI: 10.1109/ACCESS.2019.2925414

Type of publication Article (peer-reviewed)

Link to publisher's
version

https://ieeexplore.ieee.org/document/8747511 - 10.1109/
ACCESS.2019.2925414

Rights © The Author(s) 2019. This work is licensed under a Creative
Commons Attribution 3.0 License. For more information,
see http://creativecommons.org/licenses/by/3.0/ - http://
creativecommons.org/licenses/by/3.0/

Download date 2025-05-21 04:15:23

Item downloaded
from

https://hdl.handle.net/10468/8623

https://hdl.handle.net/10468/8623


Received June 10, 2019, accepted June 20, 2019, date of publication June 27, 2019, date of current version July 17, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2925414

Distributed Optimization Algorithm for
Discrete-Time Heterogeneous Multi-Agent
Systems With Nonuniform Stepsizes
LIPO MO 1, JINGYI LI2, AND JIAN HUANG 3
1School of Mathematics and Statistics, Beijing Technology and Business University, Beijing 100048, China
2School of Mathematics and Systems Science, Beihang University, Beijing 100083, China
3School of Mathematical Sciences, University College Cork, Cork, T12 XF62 Ireland

Corresponding author: Lipo Mo (beihangmlp@126.com)

This work was supported in part by the Beijing Educational Committee Foundation under Grant KM201910011007 and Grant
PXM2019_014213 _000007, in part by the Beijing Natural Science Foundation under Grant Z180005, and in part by the National Natural
Science Foundation of China under Grant 61772063.

ABSTRACT This paper is devoted to the distributed optimization problem of heterogeneous multi-agent
systems, where the communication topology is jointly strongly connected and the dynamics of each agent
is the first-order or second-order integrator. A new distributed algorithm is first designed for each agent
based on the local objective function and the local neighbors’ information that each agent can access. By a
model transformation, the original closed-loop system is converted into a time-varying system and the system
matrix of which is a stochastic matrix at any time. Then, by the properties of the stochastic matrix, it is proven
that all agents’ position states can converge to the optimal solution of a team objective function provided the
union communication topology is strongly connected. Finally, the simulation results are provided to verify
the effectiveness of the distributed algorithm proposed in this paper.

INDEX TERMS Distributed optimization, multi-agent systems, heterogeneous, nonuniform stepsizes.

I. INTRODUCTION
Recently, distributed control theory has gained the fast
progress due to the traditional centralized control methods,
such as [1], [2], have been unable to meet the demands
of control engineering. As a basic problem of distributed
control, especially, consensus problems with or without con-
straints have received huge interests from many fields, such
as systems and control, computer science and mathematics,
and many excellent results have been reported. For example,
consensus problems of first-order and second-order multi-
agent systems with communication time-delay were solve in
[3]–[6]. Then, convex and nonconvex constrained consensus
problems were considered for discrete-time and continuous-
time multi-agent systems in [7]–[9], some effective dis-
tributed algorithms were designed and some consensus con-
ditions were obtained.

As the further development of consensus, the distributed
optimization problem has attracted wide attention due to its

The associate editor coordinating the review of this manuscript and
approving it for publication was Bohui Wang.

potential applications in signal processing, sensor networks,
machine learning, distributed estimation, energy manage-
ment problems in smart grids, event-triggered control prob-
lems, fast convergence problems and so on [10]–[20]. The
main task of distributed optimization is to design proper
distributed algorithm based on local information that each
agent can access to force all agents cooperatively find the
optimal solution of a team objective function. For first-
order multi-agent systems, the subgradient method was intro-
duced to optimize a sum of convex functions [21], [22].
Then, these results were extended to continuous-time
situations [23]–[25]. Meanwhile, the continuous-time zero-
gradient-sum and Newton-Raphson algorithms were pro-
posed in [26], [27] to assure that all agents can find the
optimal solution of a team objective function. Furthermore,
under the balance condition, the distributed continuous-time
optimization problem was solved and the corresponding
convergence rate was also analyzed in [28], [29]. Taken
the identical or nonidentical constraint sets into account,
the distributed optimization problems were solved by a sub-
gradient projection algorithm for general convex objective

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ 87303

https://orcid.org/0000-0001-6284-889X
https://orcid.org/0000-0002-0862-1384


L. Mo et al.: Distributed Optimization Algorithm for Discrete-Time Heterogeneous Multi-Agent Systems

functions [30], [31]. In addition, a distributed algorithm was
introduced to solve the nonuniform unbounded constrained
optimization problem in [32]. For second-order multi-agent
systems, by introducing intermediate variables, the optimiza-
tion problems were solved in [33], [34] when the objective
functions are strongly convex. To reduce the cost of com-
munication, some distributed algorithms with nonuniform
gradient stepsizes were designed to minimize the general
convex team objective function [35]–[37].

Most of the existing results on distributed optimization
problem assumed that all agents’ dynamics are the same-
order integrators. In reality, the different agents might have
different dynamics due to the restriction of real environment,
the corresponding system is always said to be heterogeneous
systems. The consensus problems of heterogeneous multi-
agent systems with or without constraints were extensively
studied in [38]–[42]. However, to the best of our knowledge,
there is no works on the distributed optimization algorithm of
heterogeneous multi-agent systems.

In this paper, we mainly study the distributed optimization
problem of heterogeneous multi-agent system with jointly
strongly connected communication topologies. The main
contributions of this paper are as follows:

(1) In contrast to [21]–[24], [26]–[31], [33], [34], where
some algorithms were proposed to solve the distributed opti-
mization problems, but they assumed that the objective func-
tion is strictly convex or the gradient gains are constant, this
paper deals with the situation of the general convex objective
function and nonuniform gradient gains, which make our
analysis be more complicated.

