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Summary

Uniformly Convergent Finite Element Methods
for Singularly Perturbed
Parabolic Partial Differential Equations

Wen Guo

Department Of Mathematics

University College, Cork, Ireland

A thesis submitted for the degree of Doctor of Philosophy

April 1993

This thesis is concerned with uniformly convergent finite element methods for
numerically solving singularly perturbed parabolic partial differential equations in
one space variable.

First, we use Petrov-Galerkin finite element methods to generate three schemes
for such problems, each of these schemes uses exponentially fitted elements in space.
Two of them are lumped and the other is non-lumped. On meshes which are ei-
ther arbitrary or slightly restricted, we derive global energy norm and L2 norm error
bounds, uniformly in the diffusion parameter. Under some reasonable global assump-
tions together with realistic local assumptions on the solution and its derivatives,

we prove that these exponentially fitted schemes are locally uniformly convergent,



with order one, in a discrete L* norm both outside and inside the boundary layer.

We next analyse a streamline diffusion scheme on a Shishkin mesh for a model sin-
gularly perturbed parabolic partial differential equation. The method with piecewise
linear space-time elements is shown, under reasonable assumptions on the solution,
to be convergent, independently of the diffusion parameter, with a pointwise accu-
racy of almost order 5/4 outside layers and almost order 3/4 inside the boundary
layer.

Numerical results for the above schemes are presented.

Finally, we examine a cell vertex finite volume method which is applied to a model
time-dependent convection-diffusion problem. Local errors away from all layers are

obtained in the I3 seminorm by using techniques from finite element analysis.
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Chapter 1

Introduction

1.1 Statement of the Problem

We consider the singularly perturbed parabolic problem
Lu(z,t) = —ctpg + a(z,t)uqg + b(z,t)u + r(z,t)us = f(z,t) V(z,t) € R, (1.1.1)
where Q = (0,1) x (0,7}, T is a positive constant,

u(0,t) = go(t) and u(l,t)=q(t) for 0<t<T, (1.1.2)

u(z,0)=u%z) for 0<z<1, (1.1.3)

€ is a small positive parameter, and the functions a, b, r and f are sufficiently smooth
with

0<a<a(z,t)<a*, 0<v<r(z,t)<v*, VY(z,t)e. (1.1.4)
We also assume that go,¢; and u° are piecewise smooth.

Under these hypotheses, we may assume without loss of generality (by making

a change of dependent variable if necessary) that

bz, 1) -;—a.(z,t) >2C; on, (1.1.5)



where C; € (0,1] is a positive constant independent of £ and any mesh used.

The conditions (1.1.1) — (1.1.5) define a time-dependent convection-diffusion
problem. Problems of this type arise, for example, in the modelling of steady and
unsteady viscous flow problems with large Reynolds numbers (see Peaceman and
Rachford [37] and Van Dyke [50]), convective heat transport problems with large
Peclet numbers (see Jacob [18]), oil reservoir simulation (see Ewing [11]), radioac-
tive corrosion in the water cycles of an atomic reactor, adsorption processes in gas
piplines, spread of medicaments with the blood circulation or of plumes of poisonous
industrial wastes in river systems (see Baumert et al. [3]), petroleum reservoir me-
chanics (see Price and Varga [38]) and electromagnetic field problems in moving
media (see Hahn [42]). In (1.1.1) ¢ is a diffusion coefficient and the function a is a
flow rate.

The differential operator in (1.1.1) is of mixed parabolic-hyperbolic type and has
mainly hyperbolic nature when ¢ is small when compared to a, b, r, and f. In the
limit case ¢ = 0, (1.1.1) degenerates into a purely hyperbolic equation where the
initial-boundary condition is restricted only to the inflow sides t = 0 and z = 0.
The solution of this hyperbolic problem, which is called the reduced solution, can be
obtained by integrating along the characteristics starting on the inflow boundary (see
Bobisud [4]). It is known that when ¢ — 0, the solution u(z,t) of the full problem
(1.1.1) - (1.1.5) converges weakly in L3(2) towards the reduced solution (see Vishik
and Lyusternik [51]). However, the reduced solution is in general not identical with
u(z,t) at the outflow boundary z = 1. Hence the solution u(z,t) will generally vary
rapidly in a layer region of width O(e1n(1/¢)) at boundary z = 1, even for smooth

initial-boundary data. This layer region is called a boundary layer. The boundary



layer phenomenon has been discussed by many authors since Prandtl’s original work
in 1905; see, e.g., Vishik and Lyusternik [51], Eckhaus and de Jager [10], Nayfeh [30]
and O’Malley [33].

In addition to having a boundary layer along z = 1, the solution u(z,t) also
shows internal layers of width O(,/¢) (see Nivert [29] and Eckhaus and de Jager
[10]) along those characteristics at which the reduced solution is discontinuous. Such
discontinuities typically occur if the inflow boundary data have a jump discontinuity
on the inflow boundary z = 0 or ¢t = 0, or if f has a jump discontinuity across a
characteristic.

Due to the presence of these layers, the solution u(z,t) will in general not be
globally smooth; it will vary rapidly in layer regions. This causes serious difficulties
when solving (1.1.1) — (1.1.5) numerically. In the next section, we will review some

numerical methods proposed for this singularly perturbed parabolic problem.
1.2 Previous Numerical Analyses

For parabolic partial differential equations, conventional numerical schemes such
as the finite element Galerkin method or finite difference methods typically yield
centered difference approximations for the convective term. For small values of ¢,
such methods will produce severely oscillating solutions, which do not accurately
approximate the exact solution of (1.1.1) — (1.1.5) unless an unacceptable large
number of mesh points is used or the exact solution happens to be globally smooth.
Indeed, the inadequacy of the conventional methods for the singularly perturbed
parabolic problem is a well-documented fact (cf. for example, Hindmarsh et al. [15]).

In the finite element approach, this deficiency is usually remedied by replacing the



Galerkin method by a so-called Petrov-Galerkin method, in which the test functions
may be selected differently from the trial functions. The key problem then is how to
choose test and trial functions. We give here a brief survey of the extensive literature
on this topic.

For a singularly perturbed ordinary differential equation, Barrett and Morton
[2] constructed a set of special test functions from a set of trial functions by approx-
imately symmetrizing the bilinear form and obtained an almost optimal approxi-
mation in a special norm. This symmetrization method based on a symmetrized
bilinear form has been applied to singularly perturbed parabolic equations with
mixed boundary conditions and periodic boundary conditions by Wu [52]. Optimal
estimates in the H! norm are derived. However, the analysis does not apply to
parabolic problems with Dirichlet boundary conditions due to a lack of coercivity.

The streamline diffusion method of Hughes and Brooks [16] was initially in-
troduced in the case of steady convection-diffusion problems. In this method, the
test functions w are constructed from the trial functions v by taking w = v + évg,
where § i8 a small positive parameter of order h, h being the mesh diameter and
vg the derivative in the streamline direction (i.e., the direction of propagation of
the reduced problem). Johnson et al. [20] extended the method to time dependent
convection-diffusion problems. Névert [29] proved that when piecewise polynomial
finite elements of degree k are used, the method is of order k + 1/2 in the L? norm
in smooth regions (i.e., away from any layers).

The Eulerian-Lagrangian localized adjoint method of Celia, Ewing, Herrera
and Russell [5, 40] is a finite element method specially proposed for time depen-

dent convection-diffusion problems. It combines finite element techniques with the



method of characteristics by using test functions satisfying a local adjoint condition
that introduces a Lagrangrian frame of reference.

The previous pair of methods were constructed to reflect the almost hyperbolic
nature of the problem (1.1.1) - (1.1.5). Hence they perform well provided that one
is far from the boundary layer near z = 1. However, they are not accurate inside
layers. All global error bounds obtained for these methods involve Sobolev norms
of u. Since such norms generally involve negative powers of the parameter ¢, the
bounds are in general of large magnitude and do not provide evidence of convergence
of the methods.

It is desirable to have numerical methods whose accuracy inside the boundary
layer is retained irrespective of the value of €. In the singular perturbation literature,
numerical methods with this property are said to be uniformly convergent.

Most uniformly convergent methods have been obtained for singularly perturbed
ordinary differential equations (see, e.g., Doolan, Miller and Schilders [8], O’Riordan
and Stynes [34], Gartland [13] and Liseikin and Petrenko [24]).

Uniformly convergent methods for problem (1.1.1) - (1.1.5) have been examined
by Duffy [9], Han and Kellogg [14] and Ng-Stynes et al. [31) on uniform meshes, by
Stynes and O’Riordan [45] on an arbitrary mesh and by Shishkin [41] on a special
nonuniform mesh.

Duffy [9] gave an algorithm which consists of Allen and Southwell [1]/I’in [17]
differencing in the z-direction and forward differencing in time. For this scheme he
claimed a uniform convergence result of order one in the discrete L> norm. However
his argument relies on an unjustified differentiation of an asymptotic expansion of

the solution .



Ng-Stynes et al. [31] and Stynes and O’Riordan [45] presented a family of finite
difference schemes which are generated from Petrov-Galerkin finite element methods
with exponential test functions. Under certain compatibility conditions on the data
of (1.1.1) — (1.1.5), they showed that the scheme is uniformly convergent with order
one in the discrete L* norm. However, their compatibility assumptions are very
strong and in practice unlikely to be satisfied.

Han and Kellogg [14] considered a semi-discrete finite element method for (1.1.1)
- (1.1.5) while assuming that all functions in (1.1.1) depend on z only. They used an
enriched finite element space consisting of piecewise linear functions plus an extra
function which is chosen to model the behaviour of the solution in the boundary
layer. A uniform error bound of order 3/4 in an energy norm was obtained. However
their argument is not applicable when the functions in (1.1.1) depend also on the
variable ¢.

Shishkin [41] constructed a special piecewise uniform mesh, which is fine in part
of the boundary layer. When it is used with a upwinded finite difference scheme, an
error estimate of order one in the discrete L* norm is obtained.

In most published research, analyses of theoretical uniform convergence are es-
sentially carried out in a consistency/stability framework associated with finite dif-
ference methods, which require the scheme considered to satisfy a discrete maximum
principle and also need strong global assumptions on the solution and its derivatives.

In contrast to the finite difference situation, there are only a few results which
use finite element arguments to yield error bounds which are uniform in € for approx-
imate solutions to (1.1.1) — (1.1.5). Recently, Stynes and O’Riordan [47] presented a

framework for the finite element analysis of a singularly perturbed two-point bound-



ary value problem which yields uniform global L3 and energy norm bounds. They
also successfully applied the method to singularly perturbed elliptic problems in two
dimensions [36]. However, they do not obtain pointwise error bounds.

Johnson et al. [22] and Niijima [32] used purely finite element analyses to derive
localized pointwise error bounds outside any layers. This type of analysis requires
only reasonable local and global assumptions on the behaviour of the solution 4 and
its derivatives. When we carried out the research for this thesis, as far as we knew, no
counterpart of the results of [22] and [32] existed for singularly perturbed parabolic
problems. (We later became aware of the work of Zhou [53], which overlaps slightly
with our Chapter 5. See Remark 5.6.2.) Furthermore, no finite element analysis of

pointwise convergence inside the boundary layer exists in the literature.
1.3 Outline of the Thesis

The main aim of this work is to propose suitable finite element methods for solving
(1.1.1) - (1.1.5) numerically and to analyse uniform convergence of these methods in
global L? and energy norms and the local L* norm using purely finite element tech-
niques. We will analyse several uniformly convergent methods: exponentially fitted
schemes on an arbitrary mesh and the streamline diffusion scheme on a Shishkin
mesh. Results are obtained not only outside but also inside the boundary layer.
The analyses are carried out under reasonable assumptions on the solution and
its derivatives. We will also analyse a cell vertex finite volume method applied to
(1.1.1) - (1.1.5), using finite element techniques; in this way we obtain local and
global convergence results.

The outline of the thesis is as follows. In Chapter 2 we give a brief description of



a combination of Petrov-Galerkin and finite difference methods which will be used
in Chapters 3 and 4. We also derive necessary conditions for uniform convergence
(in the discrete L* norm) of a scheme on a uniform mesh, which will motivate the
choices of trial and test functions in Chapters 3 and 4.

In Chapter 3, two exponentially fitted lumped schemes are presented, using
various choices of trial and test functions. The inner product involving the time
derivative term in a weak form of (1.1.1) - (1.1.5) is approximated by two suitable
discrete inner products. Global error bounds in the discrete L? and energy norms
are derived uniformly in €. The error analyses also show that the two schemes are
both first order accurate, uniformly in ¢, at all nodes.

Chapter 4 examines a non-lumped exponentially fitted scheme. Unlike the
schemes in Chapter 3, this scheme integrates the inner product involving the time
derivative term exactly. This small modification leads to a rather different scheme
which needs a certain stability condition to guarantee uniform convergence. Uniform
convergence results similar to those of Chapter 3 are obtained.

We note that the schemes considered in Chapters 3 and 4 are similar to the
ones studied in Ng-Stynes et al. [31] and Stynes and O’Riordan [45], but the finite
element analysis presented here is valid under weaker hypotheses than those required
for the finite difference analysis of [45). In these two Chapters, in order to derive
pointwise error bounds we assume only that the solution of (1.1.1) - (1.1.5) and its
first order derivatives are uniformly bounded in a variant of the global L! norm (cf.
(3.2.68)) and that locally the solution is either smooth or exhibits typical boundary
layer behaviour (cf. (3.2.74)).

In Chapter 5 we combine the streamline diffusion method with a Shishkin mesh.

10



Our method uses space-time finite elements. The global assumptions we make in this
Chapter are that the right hand side f of (1.1.1) and the initial data % are bounded
in the L? norm, uniformly in ¢, and the streamline derivative of the solution u and
Euge are both bounded in the L! norm, uniformly in €. Under these reasonable
global assumptions, we prove that the pointwise error bound is of order almost 5/4
in smooth regions and almost 3/4 inside a typical boundary layer, uniformly in ¢.
This improves the results of Navert [29], who did not obtain convergence inside the
boundary layer and who analysed L2 rather that L local convergence.

In Chapter 6 we introduce a cell vertex finite volume method for (1.1.1) - (1.1.5)
with constant coefficients. The method has been widely used in the arospace indus-
try. However, analysis of this method has lagged far behind the application of the
method. Up to now, no fully satisfactory analysis of the cell vertex finite volume
method has been published. The best estimates available are in Morton and Stynes
[27], where a sharp convergence result for a two-point boundary value singularly
perturbed problem is obtained in a weighted discrete Sobolev H! norm. There is
no previous convergence result for this method applied to a singularly perturbed
parabolic problem. Here we derive a local I3 error estimate for the model parabolic
problem by using finite element techniques. Under the assumption that the right
hand side f of (1.1.1) and the initial data u® are bounded in the L? norm, uniformly
in €, we show that the method is locally first order accurate on a general tensor
product mesh. This result can be sharpened to second order accurate, if either ¢ is
very small compared to the mesh diameter or the mesh is locally almost uniform.

Numerical results are given in the last section of Chapters 1 - 5.

11



Chapter 2

Discretizing the Problem

2.1 Petrov-Galerkin Finite Elements in Space and Fi-
nite Differences in Time

An equivalent formulation of (1.1.1) — (1.1.5) is got by replacing (1.1.1) for each ¢
by
B(u,v) + (rug,v) = (f,v) Vv € H)(0,1). (2.1.1)

Here (-,-) is the usual L3(0,1) inner product, H3(0,1) is the usual Hilbert space

given by
Hy(0,1) = {v = v(z) : |lv]l + ||vall < 00, v(0) = v(1) = 0},
where || - || is the norm in L3(0,1), and we define
B(w, 2) = ¢(w,, 24) + (aws, 2) + (bw, 2). (2.1.2)

The weak form (2.1.1) can be discretized by means of a Petrov-Galerkin finite
element method with space elements. This yields a semidiscrete problem, which
corresponds a system of first order differential equations with an initial condition.

Then differencing in time gives a fully discrete problem.

12



To discretize the problem, we introduce an arbitrary tensor product grid on Q.

Let M, N be positive integers. In the z-direction, let
O=z0<21<...<2xy=1 (2.1.3)
with h; = 2; — 241 for t = 1,..., N and set H = max; h;. In the t-direction, let
O=to<t <...<tpg=T (2.14)

with kj = t; —tj_y for j = 1,...,M. Set k = min; k; and K = max; k;.

Then for each j € {1,...,M}, we wish to define trial and test functions on
[0,1] x {t;}. The question now is how to choose these trial and test functions so that
the resulting scheme is convergent uniformly in €. To show that standard piecewise
polynomial elements are inadequate for this purpose, we shall in Section 2.2 derive
necessary conditions for uniform convergence (in the discrete L norm) of a scheme
on a uniform mesh. These conditions imply that the coefficients of the scheme must

possess a certain exponential nature.

2.2 Necessary Conditions for Uniform Convergence of
a Scheme on a Uniform Mesh

We consider (1.1.1) - (1.1.5) with constant coefficients and zero initial-boundary

data, viz.,

w(0,t) = u(1,8)=0, 0<t<T,

Lu(z,t) = —ctge + atig + bu + rug = f(z,t) in Q,
(2.2.1)
¥(z,0)=0, 0<z<1.

Assume that we have a uniform square mesh of diameter H. Applying a Petrov-

Galerkin method in the space variable and finite differencing in the time variable

13



typically leads to a difference scheme of the form

1 1
Y Y cnmU(zisnstirm) = Hfij, (2.2.2)

m=0n=-1

fori=1,...,.N-1land j=1,...,M — 1, where U(z;,1;) is our computed solution
at the point (z;,t;) and f; ; is an approximation to f(z;,t;). Schemes which involve
more than three points in the z-direction and/or more than two points in the ¢-
direction can be treated similarly.

Assume that for all ¢ and j,
|U(z;,¢5) — u(=s,t5)| < CH® (2.2.3)

for some s > 0, where C and s are constants independent of ¢ and of the mesh
parameter H. We will derive necessary conditions on the coefficients {anm} of the
scheme (2.2.2).

Necessary conditions for various singularly perturbed problems have been previ-
ously examined by Doolan et al. [8] and Roos [39]. A result similar to that presented
below was claimed by O’Riordan and Stynes [35], but their proof omits any mention
of compatibility assumptions on the data, which are needed for their argument. Qur
proof uses a uniformly valid asymptotic expansion of Bobisud [4], then finishes using
the same argument as in O’Riordan and Stynes [35].

First, from the proof of Theorem 2 in Bobisud [4], we have

Lemma 2.2.1 Assume that f € C3(Q). Let ug(z,t) be the solution of the reduced

problem
a(uo)s + buo + r(uo)e = f(z,t), V(z,t) €,
uo(0,8) =0, 0<t<T,

14



uo(2,0)=0, 0<z<1.
Then for the solution u(z,t) of (2.2.1), we have
u(z,1) = uo(2,1) - uo(1,t) exp(-a(l - z)/e) + 2(z,), V(z,1)€QR, (2.24)

where

|2(z,1)] < CVE, V(z,t) € Q. (2.2.5)

Next, set p = H/e. We will assume that the coefficients {anm} in (2.2.2) depend
only on n, m and p. (This assumption holds for all schemes of which we are aware.)

Rewrite (2.2.2) in the form

1 1
33 anmU(l = zi4n, T - tism) = H f—i,na—j-

m=0n=~1
Fix p, 1 and j. Letting H — 0 yields

1 1
0 = Y ) cnmlim U(l—zitn, T = titm)

m=0n=-1
1 1
= 3 Y onm lim u(l— zign, T~ tj4m), using (223),

m=0n=-1
1 1
= Y Y anm{uo(1,T) - uo(1,T)exp(—a(i + n)p)},

m=0n=-1

using (2.2.4) and the fact that for fixed p, H — 0 implies that ¢ — 0, so that by
(2.2.5), z — 0.
In general uo(1,7T) # 0, so

1 1
> Y anm{l-exp(-a(i +n)p)} = 0. (2.26)

m=0n=-1
This holds for any fixed ¢ € {1,...,N — 1}. Taking i = 1,2,
1

1
Y. Y anm{l—exp(-a(1+n)p)} =0, (2.2.7)

m=0n=-1

15



1

1
3 Y anm{l-exp(-a(2+n)p)} =0. (2.2.8)

m=0n=-1
Multiply (2.2.7) by exp(—ap) and then subtract the resulting equation from (2.2.8)

to get
Z Onm = 0. (C1)
mn
Put this into (2.2.6) to obtain
E onm exp(—a(i + n)p) = 0,
mn

whence

)" anmexp(—anp) = 0. (C2)

mn

Conditions (C1) and (C2) are the necessary conditions for uniform in ¢ conver-
gence. We note that polynomial based schemes in general satisfy (C1), but they
cannot satisfy (C2).

In Chapters 3 and 4 we will present some schemes generated by Petrov-Galerkin
methods with suitable spacial trial and test functions and backward differencing in
the time variable. These schemes have coefficients based on exponentials and satisfy

(C1) and (C2).
2.3 Notation

We now introduce some notation which will be used in Chapters 3 and 4.

For any function v(z,t) and m € {1,..., M},
v™() = o(' tm),
Ov™() = (v™() = v™ (")) km.

16



For any finite element space D C C([0,1] X {tm}), where m is fixed, (v)p denotes

the interpolant from D to v at {(z;,tm)} . Set

[0,1]" = [0,1)\{z0,...,ZzN}.

We use (-,-) to denote the usual L3(0,1) inner product, and (-,-)" denotes that the
integration is only over [0,1]".

Define

Qx ={(z,tm)€N:0<2z<1,1 <M< M},

Qg ={(z:,1)eN:1<i<N-1,0<t<T}.

Note that 2x is a distance k; from the boundary t = 0 of 2. We will use the

following mesh-dependent norms for v € C(2):

M
Ivllzszraxyy = D kmllv™lzs(o,0), (2.3.1)
"u
lvllzrzoanyy = D kmllv™llLo(o,)s (2.3.2)
m=‘; 1/2
ol (axy) = { Y, kmll”"'ll},n(o,l)} ) (2.3.3)
- '
ol 2z =(ax)) = { ) kmllv"‘lli»(o,l)} ) (2:34)
v . 2y 13
Iollz2(z1 (0 = {;(hi + his1) (/o Iv(zg,t)ldt) } , (235)

where || - ||z10,1), Il - ll£2(0,1) a0d || - ||L=(0,1) are the usual L!, L? and L* norms.