(2) In contrast to [25], [32], [35], [37], where the distributed
optimization problems were studied for first-order or second-
order multi-agent systems, this paper extends these results
to heterogeneous multi-agent systems including first-order
and second-order integrators simultaneously, which brings us
more challenges and difficulties due to the inconsistency of
each agent’s dynamics.

(3) The proposed algorithms and analysis methods in
[21]–[35], [37] are not applicable because we not only need
to deal with first-order agents but also second-order agents.

(4) In contrast to [38]–[42], where only consensus problem
was considered, this paper not only considers the consensus
but also optimization index, which makes our closed-loop
system be nonlinear essentially due to the existence of gra-
dient terms and brings us more challenges in convergence
analysis.

To overcome these difficulties, a novel distributed algo-
rithm with nonuniform stepsizes (gradient gains) is first
designed based on the local objective function and the local
neighbors’ information that each agent can access. By a
coordination transformation, the original closed-loop system
is changed into a new one, the system matrix of which is
a stochastic matrix. Then, by the properties of stochastic
matrix, we prove that all agents can reach an agreement
on their position states and the team objective function is
minimized at the same time.

Notations: In this paper, Rr represents Euclidean space
with dimension r . ‖x‖ represents the Euclidean normal of
a vector x. For a matrix A, AT represents its transpose. Ir
represents identical matrix with dimension r . ⊗ represents
kronecker product. 1 represent a vector with all of its entries
being one.

II. PRELIMINARIES
Let G(k) = (Im+n, E(k)) be a directed graph at time k , where
Im+n = {1, · · · ,m + n} is the set of nodes and E(k) is the
set of edges at time k . aij(k) > 0 if and only if (j, i) ∈ E(k)
and aii(k) = 0 for all i. Let Ni(k) = {j ∈ V : (j, i) ∈ E(k)}
be the neighbor set of node i. The Laplacian L(k) of G(k)
is defined as [L(k)]ii =

n∑
j=1

aij(k) and [L(k)]ij = −aij(k)

for all i 6= j. The union graph of some graphs is a new
graph whose node set is the same as each graph and edge
set is the unions of the edge sets of these graphs. A series
of edges (vim−1 , vim ), (vim−2 , vim−1 ), · · · , (vi1 , vi2 ) is called a
directed path from node vi1 to node vim . A directed graph
is said to be strongly connected if there exists at least one
directed path between any two different nodes.

III. MAIN RESULTS
Consider a discrete-time heterogeneous multi-agent system
consisting of m > 0 second-order agents and n > 0 first-
order agents. Let G(k) be the directed communication graph
among all gents at time k and L(k) be its corresponding
Laplacian. Let Ls(k) and Lf (k) be the Laplacian matrices of
the graphs composed of second-order agents and first-order
agents respectively. Thus, the Laplacian matrix of G(k) can
be partitioned as

L(k) =
[
Ls(k)+ Dsf (k) −Asf (k)
−Afs(k) Lf (k)+ Dfs(k)

]
,

where Asf (k) and Afs(k) are the corresponding sub-blocks
of L(k), Ni,f (k) and Ni,s(k) are the ith agent’s first-order
and second-order neighbor sets respectively, clearly, Ni(k) =
Ni,s(k) ∪ Ni,f (k),

Dsf (k) = diag{
∑

j∈N1,f (k)
a1j(k), · · · ,

∑
j∈Nm,f (k)

amj(k)},

Dfs(k) = diag{
∑

j∈Nm+1,s(k)
am+1,j(k), · · · ,∑
j∈Nm+n,s(k)

anj(k)}.

Suppose the dynamics of each second-order agent is

xi(k + 1) = xi(k)+ vi(k)T

vi(k + 1) = vi(k)+ ui(k)T , i ∈ Im (1)

where xi(k), vi(k), ui(k) ∈ Rq are the position state, velocity
state and control input of the ith agent at time k respectively;
Im = {1, 2, · · · ,m}; T > 0 is the sample time. Suppose the
dynamics of each first-order agent is

xi(k + 1) = xi(k)+ ui(k)T , i ∈ Im+n − Im, (2)
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where xi(k), ui(k) ∈ Rq are the position state and control
input of the ith agent at time k respectively.
The objective of this paper is to design a distributed algo-

rithm based on local information each agent can access to
drive all agents reach an agreement and minimize the follow-
ing team objective function

f (s) =
m+n∑
i=1

fi(s), s ∈ Rq, (3)

where fi(s) : Rq
→ R is the local differentiable convex

objective function only accessed by the ith agent, i ∈ Im+n.
To solve this problem, the following assumptions are neces-
sary.
Assumption 1 [25]: Suppose Xi := {x ∈ Rq

|∇fi(x) =
0}, i ∈ Im+n are all nonempty and bounded.

Let X be the optimal solution set of the team objective
function f (s), then all Xi and X are nonempty bounded closed
convex sets (see [25] for details).
Assumption 2: There exists σ ∈ (0, 1) such that aij(k)T ≥

σ and aij(k) ≤ 1 iff aij(k) > 0;
m+n∑
i=1

aij(k) =
m+n∑
j=1

aij(k) for all

i, j ∈ Im+n.
Assumption 3: Suppose 0 = k0 < k1 < · · · is an

infinite sequence of switching times and the union graph of
all graphs over every interval [km, km+1) is strongly connected
and km+1− km ≤ B for all positive integer m, where B > 0 is
a positive constant.
Remark 1: Assumption 1 guarantees the distributed opti-

mization problem is solvable, where the assumption is made
only for the local objective functions and the global informa-
tion (the team objective function) doesn’t be used. Assump-
tion 2 guarantees the interaction weights cannot be vanishing
as time goes to infinity. Assumption 3 guarantees that each
pair of agents can communicate directly or indirectly infinite
many times and at least once in each B time interval.