When the norms are over all of ) independently of the mesh, we omit 2 from

17



the notation; define

olluray = { [ ([ ttesonas) dt}m, (235)
Iollgaa) = { [ ([ wie.ona)’ dz}m. (2.7
Iollirym = { L7 ([ ena) dt}m, (238)

Throughout the paper, C is a generic positive constant which is independent of ¢
and of any mesh used. When we say a quantity y is O(H ), it means that |y| < CH.

The analysis will frequently use the arithmetic-geometric mean inequality

yz < By +22/(48) VB>0, Vy,z€ R. (2.3.9)
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Chapter 3

Exponentially Fitted Lumped
Schemes

3.1 Introduction

In this chapter we will consider two schemes generated by Petrov-Galerkin finite
element methods with various choices of trial and test functions. To approximate
the time derivative term (ru,v) in the weak form (2.1.1), we first use a discrete L3
inner product (rug, v)q which will be defined in terms of the test functions used. We
then apply backward differencing in the time variable. Schemes generated by using
an approximation of this type to the time derivative are called lumped schemes.

We will define two combinations of trial functions and test functions. They are

(i) any trial functions and L*-spline test functions ( Section 3.2);
(ii) L-Spline trial functions and piecewise linear test functions

(Section 3.3).

Each trial or test function is defined on [0,1] X {tm} for some m.
The motivation for studying the two schemes is to explore the relationship be-

tween the choice of trial and test spaces and the norm in which one can prove a
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global convergence result which is uniform in &. When L*-spline test functions are
combined with any reasonable choice of trial functions, we obtain convergence re-
sults in the discrete L? norm. Here L* is an approximation of L?, the adjoint of
the spatial part L, of the differential operator L. (A related idea is used by Celia
et al. [5], whose test functions are approximate solutions of L*z = 0.) If we then
choose the trial functions to be L-splines, where L is an approximation of L,, we
can also prove convergence in an energy norm. These general results can be sharp-
ened if one makes compatibility assumptions on the data of the problem. If, on the
other hand, I-spline trial functions and piecewise linear test functions are used, we
obtain corresponding results in this situation. Our analysis shows that the scheme
with L*-spline test functions is better for discrete L and L2 convergence, and the
other scheme, which uses I-spline trial functions, is more suitable for energy norm
convergence.

Both schemes have coefficients based on exponentials; it was shown in Chapter
2 that a scheme on a uniform mesh must possess this property if it is to be globally
L convergent, uniformly in €. The results mentioned above are all global in nature.

When internal layers are also present in the solution, it is important to also have
local convergence results for a numerical method. We provide such a local conver-
gence analysis for both of our schemes. We prove that, under reasonable assumptions
on the behaviour of u and its derivatives, our schemes are locally pointwise conver-
gent inside the boundary layer. To the best of our knowledge, no result of this type
exists in the literature on (1.1.1) — (1.1.5). When the cell Reynolds number is large,
the schemes are similar to upwinding, which is often described as being “formally

first order accurate”, but has not previously been analysed in the literature as re-
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gards its local behaviour. We note that the schemes considered in this paper are
similar to the ones studied in Ng-Stynes et al. [31] and Stynes and O’Riordan [45]
but the finite element analysis presented here is valid under weaker hypotheses than
those required for the finite difference analysis of [31, 45], and furthermore no local
convergence results are proven in these two papers.

The structure of this Chapter is as follows. In Sections 3.2 and 3.3 we examine
the two respective schemes. We will derive global estimates in energy and L? norms
using finite element techniques similar to those of Stynes and O’Riordan [47]. We
also use a discrete Green'’s function, based on Niijima’s analysis of an elliptic problem
(see Niijima [32]), to derive local pointwise error estimates inside and outside the
boundary layer for the schemes. (This entails a novel definition of a discrete Green’s
function for our parabolic problem.) In particular we emphasize that many of our

error bounds are uniform in €. Numerical results are presented in Section 3.4.

3.2 L*-Spline Test Functions

3.2.1 Description of Scheme and Norms

In this section we shall consider a Petrov-Galerkin finite element method with L*-
spline test functions. A semidiscrete approximation with a similar idea was con-
sidered in Stynes and Guo [44] where the trial functions were chosen as L-splines.
We do not need at this stage to precisely specify the trial functions {¢;m(z) : i =
0,...,.Nandm = 0,...,M} . We only assume that for m € {0,...,M}, each

¢im(z) is defined and satisfies the following properties:

(i) @i m is continuous on [0,1] x {tm} and differentiable
on [0,1]" X {tm}; (3.2.1)

21



(ii) dim(zj) = 65, for j =0,1,...,N, (3.2.2)

where

o [ Lifi=j,
7 7 1 0, otherwise.

Then it turns out that the scheme generated is completely determined, due to the
choice of the test functions.

We assume that the mesh is arbitrarily graded in the z-direction, i.e., h; < Ay
for each ¢. This is not a practical restriction, since the boundary layeris at z = 1. To
define the L*-spline functions, we first introduce two approximations of the function

a(z,t) on t = ty, for each m:

ar

a™(z) |(-.'-x.-¢]

(a(Zi-1,tm) + 0(2i, tm))/2, (3.2.3)

and

8

= aﬂ‘(z) l(c.'_l i)

g(f’?)a(xi—la tm) + (1 = g(ﬁ?))a(zi’ t,,.), (3'2°4)

fort=1,...,N, where
9(z) = (1 —exp(=2))"1 =271 forall z >0,

and g = @M h;/e. Now the L*-spline functions {tm : i = 1,...,N - I;m =
0,..., M} are defined as:
L*Pim = 6 m(z) — i m(z) =0 forz €[0,1], (3.2.5)
ql_),-,...(z,-) =6b;j, forj=0,...,N. (3.2.6)
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A maximum principle argument yields tf:,-.,..(z,t,,.) 2 (z - zi-1)/h; for 2,y <
z < z;. Hence

(1,%im) > hi/2 for all i and m. (3.2.7)

To discretize (2.1.1) we define a discrete inner product for each t,,:

N-1
(v, w)ge = Z(l,d-:.-.,..)v(z.-, tm)w(Zistm) Vv,w € C([0,1] X {tm}). (3.2.8)

i=1
For each m, let V;, and S, be the linear spans of {$;m(z): i=1,...,N -1}
and {¢;m(z): ¢ =0,...,N} respectively. Then our first lumped Petrov-Galerkin

approximation can be formulated as follows: for each m € {1,...,M},find U™ € Sm

such that
B(U™,v™) 4+ (r™U™,v™)ge = (f™,v™)ae VO™ € Vjp, (3.2.9)
U™(0) = go(tm) and U™(1) = q1(tm), (3.2.10)
U° = (u%)g,, (3.2.11)
where
B(w, 2) = £(We, 2¢) + (GWa, 2) + (bw, 2)gs. (3.2.12)

The existence and uniqueness of U™ are implied by Lemma 3.2.1 below. The
scheme (3.2.9) — (3.2.11) is similar to one given in Stynes and O’Riordan [45] where
a was used instead of . We have used @ in order to obtain the coercivity result of
Lemma 3.2.1. The approximation & is essentially that of Stynes [43]. In implement-
ing the scheme, at each time step we have to solve a linear system whose coefficient
matrix is tridiagonal and diagonally dominant; this can be done efficiently in O(N)

operations.
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To analyse the scheme we introduce the following discrete norms, which are

defined for all w € H([0,1] X {tm}):

(i) discrete L? norm: ||wl|jgs = (w, w):fz, (3.2.13)

(i) discrete energy norm: |||w||les = {e]|wa||* + ||w||}.}1/’, (3.2.14)
where || -|| is the usual L2(0,1) norm. For notational simplicity we do not refer to m
when we write these norms; its value will always be clear from the context in which

the norms are used.

We begin our analysis by showing the following coercivity result.

Lemma 38.2.1 For each v™ € Sm, m € {0,...,M}, and H sufficiently small (in-
dependently of ),
B(v™,(v™)p,) + (r™3v™, (v")p, e

1
2 Cilll(v™)p.lllZ- + 2 (™0™, v )ee - (r™v™ o™ e ],
where Cy i as in (1.1.5).

Proof. Recalling the definition (3.2.12), we have

B(v™,(*™)..)
= B((v™)p., (*™)p.) + B(v™ = (v™)p=, (v™)p,,)

N-1 _ 1
= el @™pmde I+ Y- {871, Fom) - S(aB -3} P, (3:2.15)

=1
on integrating by parts and using (3.2.5).

A calculation shows that

‘-‘5-1 - &2" = (1, ’Zi,m)(a.(zis tﬂ) + O(H))°
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Combining the above with (3.2.15) and using (1.1.5), we obtain, for H sufficiently

small (independently of ¢),
B(v™, (v™)p.) 2 ell (v™)pm)a I + Callo™ |2 (3.2.16)

For the other term, we have

(r™9v™, (v")p. e
1
= m{(rmvm, vnI)‘. _ (rmvm—l’ vm-—l)‘. + (rm, (vm _ vm—l)))‘.}
> é_l%_{(rmvm, vM)‘_ - (rmvm-l’vm—l)‘.}.
Combining this with (3.2.16) yields the desired result. o

In the following subsections we will derive error estimates for the scheme in

various norms.

3.2.2 Global L? and Energy Norm Error Estimates

In this subsection we will derive a global discrete norm error estimate for (3.2.9) -
(3.2.11). To this end, for each m, let ul(z,t,) be the interpolant from S, to the

exact solution u(z,%y), and let U™ be the solution of (3.2.9) - (3.2.11). Set
Z™ = ul(z,tm) - U™ and 9™ =1ul(z,t)- u(z,tm).

Then using (2.1.1), (1.1.2), (1.1.3), (3.2.9) - (3.2.11) and n™(z;) = 0 for all ¢, we

have

B(Z™,v™) 4 (r™0Z™,v™)¢ = R(u™,v™) Vo™ €V, (3.2.17)

z™~0)=2z™(1)=0, Z°=0, (3.2.18)
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where

R(u™,v™) = ((@™ - a™)uT,v™) + {(6™,0™) — (6™, v™)a- }

+ (™0™ - 4, ™) (3.2.19)

and

0=f—bu—ru.

Lemma 3.2.2 For each m € {1,...,M} and any v™ € Vp,,

IR(u™, ™) < CH {12130y + 1621310y}

+Cl|ou™ — up|Z + (C1/2)]1v™(2-,
where C, 18 as in (1.1.5).
Proof. We bound the three terms in (3.2.19) separately. First,

(@™ — a™)ug’, v™)|

<C§:h; o™ dz
=1 ®i-1

N-1

<CY (it haoPl [ Jumldz

=1 81

N-1 N-1 .41 2
<(C12) Y mPR+C Y b ( / Ju| dz) :

i=1 i=1 i—1
by the mesh grading and (2.3.9),
®i41
I

<(C1/6) Z (1, %im) o] + CH {Z/

< (C1/B)Iv™ 3 + CHIN Isc0ny- (3.2.20)

2
u'."|dz} , using (3.2.7),

Next, similarly to the derivation of (3.2.20), we have
(6™, v™) — (6™, v™)ar|
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N-1

Y (6™ = 6™(2i), Yim) o

i=1
<Y Bmor [ 16 de
- [N
< (Cl‘/ﬁ)llv"‘llﬁ' + CH|I63|Z1 0,1)- (3:2.21)
Finally,
(r™(8u™ — up*), v™)ae| < (C1/6)l|[v™1Z. + Cllow™ — ud|Z.. (3-2.22)
Combining (3.2.20) - (3.2.22), we are done. (u]

We can now bound the error of our computed solution in a discrete L? norm.
Theorem 3.2.1 Let U™ be defined by (3.2.9) - (3.2.11). For H sufficiently small
(independently of € ), and any n € {1,...,M},

U™ = u™le < CHY? {||uallzaqzs(axy) + W0sllz2cziaxy }
+ CKlueellza s ).
where ||+ || L2z1 (ax)) and || ||2,( L\(ng)) € defined in (2.3.3) and (2.3.5) respectively.

Proof. Take v™ = Z™ in Lemma 3.2.1 and v™ = (Z™)g,_ in Lemma 3.2.2 to get for
each m,

1 ™ rm— _
Cll“(Zm)v_lllz'l'k—;{(f’"Z‘",Z")‘- - (™2z™1, 2™ ). )
< CH (I 13100y + 1621310y} + O™ = w13

Multiplying by k,,, and summing fromm =1tom=n< M,

C1 Y kmlll(Z™)plII? + vl 272

m=1
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<CH {"“-"iz(p(nx)) + "00||;,2(L‘(Ox))}

n-1

3
+CK (||“u||22(t,l(n,,))) +C Y kmllZ™13-
m=1
since
M
Y kmll0uw™ — o2
m=1
M N-1
=Y km 3 (1, Bim)l06™(2:) = ve(iy tm)?
m=1 i=1
N-1 M - 2
SCK Y (hit+hip) ) ( / |wee(, )| dt)
=1 m=1 tm—1
N-1 T 2
<CK Y (it hoys) ([ et ar)
i=1
2
= CK (lluellizgzscany) -
Use a discrete Gronwall’s inequality to complete the argument. (m]

Remark 3.2.1 Theorem 3.2.1 is valid for any trial functions {¢;m(z)} which satisfy
(3.2.1) and (3.2.2). If the trial functions are specified as L-spline functions, then one
can prove the same bounds in the discrete energy norm.

That is, we have

Theorem 3.2.2 Suppose that the trial functions {q-b.-,,.. :t=0,...,Nand m =
0,...,M} are given by

Lbim = -6 m(2) + @7l m(z) =0 forz €[0,1]", (3.2.23)

bim(zj)=8ij forj=0,...,N. (3.2.24)



U™ = TN Umd; m(z) satisfies (3.2.9) - (3.2.11), then for H sufficiently small
(independently of €), and any n € {1,...,M},

n 1/2
U™ - u™fle- + { Y kmlllU™ - “”lllio}

m=1

< CH'Y? {|lugli2(z:(axy) + 1Oallzzczrag)) + 19llz2(z=(ax)) }

+ CKI/’""tt";,?(Ll(n,,)),
where the norms on the right hand side are defined in (2.3.8) - (2.3.5).

Proof. Noting that |||Z™|||le» < CI|I(Z™)p_|lle*, it is straightforward to get, from
the proof of Theorem 3.2.1,

12"+ {2 k,..mzmm:.}m

m=1

< CH'Y? {||uall (21 (ax)) + 10allzaqzr(any) }

+ CKY?luull 3ot - (3.2.25)

We now need to estimate the interpolation error n™ for all m. We have, for

t=tm,
B(nm’ m) = ((am - &m)ui(',tm), 7"-) + (bmr’m, M) _ (am’nm).

Since for z € [z;-1, %),
8¢

I™(@)| < / a2 () dz,

8i-1

we also have

1 N .
/., ™@)dz =3 / 7™(2)| dz < Hl[u2l53(0a-

i=1 Y ®i-1



Hence

B(n™,n™) < CH||5™||z=ollug 2 0,0) + CHIIE™ |01yl g |2 (0,1)
< CH {02310y + 10 IEogozy} -
On the other hand,
B(n™, ™) 2 ellngll? + Calln™|I* 2 Cillln™|lZ--
Thus
™13 < CH {2 1Es0.1) + 6™ Im o)} (3.2.26)
Combining this with (3.2.25) completes the proof. o
3.2.3 Improved Accuracy Under Compatibility Assumptions
In this subsection we assume that we have certain bounds on the derivatives of
the solution u(z,t). Such bounds follow, for example, if we assume that the data
satisfies certain compatibility conditions at the corners (0,0) and (1,0) of Q2. These

conditions are given in Stynes and O’Riordan [45], and it is shown how to use them

to obtain the bounds

Dinu(z,t)l < C{1+ e exp(~a(l — 2)/e)} V(z,t) € Q, (3.2.27)

for0<i<land0<i+j;<2
Using (3.2.27), it is possible to significantly improve the results stated in the
previous subsection. Before doing this, we give the following technical result, which

can be proved in the same way as Lemma 5.6 of Stynes and O’Riordan [46).

Lemma 3.2.3 For each m € {1,...,M} and any v™ € V,,

’g (/..1 |vg'| dz) (/'m e~ exp(—a(l - z)/¢) dz) < Cslhllvf;‘"_

o
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Using this lemma and (3.2.27) we now sharpen Lemma 3.2.2.

Lemma 3.2.4 Assume that (3.2.27) holds. For each m € {1,
™€ Vm;
|R(u™, o™)| < C(H? + K?) + (C/2)lIlo™l|2-,

where C, is as in (1.1.5).
Proof. Recall (3.2.19). First, by (3.2.27),

[((@™ - a™)ug’, v™)|

L]

N
<cyom [ rllomdo

=1 85—

N -
< CZ h.'/ {1+ e exp(—a(1 - z)/e) }|[v™| dz

i=1 ®i-1
N-1 _
<SCH Y (1,%m)lv]

=1

...,M} and any

+CHNZ—1 ( /. : Iv;"ldx) ( /.: ™ 1 exp(~a(1 - z)/e)dz)

=0

< CH|[v™||la» + CHe?||v]|, by Lemma 3.2.3,

< (G/6)llv™l13. + CH?.

Next, we can show by an argument similar to the above that

(6™, ™) - (6™, v™)a| < (C1/6)llI0™]|2. + CH?.

Finally, since by (3.2.27)
[lov™ - u*|lee < CK,

we get

(P (U™ = u7*), v™)ee| < (C1/6)l|o™1% + CK?.
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Combining (3.2.28) — (3.2.30) yields the desired result. o

Using Lemmas 3.2.1 and 3.2.4, it is easy to get the following results.

Theorem 3.2.3 Assume that (3.2.27) and the hypotheses of Theorem 3.2.1 hold.
Then
U™ - w™|l¢e <C(H+ K), forn=1,...,M.

Theorem 3.2.4 Assume that (3.2.27) and the hypotheses of Theorem 3.2.2 hold.
Then

U™ - v*||a- < C(H + K),

and

" 1/3
{Z kmlllU™ - u"'m:.} < C(H? + K),

m=1

forn=1,...,M.

Remark 8.2.2 It can be shown that the factor H'/2 in Theorem 3.2.4 is the optimal

order attainable.

Remark 3.2.83 It can be shown that results analogous to those of Sections 3.2.2 and
3.2.3 hold for the semidiscrete version of (3.2.9) — (3.2.11), except that no ug term

is present.

3.2.4 Localized Pointwise Error Estimates

In this subsection we use a variant of Niijima’s approach [32] to derive pointwise
error estimates under local smoothness assumptions. For simplicity, we consider a
constant coefficient problem with a(z,t) = &z,t) = r(z,t) = 1, and we employ a

uniform mesh with space mesh size H and time mesh size K. QOur trial space Sy
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is as in Subsection 3.2.1, i.e., its basis functions ¢;,, need only satisfy (3.2.1) and
(3.2.2).

Let (z,,tm,) be an interior mesh point. We associate a discrete Green’s function
G(z,t) with this point. That is, G™(z) = G(Z,tm) € Vi is defined for m = 0,..., M
by

B(x™,G™) = (X™,0G™ )¢ = K™ bm.mgX™(255) VX™ € Sp,, (3.2.31)
G™0)=6m(1)=0, (3.2.32)

where S, = {x™ € Sm : X™(0) = x™(1) = 0}, and we formally set
GMt(z)=0. (3.2.33)
Note that the definition of the discrete Green’s function here is not immediate

from the definition of such functions for elliptic problems (as used in [32]).

The following lemma gives the existence and uniqueness of G™.

Lemma 3.2.5 The equations (3.2.31) - (3.2.33) have a unique solution G™. Fur-

thermore,

G >0, fori=0,....,Nandm=0,1,..., M. (3.2.34)
Proof. Equations (3.2.31) - (3.2.33) may be written as
G 1 B(disms Yi—1,m) + G™{ B(disms Yigm) + K 1(1, %im)}
| + G 1 B(diyms Yit1,m)
= K™ {bm.mobido + (1, %im)GT*}, (3.2.35)
fort=1,...,N-land m=0,...,M,
Gy =GR =0 form=1,...,M, (3.2.36)
GM+' =0 fori=0,...,N. (3.2.37)
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Thus it suffices to show that the system (3.2.35) — (3.2.37) has a unique solution.
Inspecting the coefficients of GT* on the left hand side, we see that the coefficient ma-
trix of the system is a strictly diagonally dominant tridiagonal matrix with positive
diagonal terms and nonpositive off-diagonal terms. Consequently it is an M-matrix
and so is invertible. That is, the system (3.2.35) — (3.2.37) can be solved iteratively
for G™ in terms of G™! for m = M, M - 1,...,0, since GM*! js known. This
completes the proof of the existence and uniqueness.

Since for each m the inverse of the coefficient matrix is nonnegative, it is straight-

forward to show (3.2.34) by using induction on m. a]

Next, we derive an L! estimate on G along mesh-lines parallel to the z-axis.

Lemma 3.2.8 For each n € {0,...,M},
(laG")J‘ <1l

Proof. Fix m € {0,...,M}. Taking ™ = YN <! ¢i m(2) in (3.2.31), we have

=1

/o " (eom + G™)o,m(z) dz + l (eG3 + G™ )N -1,m(z) dz

SN-1

+(1,6™)e + K1 (1,G™ = G™ N )ge = K o me- (3.2.38)

Integrating by parts and using the definition of the test functions, we get

LY 1
/o (ECP + GV n(2)dz+ [ (66T +GC™)by_y () dz

= GT (e¥1m(z1 - 0)+ 1) — GR_; (€¥N-_1,m(zN-1 +0) +1)

=GP (1 -exp(-H/e)) " + GR_y(exp(H/e) - 1)7".  (3.2.39)
Thus, we get from (3.2.34), (3.2.38) and (3.2.39) that
(1,G™ - G™)e: < O mo -
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Summing from m = n to m = M for any n < M, and noting that GM+! = 0, we
obtain

(1’ G“)d‘ .<_ 1
as desired. o

Using the L! estimate on G, one now is able to estimate the error at (z;,,tm,),
provided (3.2.27) holds on the entire region 2. However this assumption is stronger
than needed. We shall need such an assumption (in Theorem 3.2.6 below) only on
a narrow region extending upstream from (z;),tm,). This is because the discrete

Green’s function dies off outside region

. 1
Qo-_—{(z,t)eﬂ.0<zsz,-°+Koe m(ﬁ),

|z = t = (2 — tmy)| < KoV In (ﬁ) L

with £* = max{¢, H, K}, where Ko > 0 is a constant independent of ¢, H and K,
which we choose later. We shall prove this fact in Lemma 3.2.7. Without loss of

generality, we assume that (g is a mesh domain.

Lemma 3.2.7 Given a nonnegative integer s, there ezists a positive constant C =
C(8) such that

< P
(002, G(2:tm) < C(s)(HK)

Jor each m € {0,...,M}.
Proof. We introduce a cut-off function (), defined on (—o00,00) by

3()\) = A ” exp(—£(r)) dr (3.2.40)
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with £(7) € C3(—00,400) and &(7) = |7| for |[r| > 1. Then define a cut-off function

w(z,t) on by

w(z,t) = & ("; A) ® (i#) ® (f:—?—tt-) (3.2.41)

[} 0.,

where A = z;,, P = z;) — tm,, Os = 7€* and 0, = 7ve*. Here v > 1 is some
constant (to be specified later) independent of ¢, H and K.

For all differentiable v(z,t), set

vg = Vg + 0¢. (3.2.42)

Then it is easy to show that
-wg>0 onf (3.2.43)
maxw/minw < €, max lwsl/ min lws| < C, (3.2.44)

fori=1,...,Nandm=1,..., M, with

AT = {(z,t): 21 2<%, lm—y <t<tm}.

Furthermore,
|DDk| < Coziogto omRforj+is2, (3.2.45)
ID};D{«»I <Co;#*'o  lws| onQforj+1<2andj>1, (3.2.46)
W(Zig,tme) 2 C, (3.2.47)
w(z,t) < C(HK)X/T  on Q\Q,. (3.2.48)

Now we take y™ = (%)3_ in (3.2.31) to get
e G~ - Gm
B ((w_"‘)s. ,G"‘) - (;—;,66"""’1)‘. = K Y om mq (w_"‘) (zi5).  (3.2.49)
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We derive a lower bound for the left hand side of (3.2.49).

First, by integrating by parts,

since G™ € Vpn. Thus,

? ((?;)S-G”)
=B(wﬂm,m)

= ell(™) 26T + @™ 26™ %

(). ) (). ) o

For the other term on the left hand side of (3.2.49), we have

()
W' d°
> o (W™ 26m  — ™) 6™ 3.}
w™ - wm+l
+ax (S @), (825D

Therefore from (3.2.50) and (3.2.51) we have

2((S),)-(Eo),

2 o 1™ 262 = @™ 3} + I + Qe
(3.2.52)
where
1\ I
In = @™ AGTI 4 I+ 1| () Tom| L 28
8
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owxe((@), =) 3 (55 0 ()
' % {(%’(Gm)’) o (%’;ﬂ»(m)’)} . (3.2.54)

We bound the three terms in (3.2.54) separately. For the first term, we use Cauchy-

Schwarz’ inequality and (2.3.9), to obtain

(&).)

< £)jw™) 26T + Ce

(&), |

(2,

(e

_"(wm)-I/Qvallz +Ce max' ﬂl

2
II(w"‘)'” GTI* +Ce

+ Ce

(:;);”G“

+Csmax| " (W™ "Y26™|1

1\
(&),
w=/s

+Cea?||(w™)M2G™|2, by (3.2.45),

< @™y GT|? + Ceal?

€
< SI@™)T2GTI? + Ce(o7 + 07 ) m. (3.2.55)
We next proceed to estimate the second term in (3.2.54).
w™ — wm«i—l ™ Gc™ 2
S+ (Gx)

. 2
<CK E max Jwee| / (g) dz, by a Taylor expansion,

14,
i=1 . 81

1
2

N max m+1 W

< CKa? — & (c«)"‘)"l(G"")2 dz, using (3.2.45),
n

=1 mlnA?+l W Jgig

< CKa;?|(w™)26™|%, (3.2.56)
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since

/. " @G b

< C (L fic1m)(@1) G + (1, $im) (W) T IGT?)

follows from (3.2.44) and (3.2.7).
To bound the last term in (3.2.54), we set

w™ — wm-l-l

™ ===y

Then writing G™ as YN 1! G™;.m We get

1

g | (G™)) . - (™, (G™))]
N-1
= o= |3 6T (P67, $im) — (I™G™, i)}
=1
N- ®i41
<3k Z (L EmIGT] [ G do
1 N-‘ _ 841
S3¢ Z (1, %im)IGT'| {mAa.;XIH’."i A |G™| dz

85-1

+ max I - |G","|dz}.

Set A; = [2i-1,2;). Using (3.2.44) — (3.2.46), we have fori =1,...,N -1,

m : m\3
max |T™(z)| < K max lwel/ min(w™)
-1 . m
< CKo, /ng‘nw ,
and

max |I(z)]

. m\3
<K max |wael / min(w™)

(]
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(3.2.58)

(3.2.59)



m . m\3
+ 2K?;‘5§ |we] n‘lﬁxlw, (a:)l/nzxin(w )
< K max (|lwe] + lwgel)/ min(w"')’

A:l'l‘l A;

m m . m\3
+2K ;qggg lwel max(jw™(2)] + |wg'(z)])/ min(w™)
<CK (a;’/ min ™ + oyta;1? max w22/ ngn(w'")*/’) . (3.2.60)
Cauchy-Schwarz’ inequality gives

- - 1/2
/ |G™|dz < HY/? ( (G™)? dz) . (3.2.61)
=1 [ T

Since G™ € Vim, from the definition of the test space V,, one can prove

- o 1/2
/ |G| dz < €'/? ( / |G',"|’dz) , (3.2.62)

§—1 -1

(cf. Lemma 4.2 of Stynes and O’Riordan [47]). Thus from (3.2.58) - (3.2.62) and
(3.2.44) we get

55 | (™ (G™)) . - (@™, (™)
N-1 ®i41 1/2
<C Y (L, fim) W) GT {a;’H i ( / ™)™y dz)
i=1 21

- 1/2
+ a;la.-l/zHl/’ (/‘ +1 (;Jl:)p(Gm)z dz)
81

- 1/2
+a"—lel/2 (/ (wm)—llcﬂ:l! dz) }
[ T

< Cog*H||(W™) 7 26™ o |(w™) ™ 2G™ ler

1/2
(&), <]
wo/s

+Cog B3| (w™) 26 eI (™) 26T

+Coy o P H||(W™)H2G™ e

by (3.2.57) and Cauchy-Schwarz’ inequality,

<C {0770 + 0507 " + 03 B/} I, (3.2.63)
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using (2.3.9).
Collecting (3.2.55), (3.2.56) and (3.2.63) into (3.2.54) we get

Qml < 1

IA

4

IA

4

§Inu

IA

I+ C{(e" (02 +0;4) +€%(051 + 0,%) }Im

lI,.. 4+ Cy7,,, recalling the definition of o, and On»

(3.2.64)

by choosing v sufficiently large, independently of €, H and K. Consequently, from

(3.2.49), (3.2.52) and (3.2.64) we get

1
2

< K Yommg (;G;) (Z)-

1 m\— ”m -
oim + g @™ 265 — @™ 6™ 3 }

(3.2.65)

Multiplying this by K , then summing it from m = n to m = M, and noting that

GM+! = , we obtain

M
_ 0 if n>mg
KIn + [|(@™) 263 < { i ’
E ™ d 2G"..'f°/w.-’:° if n < mg.

Using (3.2.47) and Lemma 3.2.6,

Hence from (3.2.66), we get

M
Y Klm+ (@™ 263 <CH™, forn=0,...,M.

Choose Ko = 7(2s + 2). Then by (3.2.48),

w(z,t) < C(HK)**? on Q\Q.
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For each (z,tm) € 2\ Qo, there exists i’ € {1,..., N} such that z € [zy_1,zy]. Thus
G™(z) < G, + G
< C(HE)™* (w™(2)/* (GT, + GT),
< CUHK)™ (W) /67y + WF)/IGT), by (3:2.44),
< C(HK)H»I/!Kl/z”(wm)-lﬁGm"‘..
Using this and (3.2.67) we get the desired result. ()

Now we can prove our first main result in this subsection. It is a pointwise
convergence result, which is obtained under assumptions of local smoothness and

reasonable global behaviour of the solution.

Theorem 3.2.5 Assume that the solution u(z,t) of (1.1.1) - (1.1.5) satisfies

lullz:zennxy) + 14°llLeqon) + I fllcrz=x)) + Klluellziaxy SC  (3:2.68)
and
II“"C’(O;”) + 1 flle @) <C, (3.2.69)
where || - ||y z=(ax)) 97 || - llz1(2:(nx)) are defined in (2.3.2) and (2.8.1), and
Qf = {(z,t) € Q: dist((z,t), ) < H+K}.
Then

lU(zio’tMo) - “(zi’o’tﬂlon <C(H + K).

Proof. With the discrete Green’s function G, the pointwise error can be expressed

1U(Zios tmo ) — #(Zi0 tmo )|
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= 1Z(Zios tmo)|

M
3 KR(u"‘,G"")l , by (3.2.31) - (3.2.33), (3.2.17) and (3.2.18),
m=1

M N-1

<Y D KGT|R(w™¥im), (3.2.70)

m=1 §=1

writing G™ as Y1 ;' G™tim and using (3.2.34).

Split the sum into two parts:

M N-1

2= 2+ )

m=1 i=1 (®itm)EN0 (i tm)EN\

Recalling (3.2.19),

Y KGT|R(u™, $im)l

('-‘.‘n)eﬂo
< Y KGP{(E™ - 07, i)l + 1847 — uT)(1, Bim)|}
(li.lu)Gno
_ ®i41 tm
<y Kar(l,w.-,...){ [ emiaz+ [ |u..(z,»,t)|dt} (3:2.71)
(=i,tm )ENG i1 tm—1
< C(H + K), (3.2.72)

by (3.2.69) and Lemma 3.2.6.

To bound the other sum, we rewrite (3.2.19) as

R(u™,v™) = ((@™ — a™)ul,v™) + (f™ - b™u™,v™)

—(f™ =b"u™,v™)ee + (r™OU™, V™)@ — (r™ugr,v™),
so that, using a™ = a™ = 1,

|R(™, $im)| < C {HI|f™m(an) + HE (6™ 1oar

+ ||u""'1"Leo(A;)) + "“:“”LI(A‘)} ’
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where A; = (2i-1,2i4+1). Thus
Z KG? IR("“, 'Z’i,m)l
('6-‘;)60\00
<C ((.._, [max, o Gt ) {Ifllzrz=(axy) + K (lull(z=(ay))
+ 14l Le(o,1)) + luellzr(zrcany)}
< CH, (3.2.73)

using Lemma 3.2.7 (with s = 1) and the assumption (3.2.68).

Combining (3.2.70) with (3.2.72) and (3.2.73) completes the proof. o

Remark 3.2.4 The assumption that K||u¢||lLi(z1(ny)) £ C is reasonable in many
cases (see, e.g., Johnson [21] p.147 - 149). In fact, an inspection of the proof of
Theorem 3.2.5 shows that in (3.2.68) one can replace C by CK~¢ for any fixed

positive constant § without affecting the conclusion of this theorem.

We note that the assumption (3.2.69) implies that (z;, tm, ) is outside the bound-
ary layer. Theorem 3.2.5 gives a pointwise estimate of O(H + K), in regions where

the solution is smooth. To get a local pointwise error estimate inside the layer, we

need the following technical result.
Lemma 3.2.8 Set W(z) = exp(p/2)exp(—(1 — z)/(2¢)) with p = H[e. Then
_ Bi41 '
(—Wee + We, thim) 2 (1/16) e exp(—(1 - z)/¢) dz,
%1
fori=1,...,N-landm=0,..., M.

Proof. We have

("5Wu + W,, J’i.m)



= (1/4) exp(p/2) (¢ exp(=(1 — )/(2¢)), Yi,m)

> (1/4)exp(p/2) [ €7 exp(~(1 - 2)/(2¢)) {1 - exp(~(z — zi-1)/e)}

8i-1

x {1 — exp(-p)}~! dz, from (3.2.5) and (3.2.6),
= (1/2) exp(~(1 - 2i+1)/(2€))(1 — exp(-p))/(1 + exp(-p/2))’

>1/16) [ e exp(~(1 - z)/(2)) da

®i-1

>/16) [ etexp(~(1 - z)/e) dz,

81

as desired. (m]

We can now give a pointwise error estimate inside the layer, under a realistic

local assumption on the behaviour of derivatives of the solution in the layer.

Theorem 3.2.86 Assume that the ezact solution u(z,t) of (1.1.1) - (1.1.5) satisfies

(3.2.68) and

DiDju(z,1)| + | Dif(=,1)|

< C{1+ e exp(—(1-z)/e)} V(z,t) € Qf, (3.2.74)
for0<i<1andi+j <2, where Qf is as in Theorem 3.2.5. Then
(U = u)(Zio, tmo )| < C(H + K).

Proof. Note that (3.2.73) is valid under the assumption (3.2.68). Hence from
(3.2.70), (3.2.71), (3.2.73) and (3.2.74),

(U = )i tmo )|

<C ¥ KO%mGT [

(i tm)EN Si-1

®i41
£

“lexp(—(1 - 2)/e)dz + C(H + K)
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M N-1
< C Z K E(ly ’Z’i.m)G?(-ewn + W., 'Zt',m) + C(H + K)’

m=1 i=1

by Lemma 3.2.8,

M
<CH Y K(~tWae + Wa,G™) + C(H + K),
m=1

since (1,1/3.-,,..) <CH,

M
=CH Y K{e(Wa,G2)+(Wa,G™)} + C(H + K)

m=1
<CH i K{e(Wsy )a:Gy') + (Wsp )ay G™)} + C(H + K),
s::: (W - Wgo ,—6Gm — GT) =0,
Ge(z0+0) 2 0 and Ga(zn - 0) < 0,
=CH i K{K  bmmoW(2i,) — K~} (Wgo ,G™ — G™1)ge

m=1

- (Wgo,G™)as} + C(H + K), by (3.2.31),
=CH {W(z;o) - (W,GY)g+ + i K(W,G"")g-} +C(H + K),
by telescoping, ~
<CH ,Jnax W(z;) + C(H + K), using Lemma 3.2.6 and (3.2.34),

< C(H + K),

since max;<i<N-1 W(z;) < 1. This completes the proof. (m]

Remark 3.2.5 The analysis in this subsection is carried out for a constant coefficient
problem, but the conclusions are valid for variable coefficient problems, provided

that one also assumes that ||us||L:(z:(ny)) < C-



3.3 L-Spline Trial and Hat Test Functions

In this section we choose the L-spline functions {¢;m(z)} defined in (3.2.23) and
(3.2.24) to be the trial functions and piecewise linear “hat” functions {t;m(z)} to
be the test functions. A scheme of this type was considered in Stynes and O’Riordan
[47) for two-point boundary value problems. Let S, and V,, be the linear spans of
{im(2)} and {t; m(z)} respectively. We work with an arbitrary mesh (no grading
requirement). Because of the new choice of the test functions, we use a discrete L2

inner product which is different from (v, w)g+: set

N-
(v, w)a =Y (L, Yim)(Zi, tm)W(Tis tm)  Yo,w € C([0,1] X {tm}).  (3.3.1)

=1

The discrete L? and energy norms are correspondingly changed into

lwlla = (w,w)}*  and  [wllla = (ellwall® + llw]3)*/2. (3.3.2)

The scheme considered here has a form similar to the one studied in the previous
section, with the approximation @ replaced by &, defined in (3.2.3). It is formulated

as follows: find U™ € S, such that

B(U™,v™) + (r™0U™,v™)g = (f™,v™)¢ Vo™ € V,y, (3.3.3)
U™(0) = go(tm) and U™(1) = q1(tm), form =1,..., M, (3.34)

U'(z) = (u°)g,, (3.3.5)

where

B(w, 2) = €(Wg, 2g) + (GWg, 2) + (bw, 2)q. (3.3.6)

By an argument similar to that for Lemma 3.2.1 , we have
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Lemma 3.3.1 For each v™ € S, m € {1,..., M} and H sufficiently small (inde-
pendently of ¢),

B(v™, (™)) + (r™00™, (v" v )

1
2 Culllo™ I+ g (™0™, 0™)a = (o™, o™ 1)),
where C, is as in (1.1.5).

This lemma guarantees that (3.3.3) - (3.3.5) have a unique solution U™ in $,,.
To analyze the scheme (3.3.3) - (3.3.5), let us introduce a set of L*-spline func-
tions {t;m(z)}, which are defined similarly to (3.2.5) and (3.2.6) except that a™ is
replaced by @*. For any v™ € Vi, set t™ = Ef;}l v™Yim(z). Then integrating by

parts and using the definitions of <Z>,~,,,,(z) and J:;,,..(:c), one can prove that
ﬁ(u’(-,tm),v"‘) = B(y™, ™), (3.3.7)

where u/(-,t,) is the interpolant from S, to u(z,tm).
Set Z™ = ul(-,ty) — U™. Then (2.1.1), (1.1.2), (1.1.3), (3.3.3) - (3.3.5) and
(3.3.7) yield

B(Z™,v™) 4 (r™0Z™,v™)q = R(s™,0™) Vo™ € Vim, (3.3.8)
Z™(0)= Z™(1) =0 and 2° = 0, (3.3.9)
where

R(u™,v™) = ((@™ — a™)ug, 3™) + {(6™,5™) - (6™, v™)a}

+(r™(0u™ - uf*), o™ (3.3.10)

Here 8 = f — bu — ru, as in the last section.
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To bound R(u™,v™), we need a technical result given in Stynes and O’Riordan

[47).

Lemma 3.3.2 For each m € {1,..., M} and any w™ € S,

1/2
L L
/ lw(z)|dz < CeM/? {/ Iw'."(:c)l’dz} , fori=1,...,N.
81 .51

With this we can prove

Lemma 3.3.3 For each m € {1,...,M} and any v™ € V,,

R(u™,o™)| < CH (I3 131(01) + 16211001y + 16™ 320y}

+Cllou™ — w2 + (Cr/2)llIvg._IIZ-
where C, i8 as in (1.1.5).
Proof. From (3.3.10), we have

|R(u™, v™)| < (@™ = a™)ug, 3™)| + (6™, v™) - (6™, 0™l

+|(r™(0u™ — ug*), v™)d| + |(6™, 8™ — v™)). (3.3.11)

The first three terms can be bounded similarly to (3.2.20) - (3.2.22). For the last

term, if z € [z;_1, z;] for some i € {1,..., N}, then

[5™(z) — v™(2)|
= (v = o) (Bim(2) — Yim(2))]

<2 /
ccen{ [ |(z).
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2 }1/3
dz ,




by Lemma 3.3.2. Thus

|5™ — v™|| < CHY/? "(vg_). .

Consequently
~m m m 2 3
@™, 5™ - v™)| < (€1/6) || (vEL) || + CHIB™ a0,
Combining this and the bounds for the first three terms (cf. (3.2.20) - (3.2.22))
completes the proof. (m]

Using Lemmas 3.3.1 and 3.3.3, we now have an analogue of Theorem 3.2.2.
Theorem 3.3.1 Let U™ be defined by (3.3.3) — (3.3.5). For H sufficiently small
(independently of ) and each n € {1,...,M},

n 1/2
U™ - u™la + {E km||lU™ — u"‘llli}

m=1

< CHY {||uallzaqr(ax)) + 10allz2zrax)) + 1101l z2(zo(ane)) }

+ CK P |lusliza iz amyy
where the norms on the right hand side are defined in (2.3.3) - (2.8.5).

Proof. Similar to the proof of Theorem 3.2.2. (]

Remark 3.3.1 It can be shown that results analogous to Theorem 3.3.1 (except that

no ug term is present) hold for the semi-discrete version of (3.3.3) - (3.3.5).

In what follows, we shall give a pointwise error analysis for the scheme on a
uniform mesh with space mesh size H and time mesh size K. For simplicity, we

assume, as in Subsection 3.2.4, that a(z,t) = &(z,t) = r(z,t) = 1.



For any mesh point(zs,,tm,) € 2, we define a discrete Green’s function G(z,t)

associated with (3.3.3) — (3.3.5), similarly to (3.2.31) - (3.2.33): for m =0,..., M,

B(x™,G™) = (X™,0G™ " )g = K™ 6 meX™(zi), Yx™ € 52, (3.3.12)

G™(0)=G™(1)=0, GM*' =y, (3.3.13)

where §9 = { X™ € S : X™(0) = x™(1) = 0}. Then with arguments similar to be-
fore we can show that Lemmas 3.2.5 and 3.2.6 are valid for this G(z,t). Lemma 3.2.7

still holds; the main difference in the proof is that instead of I, given by (3.2.53),

1 1/2
(&), &
wo/s

We now can derive the following local pointwise error estimate.

here we work with

2
- m\— 1
I = ello™/AGR )l + ™) 263+ 3

Theorem 3.3.2 Assume that the hypotheses of Theorem 3.2.5 or Theorem 3.2.6
hold. If U and u are the solutions of (3.3.3) - (3.8.5) and (1.1.1) - (1.1.5) respec-

tively, then
[U(%iqr tmo) — w(Tig tmo )| < C(H + K).