In this paper, we design the following distributed algorithm
with nonuniform stepsizes:

For i ∈ Im,

ui(k) = −vi(k)+
∑

j∈Ni,s(k)
aij(k)[(xj(k)− xi(k))

+ (vj(k)− vi(k))]+
∑

j∈Ni,f (k)
aij(k)[(xj(k)

− xi(k))− vi(k)]− di(k), (4)

where

di(k) =


0,

√
pi(k) ≤ ‖∇fi(w

sy
i (k))‖

2

∇fi(w
sy
i (k))

√
pi(k)

, otherwise,

pi(k + 1) = pi(k) + arctan(e‖xi(k)+vi(k)‖)T , pi(0) > 0, and,
wsyi (k) = xi(k) + vi(k) +

∑
j∈Ni,s(k) aij(k)[(xj(k) − xi(k)) +

(vj(k)− vi(k))]T +
∑

j∈Ni,f (k) aij(k)[(xj(k)− xi(k))− vi(k)]T .
For i ∈ Im+n − Im,

ui(k) =
∑

j∈Ni,s(k)
aij(k)[(xj(k)− xi(k))+ vj(k)]

+

∑
j∈Ni,f (k)

aij(k)[(xj(k)− xi(k))]− di(k), (5)

where

di(k) =


0,

√
pi(k) ≤ ‖∇fi(w

fx
i (k))‖

2

∇fi(w
fx
i (k))

√
pi(k)

, otherwise,

pi(k + 1) = pi(k) + arctan(e‖xi(k)‖)T , pi(0) > 0, and,
wfsi (k) = xi(k)+

∑
j∈Ni,s(k) aij(k)[(xj(k)− xi(k))+ vj(k)]T +∑

j∈Ni,f (k) aij(k)[(xj(k)− xi(k))]T .
Remark 2: In the above algorithms, only the local infor-

mation (the state information of its neighbors) is used by each
agent, i.e., the corresponding data set includes all the state
information of its neighbors.

Let yi(k) = xi(k) + vi(k), i ∈ Im, then for i ∈ Im and
j ∈ Im+n − Im,

xi(k + 1) = (1− T )xi(k)+ Tyi(k)

yi(k + 1) = wsyi (k)− di(k)T

xj(k + 1) = wfxj (k)− dj(k)T . (6)

Define Z (k) = [xs(k)T , ys(k)T , x f (k)T ]T , xs(k) =

[x1(k)T , · · · , xm(k)T ]T , ys(k) = [y1(k)T , · · · , ym(k)T ]T ,
x f (k) = [xm+1(k)T , · · · , xm+n(k)T ]T , D(k) = [0,Ds(k)T ,
Df (k)T ], Ds(k) = [d1(k)T , · · · , dm(k)T ]T , Df (k) =

[dm+1(k)T , · · · , dm+n(k)T ]T . Then the closed-loop system
(6) can be changed into the following form:

Z (k + 1) = [8(k)⊗ Iq]Z (k)+ D(k), (7)

where

8(k) =

 (1− T )Im TIm 0
0 φ1(k) Asf (k)T
0 Afs(k)T φ2(k),

 ,
and φ1(k) = Im − Ls(k)T − Dsf (k)T and φ2(k) = In −
Lf (k)T − Dfs(k)T .
Lemma 1:Under Assumption 2, if T < 1−σ

n+m , then8(k) is a
stochastic matrix and 81(k) is a double stochastic matrix for
all k with [81(k)]ij ≥ σ for all nonzero entry [81(k)]ij, i, j ∈

Im+n, where 81(k) =
[
φ1(k) Asf (k)T
Afs(k)T φ2(k)

]
, i.e., 8(k)1 =

1, 81(k)1 = 1 and 8T
1 (k)1 = 1.

Proof: From the definitions of8(k) and81(k), it is easy
to verify the conclusion by simple calculation.
Theorem 1: Under Assumptions 1, 2 and 3. If T < 1−σ

m+n ,
then all agents of systems (1) and (2) can reach an agreement
on their position states and the team objective function is
minimized under Algorithms (4) and (5).

Proof: First, we will prove that xi(k) and yj(k) are
bounded for all k ≥ 0, i ∈ Im+n and j ∈ Im. It follows from
π
4 ≤ arctan(e‖yi(k)‖) ≤ π

2 and π
4 ≤ arctan(e‖xi(k)‖) ≤ π

2
that there exists K0 > 0 such that kπT

4 ≤ pi(k) ≤ kπT
for any k ≥ K0. Note that X and Xi are all nonempty and
bounded, we can choose a constant δ1 > 0 such that X ⊂
Y1,Xi ⊂ Y1 for each i, where Y1 = {s ∈ Rq

|‖s − z‖ ≤ δ1}
for some z ∈ X , fi(w

sy
i (k)) − fi(z) ≥ 2[fi(z) − fi(zi)] + T
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for all z ∈ X , zi ∈ Xi and wsyi (k) /∈ Y1, i ∈ Im, and
fi(w

fx
i (k))− fi(z) ≥ 2[fi(z)− fi(zi)]+ T for all z ∈ X , zi ∈ Xi

and wfxi (k) /∈ Y1, i ∈ In+m − Im. Choose Lyapunov function
V1(k) = maxi∈Im+n,j∈Im{‖xi(k)− z‖

2, ‖yj(k)− z‖2}.
For i ∈ Im, by the convexity, we have

‖xi(k + 1)− z‖2

= ‖(1− T )xi(k)+ Tyi(k)− z‖2

≤ (1− T )‖xi(k)− z‖2 + T‖yi(k)− z‖2 ≤ V1(k).

When di(k) = 0, we have

‖yi(k + 1)− z‖2

= ‖wsyi (k)− di(k)T − z‖
2
= ‖yi(k)

+

∑
j∈Ni,s(k)

aij(k)[yj(k)− yi(k)]T

+

∑
j∈Ni,f (k)

aij(k)[xj(k)− yi(k)]T − z‖2

≤ (1−
∑

j∈Ni(k)
aij(k)T )‖yi(k)− z‖2

+

∑
j∈Ni,s(k)

aij(k)T‖yj(k)− z‖2

+

∑
j∈Ni,f (k)

aij(k)T‖xj(k)− z‖2 ≤ V1(k).