Proof. The error at (z;,,%tm,) can (cf. proof of Theorem 3.2.5) be bounded by

M N-1
1U(2ia5 tmo) = WEior tme)| S Y 3 KGT | R(u™, him)| - (3.3.14)
m=1 i=1
Analogously to (3.2.73), we have
Y KGP|R@™dim)| < CH. (3.3.15)

(=i tm )N\
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By (3.3.10),
| 2™, )|
< {I(0™, bim) = 07 (1, Yim)| + 1(BUT = w)(1, i,m)I}
< {I(6™ - 67, dim)| + CHOP| + (067 — ul)(1, Yim)l},
since
(1, %im = Yim)| < CH?

follows from the uniformity of the mesh in the z-direction. Hence

> KGP|R(u™, dim)|
(=i,tm)ENo
841 L
< Y KGrE { [ toide+ / qu(z.-,t)ldt+CHI0."‘I}
(®i,tm)ENG 81 tm—1
< C(H +K), (3.3.16)

similarly to the proof of Theorem 3.2.5 (or Theorem 3.2.6).
The desired result then follows from (3.3.14) - (3.3.16). o

Remark 3.3.2 The previous uniform convergence result also holds for variable coef-
ficient problems, provided that one also assumes that ||us||z1(z1(ax)) < C. Theo-
rem 3.3.2 indicates that on a uniform mesh in the z-direction, the scheme (3.3.3) -
(3.3.5) satisfies the same error bounds as the scheme (3.2.9) - (3.2.11). However, it
is not clear how to get the same convergence results for the scheme (3.3.3) - (3.3.5)

on arbitrary meshes.
3.4 Numerical Results

In this final section, we shall present the results of some numerical experiments and

compare the actual performance with the theoretical predictions for the schemes
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discussed above. We solved two problems for various values of ¢, H and K on
uniform meshes. In each experiment we held the ratio K/H equal to 1. Similar
rates of convergence are observed when K /H is some other constant.

All computation was performed in C double precision on an IBM PC.

Ezample 3.4.1 (global convergence) We examine how both schemes perform when

applied to the variable coefficient problem
— Etgy + (44 22)ug + (2 + exp(zt))u + (1 + 22 + t¥)u; = f(z,t) on Q, (3.4.1)
with analytical solution
u(z,t) = texp((z? + 4z — 5)/e) + z* + 12, (34.2)

where Q = (0,1)x(0, 1). The function f(z,t) and the initial-boundary conditions on
2 were chosen to fit this data. Here u(z,t) exhibits typical boundary-layer behaviour
near z = 1.

The global discrete L™ errors Eﬁ"”) and corresponding convergence rates pﬁ"m

of the scheme (3.3.3) — (3.3.5) are listed in Tables 3.5.1 and 3.5.2 respectively. These

are computed from
ES) = max Iu(z.-, tw) - UH )(z.-,t,,.)l (3.4.3)
and
pled) = {ln E(e3H) _ |y E(eH )} /In2, (3.4.4)

where u is the exact solution and U(*H) is our computed solution with space mesh
size H. The rate of uniform convergence is estimated by the so-called “p}-method”

proposed by Farrell and Hegarty [12]. That is,

+

p; = averageg p,x , (3.4.5)
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where

pH={nE¥ - EF}/In2 (3.4.6)

and

EJl = max EfsH), (3.4.7)

Table 3.5.1 Global Maximum Errors

€ N=8 16 32 64 128
1.00000e+-00 | 2.601e-02 1.168e-02 5.463e-03 2.637e-03 1.295e-03
2.50000e-01 | 6.803e-02 2.536e-02 1.015e-02 4.424e-03 2.046e-03
6.25000e-02 | 1.106e-01 5.070e-02 1.944e-02 7.272e-03 2.892¢-03
1.56250e-02 | 1.225e-01 6.323e-02 3.042e-02 1.328e-02 5.099e-03
3.90625e-03 | 1.255e-01 6.637e-02 3.365e-02 1.652e-02 7.774e-03
9.76562e-04 | 1.263e-01 6.716e-02 3.445e-02 1.734e-02 8.594e-03
2.44141e-04 | 1.264e-01 6.736e-02 3.465e-02 1.754e-02 8.799e-03
6.10352e-05 | 1.265e-01 6.741e-02 3.470e-02 1.759-02 8.850e-03
1.52588e-05 | 1.265e-01 6.742e-02 3.472e-02 1.761e-02 8.863e-03
3.81470e-06 | 1.265e-01 6.742e-02 3.472e-02 1.761e-02 8.866e-03
9.53674e-07 | 1.265e-01 6.742e-02 3.472e-02 1.761e-02 8.867e-03

EEF 1.265e-01 6.742e-02 3.472e-02 1.761e-02 8.867e-03

Table 3.5.2 Global Convergence Rates

€ N=8 16 32 64 | Average
1.00000e+00 [ 1.15 1.10 1.05 1.03| 1.08
2.50000e-01 | 1.42 1.32 1.20 1.11| 126
6.25000e-02 | 1.13 1.38 142 1.33| 131
1.56250e-02 | 0.95 1.06 1.20 1.38| 1.15
3.90625¢-03 | 0.92 0.98 1.03 1.09| 1.00
9.76562¢-04 | 0.91 0.96 0.99 1.01| 0.97
2.44141e-04 | 091 0.96 0.98 1.00| 0.96
6.10352¢-05 | 0.91 0.96 0.98 0.99 | 0.96
1.52588e-05 | 0.91 0.96 098 0.99| 0.96
3.81470e-06 | 0.91 0.96 0.98 0.99 | 0.96
9.53674e-07 | 0.91 0.96 0.98 0.99 | 0.96

[ 091 096 098 0.99| 0.96

From Table 3.5.2 we see that the rates obtained numerically tend to 1 as the
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number N of nodes increases, and the uniform rate of convergence is p7 = 0.96.
This agrees with the predictions of Theorem 3.3.2.

Similar results were obtained for the scheme (3.2.9) - (3.2.11). As mentioned in
Remark 3.3.2, the two schemes have similar error bounds when a uniform mesh is

employed.
Ezample 3.4.2 (local convergence) We now test the local performance of our schemes
when applied to the following problem, which has discontinuous initial data:

— tge + (1 +22)(1 + t)up + 4u + (1 + z)ue = f(z,t) on Q, (3.4.8)

where

u(0,t) =1*, wu(l,t)=(1+¢t)} for0<t<1, (3.4.9)

z3, when z € [0,0.376),
¥(2,0) = { z’ + exp(—z/3), when z € [0.376,1). (3.4.10)
The function f(z,t) is chosen such that the reduced solution uo(z,t) of (3.4.8) is

+ t)3 n ,
uo(z,t) = { E: + t)’ + exp(-z/3) exp(—t/4) :)m Q;,

where 2, is defined by
1 3 _1 2
0 ={(z,t) € Q:arctanz + -2-ln(1+z ) - 5(1 +t)*<Coy,

with

Cop = arctan0.376 + %m( 1+ (0.376)%) - %

and Q3 = N\ ;. The solution u(z,t) will have an internal layer along 92, N 99;.

We solve this problem using the scheme (3.3.3) - (3.3.5).
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Table 38.5.3 Local Maximum Errors

€ N=8 16 32 64 128
1.00000e+00 | 2.772e-02 1.495e-02 7.736e-03 3.929¢-03 1.983e-03
2.50000e-01 | 6.448e-02 2.732¢-02 1.238¢-02 5.857e-03 2.848e-03
6.25000e-02 | 1.205e-01 4.799¢-02 1.812e-02 7.307e-03 3.196e-03
1.56250e-02 | 1.302e-01 6.736e-02 3.175e-02 1.251e-02 4.683e-03
3.90625e-03 | 1.302e-01 6.740e-02 3.436e-02 1.732¢-02 8.058e-03
9.76562e-04 | 1.302e-01 6.740e-02 3.435¢-02 1.735e-02 8.717e-03
2.44141e-04 | 1.302¢-01 6.740e-02 3.435e-02 1.735e-02 8.715e-03
6.10352e-05 | 1.302¢-01 6.740e-02 3.435¢-02 1.735e-02 8.715e-03
1.52588e-05 | 1.302¢-01 6.740e-02 3.435e-02 1.735e-02 8.715e-03
3.81470e-06 | 1.302¢-01 6.740e-02 3.435e-02 1.735e-02 8.715e-03
9.53674e-07 | 1.302e-01 6.740e-02 3.435e-02 1.735e-02 8.715e-03

Ey 1.302e-01 6.740e-02 3.435e-02 1.735e-02 8.715e-03

Table 38.5.4 Local Convergence Rates
€ N=8 16 32 64 | Average
1.00000e+00 | 0.89 0.95 0.98 0.99 0.95
2.50000e-01 | 1.24 1.14 1.08 1.04 1.13
6.25000e-02 | 1.33 1.41 131 1.19 1.31
1.56250e-02 | 0.95 1.09 1.34 142 1.20
3.90625¢-03 | 0.95 0.97 0.99 1.10 1.00
9.76562e-04 | 0.95 0.97 0.99 0.99 0.98
2.44141e-04 | 0.95 0.97 0.99 0.99 0.98
6.10352e-05 | 0.95 0.97 0.99 0.99 0.98
1.52588e-05 | 0.95 0.97 0.99 0.99 0.98
3.81470e-06 | 0.95 0.97 0.99 0.99 0.98
9.53674e-07 | 0.95 0.97 0.99 0.99 0.98
pf 095 097 0.99 0.99 0.98
In Tables 3.5.3 and 3.5.4 we display the local discrete L*°(}') errors ES"E) and
the corresponding rates p&"x) of convergence based on the double mesh method,

where

Q= {(z,t):0<z<05 05<t<1}.




Here

ES) = max Ui ) - Ui )

and the rate p{") is defined analogously to (3.4.4). We use the “p}-method” (see
Farrell and Hegarty [12]) to determine the rate of uniform convergence; the quantities
P3 and p¥ are defined analogously to (3.4.4) — (3.4.7) based on E',(,"H).

Note that the solution u(z,t) is smooth in €. The results indicate that the
scheme (3.3.3) - (3.3.5) is first order accurate in §¥/, as predicted by Theorem 3.3.2.

Similar results were obtained for the scheme (3.2.9) - (3.2.11).
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Chapter 4

An Exponentially Fitted
Non-lumped Scheme

4.1 Introduction

In this chapter, a scheme generated by a Petrov-Galerkin method is examined using
finite element techniques. The scheme is exponentially fitted in the z-direction.
Recall from Chapter 2 that any scheme on a uniform mesh must have coefficients
based on exponentials if it is to be globally L*® convergent, uniformly in ¢. In
Chapter 3, two similar exponentially fitted schemes have been studied, where the
integral involving the time derivative term was approximated by some quadrature
rule. This obviously introduces an error. An alternative approach is to integrate this
term exactly. This so-called “non-lumped method” has been analysed by Ng-Stynes
et al. [31] for the case a(z,t) = a(z), using finite difference techniques.

In this chapter, we shall prove that, under assumptions similar to those of Chap-
ter 3 on the behaviour of % and its derivatives, the non-lumped scheme is globally
uniformly convergent in an energy norm and L? norm. If instead we make weaker

global assumptions together with some local assumptions on the behaviour of u and



its derivatives, we can then prove that our scheme is locally uniformly convergent in
a discrete L* norm both outside and inside the boundary layer. Our analysis does
not need assumptions as strong as those in [31] on the behaviour of the solution u.
Our results are similar to those of Chapter 3, except that a less restrictive condition
on the ratio of time mesh size to space mesh size is required here. Furthermore, the
analysis here is more complicated.

The chapter is structured as follows: in Section 4.2 we describe our non-lumped
scheme and norms used in later analysis. In Section 4.3 global estimates in energy
and L2 norms are derived by finite element techniques. Section 4.4 discusses how the
results of Section 4.3 are improved when one has more information on the behaviour
of derivatives of u. In Section 4.5 we provide a local convergence analysis, using a
discrete Green’s function and a cut-off function, based on Niijima’s analysis of an

elliptic problem [32]. Numerical results are presented in Section 4.6.
4.2 Description of Scheme

Consider a tensor product mesh which is arbitrarily graded in the z-direction and
arbitrarily spaced in the t-direction as in Subsection 3.2.1.
On each time level ¢, with m € {0,..., M}, we define a basis {p;m(z): i =

0,...,N} for the trial space Sm by

—e@!m(2) + a7 P m(z) =0, forze€[0,1]", (4.2.1)

$im(zj) = 8ij, forj=0,...,N, (4.2.2)

where [0,1]" is defined in Section 2.3. Here a* is an approximation to a(z,tm) on

(Zi-1, ;) given by (3.2.4). A basis {im :i=1,..., N —1} for the test space V,, is
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given by (3.2.5) and (3.2.6).
Now we formulate our non-lumped scheme as follows: for each m € {1,..., M},

find U™ € S,, such that

B(U™,v™) + (r™0U™,v™) = (f/™, t™)¢» VO™ € Vim, (4.2.3)
U™(0) = go(tm) and U™(1) = q1(tm), (4.2.4)
U° = (u%)g,, (4.2.5)

where B(-,-) and (-,-)¢ are as in (3.2.12) and (3.2.8) respectively.
The existence and uniqueness of U™ will follow from Lemma 4.2.2 below.
In addition to the discrete L? and energy norms introduced in (3.2.13) and

(3.2.14), we will also use the following continuous energy norm:
1/2
wlll = {ellwall® + llw]*}”?,

for each w € H'([0,1] X {tm}), where || - || is the usual L?(0,1) norm. A useful

relationship between the discrete and usual L? norms is given by

Lemma 4.2.1 Fizm € {1,...,M}. Suppose that either v™ € Sp with v™(0) =
v™(1) = 0, or v™ € Vpn. Then
o™l < Cllv™la--
Proof. Let v™ € Sy, with v™(0) = v™(1) = 0. Then
N e ) o,
o™l =" / (V1 i-1m + 0 bim)” dz.
s=1 v ®i-1

Note that 0 < ¢;m < 1 for all i and (a + b)? < 2(a? + b?). Consequently
N-1

lo™I? <2 )" (hi + higa)(o7)?

=1
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N-1
<4 h(v!)?, by the mesh grading,

=1

N-1 _
<8 (1, dim)v)

i=1
since it is easy to show that (1,dim) > hi/2.

Similarly one can prove the result for v™ € V. @]

We now demonstrate the following coercivity result.

Lemma 4.2.2 Let p = aH/[c. Assume that H is sufficiently small (independently

of €) and that

V‘f';l > 2[(p), (4.2.6)
where
I'(p) = (p coth(p/2) — 2)/p. (4.2.7)

Then for each X™ € Sm, m € {0,..., M}, we have

B(Xm’ (X'")V..) + ('max'", (XM)V.)

1 m .m m_m— m—
2 (C/2IIx™E + 2km{(""'x X™) = (™™ LX)
where C; is as in (1.1.5).

Proof. From (3.2.16), for each x™ € S™ and H sufficiently small (independently of
€), we have

B(X™, (x™)9a) 2 €ll (x™)p=)a I + Callx™ 2.

Since for j=i—1lort,

[ Fate = [ Gt (428)

§ 85
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we have
I (X™)om)a Il = lIxall- (4.2.9)
Hence

B(x™, (x™)p.) 2 ellx@I* + Callx™|1%- (4.2.10)

For the other term, we have

(rm0x™, (X™}p.)
= ™™ (M) - (X, (¢)e,))
2 ke, M) - 0 x)
~ 5™ ()}
- 2—;; (™™, X™) = (X1, 1))
—%ﬂ— (™, (¢ - x™)r.)?)

rmxm, m) - (rmxm—l,xm—l)}

> 7

™ol (4.2.11)

2kyn

Fori=1,...,N —1,let o™ = @h;/c. Then elementary computations show that
L T _
[ Ginte) - Fimte)de
85—
2 o 8
=2 leem+ -1 [ Gime) de
L T

i smh P}
< 250y [ (Bim(=))’ da, (4.2.12)

s 8i—1

where I'(-) is given in (4.2.7). For z > 0, write I'(z) as

I(z) = 28(2),
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with
6(z) = (z coth(z/2) - 2)/2,
and set p; = ah;/¢. Then

e(p7") < 8(pi),

since ©'(z) > 0 for z > 0. Hence

a’l

—m 4 a™
D) < AP0(o) = “oT(ps) < “o1(p),
since I''(2) > 0 for z > 0. Inserting this into (4.2.12), we have

" (Bim(@) — Fim(@) dz < L r(p)e / Y Ba@) de. (4213)

[ T -1

Hence, using @i—1m + Pim = 1 = ti_1,m + Yim On each [z;_,,z;], we get
. 2K
Ix™ = (X™)pull* < —=T(pellx . (4.2.14)
Therefore, by (4.2.11) and (4.2.14),

(r™x™, (X" )v.)

2 -276!:; {(rmxm’ n\) - (""‘X’"—x,xm—t)} - %I‘(p)sllx.'.""’

Combining this with (4.2.10) and using the assumption (4.2.6) yields the desired
result, since 0 < C; < 1. (]
Remark 4.2.1 Condition (4.2.6) is not a serious restriction on the ratio k/H, as
lim, .o T'(p) = 0, T'(p) > 0 for p > 0, and lim,4e ['(p) = 1. A discussion of a

condition similar to (4.2.6) may be found in Ng-Stynes et al. [31].



4.3 Global L? and Energy Norm Error Estimates

In this section we will derive global L? and energy norm error estimates for our
non-lumped scheme using finite element techniques.

For each m € {1,..., M}, let u!(z,,) be the interpolant from Sy, to the exact
solution u(z, tm) at {(z;,tm)} Lo Recall that U™ is the solution of (4.2.3) - (4.2.5).
Set

Z™ = ul(z,tm) - U™ and 5™ =u/(z,tm) - u(z,tm).
Then using (2.1.1), (4.2.3) - (4.2.5) and n™(z;) = 0 for all ¢, we obtain, for any
™ € Vm,
B(Z™,v™) 4 (r™9Z™,v™) = R(u™,v™) 4 (r™dn™,v™), (4.3.1)
Z™0)=2™(1)=0, 2Z°=0, (4.3.2)
where
R(w™,v™) = (@™ - a™)u7,v™) + {(f™ - 0™, ™)
- (™ = "u™, v™)ge } + (r™(9u™ — u), 0™). (4.33)
This has a form similar to equation (3.2.19), except that the last term in (4.3.3) is

an ordinary L3(0,1) inner product instead of a discrete one. Hence one can bound

differences of similar terms by arguments similar to those in Chapter 3 and by using

Lemma 4.2.1, to get
Lemma 4.3.1 For each m € {1,...,M} and any v™ € Vp,
R, o™)| < CH {62 oz) + I0/™ = 5™u™)allE 0.}
+Cllou™ - uP|* + (C1/8)lIv™ 2.,
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where Cy is as in (1.1.5).
Next, we bound the other term on the right hand side of (4.3.1).
Lemma 4.3.2 For each m € {1,...,M} and any v™ € Vp,,
|(r™an™,v™)| < CH {k;1||".c||22(u),m + ||“'."||},1(o,1)} +(C1/8)lIv™ 13
where Cy is as in (1.1.5), || - lz2(z1),m 95 defined in (2.5.8).
Proof. Fix m € {1,...,M}. Fori=1,...,N and z € [z;_1, %],
(2, tm) = 4P Gim(2) + U1 Pi-1,m(2),

and

u(z,t;) = u(z,t;)Pim(z) + w(z,t)pi-1m(z), forj=m-—1,m.

Hence, for z;_1 < z < %,

tm
n™(z) = k! { ( / uge(8,t)ds dt) Fim-1(2)
tm-1 /&

c.. -a-: -
+ ( tge(s,t) ds dt) ¢.‘—1.m-1(3)}

P
+ (/ ul(s, tm) d3) a&t,m(z). (4.34)
Consequently,
|(+™3n™, o™)|
N-1 Bi41 _
<vt Y Iof o)l Dim(z) dz
N1 o |
<v Z; lv™ { (k;.l /e,.._l /.H qu(z,t)ldzdt) (1, Gim)
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+ ( / a2 ) dz) a, I6$.-,..I)}

N-1 .41
< Ckg! /" {Zlv."‘l ( / |uu(z,t)|dx) (1,«z,-....)} dt

tm-1 | =1 -1

N-1 .41 )
+Y 1o ( / |ua(Z, tm)| dz) (1, %im), (4.3.5)

i=1 i1

since an elementary calculation shows that
(1,100iml) < C(hi + hiy1) < C(1, Pipm)-
Using (2.3.9) then completes the proof. m]

We can now obtain global L? and energy norm estimates for the error between

our computed solution and the exact solution.

Theorem 4.3.1 Assume that the hypotheses of Lemma 4.2.2 hold. Then for each

n € {1,...,M}, we have

n 1/
o™ —u™jl + {ME_:I kml[JU™ - u"'lll’}

< CHY{lluallzazs ) + IS = bw)allaqzi(ag)) + lvatllzaqzry

+ |If = bu = ruellpapeag))} + CK?|uatllzaqpy, (4.3.6)

where the norms on the right hand side are defined in (2.3.8), (2.3.6) (2.3.4) and
(2.3.7).
Proof. Take v™ = (Z™)g,_ in (4.3.1) and use Lemma 4.2.2 with x™ = Z™ and
Lemmas 4.2.1, 4.3.1 and 4.3.2 with v™ = (Z™)g,_ to get for each m,

DT + 1= (™2™, 27 - (2™, 7))

< CH {2 B0 + 1™ = 5™6™)allFs(0,

+ k2 aellZazipem } +ClOV™ = w1,
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Multiplying this by km, and summing fromm=1tom=n < M, we get

(C1/2) Y kmlllZ™I[3 + vli27)°

m=1

<CH { lluallZaczs (agy) + 1 = b)ellZaqzs any)
n-1

2
+ llvaellEagzs) } + CK (llvallgagzs) +C Y kmllZ™2,

m=1

since

M
> kmll0u™ — up|?

m=1
M 1 tom 2
<Y km /o ( /‘. qu(z,t)ldt) dz

m=1

<CK /ol (/OT Iun(z,t)ldt)’ dz

< CK (Jluelliaqany)

Using a discrete Gronwall’s inequality and Lemma 4.2.1 we obtain

Y kalllZ™IR + 1271

m=1

< CH {[[uall3squsany + IS = b)ellEacusanyy
+ lumellEazny } + CK (luadlzaesy)
Combining this with
g™ < CH {[u2 sy + 1™ = 5™0™ = ™ uP [ eo,)}
which is similar to inequality (3.2.26), completes the argument.
Corollary 4.3.1 If
luellza(zr(nx)) + (S = b8)allL2qzr(nx)) + lluatllza(rry
+11f = bu = ruellgapean)) + luelzaziy < C,
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then

n 1/3
U™ — ™|l + {E kml||U™ - ""‘III’} < C(HY? + K1)

m=1
Remark 4.3.1 It can be shown that the factor H/2 in the energy norm bounds of

Theorem 4.3.1 and Corollary 4.3.1 is sharp.

4.4 Improved Accuracy Under Extra Conditions

In this section we will show that under certain compatibility assumptions on the
data at the corners (0,0) and (1,0) of 2, the error estimates in the last section can
be significantly sharpened. These compatibility conditions are given in Stynes and
O’Riordan [45]; using them, one can derive pointwise bounds (3.2.27) on the solution

and its derivatives.

Using (3.2.27), we can bound the interpolation error in the L norm.

Lemma 4.4.1 (Interpolation error in the L* norm) Assume that (3.2.27) holds.
Let ul(z,t,) be the interpolant from S™ to u(z,tm) at {(zi,tm)}N,. Then for

z € [2;_1,2i] and each m € {1,..., M},
Iu(z,t,,.) - u’(z,t,,.)l < Ch;.

Proof. Fixi € {1,...,N}andm € {1,...,M}. Set LyZ = —£Z,e+a7" Z,. Then the
operator L, satisfies a maximum principle on [2;-1, Z;], since @™ > 0. On (z;_1, ;)
we have
|La(u - u')(z,tm)|
= |Lat(z,tm)l, by (4.2.1),
= |f™(z) + (& — a™(2))ug — b™(2)u™ — r™(2)u|
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< C (1 + hie " exp(-a(1 - 2)/¢)),

using (3.2.27).

Consider a barrier function
w(z) = (z — z;) + hiexp(—a(l — z)/(2¢)).

Then
Lyw = @™ + hie™'(—a?/4 + ad™/2) exp(—a(1 - z)/(2¢)).

Choose a positive constant C sufficiently large, independent of £ and mesh size , to

get
|Z,(u - u’)(z,t,..)l < CL,w.

Note that w(z;) > 0 = |(u — uf)(zj,tm)|, for j = i—1 and i. Applying the maximum

principle we obtain
|(u - u’)(z,t...)l < Cw(z) < Ch;, on [z;_1,zi,

as desired. a

We now improve the estimates of Theorem 4.3.1 as follows.

Theorem 4.4.1 Assume that the hypotheses of Theorem 4.3.1 and (8.2.27) hold.

Then for each n € {1,...,M},

U™ - || < C(H + K),

,. 1/3
{z kmlllU™ - u"'m’} < C(HY*+ K).

m=1
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Proof. Similarly to the proof of Lemma 3.2.4, we have, for any m € {1,..., M } and
V™ € Vpm,
|R(u™,o™)| < C(H? + K*) + (C1/8)]||o™|I13.. (4.4.1)
The term (r™37™,v™) can be bounded in the same way. In fact, using (3.2.27) in
(4.3.5) we have
|(r™an™, v™)]

N-1 ®is1
<C Y o711, Yim) {1+¢7 exp(—a(l - z)/¢)} dz

i=1 8.1

< CH +(Cy/8)llIv™||2- (44.2)

(cf. the proof of Lemma 3.2.4). The norm |||v™|||¢» in (4.4.1) and (4.4.2) can be

replaced by |||v.'9"“|||4-, using (4.2.9). Thus, in the same manner as the derivation of

(4.3.7) we get from (4.3.1), Lemma 4.2.2, (4.4.1) and (4.4.2),

n
Y- kmlliZ™IP + 1277 < C(H? + K?). (4.4.3)
m=1
By Lemma 4.4.1,
™)l < CH. (4.4.4)
Combining this with (4.4.3) and (4.3.8) gives the desired results. o

4.5 Localized Pointwise Error Estimates

In this section we use a variant of Niijima’s approach [32] to derive pointwise error
estimates under reasonable assumptions on the solution 4 and its derivatives. For
simplicity, we consider a constant coefficient problem with a(z,t) = ¢ > 0, b(z,t) =
b > 0 and r(z,t) = r > 0, and we assume that the mesh is uniform with the space

and time mesh sizes H and K respectively.
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Let (zi,tm,) be an interior mesh point. To estimate the error at this point,
we define a discrete Green’s function G(z,t) associated with the point (z;;,tm,) a8

follows: for each m € {0,..., M}, find G(z,tm) = G™ € Vi, such that

B(X", Gm) - ("X", aGm+1) = K—IJm,moXn(zio) VX" € 5’:', (4.5.1)

G™0)=G6™(1)=0, (4.5.2)
where 52, = {x™ € Sm : xX™(0) = x™(1) = 0}, and we formally set
GMt(z)=0. (4.5.3)
The following lemma shows the existence and uniqueness of G™.

Lemma 4.5.1 Assume that (4.2.6) holds. Then there ezists a unique solution G™

for the equations (4.5.1) - (4.5.3). Furthermore,
G20, fori=0,...,N and m=0,1,..., M. (4.5.4)
Proof. Equations (4.5.1) — (4.5.3) may be written as
(A™ + K7D+ J) G = K7} (6™ + D' Gum41) (4.5.5)

where A™, DP* and DJ* are N + 1 by N + 1 tridiagonal matrices with rows 0 and

N identically zero, and for rows i = 1,..., N —1 having non-zero entries in columns
t—1,¢and i + 1 given by
B($im: Bi-im)s B(Pim ¥im)  B(bigms Pit1.m);
r(Gimr Picrm)s  T(Bims Bim), T(Bigms Yit1,m);
r(Bim Bicromtr)s  T(Bioms Bima1)s  F(Pim, Vit1,m41),

71



respectively; J (which is used solely to incorporate the boundary conditions) is the
N +1 by N +1 matrix with (0,0) and (N, N) entries equal to 1 and all other entries

0; 6™ and G,, are N + 1 by 1 matrices with the ith entries
bmmobiios GT

respectively.

Thus it suffices to show that the system (4.5.5) has a unique solution. Inspecting
the coefficient matrix of G, We see that when (4.2.6) is fulfilled (A™+ K~1DP* +J)
is an irreducibly diagonally dominant matrix with positive diagonal terms and non-
positive off-diagonal terms. Hence it is an M-matrix and so is invertible. That
is, the system (4.5.5) can be solved iteratively for Gy in terms of G4y for m =

M,M —-1,...,0, since Gay4y is known. This completes the proof of the existence

and uniqueness.

Since for each m the matrices (A™+K~-!'DP+J)~1, & and DJ* are nonnegative,

it is straightforward to show (4.5.4) by using induction on m. o

Next, we derive an L! estimate on G along mesh-lines parallel to the z-axis.

Lemma 4.5.2 Assume that (4.2.6) holds. Then for each n € {0,...,M},
(lvG”)l‘ = (I’G”) <C.

Proof. Taking x™ = Zfi ;1 & m(z) in (4.5.1), multiplying by K, then summing from

m=n< Mtom=M, we get

M
Z KB(x™,G™) +(rx",G") <1, (4.5.6)

m=n
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using (4.5.3). Integrating by parts and using (3.2.5), we have

aGT  aGR_,
L L (5,6™)ee. (45.7)

B(x™,G™) = ]

From (4.5.4), (4.5.6) and (4.5.7) we deduce that

oGT aGy_,
K28 - Tl o<1 4s9)

Now
™, G") - (1,G")
=Gn /., " (B1n(@)Prn(z) — Prn(2)) d2

1
+GY_, / (BN -1.n(2)PN-1,n(2) — DN_1.n(z)) d

_ 2p—el+e? p-1+e™’
= G?{,,(l_e,)(l “e ) oi-e?) } A

2p—e? +e? p+1l—e?
+ha (i e - i o) } #o 49
Thus (4.5.8) may be written as
(r,GM)+W" <1 (4.5.10)
with
Wﬂ = G;‘Wr + G‘N—IW;—I’ (4.5.11)
where
aK 2p—e? +e” p—1+e?
W= et i e~ e )
and

20—e€” +e”’ _p+l-—e’}
Wia=gg+mH {,,(1 “ei-e?) pi-e) |
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By (4.2.6),

szzrﬁwﬂ_‘,,ﬂ{ 2p—et e p—1+e—p}

p(1-e*) pl-er)(1—e?)  p(1-e?)
=ri TS (45.12)
Set
y(p) =2+ p—2¢” + pe’.
Then

¥(0) =0,
v'(p)=1-¢" +pe’, y'(0)=0,

v"(p) = pe® >0, forp>0.

Hence y(p) > 0 for p > 0. The denominator in (4.5.12) is obviously positive for
p > 0. Consequently, W > 0. Similarly, one can prove that W§ _, > 0. Then it

follows from (4.5.11) and (4.5.4) that

w™ > 0. (4.5.13)

Putting (4.5.13) into (4.5.10) completes the proof. 0

Now define a subdomain ¢ associated with (Zi;,tm,) by

1
+ . , - —_
Q _{(z,t)EQ.0<z$z.o+2Koe ln(HK)’

|rz — at — (rzi, — atm,)| < 2KoVe* In (ﬁ) },(4,5,14)

with £* = max{e, H, K}, where Ko > 0 is a constant independent of ¢, H and K,
which we choose near the end of the proof of Lemma 4.5.3. In Lemma 4.5.3 we

will demonstrate that the discrete Green’s function G dies off outside a subdomain
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Qo of QF, where Qg is defined similarly to QF, except that 2K is replaced by Kp.

Without loss of generality, we assume that g is a mesh domain.

Lemma 4.5.3 Assume that (4.2.6) holds. Then for any nonnegative integer s, there

ezists a positive constant C = C(s) such that

™ S L
(0252 g, §(%11m) < C(s)(HK)

for each m € {0,...,M}.

Proof. We define a cut-off function w(z,t) on Q by

w(z,t) = & (”;A) s (”‘ —at- P) ® (P - ':,* ‘“) (4.5.15)

Oy

where ®()) is defined in (3.2.40), and
A=z, P=rzi{—almy, 0Og=7E", Op= Ve

Here 4 > 1 is some constant (to be specified later) independent of ¢, H and K.
Clearly, w defined in (4.5.15) satisfies (3.2.43) - (3.2.48).

Now we take x™ = (;G-;—);‘ in (4.5.1) to get

B ((g—:)s‘m) - ((%)s‘,rac'"“) = K6, (f—:) (). (4.5.16)

Similarly to (3.2.50), we have

s ((%)S-Gm)

= e (™) 2G| + bll(w™) 2™

() ) o))
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By Cauchy-Schwarz’ inequality and (2.3.9),

- ((G—:—) ) r8G"‘+1)
W 8m
2 il (E) [ - shemnrremay

' ((“g"‘)s.m)}

= 3 {I@™726m P - ™))

r [wm™—wmtl G™\?
+ 2K (—I—(—_’ (w_"') 3..) (4.5.18)

wler ($),.-2)|

It follows from (4.5.17) and (4.5.18) that

(E))-(E)rom)

2 o (@™ G - @) E P 4 I+ Qm, (45.19)

o)

where

2
I = (™) 26T + Bll(w™)2G™ 3 +

HE
0n=c(() omem) 45 (£ e ()

¥ (w- Ll (f—,'.'.' ;_ (g_:)) (4.5.21)

()2
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(4.5.20)

and




We notice that I, given in (4.5.20) has the same form as in equation (3.2.53), and
the first two terms in Qn have the same form as the first two terms of equation

(3.2.54). Hence, by analogous arguments, one can get

(@)oo (7 (5))

on choosing v sufficiently large, independently of £, H and K.

1
S -I'E.Im, (4.5.22)

Next, we bound the third and fourth terms in (4.5.21). For the fourth term, we

have, using (y — 2)? < (y — w)? + 2(y — w)(z — w) + (2 — w)? and (2.3.9),

e (-2

<L{_| (G™)s, —

+C

s [((C™s,  (G™ ?
2K (wm)ll’ (w )llz( wms —(;'—';)S.) }

(4.5.23)

Set A; = [z.--l,z.-]. Then

” (G™)s —
(W"‘)l/ 2

-1 s _
< 2 (mln w"') (Gr-6,)? (Bim(T) — Yim(z))? dz

®i—1

z:'

< (’%i.-““"")-l (@ - G2 Zree [ (Fm(a) e,

1 8-}

L.
Il

by (4.2.13) and (4.2.8),

-1 g o
(minw"‘) e / (G™)dz, by (4.26),
851

N

<
=1 A
= 5 ell@™) 26T
K N L] 1 .
' v ;E/&'-u (millA,- wm™ w"‘(z)) (GP) dz

K my—
< —ell@™) ViGT?

7



N m
+ £ Z ma"xAi l“"'c 'HE /.‘ (wm)—l(Gn:)) dz

V* &< miny; w™

<X

by (3.2.45) and (3.2.44).
For the other term in (4.5.23),

(,,)l,,((c'-)s. (g) )
w™ W™/ 8

i=1 . (M) G;.,‘;..'m}’ dz

wm(z)wl

- maxa, Wt 22 [% i1 7 7. )3
<Y e H / (W™) (G 1di-1m + GT'Pim)? dz,

o ming;(w™)3
by a Taylor expansion and (4.5.4),

maxa, (w3t} + maxa, |wel?

o m\y—1 2
ming,(w™)? 7 ..-..,(w ) (Gm)s" dz

<c3;
c N maxy, [wg'? + maxa, wel®
s El ming;(w™)?
=

x{ (w"‘)‘l(G'")’dz+/ @™ ((C™)s, - G"‘) dz},

81

using y? < 2(2 +(v-2)%),

N maxa, 'wmlz maxa, ™ o 1
< CH? Z { (minm(u,ﬁ)z) (minA,- |w;‘|) /'6-1 (“—J;)p (Gm)’ dz

=1

+o(ZEalil) [ " (GR cam + (T i) d,,}

mina, (w™)3

+CH2(0—3 + o, 3) ”(wm)—lh (G'-)S_ - ”
using (G™(z))? < 2 (( " %i1m(2z) + (GT)bim(2))

),

< CH! +CH’a;’||(w")"”G""u3-
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(1+CH(o7" + 0,1 ell(@™) G712, (4.5.24)



+CHY 072+ 0, )K {1+ CH(07* + 0;") } ell(w™)~2G12,
by the properties of w, (4.5.24) and Lemma 4.2.1,

< C{H*(ve*)™ + Ky} I, (4.5.25)

from the expressions for o, and o,

Inserting (4.5.24) and (4.5.25) into (4.5.23), we get the following bound for the

(), -5

< {% +Cy? (ij(e‘)" + 1) } Im.

fourth term in (4.5.21):

T
2K

From (4.2.6),
RSCramimeaslc i
80
E— < Ce* for all p.
K
Hence

r 3 -1
—_— < |- . 0.
. _(4+C7 )1... (4.5.26)

(), 5)

We now turn to bound the third term in (4.5.21). We have

rfwm—wmtl (G™? a™\?

(5 (5). - ()
ud “ (/6™ a\((Gm Gm

< C;l{‘l?;ﬂwcl /.H ((Z’;)&. - w—,,;) <(“’_"')s. + w—"‘) dz

2 1/2
N maxam Iwgl = m (G") (Chu
i — -—1 d
<C .2_-:4 miny,; w™ /,‘.._1 v w /g, W™ ’
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=1 m 1/2 __G': _ g my1/ g g
< Cozt||(wm) ((w"')s. w,,.) (@™ ’((“”")s,.+ w,,,) ,
by (3.2.45),
< CKVg71 [/ (™)1 ((wﬂm)&- + ;G;) , (4.5.27)

by (4.5.26). Next,

N m
<cy %H ((GZ4)* +(GTY)

N m
<oy AL g ()G + )G
"o
<C Y HWM(GT), by (3.244),
i=1

< Cll(w™)™Y2G™||3., since H < 2(1,%im),

< Clm. (4.5.28)

Substituting (4.5.28) into (4.5.27) and using the definition of 4,, we obtain

(25 () - ()

Collecting (4.5.22), (4.5.26) and (4.5.29) into (4.5.21) gives

13 -1 7
|Qml < ('1'6 +Cv )I... < glms (4.5.30)

<Cy7 . (4.5.29)

by choosing 7 sufficiently large, independently of ¢, H and K. Consequently, from

(4.5.16), (4.5.19) and (4.5.30) we get

l T my-1/2 3 _ i, m+1y-1/3 m+12
3im+ o (@™ IG™ - )G )
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- G™
<K lsm,mo (-UT) (3io)~ (4.531)
It follows from (3.2.47), Lemma 4.5.2 and (4.5.31) that

M
Y KIp+||(w™)?GP < CH™?, forn=0,...,M. (4.5.32)

m=n

Choose Ko = (23 + 2). Then by (3.2.48),
w(z,t) < C(HK)**2, on Q\ Q. (4.5.33)
For each (z,tm) € 2\ Qo, there exists i’ € {1,..., N} such that z € [z;_;,2y). Thus
G™(z) < GiLy + G
< C(HK)™ (™(2)) ™/ (GF-1 + GF), using (4.5.33),

S CUHK)™ (@) ™67y + (W) /IGT), by (3.244),

< C(HK)0+1/1K1/2"(wnt)-llanu"“.

Using this and (4.5.32) we get the desired result. o

We are now ready to derive an error estimate at (z;,,tm,) under reasonable

assumptions on the global and local behaviour of the solution and its derivatives.

Theorem 4.5.1 Assume that (4.2.6) holds and that the solution u(z,t) of (1.1.1)
- (1.1.5) satisfies (3.2.68) and either (3.2.69) or (3.2.74). Then

[U(Zio > tmo) — u(Zip, tmo )| £ C(H + K).

Proof. With the discrete Green’s function G, the pointwise error can be expressed

[U(Zig ) tmo ) = #(Zio s tmo)|

81



= |Z($.'o, tmo)l
M
= Z K {R(v™,G™) + (r37™,G™)}|, by (4.5.1) and (4.3.1),

m=1

M N-1

<Y 3 KGPRO™, Gim) + (0™, i) (4.5.34)

m=1 i=1
writing G™ as N1 G m and using (4.5.4).

Split the sum into two parts:

M N-1

2= 2 + X

m=1 i=1 (®itm)ER0  (mi)tm)EN\NY

Recall (4.3.3) and use (4.3.5) to get

Y. KGT|R(4™, bim) + (r0n™, $im)|

(.i,tu)eno
®i4
> kep { L bt O [ tuate e
('.'.tu)eﬂo ®i-1
®is1
+ K'l |u,¢(z t)| dtdz + |ugr(z)| d:c} , (4.5.35)
81 tm—1 o1

where A; = (21, Zi41).
When (3.2.69) is satisfied, the terms in the brackets can be bounded by C( H + K).
Hence by Lemma 4.5.2, (4.5.35) is bounded by C(H + K'). If instead (3.2.74) is used,

we have

Z KGT |R(v™, Yipm) + (rO1™, Yim)|

(=i,tm)€N0
- ®i41
SCH+K)+C Y, KGP(L,#im) [ € 'exp(-a(l-2z)/e)dz
(mirtm)EN0 i1
< C(H + K), (4.5.36)

(cf. proof of Theorem 3.2.6.)
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In order to estimate the sum over Q2 \ 2o, we rewrite (4.3.3) to get
R(u™,v™) + (rOn™,v™)
= ((@™ = a™)ug, v™) + (™ = ™™, ™) — (7 = ™™, 0™ e
+ (r™0ul (-, tm), ¥™) — (r™ul, v™).
Thus, using a™ = a™ = a,
|R(u™, Pim) + (rO7™, i m)|
< C{HIf=(as) + HE ™ ([[e™ ||z (as)
+ 1™ zeogan)) + lluftlleican} -
Consequently, using Lemma 4.5.3 (with s = 1) we can bound the sum over 2\,

as follows:

S KGT|R(u™, i) + (rOn™, fim)|
('6.‘-)60\00
< CHK) {Ifllzrzecax) + K (lullzizeo(ax))
+ [[w®llzeoqo,1)) + lluellzszr(ax) }

<CH, (4.5.37)
using (3.2.68).
Collecting (4.5.36) and (4.5.37) into (4.5.35) completes the proof. (]
Remark 4.5.1 The global assumption of Theorem 4.5.1 is reasonable in many cases
(see Remark 3.2.4).

We note that (3.2.69) implies that Qg is outside the boundary layer, while (3.2.74)
permits (Zi,,tm, ) to lie inside the layer. Thus Theorem 4.5.1 gives a pointwise error

bound both outside and inside the boundary layer.
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Remark 4.5.2 The analysis in this section is carried out for a constant coefficient
problem, but the conclusions are valid for variable coefficient problems, provided

that one also assumes that ||usllz:(z1(ny)) < C-
4.6 Numerical Results

In this section, we shall present some numerical results for the non-lumped scheme
(4.2.3) - (4.2.5). The numerical experiments were conducted on two problems to
examine the global and local performance of the scheme. The two problems were
solved for various values of ¢, H and K on uniform meshes. In each experiment
we held the ratio K/H equal to 1. Similar rates of convergence are observed when
K/H is some other constant for which the stability condition (4.2.6) is satisfied.
The experimental results will be compared with the theoretical predictions of the

previous sections.

All computation was performed in C double precision on an IBM PC.

Ezample 4.6.1 (global convergence) We examine how the scheme performs when

applied to the variable coefficient problem
~ ElUgg + (1 + 8in T)uy + (co8 z + exp(t))u + u¢ = f(z,t) on R, (4.6.1)
with analytical solution
u(z,t) = exp(t — (1 — z — cos 1 + cos z)/e) + 2?, (4.6.2)

where Q = (0,1)x(0,1). The function f(z,t) and the initial-boundary conditions on
) were chosen to fit this data. Here u(z,t) exhibits typical boundary-layer behaviour

near z = 1.



The global discrete L* errors E& and corresponding convergence rates pﬂ"x )

of the scheme (4.2.3) are listed in Tables 4.6.1 and 4.6.2 respectively. These are com-
puted from (3.4.3) and (3.4.4). The rate of uniform convergence, which is estimated

by (3.4.5) — (3.4.7), is given in the last line of Table 4.6.2.