When di(k) 6= 0,
√
pi(k) > ‖∇fi(w

sy
i (k))‖

2, we have

‖yi(k + 1)−z‖2

= ‖wsyi (k)−di(k)T − z‖
2
=‖wsyi (k)−z‖

2

+‖di(k)T‖2−2(w
sy
i (k)−z)

T∇fi(w
sy
i (k))

√
pi(k)

T

≤ (1−
∑

j∈Ni(k)
aij(k)T )‖yi(k)− z‖2

+

∑
j∈Ni,s(k)

aij(k)T‖yj(k)− z‖2

+

∑
j∈Ni,f (k)

aij(k)T‖xj(k)− z‖2 +
T 2
√
pi(k)

− 2[fi(w
sy
i (k))− fi(z)]

T
√
pi(k)

≤ (1−
∑

j∈Ni(k)
aij(k)T )‖yi(k)− z‖2

+

∑
j∈Ni,s(k)

aij(k)T‖yj(k)− z‖2

+

∑
j∈Ni,f (k)

aij(k)T‖xj(k)− z‖2 +
2T 2
√
kπT

+
4T
√
kπT

[fi(z)− fi(zi)]

− 2[fi(w
sy
i (k))− fi(zi)]

T
√
kπT

,

where zi ∈ Xi.
If wsyi (k) ∈ Y1, then

‖yi(k + 1)− z‖2 ≤ δ21 +
2T 2
√
kπT

+
4T
kπT

[fi(z)− fi(zi)],

which is bounded.
If wsyi (k) /∈ Y1, then fi(w

sy
i (k))− fi(z) ≥ 2[fi(z)− fi(zi)]+T .

Thus, ‖yi(k + 1)− z‖2 ≤ V1(k).

For i ∈ Im+n − Im, when di(k) = 0, we have

‖xi(k + 1)− z‖2 = ‖wfxi (k)− z‖
2

≤ (1−
∑

j∈Ni(k)
aij(k)T )‖xi(k)− z‖2

+

∑
j∈Ni,s(k)

aij(k)T‖yj(k)− z‖2

+

∑
j∈Ni,f (k)

aij(k)T‖xj(k)− z‖2

≤ V1(k).

When di(k) 6= 0,
√
pi(k) > ‖∇fi(w

fx
i (k))‖

2, and

‖xi(k + 1)− z‖2

= ‖wfxi (k)− di(k)T − z‖
2

≤ ‖wfxi (k)− z‖
2
+ ‖di(k)T‖2

− 2(wfxi (k)− z)
T ∇fi(w

fx
i (k))

√
pi(k)

T

≤ (1−
∑

j∈Ni(k)
aij(k)T )‖xi(k)− z‖2

+

∑
j∈Ni,s(k)

aij(k)T‖yj(k)− z‖2

+

∑
j∈Ni,f (k)

aij(k)T‖xj(k)− z‖2 +
T 2
√
pi(k)

− 2[fi(w
fx
i (k))− fi(z)]

T
√
pi(k)

≤ (1−
∑

j∈Ni(k)
aij(k)T )‖xi(k)− z‖2

+

∑
j∈Ni,s(k)

aij(k)T‖yj(k)− z‖2

+

∑
j∈Ni,f (k)

aij(k)T‖xj(k)− z‖2 +
2T 2
√
kπT

+
4T
√
kπT

[fi(z)− fi(zi)]

− 2[fi(w
fx
i (k))− fi(zi)]

T
√
kπT

,

where zi ∈ Xi.
If wfxi (k) ∈ Y1, then

‖xi(k + 1)− z‖2 ≤ δ21 +
2T 2
√
kπT

+
4T
kπT

[fi(z)− fi(zi)],

which is bounded.
If wfxi (k) /∈ Y1, then fi(w

fx
i (k))− fi(z) ≥ 2[fi(z)− fi(zi)]+T .

Thus, ‖xi(k + 1)− z‖2 ≤ V1(k).
From the preceding analysis, we can conclude that V1(k) is

bounded. Hence, xi(k) and yj(k) are bounded for all i ∈ Im+n
and j ∈ Im. Note that fi(s), i ∈ Im+n are differentiable, we get
that ‖∇fi(w

sy
i (k))‖ and ‖fj(w

fx
j (k))‖ are bounded for all i ∈ Im

and j ∈ Im+n − Im. Together with limt→∞ pi(k) = ∞, there

exists K1 > K0 such that di(k) =
∇fi(w

sy
i (k))√
pi(k)

and dj(k) =
∇fj(w

fx
j (k))

√
pi(k)

for all i ∈ Im, j ∈ Im+n − Im and k ≥ K1.
Next, let us analyze the stability of the closed-loop system.

Define z∗(k) = 1
m+n [

∑m
i=1 yi(k) +

∑m+n
i=m+1 xi(k)], k ≥ K1,

we will prove that limk→∞ ‖Z (k) − 12m+n ⊗ z∗(k)‖ = 0.
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From (7), we have

z∗(k + 1) =
1

m+ n
[
∑m

i=1
yi(k + 1)+

∑m+n

i=m+1
xi(k + 1)]

=
1

m+ n
[
∑m

i=1
yi(k)+

∑m+n

i=m+1
xi(k)

−

∑m+n

i=1
di(k)T ]

= z∗(k)−
1

m+ n
[
∑m

i=1

∇fi(w
sy
i (k))

√
pi(k)

T

+

∑m+n

i=m+1

∇fi(w
fx
i (k))

√
pi(k)

T ].

Take the following Lyapunov function V2(k) =∑m
i=1 ‖yi(k)− z

∗(k)‖2 +
∑m+n

i=m+1 ‖xi(k)− z
∗(k)‖2. Then

V2(k + 1)

=

∑m

i=1
‖yi(k + 1)− z∗(k + 1)‖2

+

∑m+n

i=m+1
‖xi(k + 1)− z∗(k + 1)‖2

=

∑m

i=1
‖wsyi (k)− di(k)T − z

∗(k)

+
1

m+ n
[
∑m

i=1

∇fi(w
sy
i (k))

√
pi(k)

T

+

∑m+n

i=m+1

∇fi(w
fx
i (k))

√
pi(k)

T ]‖2

+

∑m+n

i=m+1
‖wfxi (k)− di(k)T − z

∗(k)

+
1

m+ n
[
∑m

i=1

∇fi(w
sy
i (k))

√
pi(k)

T

+

∑m+n

i=m+1

∇fi(w
fx
i (k))

√
pi(k)

T ]‖2

=

∑m

i=1
‖wsyi (k)− di(k)T − z

∗(k)‖2

+
m

(m+ n)2
‖

∑m

i=1

∇fi(w
sy
i (k))

√
pi(k)

T

+

∑m+n

i=m+1

∇fi(w
fx
i (k))

√
pi(k)

T‖2

+ 2
∑m

i=1
(wsyi (k)− di(k)T − z

∗(k))T
1

m+ n

× [
∑m

i=1

∇fi(w
sy
i (k))

√
pi(k)

T +
∑m+n

i=m+1

∇fi(w
fx
i (k))

√
pi(k)

T ]

+

∑m+n

i=m+1
‖wfxi (k)− di(k)T − z

∗(k)‖2

+
n

(m+ n)2
‖

∑m

i=1

∇fi(w
sy
i (k))

√
pi(k)

T

+

∑m+n

i=m+1

∇fi(w
fx
i (k))

√
pi(k)

T‖2

+ 2
∑m+n

i=m+n
(wfxi (k)− di(k)T − z

∗(k))T
1

m+ n

× [
∑m

i=1

∇fi(w
sy
i (k))

√
pi(k)

T +
∑m+n

i=m+1

∇fi(w
fx
i (k))

√
pi(k)

T ]

=

∑m

i=1
‖wsyi (k)− di(k)T − z

∗(k)‖2

+

∑m+n

i=m+1
‖wfxi (k)− di(k)T − z

∗(k)‖2

−
1

m+ n
‖

∑m

i=1

∇fi(w
sy
i (k))

√
pi(k)

T

+

∑m+n

i=m+1

∇fi(w
fx
i (k))

√
pi(k)

T‖2.

Besides,∑m

i=1
‖wsyi (k)− di(k)T − z

∗(k)‖2

=

∑m

i=1
‖wsyi (k)− z

∗(k)‖2 +
∑m

i=1
‖di(k)T‖2

− 2
∑m

i=1
(wsyi (k)− z

∗(k))T di(k)T

≤

∑m

i=1
‖wsyi (k)− z

∗(k)‖2 +
∑m

i=1
‖di(k)T‖2

− 2
∑m

i=1
[fi(w

sy
i (k))− fi(z

∗(k))]
T
√
pi(k)

,∑m+n

i=m+1
‖wfxi (k)− di(k)T − z

∗(k)‖2

=

∑m+n

i=m+1
‖wfxi (k)− z

∗(k)‖2 +
∑m+n

i=m+1
‖di(k)T‖2

− 2
∑m+n

i=m+1
(wfxi (k)− z

∗(k))T di(k)T

≤

∑m+n

i=m+1
‖wfxi (k)− z

∗(k)‖2 +
∑m+n

i=m+1
‖di(k)T‖2

− 2
∑m+n

i=m+1
[fi(w

fx
i (k))− fi(z

∗(k))]
T
√
pi(k)

.

Since kπT
4 ≤ pi(k) ≤ kπT , ∇fi(w

sy
i (k)) and fi(w

fx
i (k)) are

bounded for all k ≥ K1, there must exist c1, c2 > 0 such that
V2(k + 1) ≤

∑m
i=1 ‖w

sy
i (k) − z∗(k)‖2 +

∑m+n
i=m+1 ‖w

fx
i (k) −

z∗(k)‖2 + c1
k +

c2√
k
.

Note that∑m

i=1
‖wsyi (k)− z

∗(k)‖2 +
∑m+n

i=m+1
‖wfxi (k)− z

∗(k)‖2

= ‖81(k)⊗ Ip[ys(k)T , x f (k)T ]T − 1z∗(k)‖2

= ‖81(k)⊗ Ip([ys(k)T , x f (k)T ]T − 1z∗(k))‖2,

we have

V2(k + 1)− V2(k) ≤ −φ(k)+
c1
k
+

c2
√
k
,

where φ(k) = ([ys(k)T , x f (k)T ]T − 1z∗(k))T [I −
81(k)T81(k)⊗ Ip]([ys(k)T , x f (k)T ]T − 1z∗(k)) ≥ 0.
Summing the above inequality from km to km+1 − 1,

we have

V2(km+1 − 1)− V2(km) ≤ −
∑km+1−1

k=km
φ(k)+ B(

c1
k
+

c2
√
k
).

Since limt→∞ B( c1k +
c2√
k
) = 0, for any ε1 > 0, there exists

K2 > K1 such that B( c1k +
c2√
k
) < ε1 for all k > K2.

If there exists k ∈ [km, km+1), km > K2, such that φ(k) >
2ε1, then V2(km+1−1)−V2(km) < −ε1. If φ(k) ≤ 2ε1 for all
k ∈ [km, km+1), km > K2, we need to estimate V2(k). From
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Assumption 2, each nonzero entry of81(k) is no smaller than
σ , hence,

([ys(k)T , x f (k)T ]T − 1 z∗(k))T [−I +81(k)T81(k)

⊗Ip]([ys(k)T , x f (k)T ]T − 1 z∗(k))

≤ −[
∑m

i=1

(∑
j∈Ni,s(k)

σ 2 T 2
‖yj(k)− yi(k)‖2

+

∑
j∈Ni,f (k)

σ 2 T 2
‖xj(k)− yi(k)‖2

)
+

∑m+n

i=m+1

(∑
j∈Ni,s(k)

σ 2 T 2
‖yj(k)− xi(k)‖2

+

∑
j∈Ni,f (k)

σ 2 T 2
‖xj(k)− xi(k)‖2

)
].