Table 4.8.1 Global Maximum Errors

€ N=8 16 32 64 128

1.00000e+-00 | 7.367e-03 3.556e-03 1.747e-03 8.660e-04 4.309e-04
2.50000e-01 | 1.173e-02 3.905e-03 1.437e-03 5.852e-04 2.592e-04
6.25000e-02 | 3.879¢-02 1.152e-02 3.075e-03 8.206e-04 2.349e-04
1.56250e-02 | 7.264e-02 3.182¢-02 1.111e-02 3.117e-03 8.135e-04
3.90625¢-03 | 8.407e-02 4.316e-02 2.040e-02 8.475e-03 2.875e-03
9.76562e-04 | 8.700e-02 4.613e-02 2.338e-02 1.140e-02 5.249e-03
2.44141e-04 | 8.774e-02 4.688e-02 2.413e-02 1.215e-02 6.003e-03
6.10352e-05 | 8.792e-02 4.706e-02 2.432e-02 1.234e-02 6.191e-03
1.52588e-05 | 8.797e-02 4.711e-02 2.437e-02 1.239e-02 6.239e-03
3.81470e-06 | 8.798e-02 4.712e-02 2.438e-02 1.240e-02 6.250e-03
9.53674e-07 | 8.798e-02 4.712e-02 2.438e-02 1.240e-02 6.253e-03

EX 8.798e-02 4.712e-02 2.438e-02 1.240e-02 6.253e-03

Table 4.6.2 Global Convergence Rates

€ N=8 16 32 64 | Average
1.00000e+00 | 1.05 1.03 1.01 1.01| 1.02
2.50000e-01 | 1.59 144 1.30 1.17| 1.38
6.25000e-02 | 1.75 191 191 1.80| 1.84
1.56250e-02 | 1.19 152 1.83 194 | 162
3.90625¢-03 | 0.96 1.08 1.27 1.56 | 1.22
9.76562¢-04 | 0.92 0.98 104 1.12| 1.01
2.44141e-04 | 0.90 0.96 099 1.02| 0.97
6.10352¢-05 | 0.90 0.95 0.98 1.00 [ 0.96
1.52588¢-05 | 0.90 0.95 0.98 099 0.95
3.81470e-06 | 0.90 0.95 0.98 0.99 | 0.95
9.53674e-07 [ 0.90 0.95 0.98 0.99 [ 0.95

[ 0.90 0.95 098 0.99] 0.95

From Table 4.6.2 we see that the rates obtained numerically tend to 1 as N
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increases, and the uniform rate of convergence is p} = 0.95. This agrees with the

prediction of Theorem 4.5.1.

Ezample 4.6.2 (local convergence) We now test the local performance of our scheme
when applied to Example 3.4.2, which has discontinuous initial data (see (3.4.8) -
(3.4.10) ).

In Tables 4.6.3 and 4.6.4 we display the local discrete L%(€') errors ES*®) and

(e,H)

the corresponding rates p;""’ of convergence based on the double mesh method,

where

Q={(z,t):0<z<05 05<t<1}.
Here
Esc,ﬂ) = x?g.‘x IU(.'H)(-%‘, t,‘) _ U(c,lﬂ)(z" tm)l

and the rate ps"x) is defined analogously to (3.4.4). We use the “p}-method” (see
Farrell and Hegarty [12]) to determine the rate of uniform convergence; the quantities

p} and pf are defined analogously to (3.4.5) - (3.4.7) based on ES"H).

Table 4.6.3 Local Maximum Errors

£

N=8

16

32

64

128

1.00000e+00
2.50000e-01
6.25000e-02
1.56250e-02
3.90625e-03
9.76562e-04
2.44141e-04
6.10352e-05
1.52588e-05
3.81470e-06
9.53674e-07

1.812e-02
7.264e-02
1.940e-01
2.480e-01
2.496e-01
2.499e-01
2.500e-01
2.500e-01
2.501e-01
2.501e-01
2.500e-01

9.937e-03
2.469e-02
6.501e-02
1.216e-01
1.258e-01
1.260e-01
1.261e-01
1.261e-01
1.261e-01
1.261e-01
1.261e-01

5.300e-03
9.258e-03
2.021e-02
5.047e-02
6.307e-02
6.321e-02
6.323e-02
6.324e-02
6.324e-02
6.324e-02
6.325e-02

2.381e-03
3.878e-03
6.612¢-03
1.683e-02
3.074e-02
3.164e-02
3.166e-02
3.166e-02
3.166e-02
3.167e-02
3.166e-02

1.261e-03
1.899-03
2.404e-03
5.205e-03
1.274e-02
1.583e-02
1.585e-02
1.585e-02
1.585e-02
1.584e-02
1.584e-02

H
Eg

2.501e-01

1.261e-01

6.325e-02

3.167e-02

1.585e-02
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Table 4.6.4 Local Convergence Rates

€ N=8 16 32 64 | Average
1.00000e+00 | 0.87 0.91 1.15 0.92| 0.96
2.50000e-01 | 1.56 141 126 1.03| 1.31
6.25000e-02 | 1.58 1.69 1.61 1.46| 1.58
1.56250e-02 | 1.03 1.27 1.58 1.69 | 1.39
3.90625e-03 [ 0.99 1.00 1.04 127| 1.07
9.76562e-04 | 0.99 1.00 1.00 1.00 | 1.00
2.44141e04 [ 0.99 1.00 1.00 1.00| 0.99
6.10352¢-05 | 0.99 1.00 1.00 1.00 [ 0.9
1.52588¢-05 | 0.99 1.00 1.00 1.00 | 0.9
3.81470e-06 | 0.99 1.00 1.00 1.00 | 1.00
9.53674e-07 | 0.99 1.00 1.00 1.00 | 1.00

o 0.99 1.00 1.00 1.00 | 1.00

Note that the solution u(z,t) is smooth in §’. The results indicate that the

scheme (4.2.3) - (4.2.5) is first order accurate in ', as predicted by Theorem 4.5.1.
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Chapter 5

A Streamline Diffusion Scheme
on a Shishkin Mesh

5.1 Introduction

The streamline diffusion method is a finite element method introduced in the case of
stationary convection-diffusion problems by Hughes and Brooks [16]. Mathematical
analyses of the method have been performed by Johnson et al. [20, 22] and Niijima
[32] for stationary problems. Nivert [29] extended the method to time-dependent
convection-diffusion problems and obtained local L? error estimates of order k +1/2,
with piecewise polynomial finite elements of degree k, in smooth regions (i.e., regions
away from any layers). However, in the literature there is no previous pointwise
convergence result, which is uniform in the diffusion parameter, for the method

inside the boundary layer.

In the present paper, we will improve the results just mentioned for the problem:

~Elgg + atp +u+u = f(z,t) V¥(z,t) €Q, (5.1.1)
u(0,t)=u(1,t)=0 for 0<t<T, (5.1.2)
u(z,0)=u%(z) for 0<z<1, (5.1.3)
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where © = (0,1) x (0,T), € is a small positive parameter, a > 0 is a constant, and
u® € L?[0,1), f € L*(Q). Here for simplicity we have taken the coefficients of the
differential equation to be constant.

We shall give pointwise error analyses for the streamline diffusion method both
outside and inside the boundary layer at z = 1. We obtain convergence, uniformly
in €, at nodes inside the layer by introducing a special piecewise uniform mesh which
resolves part of the boundary layer. Our analysis shows that when the streamline
diffusion method is combined with this special mesh, it retains its usual accuracy in
smooth regions. In the case of piecewise linear finite elements, the pointwise error
bound is almost order 5/4 away from layers and almost order 3/4 near and inside
the boundary layer. The analysis uses techniques of Niijima [32] and of Johnson et
al. [22], who considered an elliptic problem on a quasiuniform mesh. In contrast
we deal here with a parabolic problem on a highly nonuniform mesh, which leads to
many differences and complications in our analysis. Indeed, our approach leads to
a slight sharpening of Niijima’s results; see Remark 5.4.1 below.

The idea of using a piecewise uniform mesh to guarantee accurate numerical
results inside the boundary layer is due to Shishkin [41]. His analysis is set in
a finite difference framework and in particular seems applicable only to difference
schemes which satisfy a discrete maximum principle. It is therefore inappropriate
for the streamline diffusion method; an alternative approach, such as that presented
here, is needed.

The Shishkin mesh is remarkable in two ways: firstly, it resolves part but not all
of the boundary layer, yet still yields convergence which is uniform in ¢; secondly,

despite the fact that there is an abrupt change in mesh size, this does not destabilize
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the difference scheme.

An outline of the chapter is as follows: in Section 5.2 we introduce a special
piecewise uniform mesh and construct a streamline diffusion scheme on this mesh.
Section 5.3 discusses the properties of our finite element space and analyzes the
interpolation errors. In Section 5.4 we define a discrete Green’s function G associated
with the scheme and estimate it. Our main uniform convergence results are given

in Section 5.5. Finally, Section 5.6 presents some numerical results.
5.2 Mesh and Scheme
Let N and M be two positive integers, satisfying
max{N/M,M/N} < C. (5.2.1)

We assume that N is even and

N >4. (5.22)

Let A € (0,1/2) denote a mesh transition parameter, which may depend on N
and ¢, and will be specified in Section 5.3. We write @ = @, U Q3 with ; =
(0,1-2) x (0,T]) and Q3 = 2\ Q;. Introduce a set of mesh points {(z;,t;) € O :

i=0,...,Nand j=0,..., M} with

2(1 - A)N-1, fori=0,...,N/2,
z; = (5.2.3)
1-A+2\N"Y(i-N/2), fori=N/2+1,...,N,
and
tj=TM™j, forj=0,...,M. (5.2.4)

By drawing lines through these mesh points parallel to the z- and t-axes, ?; and €,

are each partitioned into M N/2 rectangles. Divide each rectangle into two triangles

90



by drawing the diagonal of the rectangle which runs from northwest to southeast
(here, as is customary, we have taken the z-axis running west to east and the t-axis
south to north). This yields a triangulation of §; denoted by Qf" ,forl=1,2. Each

of these QY is a uniform triangulation by means of right angled triangles r, with

base
2(1-2)N-!  forr e QF,
H, = (5.2.5)
20N-1 forr € Qf,
and altitude
K=TM™ forall 7€V, (5.2.6)

where QN = QN u Qf.
Since we are interested in the singularly perturbed case, we assume throughout

that
e<NL (5.2.7)

Our next aim is to formulate a time-stepping procedure for (5.1.1) - (5.1.3) so
that the discrete solution can be computed successively on a sequence of time levels.

On each time slab
S; = [0, 1] x (tj-1,t5] forj=1,..., M, (5.2.8)
we define a finite element space V; by

V; = {ve C(S;): v(0,t) = v(1,t) = 0 Vi€ (tj_1,],

v, is linear Vr € Q¥ such that ° C S;},  (5.29)

where C(S;) denotes the space of continuous functions on S; and 70 is the interior

of 7.
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We also introduce the streamline derivative wg for all differentiable functions w
by defining
wa = GWg + Wy,
We shall apply the streamline diffusion method (20, 29] to the problem (5.1.1)
- (5.1.3) successively on each slab S;, imposing the initial value at ¢ = t;_, weakly
and the boundary condition strongly. To this end, we introduce the finite element

space on §):

VE{veL’(Q): ”|s,-€V5 forj:l,...,M}, (5.2.10)
and define, for each v€ Vj,for j=1,...,Mand 0<z <1,
vt(z,tj1) = lililo v(z,tj-1 + 8), (5.2.11)

v (z,t) = .l_j.IEo v(z,t; + 8). (5.2.12)

We also use the notation of (5.2.11) and (5.2.12) for those functions in C(S;) for
which the indicated limits exist.

Notation. For all measurable D C (2, set

(v,w)p = // vwdzdt VYv,w € L}(Q), (5.2.13)
D
lollp = (v, )" Vo€ LX(@). (5.2.14)

Forj=1,...,M,set
A{(D)={(z,t)€ D: t=t5}, (5.2.15)

and define

<v,w>;p= / v(z,t;)w(z,t;)dz Vo,w € L*(A;), (5.2.16)
(D)

]
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lvl,p =< v,0>/5 Vve L3(Ay). (5.2.17)

When D = Q, we omit D from the notation.
We now formulate our streamline diffusion method as follows: for j = 1,..., M,

find U € V such that

€(Us,va)s; + (Us + U, v+ pvg)s;+ <Ut, vt >,

=(fiv+pvg)s;+ <U™,o*>;, Wvey, (5.2.18)
where we set
<U-,vt>9=<uvt>y VveW, (5.2.19)
and
2(1-A)N"? for z € (0,1 - )),
p=p(z)= (5.2.20)
0 otherwise.

Remark 5.2.1 Scheme (5.2.18) - (5.2.20) is essentially the same as that given in
(20, 29]. The only difference is that we take p = 0 on Q3. This is because later ) is
chosen quite small, which implies that the mesh in {23 is very fine in the z-direction.

Consequently our scheme is not upwinded on ;.

Remark 5.2.2 For each j, (5.2.18) — (5.2.20) is equivalent to a linear system of
equations. Since the space V is defined independently on each slab with no continuity
requirements from one slab to the next, the solution U will in general have jumps

across each time level ¢;.

Define

HY(Q) = {w e HY(Q): w*(,,t;) and w™(:,2;) exist

and lie in L3(A;) for j = 0,..., M},
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where we set w™(z,0) = 0 and w*(z,T)=0for0<z < 1.
In order to write (5.2.18) — (5.2.20) in a compact form suitable for analysis we

introduce the jump [v] of v € H} () across each time level by defining, for0 < z < 1,
[v)(z,t;) = (vt — v )(2,t;), forj=0,...,M.

By summation of (5.2.18) over all Sj;, we get the following discrete analogue of
(5.1.1) - (5.1.3): find U € V such that

B(U,v) = (f,v+ pvg)+ <u®, vt > Vv eV, (5.2.21)

where for all w,v € H}(2) we set

M-1
B(w,v) = £(wa, va) + (wg + w,v + pvg) + Z <[w],vt>;. (5.2.22)
§=0
In our later analysis, we will also use the following expression for B(:,-) which is

equivalent to (5.2.22):

B(w’ 0) = e(w., vl) + (wﬂv pvﬂ) + (w, 0)

M
+(w,(p = 1vg) = Y <w™,[v]>;. (5.2.23)
i=1

This can be obtained by integrating by parts the term (wg, v) in (5.2.22).
Notation. For all measurable D C  and for all v € H}(Q), set
M
llolllh = ellvallb + lle*vslip + ol + z; l[v).p -
3=
When D = Q we omit D from the above norms.
The following theorem states a stability inequality for (5.2.21) which also guar-

antees the existence and uniqueness of the discrete solution U.
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Theorem 5.2.1 If U is the solution of (5.2.21), then
NUNE < 8IAI? + 4llw®lZao,1)-

Proof. From (5.2.22), we have

B(U,U) = ¢l|lUsll* + (Us, U) + lIo*/*Up|* + ||U|I?
M-1

+(U,pUg) + Y <[U),U*>;. (5.2.24)
j=0
An integration yields
M-1
(Us:U)+ ) <[U),U*>;
=0

M
= %Z {<U~, U >; - <U*, U*>;,}

j=1

M-1

+ Y {<UtUt>; - <U~,U*>;}

j=0
<] 1
D <UTU™>j 45

i=

LM
=§E|[U]|;-
=0

Cauchy-Schwarz’ inequality and the arithmetic-geometric mean inequality give

M-1
Z {<U,U*>; —2<U~,Ut>;}

J=0

DN

(5.2.25)

@,pU8) < 3 {01 +1oTall"}, (5.2.26)

since p < 2N~ < 1. Thus from (5.2.24) - (5.2.26),

B(U,U) 2 DI (5.2.27)

On the other hand,

I(f’ U+ pUﬁ)+ < uo’ /A >0 l
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1
<211+ 3 (NI + 152081 + 103} + 1% 3501y

(5.2.28)
Taking v = U in (5.2.21), the desired result follows from (5.2.27) and (5.2.28). O
5.3 Properties of V and Interpolation Error

In this section, we shall discuss inverse and interpolation properties of our finite
element space V which will be used in the sequel. We also specify the transition
parameter ) of the mesh.

First of all, we consider some properties of V.

Lemma 5.3.1 For any v € V, we have

(i) forre N, 1<g<p<Looandl=0,1,
Ivllwscry < CN*20/ 1P |o]| L or)s (5.3.1)

where W; denotes the usual Sobolev space;
(i) for T € QF,
llvell- < CN|ollx, (5.3.2)

lollzeo(r) < CN 72X v |50, (5.3.3)
where S is the unique slab (see (5.2.8)) containing 7°;
(ii5) forj=1,..., M,

lvslls;nn. < (1 + CNA)||valls;na, - (5.3.4)
Proof. The first conclusion of the lemma is a standard inverse inequality, because

our assumption (5.2.1) implies that Q¥ is a regular triangulation.
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Next, (5.3.2) follows by the standard argument of transforming to a reference
triangle of unit diameter.
We now turn to prove (5.3.3). For (z,t) € 7 € @Y, let S be the slab containing

7%, Then since v(1,t) = 0 for all ¢ and v, is constant on each 7 in §,

(a0l < [ " va(s 1)l de

-1 u(£,t)| déd
<CK //m,"’ (€,1)| dédt
< CN[meas(5 N 92)]"/?||valsna,> (5.3.5)

by Cauchy-Schwarz’ inequality. Noting that
meas(SN Q) <CN71A,

we deduce (5.3.3).

It remains to show (5.3.4). From the definition of v, it is sufficient to prove that
llvells;n, < CNA||vslls;na, forj=1,..., M. (5.3.6)
In fact, for each 7 in S; N R, by (5.3.2) and (5.3.3),

llvells € CN|[v|pes(rylmeas(r)]*/?
< CN[’\N—IM—l]l/INl/lAIRHv."sinnz

< CNI/:""”-"-’;““:-

Thus
loelidina, = D N2 < CN*A%|lvall5;na,,
Tgs,‘ﬂﬂg
since S; N QY contains N triangles. This implies (5.3.6). o
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Lemma 5.3.2 Let p € (1,00]. Assume that w € W3(Q). Let 7 € QN. Let w!

denote the linear function which interpolates to w at the nodes of r. Then

f|w- w’”p(,) < C {H}||WaallLo(ry + He K ||watl| Lor)

+ K?||wellLa(ry} » (5.3.7)
" (w - wI).""(,) <C {Hf"wu"l;’(r) + K"“’.‘"L’(T)} ’ (5‘3'8)
(w0 = 0") [l sy < C {Hrllwatllioery + Kllweelleois)} (5:3.9)

|w—w|, < CK™Y*{B}|waallr + HeK|waellr + K?||weell-} (5.3.10)
forj=0,...,.M.

Proof. Let 7 denote the reference triangle with vertices at (0,0),(1,0) and (0,1).

Let F be a one-to-one linear function which maps # onto 7. Set
w(z) = w(F(z)) Vzet.
Then it is well known that

- @], <C{Iomllinn + Mulzngsy + Mgl (5311)

L2(#)
where (1) is the linear function which interpolates to W at the vertices of # and
#, # are the variables used in #. On observing that (u‘;)’ = wloF, thgg = H2wegoF,
g; = H,Kwge o F and g = K?wy o F, transforming (5.3.11) to integrals over 7
yields (5.3.7).

Next, using Lemma 2.3 from Kfizek [23], we get

[ (8- @), ],.0y < € {I00alis) + Nz}

and

(8= @) ]y < € {Iatlzriey + 2l } -
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The desired estimates (5.3.8) and (5.3.9) now follow by transforming the above to
integrals over 7.

Finally, using the Bramble-Hilbert lemma (6],

~ AT ~ o o
[ = @) s ga ey S © (salle + Wil + gl }

Again transforming to 7, one obtains (5.3.10). This completes the proof. (u]
An immediate inference from Lemma 5.3.2 is the following interpolation error

results on those 7 where the solution is smooth.
Theorem 5.3.1 For any 7 € OV, if llullcz(r) < C, then

[lu- u’"L,(') <CN™? (5.3.12)

and
I I -1
1= 87l pmy + || (u - uf) ,"m,) <CN™. (5.3.13)
In order to obtain a satisfactory pointwise error bound in our later estimates, we
shall require the local L* interpolation error for a solution with typical boundary
layer behaviour to be at least first order in §2; and second order in §23. A calculation,

based on (5.3.7) and (5.3.23) below, then motivates the choice
A=2a"l¢lh N (5.3.14)

with the constant a chosen to satisfy 0 < a < a. We shall assume from now on that

(5.3.14) holds.
Note that this choice of A implies (cf. (5.2.5)) that the mesh in the z-direction is

very fine in Q3 and coarse in ;. Note also that the boundary layer at z = 1 is typ-
ically of width O(¢In(1/¢)) and in practice one usually has e~! > N; consequently

(cf. (5.3.14)) the mesh resolves only part of the layer.
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The following theorem gives interpolation error bounds on each r where the

solution exhibits boundary layer behaviour.

Theorem 5.3.2 For any v € QV, assume that

Z—z(z,t) <C {l + e exp(—a(l - z)/e)} Y(z,t)eT

and that for i + j < 2 we have

iy
FErTTASR)

<Ce™ W(z,t)er.

Then
(i) if T € QN, we have
"u u ”L,( )< CN7Y

(i) if T € QY , we have

Ju =4l jugsy S CN 0N

and

ell(w-v")llpwyy SCN ' InN.

(5.3.15)

(5.3.16)

(5.3.17)

(5.3.18)

(5.3.19)

Proof. Without loss of generality, we assume that the vertices of T are (z;_1,tm),

(%iytm-1) and (Zi—1,tm-1). Thus on 7, we have

ul(z,t) = w(Ziz1,tm)P1(2, 1) + 8(Zi, tm—1)02(2, )

+ u(zl'—l’ tﬂ—l )%(2, t)y

where

¢1(2, t) = (t - tm-l)/Ka
#a(z,t) = (z - zi1)/Hy,
¢3(z,t) = (2i — 2)/ Hy = (t — tm-1)/ K.
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Clearly
i:cﬁ.-(z,t) =1 and 0<Z¢i(z,t)<1 onr (5.3.22)
By (5.3.20) and (5'.:22), for (z,t) € T we get
|(w - 1) (2, )]
= |u(z,t)(¢1 + b2 + d3)(2, 1) — v'(2,1)|
< lu(z,t) = w(zicastm)| + [4(2,2) — w(2i, tm—1)] + |u(2, 1) — 8(Tio1, tm—1))
< [u(2,t) — w(Zica, )| + [0(Zi1,t) — W(Tio1, tw)|
+[u(z,2) - w(zi, )] + |u(zi, t) — v(2i, tm-a)|
+ [u(z, 1) — w(zioa, t)| + |u(2io1,t) — (Zio1, tm)|

< 3/'; lua(é, t)ldf+/:' (2lue(zi-1,8)| + |ue(2i, 8)]) ds

i1

sc{ [ et en(-ati-e)/e)] de+ /: as},

i by (5.3.15) and (5.3.16),
< C{N~'+exp(-a(l - z:)/e)}

< C{N7! +exp(-a)/e)}, (5.3.23)

since 7 € 2V means that z; < 1 — A. This, together with the choice (5.3.14) of ),

implies the result of part (i).
To prove part (ii), we note that for 7 € QY , H, = 2AN~! = 4a~'¢In N. Using

this and (5.3.16) in (5.3.7) and (5.3.8), we obtain (5.3.18) and (5.3.19). o
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5.4 Discrete Green’s Function

Let (z*,t*) be a mesh node in Q. The discrete Green’s function G € V associated

with (z*,t*) is defined by
B(x,G) = x(*,t") Vx €YV, (5.4.1)

where we recall that G(z,t) =0 for t > T. From (5.2.27), G is well defined.
In this section we will derive a global estimate for G in the energy norm ||| - |||
and prove that G is negligible outside a narrow region extending upstream from

(z*,t*). This region is defined by

Qo ={(z,)eN:0<z< 2"+ Koogln N,

|z — at — (z* ~ at*)| < Koonln N}, (5.4.2)

where Ky is a positive constant independent of ¢, N and M. We choose Kj in
the proof of Theorem 5.4.2 below; og and o, will be given in (5.4.13) and (5.4.14)
respectively.

We start by introducing a cut-off function with exponential decay. Set

w(z,t) = g (z ;:‘) g (z -at —a(:" - at‘)) g (z‘ - at‘; (z - at)) (5.43)

g(r) = '1-_*_—:;;("—) for r € (—00, +00). (5.4.4)

By some elementary calculations, one can easily show
Lemma 5.4.1 For w(z,t) defined in (5.4.3), there hold

(1) 0 < w(z,t) <8 onf
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(1) —wg(z,t) >0 onQ;

(iii) for each T € QN, if 0 > H, and o, > K, then
maxw/minw < C, max|wg|/ min jwp| < C;

(iv) for alll and m,

Mm™uw(z,t)

-l _—-m .
a5otm SCap o, "w(z,t) on

(v) for alll > 1 and all m,

F*mu(z,t)
aplotm

< Colloymlun(z, )] on @
(vi) on any triangle T* which contains (z*,1*),

w(z,t) > C;
(vii) w(z,t) < CN-Ko on N\ .

We shall first derive a global estimate on G in a weighted energy norm, defined

1/3
), ¢
“/s

M
+ w26 + E Iw?G)3 (5.4.5)

J=0

by
2

NGIIE = ellw™2Gal* + llw™*/2p*2Gp|* +

This estimate will be obtained by demonstrating the following three lemmas.

Lemma 5.4.2 If g > YN~! and o3 > 7¢, then for v 2 1 sufficiently large and
independent of N, M and ¢,

G 1, s
8(Z.6) 2 jliGIE. (5.46)
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0(20)=((€).)+ (9 (¢

+ (5 e-16) -2 (Toia),

j=1

= ellw™2G,|I* +¢ ( (:—)) G, G.) + llw2p Gy |2

(), 5)rhrars (S0

M

G G-

- (S60) -2 (Sta) - (5.4.7)
i=1 2

Integrating by parts gives

(Son) =35 (50, (Fe),. -

i=1

Substituting this into (5.4.7), we get

2
B(£.6) = el /26ul1 + ™25/ Gl +

1/2
(2),¢
“/g

M
1 2 1
-1/2~2 4 1 -1/2 o
w26 + 3 Y |lw G]I’_-i-e((w).G,G.)

3=0

; ((é)pa,pcp) +(Z.060). (5.43)

We bound the last three terms separately. First, by Cauchy-Schwarz’ inequality

1
2

and the arithmetic-geometric mean inequality, we have

(().e<)

Elw2G, 3 + £

w Py
‘
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1/2
(),
“/s

< Sl G, + C: {me‘;-" (“’ (Zla),)
e (2 (0))) wrmare)
()

using Lemma 5.4.1 (iv). Similarly, using (5.2.20),

)
En.,-1/3~ 13 -1
< 2||(...v Gell* + Ce {ap

+ o,;’uu“/’Gu’} , (5.4.9)

2

1 1. 173 1/2~ 3 a1\

((w)’G,pGp) < w2026l + CN 2057 | = , (5.4.10)
Finally,
G 1, _ -
|(E.568)| < im0 26l + 1521222
1, _ 1, _

< ™2 2G| + Sl 2G|, (5.4.11)

since (5.2.20) and (5.2.2) imply p < 1/2.
Collecting (5.4.9) — (5.4.11) into (5.4.8), we get

G 1
8(2.6) 2 3612 - cotiez
with = max {ea;l, eoy3, N“a;l}. Using ¢ < N1, we have
0= max{N'lo;I, ea;’} <!

by hypothesis. Choosing v sufficiently large, independently of N, M and ¢, com-

pletes the proof. (n]

Lemma 5.4.3 Assume that og > N~1. Then

(e

0, when (z*,t*) € 4,
1, otherwise.

1
< lIGIE + CN 1 N,

where § = {
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Proof. Let 7* be a mesh triangle containing (z*,t*) and satisfying ¢t < ¢* for all
(z,t) € 7.
Suppose that (z*,t*) € Q3. We must have 7* € QF. By Lemma 5.4.1 (vi) and

(5.3.1), we have

(O

< CN||Gllp

wor (2]

A direct calculation shows that for (z,t) € r*

(5.4.12)

1/2
(2), ¢
“/s

r.

_ 2%!exp (_z -z‘) g(z - at — (z* —at‘))g (z‘ —at* — (z—at))

Oy Oy

<CN™,

by hypothesis. Inserting this into (5.4.12) and using an arithmetic-geometric in-
equality yields the desired result for (z*,t*) € ;.
Now suppose instead that (z*,t*) € Q3. Let S* be the slab which contains 7*.

Using (5.3.3),

I(g) (z‘,t')l < CNl/z'\I/’"G-"rnﬂz

< CN'YAEw!/2 N jw™2G,l|se0m,
by Lemma 5.4.1 (vi) and (i). This proves the lemma for (z*,t*) € 5. 0

Lemma 5.4.4 Assume that
op=7N! (5.4.13)
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and
ye/3, fN-3<e< N,

op=1{ YN, NS NI

yN-3, ife < N2,
with ¥ > 1 sufficiently large, independent of N,M and ¢. Then

5((9)'- L)

where (g)’ is the interpolant from V to <.

1 2
< S liGII,

Proof. For convenience we set
G\’ G
£ = (2) @o-(2) @,
Then Cauchy-Schwarz’ inequality gives

|B(E,G)I

< ellw!? Eal| o™ /2Gull + 110"/ 2w Eg| ™"/ G|

+ W 2E|| w™2G|| + lo~ 2w 2E||a, llw™/?p**Gg|ln,

(5.4.14)

M
+ |2 Ella, lo™**Gplln, + I |w*/*E- |, =G| . (5.4.15)
=1 7

Note that there is no term |Jw=/3Ggl||a, in |||G||[2, so we will deal with this first.

Obviously
lo™Gplla, < Ilw™/*Gulln, + llw™/*Gilla, -

For each 7 € QF,

lo=2Glly < maxw2Gill,

< CN||Gll+/ ngw‘/’, by (5.3.2),

< CN|lw™2G|s,

107

(5.4.16)



using Lemma 5.4.1 (iii). Hence

™ 2G¢lla, < CN|w™*3G|lq,. (5.4.17)

Since G(1,t) = 0 for all t € (0,T], we have for (z,t) € Q,,

thus

@ 56)el < [ | meute, 0] de

< \1/3 { /1 :\ l(w—xlzc).(g, t)l’ d{}m , (5.4.18)

lw=*2Glla, < {/oT /1; [" /lix l(w-l/zG)-(f, t)r df] dzdt}m

< Mi@™2G)alln,

< M{lw™2G.lln, + 1™ *)sGlla, + Ilw™)eClln, }
+a;’nw-"’c||n,},

1/3
(3),¢
w/g 0,

by Lemma 5.4.1 (iv),

< CA {IIw"”G-Iln, +05*?

<CA (2 + 05+ 077) Gl

< Ce7 )G, (5.4.19)

using 0 > ¢ and o, > /2.

From (5.4.16), (5.4.17) and (5.4.19), using ¢ < N, we get

Gl < (7 063l

< Ce~ VI N|||G)|lw- (5.4.20)

Now using (5.4.20) in (5.4.15) and applying the arithmetic-geometric mean in-

equality, we obtain

1
IB(E,G)| < G + C{ell Eull* + 162! Eg|* + N[l EI,
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M
+e VW B, + 3 |w‘/’z-|: }. (5.4.21)
J=1

From Lemma 5.3.2, we have, for any 7 € OV,

IEN + N~V E"|;,

50{113 (g)" T+H,K l(g)“ f+K’ (g)“ r}, (5.4.22)
| Eellr < C{H, (g)" '+K”(g)“ ,} (5.4.23)

and
I Esll- < C(H,+K){"(g)" ,+ l(g)“ r+ '(g)“ ,}' (5.4.24)

On each 7 € OV, Gy = Got = Gt = 0. Consequently we have, for each T,

”(g).. LS I(«%)“G ,"’2“(‘%)_@ K (5.4.25)
”(;G')“ LS "(%),G' i I(%)“G t I(i—).Ge _» (5426)
"(g)“ 5 I(%)“G ,”" (;{)‘Gt . (5.4.27)
Set
@y = mjnw‘/’.

Using Lemmas 5.3.1 and 5.4.1, and og < 0,, we have the following upper bounds

(in some cases two or more bounds are given for the same term in order to handle

different values of ¢ and N later):

|E).c

< Co; 2 |w™V3G)|, [y (5.4.28)

r
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for each 7 € QV;
|(3).c
w as
<cf

+

+G).e
),

T

+

)

(3,9 +13)

-3/2|(1 12 3y ~1/2
<C {aﬁ (“_’)p G . + 05 |lw G"f} /‘4’1- (5.4.29)
for each 7 € QN;
1 Cop* (lw™2Gpllr + llw™'/Gullr) /o
"(-) G| < (5.4.30)
“/e e\ CNogH w1 2G e o
for each T € QF;
( o5V ||()376]| + o3*ll/2Gellr
”(1) al| <l +o5tw1Gl,) [0, (5.4.31)
w - r
e (05| (2)376|| + oxtiemGl) fan
for each T € QF;
) Co;l|lw 2Gallr/@r VT EQV,
” (‘) Ge|l < (5.4.32)
“/e s CNo;' 2G|l /&,  VreQP,

( CN (051/2 "(%);/SGII' + a;luw-llzcu') /G.:,

VTGQ{V,

<1 c(op"N| ()36, + o3l 36ullr) [

|).c

r

vreQl,

{ Ca;‘"w“/’G.ll,/G:, vre QN.
(5.4.33)
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Let
( Ly = o112, Lyg = o;‘e“/’,

Ly = a;lNllz’
(5.4.34)

Ly = max{a;’/’, a;l/'N},

Ly =0, La=0,'N, Lq=max{Ly, La}.

Let |||G|lls,p denote that the integrations and summations in |||G|||. (see (5.4.5))
are extended only over D for any measurable D C Q.
Then collecting (5.4.28) — (5.4.33) into (5.4.25) — (5.4.27) yields
[ C(Ls + Lo)ll|Glllo,s/&r VT € QF,
” (g) <{ CLu+La+ Lo)lGlilus/@, VreQl,  (5.4.35)

-—

r

| C(L1a + Ls + La)lllGlllws/@r VT € OF;
[ C(Ls + L)lGlllws/@r VY7 € QF,

< C(Lu+ La+ Ly + La)lllGlllwr/@r Vr € QF,(5.4.36)

r

I2).
|3).

We may now bound the terms in (5.4.21). From (5.4.23), (5.4.35) and (5.4.36),

| C(Ln1 + Ls + L)ll|Glllwsr/or VT € in;

C(Lu + La + La)lllGlllwr/&r VT € QF,
< (5.4.37)

CLylw~Y3G||, /@, Vr € QN

using Lemma 5.4.1 (iii), we have

el ?E? <& Y (maxw) B2
renN
< CeN“3{(L3 + L3 + L3 + L}) IIGII2 o,
+ [N+ L3+ Lh) + Lh + L3+ L3 IIGIIR 0, }

< CeN-? {Lgl +L} + L3+ L} + L:} G2
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<C{N 0,2+ N7%;% +eN~'0;? + eN-20;°
+eop +eN 0yt +eop? HIGIIIS
<ertiiGle, (54.38)

since gg = YN, 0, > 7¢1/? and 0 < oy,

Similarly, using (5.4.35) - (5.4.37), we get two different upper bounds:

NI, + o Egl + 3 w726
J=1

{ CN~=¥L3 + LYIIGIIZ

CN-3L}, + L3+ L3+ LH)IIGIIZ

M

<

C (N-205% + N-105" + N=%5* + N-10;2) |[IGII13
<
C (N"e"o;’ +N-20,2+ N%5*+ Nloz' + N"’”J‘) NG

<cr G, (5.4.39)
from (5.4.13) and (5.4.14), where the first bound above is used when £ < N-2 and
the second when N-2 < ¢ < N1,

Finally,

E_l ln2 N"wl/‘.'EIP + z lele—

v}
= 3

<C(e7'N'I?N + 1) N7 (M (L, + L3 + L) llIGIIIG
+A2 (L], + L3 + L3 IGIIE g, + L3 2G 113, }
< CeIN“ NP N {L3 + L + L3+ LY, + Lie '} IGIIZ,
using 1 < €”'N~1, A < C and (5.4.19),
< CN™*In*N {a +05 +e05® + eN?og' + 074 + No "} G2,

recalling (5.3.14) and (5.4.34),
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<crlGlle, (5.4.40)

since og = YN~! and o, > yN~%¥/4 from (5.4.14).

Substituting (5.4.38) — (5.4.40) into (5.4.21), we get
1 -1 2
IB(E,G)| < (5 +Cv7t) lIGIIE.
The desired result follows on choosing v sufficiently large, independently of N, M
and e. (u]
We are now in a position to present our main results of this section.
Theorem 5.4.1 Assume that og and o, are chosen as in (5.4.13) and (5.4.14)

respectively. Then

NIGII* < 8IIIGIIIZ < CN 1’ N,

0, when (z*,t*) € 4,

where § = { 1, otherwise.

Proof. The first inequality can be easily obtained by using Lemma 5.4.1 (i). To

show the second inequality, we take x = (g)' in (5.4.1) to get

5((©)'0)- (@)

But by Lemmas 5.4.2 and 5.4.4,

G\’ G G\ G 3,
B ((5) ,G) =5(%.6)+5 ((;) - w,c) > LGz,
Now Lemma 5.4.3 yields the desired result. (n]

With Theorem 5.4.1 we may derive our second estimate on G.
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Theorem 5.4.2 Assume that the hypotheses of Theorem 5.4.1 hold. Then for each

nonnegative integer s, there ezists a positive constant C = C(s) such that
IGllwy (0, \a0) £ CN~°, (5.4.41)

and

IGllz=(a:\0) + €IGlw (,\00) S CN~*, (5.4.42)

where we have used the usual notation for the Sobolev space W), and its associated

seminorm and norm.

Proof. Define Q) C Q by (5.4.2) with K replaced by Ko/2. Assume without loss of
generality that Qf is a mesh domain, by enlarging it slightly where necessary. Given

8, choose

Ko = 4(8 + 3)- (5.443)
Then by Lemma 5.4.1 (vii), w < CN~Ko/2 < CN-¥*+3) on 0\ Q). Hence

NIGIf\ay < CN-X|IGIIIS < CN—3e+2), (5.4.44)

by Theorem 5.4.1. Then (5.4.41) follows using the inverse estimate (5.3.1).

Next, let (z',t') € Q3 \ Qo be arbitrary. Suppose first that

z' —at' < z* — at* — Koo,In N.

Then we have

' e tyis+ [T Gust)d
Gt = | [ Gutotydat [ Gutart)ds

< N {[Gullrion, + VXIGelirina, }
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since G, is piecewise constant, where T} is the union of those mesh triangles which
contain the line segment {(z,t') € 2\ Qo : 0 < z < 2’}. Note that by our supposition
T, C O\ Q.

Now suppose instead that z' — at’ > z* — at* + Koo, In N. Then

1
IG(z', #)] = / Ga(s, ) ds| < CNV|GCallz,nn,,
[ ]

where T C Q\Qj is the union of those mesh triangles which contain the line segment
{(z,)eQ\Qo: 2/ <2< 1},

Hence for (2',t') € Q3 \ Qo we always have

IG(",#)| < CN {|IGalla,\ay + VEWY? N|iGellnay }
< CN {NliGliaay + VER* N|Gullay\ay }»  using (5.3.1),
<CN~,
by (5.4.44). This proves the L*(Q; \ o) estimate in (5.4.42).
It remains to show the £|G|lwy (n,\n,) estimates. We may assume that (z',t')

does not lie on the boundary of any triangle. Suppose that (z’,t’) lies in the triangle

7. Now G, and G; are constant on 7o. Hence
|Ga(=', )| + |Ge(z', V)]
= [meas(o)] "/ (|Gl + |Giliny)
< Ce !N,
using (5.3.2), the fact that 7o C 2\ Q5 and (5.4.44). u}

Remark 5.4.11In obtaining the global energy norm estimate of G in Theorem 5.4.1, we

used a sharpening of Niijima’s approach [32] for elliptic problems. Using the ideas
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above, one can improve the global L3- and H!-estimates of the Green’s function

given in Lemma 2.2 of [32], by removing all In factors there.

Remark 5.4.2 Theorem 5.4.2 shows that the discrete Green’s function G essentially
vanishes outside Qo with g, oy and K¢ determined by (5.4.13), (5.4.14) and (5.4.43).
Since the dimensions of {}g are much greater than the maximum diameter of the mesh

triangles, we may assume that o is a mesh domain.
5.5 Localized Pointwise Error Estimates

In this section we will estimate the nodal error between the exact solution u and
our computed solution U. In order to derive a nodal error formula suitable for an

analysis under weak assumptions on u, we need the following lemma.

Lemma 5.5.1 For any w € V and any mesh subdomain D C (1, there ezist Pw € V

and a positive constant C, independent of N, M and ¢, such that

Pw=w onD, (5.5.1)

| Pwl| < Cllwl|z=(p), (5.5.2)

|Pwlw ) < CN|[wllze(), (5.5.3)
(L,|(Pw)7|); < Cllwlligm(p), fori=1,...,M, (5.5.4)

where | - |y (q) denotes the usual seminorm in W}(Q).

Proof. For each j € {1,..., M}, let {85374 ") be a set of basis functions in Vj.

Then any w € V can be expressed as

3(N-1)
w(z,t) = E wj #54(z,t) for (z,t)€ Sjand j =1,..., M.

=1
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We define Pw by

(N-1)
Pu(z,t)= Y vijdij(z,t) for(z,t)€ Sjand j=1,..., M, (5.5.5)
i=1
where
. _ J wij,  when supp (¢;;) N D° # 9,
g = { 0, otherwise, (5.5.6)

and D° denotes the interior of D. Then Pw € V, (5.5.1) is satisfied and
dist (supp(Pw), D) < 2N~L.
By (5.5.6), the nonzero terms in (5.5.5) are associated with i’s such that
supp (4ij) N 7° # 0
for some 7 with 7 C D N ;. Thus the nonzero v ;’s can be bounded by
[vijl = lwil < llwllgeo(ry;) for some rfj cDnsS;. (5.5.7)
From (5.5.5) - (5.5.7) we get

1Pulispo < 3 Il islls o
4

< CN 7} |w|lL=(s;np), (5.5.8)

since "d"'..i"s,\D < CN~-1 for all i and j, and there are at most four terms in the

sum.