By similar calculation as [32], it is easy to see that there exists
c3 > 0 such that ‖yi(k)− z∗(k)‖ ≤ c3(

√
ε1+ε1) and ‖xj(k)−

z∗(k)‖ ≤ c3(
√
ε1+ ε1) for all i ∈ Im, j ∈ In+m− Im. Hence,

V2(k) ≤ c3(
√
ε1 + ε1) for all k ∈ [km, km+1), km > K2 when

φ(k) ≤ 2ε1.
Summarizing the preceding two cases, for any ε2 > 0,

there exists K3 > K2 such that V2(km) < ε2 for all km > K3,
which implies that limm→∞ V2(km) < ε2. According to the
arbitrariness of ε2, we can conclude that limm→∞ V2(km) =
0. Note that V2(k+1)−V2(k) ≤ −φ(k)+

c1
k +

c2√
k
≤

c1
k +

c2√
k

for all k > K2, we have limk→∞ V2(k) exists by Cauchy
convergence theorem. Therefore,

lim
k→∞

V2(k) = lim
m→∞

V2(km) = 0,

i.e.,

lim
k→∞
‖yi(k)− z∗(k)‖ = 0,

lim
k→∞
‖xj(k)− z∗(k)‖ = 0,

for all i ∈ Im, j ∈ Im+n − Im.
Let li(k) =

∑
j∈Ni,s(k) aij(k)[yj(k) − yi(k)]T +∑

j∈Ni,f (k)[xj(k) − yi(i)]T − di(k)T for i ∈ Im. Then
limk→∞ li(k) = 0, |li(k)| < M and vi(k+1) = (1−T )vi(k)+
li(k), where M > 0 is a constant. For any ε > 0, there exists
K > 0 such that (1− T )K+1 < T

M ε. Hence,

|vi(k + 1)‖

= ‖(1− T )k+1vi(0)+
∑k

s=0
(1− T )sli(k − s)‖

≤ (1− T )k+1‖vi(0)‖ +
∑k

s=0
(1− T )s‖li(k − s)‖

≤ (1− T )k+1‖vi(0)‖ +
∑K

s=0
(1− T )s‖li(k − s)‖

+M
∑k

s=K+1
(1− T )s

= (1− T )k+1‖vi(0)‖ +
∑K

s=0
(1− T )s‖li(k − s)‖

+
M
T
(1− T )K+1(1− (1− T )k−K ).

Hence, limk→∞ ‖vi(k + 1)‖ ≤ M
T (1− T )

K+1 < ε. It follows
from the arbitrariness of ε that limk→∞ ‖vi(k)‖ = 0. There-
fore, limk→∞ ‖xi(k) − z∗(k)‖ = 0 for all i ∈ Im+n, i.e., all
agents reach an agreement on their position state.

At last, let us prove all agents’ states could converge to
the optimal solution of the team objective function. Define
V3(k) = ‖z∗(k)− PX (z∗(k))‖2, k > K2. Then

V3(k + 1) = ‖z∗(k + 1)− PX (z∗(k + 1))‖2

= ‖z∗(k + 1)− PX (z∗(k))+ PX (z∗(k))

−PX (z∗(k + 1))‖2

= ‖z∗(k + 1)− PX (z∗(k))‖2 + ‖PX (z∗(k))

−PX (z∗(k + 1))‖2 + 2[z∗(k + 1)−PX (z∗(k))]T

× [PX (z∗(k))− PX (z∗(k + 1))].

Note that [z∗(k + 1) − PX (z∗(k))]T [PX (z∗(k)) − PX (z∗(k +
1))] ≤ 0 and ‖PX (z∗(k))−PX (z∗(k+ 1))‖ ≤ ‖z∗(k)− z∗(k+
1)‖, we have

V3(k+1) ≤ ‖z∗(k+1)−PX (z∗(k))‖2+‖z∗(k)− z∗(k + 1)‖2

= ‖z∗(k + 1)− z∗(k)+ z∗(k)− PX (z∗(k))‖2

+‖z∗(k)− z∗(k + 1)‖2

= ‖z∗(k)− PX (z∗(k))‖2 + 2‖z∗(k)− z∗(k + 1)‖2

+ 2(z∗(k)− PX (z∗(k)))T (z∗(k + 1)− z∗(k)).

Since yi(k), xj(k) are bounded for all i ∈ Im, j ∈ Im+n − Im,
there must exist γ > 0 such that ‖z∗(k + 1) − z∗(k)‖2 =

‖
1

m+n [
∑m

i=1
∇fi(w

sy
i (k))√
pi(k)

+
∑m+n

i=m+1
∇fi(w

fx
i (k))√

pi(k)
]‖2 ≤ γ

k . There-
fore,

V3(k + 1)

≤ ‖z∗(k)− PX (z∗(k))‖2 +
2γ
k

−
2

m+n

∑m

i=1
[z∗(k)−PX (z∗(k))]T

∇fi(w
sy
i (k))

√
pi(k)

T

−
2

m+n

∑m+n

i=m+1
[z∗(k)−PX (z∗(k))]T

∇fi(w
fx
i (k))

√
pi(k)

T

= V3(k + 1)+
2γ
k

−
2

m+ n

∑m

i=1
[z∗(k)− wsyi (k)]

T ∇fi(w
sy
i (k))

√
pi(k)

T

−
2

m+ n

∑m+n

i=m+1
[z∗(k)− wfxi (k)]

T ∇fi(w
fx
i (k))

√
pi(k)

T

−
2

m+n

∑m

i=1
[wsyi (k)−PX (z

∗(k))]T
∇fi(w

sy
i (k))

√
pi(k)

T

−
2

m+n

∑m+n

i=m+1
[wfxi (k)−PX (z

∗(k))]T
∇fi(w

fx
i (k))

√
pi(k)

T

From the definitions of wsyi (k) and w
fx
j (k), it is easy to see

that limk→∞ ‖z∗(k) − wsyi (k)‖ = 0 and limk→∞ ‖z∗(k) −
wfxj (k)‖ = 0 for all i ∈ Im and j ∈ Im+n −
Im. Note that ∇fi(wsy(k)), ∇fj(w

fx
j (k)) are bounded and

kπT
4 ≤ pi(k) ≤ kπT , we can conclude that for

any ε3 > 0, there exist γ1 > 0 and K3 >

K2 such that − 2
m+n

∑m
i=1[z

∗(k) − wsyi (k)]
T ∇fi(w

sy
i (k))√
pi(k)

T −
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2
m+n

∑m+n
i=m+1[z

∗(k) − wfxi (k)]
T ∇fi(w

fx
i (k))√

pi(k)
T − 2

m+n

∑m
i=1

[fi(w
sy
i (k)) − fi(z∗(k))] T

√
pi(k)

−
2

m+n

∑m+n
i=m+1[fi(w

fx
i (k))

−fi(z∗(k))] T
√
pi(k)
≤

γ1ε3√
k
for all k > K3. Hence, we have

V3(k+1)−V3(k) ≤
2γ
k
+
γ1ε3
√
k
−

2T
(m+ n)

√
p1(k)

×

∑m+n

i=1
[fi(z∗(k))− fi(PX (z∗(k)))]

−
2T

(m+ n)
√
p1(k)

∑m+n

i=1
(
√
p1(k)
√
pi(k)

− 1)

× [fi(z∗(k))− fi(PX (z∗(k)))].

For i ∈ Im, let πi(k) = pi(0) − p1(0) +∑k
s=0[arctan(e

‖yi(s)‖) − arctan(e‖y1(s)‖)]T . Then pi(k) =
p1(k)[1+

πi(k)
p1(k)

]. Since limk→∞ ‖yi(k)− y1(k)‖ = 0, for any
ε′ > 0, there exists K ′ > K0 such that | arctan(e‖yi(s)‖) −
arctan(e‖y1(s)‖)| < ε′ for all k > K ′. Note that∑k

s=K0+1[arctan(e
‖yi(s)‖)− arctan(e‖y1(s)‖)]T

p1(k)
≤

4ε′

πT
,

we can get limk→∞
πi(k)
p1(k)
≤

4ε′
πT . According to the arbitrari-

ness of ε′, we have limk→∞
πi(k)
p1(k)
= 0 and limk→∞

pi(k)
p1(k)
=

1. Similarly, we can prove that limk→∞
pi(k)
p1(k)

= 1 for all
i ∈ Im+n − Im. Hence, there exists K4 > K3 such that
−

2T
(m+n)

√
p1(k)

∑m+n
i=1 (

√
p1(k)√
pi(k)
− 1)[fi(z∗(k))− fi(PX (z∗(k)))] ≤

ε3√
k
and 2γ

k <
ε3√
k
for all k > K4. Thus, for k > K4,

V3(k + 1)− V3(k)

≤
2ε3
√
k
+
γ1ε3
√
k
−

2T
m+ n

1
√
p1(k)

× [
∑m+n

i=1
fi(z∗(k))−

∑m+n

i=1
fi(PX (z∗(k)))]

≤ −
2
√
T

(m+ n)
√
πk

[
∑m+n

i=1
fi(z∗(k))

−

∑m+n

i=1
fi(PX (z∗(k)))− γ2ε3],

where γ2 =
(m+n)

√
π

2
√
T

(2+ γ1) > 0.
Since fi(s) are differentiable convex function, we can

choose c1 > 0 and C1 = {s|‖s − Px(s)‖ ≤ c1} such that∑m+n
i=1 fi(s1) −

∑m+n
i=1 fi(s2) > γ2ε3 + 2ε4 for all s1 /∈ C1

and s2 ∈ X , where ε4 > 0. Set c2 = c1 + 2ε4 and C2 =

{s|‖s − PX (s)‖ ≤ c2}. Note that ∇fi(w
sy
i (k)) and ∇fj(w

fx
j (k))

are bounded, there exists K5 > K4 such that ‖z∗(k + 1) −
z∗(k)‖ < ε4 for all k > K5. For k > K5, if z∗(k) ∈ C1, then
z∗(k + 1) ∈ C2. If z∗(k) /∈ C1 and z∗(k) ∈ C2, then V3(k +
1)− V3(k) < 0, which implies z∗(k + 1) ∈ C2. If z∗(k) /∈ C2

for k > K5, then V3(k + 1)− V3(k) < −
2
√
T ε4

(m+n)
√
πk

. So there

exists K6 > K5 such that z∗(k) ∈ C2, i.e.,
∑m+n

i=1 [fi(z∗(k)) −
fi(PX (z∗(k)))] < c1 + 2ε4 for all k > K6. Letting
ε4 → 0, we can get limk→∞ z∗(k) ∈ C1, which suggests
limk→∞

∑m+n
i=1 [fi(z∗(k))−fi(PX (z∗(k)))] ≤ γ2ε3. By the arbi-

trariness of ε3, we conclude that limk→∞
∑m+n

i=1 [fi(z∗(k)) −
fi(PX (z∗(k)))] = 0, which means all agents’ states could

FIGURE 1. Communication graphs.

FIGURE 2. The first component of position states.

converge to the optimal solution of team objective function
as k tends to infinity.

IV. SIMULATIONS
In this section, numerical examples are given to verify the
effectiveness of the algorithm proposed in this paper. Suppose
there are four second-order agents (1 to 4) and four first-order
agents (5 to 8), and the communication topology switches
among three graphs, each of them doesn’t be strongly con-
nected, see Fig. 1. The sample time is chosen as T = 0.001s.
Take initial values x1(0) = (5, 5)T , x2(0) = (3, 2)T , x3(0) =
(1, 1.5)T , x4(0) = (−2.5,−2)T , x5(0) = (4, 3)T , x6(0) =
(−3,−2)T , x7(0) = (3, 1)T , x8(0) = (−5,−3)T , vi(0) =
(0, 0)T , i = 1, 2, 3, 4.

A. EXAMPLE 1
The local objective functions are chosen as f1(s) = (s1−2)2+
s22, f2(s) = s41 + s

2
2, f3(s) = s21 + s

4
2, f4(s) = s21 + (s2 − 2)2,

f5(s) = (s1 − 2)2 + s22, f6(s) = s41 + s22, f7(s) = s21 +
(s2 − 2)2, f8(s) = s21 + s42. where s = (s1, s2)T ∈ R2. By
simple computation, we can obtain that the optimal solution
of the team objective function f (s) is (0.5536, 0.5536). The
initial values of the nonuniform stepsizes (gradient gains) are
chosen as pi(0) = 2, i = 1, 2, . . . , 8. By taking algorithms
(4) and (5), the position trajectories of all agents are shown
in Fig. 2 and Fig. 3, from which we could see that the
position states of all agents can reach an agreement and con-
verge to the optimal solution of the team objective function
with an extremely small error. But they must can converge
to the optimal solution of the team objective function as
time tends to infinity. Fig. 4 and Fig. 5 show the velocity
states of all second-order agents, from which we could see
that velocities of all second-order agents converge to zero
asymptotically.
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FIGURE 3. The second component of position states.

FIGURE 4. The first component of velocity states.

FIGURE 5. The second component of velocity states.

B. EXAMPLE 2
In this subsection, to show the effectiveness of the nonuni-
form gradient gains, we make a comparison with the algo-
rithm that has uniform gradient gains. The gradient gains
in algorithms (4) and (5) are chosen very large such as
pi(k) = 5 ∗ 105, i = 1, 2, . . . , 8 for all k (If the gradient
gains are chosen to be small, then the agreement cannot be
reached). Then by taking algorithms (4) and (5), the position
trajectories of all agents are shown in Fig. 6 and Fig. 7, from
which we could see that the position states of all agents can
reach an agreement and converge to the optimal solution of
the team objective function. Moreover, the velocity states of
all second-order agents are shown in Fig. 8 and Fig. 9, from
which we could see that velocities of all second-order agents
converge to zero. However, it can see from Fig. 6, 7, 8, 9
that the distributed optimization problem of heterogeneous
multi-agent systems is solved after about 50 seconds, while
from Fig. 3, 4, 5, 6 we could see that the problem is solved
after nearly 50 seconds with greater convergence accuracy.

FIGURE 6. The first component of position states.

FIGURE 7. The second component of position states.

FIGURE 8. The first component of velocity states.

Therefore, by taking the algorithmswith nonuniform gradient
gains, the distributed optimization problem of the hetero-
geneous multi-agent systems can be solved and consume
less time, while the convergence accuracy could be greatly
improved.

C. EXAMPLE 3
In this subsection, the convex function is chosen as f1(s) :
R2
→ R:

f1(s) =

{
0, if ‖s‖ ≤ 1,
0.5(‖s‖ − 1)2, otherwise.

By simple calculations, we have

1f1(s) =

[0, 0]
T , if ‖s‖ ≤ 1,

(‖s‖ − 1)
s
‖s‖
6= [0, 0]T , otherwise.

f2(s) = s41 + s22, f3(s) = s21 + s42, f4(s) = s21 + (s2 − 2)2,
f5(s) = (s1− 2)2+ s22, f6(s) = s41+ s

2
2, f7(s) = s21+ (s2− 2)2,
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FIGURE 9. The second component of velocity states.

FIGURE 10. The position states.

FIGURE 11. The velocity states.

f8(s) = s21+ s
4
2. The initial values of the nonuniform gradient

gains are chosen as pi(0) = 2, i = 1, 2, . . . , 8. By simple
computation, we can obtain that the optimal solution of the

function
8∑
i=2

fi(s) is s = (0.362, 0.6144). By calculation

‖s‖ = 0.7131 < 1, therefore we have f1(s) = 0. Since local
differentiable convex objective function f1(s) ≥ 0, then we
could conclude that the optimal solution of the team objective
function f (s) is (0.362, 0.6144). By taking algorithms (4)
and (5) with the nonuniform gradient gains, the position
trajectories of all agents are shown in Fig. 10, from which
we could see that the position states of all agents can reach
an agreement and converge to the optimal solution of the team
objective functionwith an extremely small error. Fig. 11 show
the velocity states of all second-order agents, from which we
could see that velocities of all second-order agents converge
to zero asymptotically. Therefore, the proposed algorithms
are available for non-smooth functions.

V. CONCLUSION
In this paper, we studied the distributed optimization problem
of heterogeneous multi-agent systems with switching jointly
strongly connected topologies, where each agent has first-
order or second-order dynamics and the team objective func-
tion is the sum of finite local convex function. To solve this
problem, a distributed algorithm is proposed for each agent
based on the local information accessed by each agent. Then,
by a coordination transformation, the closed-loop system is
converted into an equivalent system, the system matrix of
which is stochasticmatrix. Based on the properties of stochas-
tic matrix, it is shown that the consensus can be achieved and
the team objective function can beminimized simultaneously.
Finally, simulation results were given to demonstrate the cor-
rectness of the theoretical results. In the future, the distributed
optimization problems with time-delay will be considered.
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