Summing (5.5.8) over all j we get

IPwllavp < CN~2||w||Le(p)- (5.5.9)
Now (5.5.2) follows easily.
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Note that for all j and i,
|iilwacay + 163C1 )2 (0,0) S CN (5.5.10)
Using (5.5.10), one can prove analogously to the above that
|Pwlwy(a) < lwlwya) + Cllvllzep) (5.5.11)

and

(L|(Pw)7[); < (L, |w7|); p + CNHwllze(p)- (5.5.12)

Now (5.5.4) is immediate from (5.5.12). To show (5.5.3), we use (5.5.7) and (5.5.10)

to get
M
lolwipy SCD. Y lwllpemryyN
i=1 fa,-gDﬂS;
< CN||w||p=(Dy. (5.5.13)
This, together with (5.5.11), proves (5.5.3). (n]

Let uf be the interpolant from V to u. Using Lemma 5.5.1, we define Puf € V

such that
Pul =u! on @ (5.5.14)

and

[Putl + N [Py gy + {1, (o) ),

< C " || gy < Clltllzegao)- (5.5.15)
Take x = U — Pu/ in (5.4.1). Note that (Puf) (z*,t*) = u(z*,t*). We get

(U - u)(z*,t") = B(U - P¥!,G). (5.5.16)
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Set n(z,t) = (u — Pu’) (z,t). Using (5.2.21) and (5.1.1), we have
B (U - Pu!,G) = (f,G +pGp)+ < «°,G* >¢ —B (Pu!,G)
= B(1,G) - &(tiee, pG)- (5.5.17)

Combining (5.5.16) and (5.5.17) and using (5.2.23) we obtain the following nodal

error formula:

(U - u)(z*,t*) = &(na, Gs) + (18, G8) + (1,G) + (n,(p — 1)Gp)

M
— (tae,GB) = Y < 7,[G] >4

J=1
= R(n,G). (5.5.18)

Let Rp(7,G) denote that the integrations in (5.5.18) are extended only over D,

for any domain D. Then
(U - u)(=*,t") = Ray(n,G) + Ra\a, (1, G), (5.5.19)
where < ~,[G] >; is split by
<n7,[G] > = <17, [G] >jm0 + <17, [G] >jm\a, - (5.5.20)
Lemma 5.5.2

|Rava, (1,G)| € CN 10 N {|If1l + 1v°ll2(01)

+ llullz=(ao) + llusllzr(a) + lletaellLr(n)} -
Proof. From (5.5.18)

| Rava, (7, G)

< 1Gllw, a;\00) {Ellmellziay) + llomsllzcay) + lnlles(ay) + P thuallr(ny) }
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+€|Glwz (n\a0) {II7allzr(az) + € lInllzi(a,) }

M
+ G|l =(a\a0) {Ilﬂllm(n) +) (1, Iﬂ'l),-} . (5.5.21)

i=1
We have
ellnellLr(ay) + llomsllzi(a,) + lInllzica,)
< C{ellvallzsay + N~ llusllzscar) + lullzscay)
I - I I
+e NP, oy + 87 [Py | g,y + 1P s }
< C{ellualla, + N *lluglizia,) + lulle, + lullz=(a)} , (5.5.22)

using £ < N~! and (5.5.15).

Since n(1,t) = 0 for all ¢t € (0,T],
"'7”[.1(0,) <Ce¢ln Nuﬂ-"u(n,).
Hence
lInellz2(az) + €M1l Lr(aa)

< Cln N||ns|lz:(n,)

<Ot {luallsan + [ (Pe), 0

< Cln N { Ve Nljualla, + Nlullzeqao) } (5.5.23)

using (5.5.15) again.
Finally, from (5.5.15)

M
Z(l’lﬂ_l),' <

M
=1 =1

{< 1,lul > + (I’I(P"I)_Di}

lulj + CN||ullL=(a,)- (5.5.24)

M

Il
[

<
i
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From (5.1.1) it is easy to show that for each j € {1,..., M},
llually, + lully, + lul} < N3, + lulZao,y (5.5.25)

where §; = U{=IS,-.
Collecting (5.5.22) - (5.5.24) into (5.5.21), using (5.5.25) and Theorem 5.4.1 with
8 = 3, we obtain
lRﬂ\ﬂo (771 G)l
< CN"ellualln, + N lugllzsca,) + llulln, + N lewnallziqay
M
+ Ve Nl|ualln, + N1n N lullgeqa) + 3 lul;}

i=1
<CN2{ (2N + N +1) (11 + Is®llzzcoy)

+ N1 Nl[ullzea) + N llugllzsca) + N llevuallzriay }-

The desired result follows immediately. (m]

We are now ready for our main theorems.

Theorem 5.5.1 (Pointwise error estimate away from layers) Assume that

A+ 1e®llz2(0) + llugliLi(a) + lletaellin) < C, (5.5.26)
and
llullcaqae) < C. (5.5.27)
Then
(U - u)(z*,*)| < Co}*N~'Iné N,
L . 1/2, when (z2*,1*) € Q,,
where o, is given in (5.4.14) and §{ = { 1’/ othem(rise. ) 1
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Proof. Recalling (5.5.18), we have

|Rao (n,G)|
< Vel Iellzeono) VEllGalli (o) + N =**|ngl|Leo(an) 1o *Gill 10
+ lInllze@o)IGlizr (o) + 171l Loo(ao)IGsllz1 ()
+EN T3 ugg|| Loogr) 0" Gallzyn,) + 'lﬂ"L"(Oo)f; < LGl >;a, -
i

Using (5.5.27), Theorem 5.3.1 and
meas({do) + meas(A;()) < Cop,ln N, (5.5.28)
where Aj(Qp) is as in (5.2.15), we get

|Boo(n, G)|
< Co3l !/ N{eNY|Gulla, + N~>*|0**Gjlla,

+N7?Glln, + N7* (IGallasras + VAIIGsllazno, )

M
+ eN"”lIPl/’Gﬂ""o +N? Z I[G]Ij.ﬂo }
I=1

Hence, using ¢ < N~! and (5.3.4),
|Ray(1,G)| < Cop*N=* w2 N|||G]|
< ColAN-1m(+)2 y, (5.5.29)
by Theorem 5.4.1.
Applying (5.5.29) and Lemma 5.5.2 to (5.5.19) concludes the argument. o

We next give a pointwise convergence result for the case when (z*,¢*) lies in the

boundary layer, under the assumption that the solution u exhibits typical boundary

layer behaviour in the neighbourhood Qg of (z*,t%).
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Theorem 5.5.2 (Pointwise error estimate inside the boundary layer) Assume that

(5.5.26) holds and that

tiu(z,t)

iz | S C{1+e " exp(a(1-2)/e)} on Qo (5.5.30)

for i+ 3 <2. Then

(U - u)(z",t")| < Cop*N~2mé N,

where o, is given in (5.4.14) and { = { 2}2 (':’t’;;':“(’ze,t ) €y,
Proof. Set
A= =2l +uN7, (5.5.31)

where 0 < u < 1/2 is a constant which is chosen so that 1 — A, € {z; : i =
1,...,N/2}.

Divide §)g into three parts:

Qo=hLULUIs, (5.5.32)

where
L={(zt)€N: 0<z<1=~2A.},
L={(zt)€R: 1-A<z<1-12},
Iy = {(z,t) € Qo: 1 =A<z}

Clearly I; (i = 1,2,3) are mesh domains with 1 UI3 C 2 and I3 C Q.

In order to estimate Rg,(7,G), we bound Ry (n,G) (i = 1,2,3) successively.

First, from (5.5.30) we have [|ullc2(s,) < C. Thus by arguments gimilar to the proof

of Theorem 5.5.1, we have
|R1,(1,G)| < Coy*N~'In N. (5.5.33)
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Next, we bound the terms in Rp,(7,G). Integrating f, ne With respect to z and

using Theorem 5.3.2 (i),

Y Gal, / e

rCh T

<C Y |Gd,

fglz
< Cel|GallLr(y)-

(G Gl)lzl =

eN~?

Similarly

|18, pGa)1,| < CHIGllzscary,
|(7,G)r,| € CN7YGliyzy)s

< CN7Y|Gpllysy)»

I(n, (p = 1)Gp)y,

|6 (uue, $G) |

<C E N-IEleIf
*Ch

<c) N"eIGplfl {N"? 4+ Nl Y exp(-ar/e)}
Ch

< CN7YGpller(r,)-

/ [1+4 e exp(—a(1 - z)/¢)] dr

Finally
M
<SCN7' Y (LGN, -

j=1

i (’7_’ [G])j.lg

Jj=1
From the above estimates and Cauchy-Schwarz’ inequality, we get

IR (7,G)| < CN=VAIIGII| {{meas()]"/?

+ N2 m}!.x[meas (A,-(Iz))]llz} . (5.5.34)
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Now

meas(ly) < C(A¢— A)oyIn N
<C(eln(eN)"*+ N Yo, N

<CoyN'ln N, (5.5.35)
using In(¢N)~! < (eN)~1. Also
meas (Aj(I;)) S A, — A< CN7L, (5.5.36)
Thus from (5.5.34) - (5.5.36) and Theorem 5.4.1, we obtain
|Rp,(n,G)| < Cad*N"Y2 1 N. (5.5.37)

Finally, for Ry, (n,G), recall that p = 0 on I3, so that

M
st(f), G) = e('"’ G.)Ia + ("a G)Ia - (')’ Gﬁ)’s - Z (’7-’ [G])

=1

”013 :
By Theorem 5.3.2 (ii) and Cauchy-Schwarz’ inequality,

IR, (9,G)| < C{N~In N||Gullr, + N~*In* N||G||1,
+ N~21n? N||Gp|lz, } [meas(I3)]'/

M
+CN7210* N ) |G|, , [meas (A;(1s))]*/2.

=
Since

meas(l3) < CAayln N < Copeln* N

and

meas(Aj(Is)) < Cogln N,
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thus from (5.3.4) and Theorem 5.4.1,

|Rr,(n,G)| < Cal*N~21n? N|||G|||

< Col AN~V N, (5.5.38)
Combining (5.5.33), (5.5.37) and (5.5.38) gives
|Ray(1,G)| < Coy/*N=*1n¢ N, (5.5.39)

which together with Lemma 5.5.2 and (5.5.19) proves the desired result. o

Recall (5.4.14). From Theorems 5.5.1 and 5.5.2, we reach the following conclusion

for our streamline diffusion scheme (5.2.21).

Corollary 5.5.1 Assume that (5.5.26) holds. Then in smooth regions, the scheme
(5.2.21) is pointwise accurate of order almost O(e/*N-!) when N-3/3<e< N-1,
order almost O(e"YAN-"/4) when N-2 <e < N -3/2 and order almost O(N-%/4)
when 0 < € < N2, In the regions where the solution ezhibits typical boundary
layer behaviour, on the other hand, the scheme is almost order O(e!/AN-1/2),

O(e~Y/AN~-%/4) and O(N~3/4) in the above three cases respectively. These results

are uniform in €.

Remark 5.5.1 The assumption (5.5.26) in Theorems 5.5.1 and 5.5.2 is reasonable in
many cases. In fact, an inspection of the proof of Lemma 5.5.2 shows that in (5.5.26)
one can replace C by CK~* for any fixed positive constant u without affecting the
conclusions of our error analysis.

Remark 5.5.2 Applying the initial conditions in a strong form on each time level

leads to a three-level scheme. Then the above analysis starting from (5.2.21) still
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applies, except that the terms involving integrals of the form < :,- >; now disappear.
That is, this three-level scheme is theoretically as accurate as our two-level scheme

above.
5.6 Numerical Results

In this section, we verify experimentally the theoretical results obtained in Section
5.5. Nodal errors and convergence rates for our scheme (5.2.18) - (5.2.20) with
(5.3.14) are presented for two test problems.

In each computation we take N = M and solve the problems for various ¢ and
N. We note that the characteristics of the reduced solution of (5.1.1) run from
southwest to northeast, while our division of rectangles into triangles in Section 5.2
used gridlines running from northwest to southeast. Thus our mesh is not tailored
to the reduced problem. In fact, similar rates of convergence are observed when the
gridlines coincide with the characteristics.

The scheme (5.2.18) — (5.2.20) is used successively on a sequence of time levels.
On each level, the scheme is equivalent to a system of 2(N — 1) linear equations.
The coefficient matrix of the system can be easily permuted to yield a pentadiagonal
matrix. Hence it is possible to solve the system by triangular decomposition with
O(N) operations.

All calculations were carried out in C double precision on an IBM PC.

Ezample 5.6.1 We first test the performance of our scheme when applied to a

problem with typical boundary layer behaviour:

— EUge + tUs + u+u = f(z,t) onQ (5.6.1)
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with analytical solution
u(z,t) = texp(—(1 —z)/e) + 1 - z* + 83, (5.6.2)

where Q = (0,1) x (0,1]. The function f(z,t) and the initial-boundary values on
are chosen to fit this data.

The problem is solved with a = 0.61 in (5.3.14).

Table 5.6.1 Global Maximum Nodal Errors

€ N=8 16 32 64 128 256
1.56250e-2 | 1.645e-1 8.277e-2 3.331e-2 1.336e-2 4.880e-3 1.677e-3
3.90625e-3 | 1.999e-1 1.055e-1 4.763e-2 2.097e-2 8.765e-3 3.385e-3
9.76562e-4 | 2.147e-1 1.195e-1 6.186e-2 3.035¢-2 1.403e-2 6.097e-3
2.44141e-4 | 2.191e-1  1.249e-1 6.951e-2 3.687e-2 1.897e-2 9.232¢-3
6.10352e-5 | 2.202e-1 1.265e-1 7.217e-2 4.006e-2 2.201le-2 1.162e-2
1.52588e-5 | 2.205e-1 1.269e-1 7.291e-2 4.113e-2 2.313e-2 1.279%e-2
3.81470e-6 | 2.206e-1 1.270e-1 7.310e-2 4.142e-2 2.346e-2 1.316e-2
9.53674e-7 | 2.206e-1 1.270e-1 7.315e-2 4.149e-2 2.354e-2 1.326e-2
2.38419e-7 | 2.206e-1 1.270e-1 7.316e-2 4.151e-2 2.356e-2 1.329e-2
5.96046e-8 | 2.206e-1 1.270e-1 7.317e-2 4.151e-2 2.357e-2 1.329e-2
1.49012¢-8 | 2.206e-1 1.270e-1 7.317e-2 4.151e-2 2.357e-2 1.330e-2
3.72529¢-9 | 2.206e-1 1.270e-1 7.317e-2 4.15le-2 2.357e-2 1.330e-2

Table 5.6.2 Global Convergence Rates

£ N=8 16 32 64 128
1.56250e-2 | 0.99 131 132 145 1.54
3.90625¢-3 { 0.92 1.15 1.18 1.26 1.37
9.76562¢-4 | 0.85 0.95 1.03 1.11 1.20
2.44141e-4 | 0.81 0.85 091 096 1.04
6.10352e-5 | 0.80 0.81 0.85 0.86 0.92
1.52588¢e-5 | 0.80 0.80 0.83 0.83 0.86
3.81470e-6 | 0.80 0.80 0.82 0.82 0.83
9.53674e-7 | 0.80 0.80 0.82 0.82 0.83
2.38419e-7 | 0.80 0.80 0.82 0.82 0.83
5.96046e-8 | 0.80 0.80 0.82 0.82 0.83
1.49012-8 | 0.80 0.80 0.82 0.82 0.83
3.72529¢-9 | 0.80 0.80 0.82 0.82 0.83
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The global maximum nodal errors E(*N) between the exact solution u and the
computed solution U(*N) and the corresponding convergence rates p{*N) are dis-
played in Tables 5.6.1 and 5.6.2 respectively, where E(*N) and p(*:N) are computed
from (3.4.3) and (3.4.4).

We remark that the maximum errors in Table 5.6.1 occur at nodes inside the
boundary layer. Table 5.6.2 shows that for this test problem, the uniform conver-

gence rate of our scheme is 0.83 as N — oo, which is close to the value 0.75 proven

in Theorem 5.5.2.

Ezample 5.6.2 We now examine how our scheme performs locally away from all
layers. Consider

— tUge +3us+u+u = f(z,t) onQ (5.6.3)
with discontinuous initial data at z = 0.5, so that the solution u(z,t) has an internal

layer lying along the line 2 = 3t + 0.5.
Using ug(z,t) to denote the sum of the reduced solution to (5.6.3) and the

boundary layer component of u(z,t) at z = 1, we choose the initial and boundary

data and f(z,t) so that

ur(z,t) = (z + 1) + Aexp(—2z — 1) + (1 + ") exp(~3(1 - 2)/e), (5.64)

where

0, whenz<3t+0.5,
A= (5.6.5)

1, otherwise.

We do not have an explicit expression for the exact solution u(z,t), so we compare

our computed solution U(#) with ug(z,t) on @', where

Q= {(z,)€R: 0<2<099, 05<t<1}.
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It is valid to use ug instead of ¥ when ¢ is small, since 2’ is then outside the internal
and boundary layers, i.e., the solution of (5.6.3) — (5.6.5) is smooth in Q.

We solve this problem with a = 1.6 in (5.3.14).

Table 5.8.8 Local Maximum Nodal Errors

£ N=8 16 32 64 128 256
9.76562e-4 | 3.651e-2 1.139¢-2 3.108e-3 7.886e-4 1.907e-4 4.569e-5
2.44141e-4 | 3.668e-2 1.152e-2 3.184e-3 8.286e-4 2.070e-4 5.003e-5
6.10352e-5 | 3.673e-2 1.155e-2 3.204e-3 8.412e-4 2.137e-4 5.305e-5
1.52588e-5 | 3.674e-2 1.155e-2 3.210e-3 8.445e-4 2.156e-4 5.408e-5
3.81470e-6 | 3.674e-2 1.156e-2 3.211e-3 8.453e-4 2.16le-4 5.436e-5
9.53674e-7 | 3.674e-2 1.156e-2 3.211e-3 8.455e-4 2.162e-4 5.443e-5
2.38419e-7 | 3.674e-2 1.156e-2 3.211e-3 8.456e-4 2.163e-4 5.445e-5
5.96046e-8 | 3.674e-2 1.156e-2 3.211e-3 8.456e-4 2.163e-4 5.445e-5
1.49012e-8 | 3.674e-2 1.156e-2 3.211e-3 8.456e-4 2.163e-4 5.446e-5
3.72529¢-9 | 3.674e-2 1.156e-2 3.211e-3 8.456e-4 2.163e-4 5.446e-5

Table 5.6.4 Local Convergence Rates

€ N=8 16 32 64 128
9.76562-4 | 1.68 187 198 2.05 2.06
2.44141e-4 | 1.67 1.85 1.94 2.00 2.05
6.10352¢-5 | 1.67 1.85 193 1.98 2.01
1.52588e-5 | 1.67 1.85 1.93 1.97 2.00
3.81470e-6 | 1.67 185 193 197 1.99
9.53674e-7 | 1.67 185 193 197 1.99
2.38419e-7 | 1.67 1.85 193 197 1.99
5.96046e-8 | 1.67 1.85 193 197 1.99
1.49012e-8 | 1.67 1.85 193 1.97 1.99
3.72529¢-9 | 1.67 185 193 197 1.99

Table 5.6.3 lists the local maximum nodal errors E}:‘N) given by

Eg"N) = max U(‘vN)(z‘-, t’-) -— u.R(a:,-, t,) . (5.6.6)
(mi.t;)eq’

The corresponding convergence rates p(L"N) are listed in Table 5.6.4, which are com-

puted from Eg’m analogously to (3.4.4). Our numerical results indicate that in
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this smooth region, the scheme is approximately second order as N — oo, which is
better than the order of 5/4 predicted by Theorem 5.5.2. A similar gap between
theory and numerical experience is present in all analyses of the streamline diffusion
method (see, e.g., [22, 29]).

We also tested the method on (5.6.3) and (5.6.4) with A = 0 on Q. In this case
(5.6.4) gives a smooth exact solution to (5.6.3). The numerical results on §’ for this
smooth problem are identical to those displayed in Tables 5.6.3 and 5.6.4, except
for a little difference in the errors when N = 8 and 16. This means that for (5.6.3)
- (5.6.5), the local performance in ' of our scheme is not strongly affected by the

presence of the internal and boundary layers.

Remark 5.6.1 Comparing Tables 5.6.1 and 5.6.3, we see that our method is much

more accurate away from layers, as predicted by Corollary 5.5.1.

Remark 5.6.2 After the work in this chapter was completed, we became aware of
the existence of Zhou [53], who has recently performed a similar analysis, obtaining

pointwise error estimates only outside all layers on a quasiuniform mesh.
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Chapter 6

A Cell Vertex Finite Volume
Method

6.1 Introduction

The cell vertex finite volume method is a commonly used discretization scheme for
conservation laws. It has been highly successful in modelling flows in aerodynamics.
Since the method fits very naturally with convection problems, it has advantageous
properties for convection-diffusion problems. However, all analyses for cell vertex
methods have been carried out either for pure convection problems (see, e.g., Morton
and Siili [28], Siili [48, 49] and Morton and Stynes [27]), or for convection-diffusion
two-point boundary value problems (see, e.g., Mackenzie and Morton [25] and Mor-
ton and Stynes [27]). So far, there has been no similar analysis for a parabolic
convection-diffusion problem in the literature.

In this final chapter, we examine a cell vertex finite volume method when applied

to the following model time-dependent convection-diffusion problem:

Lu(z,t) = —ttge + atig + bu+ rue = f(z,t) VY(z,t) €, (6.1.1)

u(0,t) = u(1,t)=0 for 0<t<T, (6.1.2)
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u(z,0) = u%z) for 0<z<1, (6.1.3)

where 0 < ¢ € 1 and Q is as in the last chapter. For simplicity, we assume that a,

b and r are constants with

a>0, >0 and r>0. (6.1.4)

We also assume that f € La(2) and u® € L1(0,1).

The outline of the chapter is as follows. In Section 6.2 we describe the cell vertex
method for (6.1.1) - (6.1.4) and reformulate it as a finite element method. Section
6.3 is devoted to the derivation of a discrete Garding inequality which guarantees
the existence and uniqeness of the finite volume solution. Local errors in the Iy
seminorm (defined in Section 6.3) are analyzed in Section 6.4. (We note that, when
restricted to certain piecewise bilinear trial spaces, this seminorm becomes a norm.)
Our analysis indicates that on a general tensor product mesh, the method is first
order accurate away from all layers, in the I3 seminorm. We can sharpen this result
to local second order accuracy in l3, if either € is very small compared to the mesh
diameter or the mesh is locally almost uniform.

We hope in the future to continue this analysis of the cell vertex finite volume

method. In particular we intend to investigate the causes and treatment of chequer-

board modes.

6.2 Description of the Cell Vertex Scheme

To discretize (6.1.1) — (6.1.4), we first define a partition of ) as follows. For any

pair of positive integers N and M, we consider the arbitrary tensor product grid
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Q":{(z.-,t;)eﬂ: 0=2z<2:<...<2zN =1,

O=to<ti <...<ty =T},

with h; = 2;—z;_1,k;j = t;—t;_1 and h = max; j{h;, kj}. Define the “finite volume”
or “cell” Kj;; by
K;j = (zi-1,2;) X (tj-1,t5), fori=1,...,Nandj=1,..., M.

In the finite volume context, the discretization of (6.1.1) is performed on each
cell. The basic idea is to integrate (6.1.1) over a cell so that the convection and
diffusion terms are converted into line integrals of normal fluxes along the cell edges.
Then use the trapezoidal rule to approximate the integrals. Thus, letting u* denote

the computed solution, for cell K;; we have

/-/K.-,; f(z,t)dzdt
¢

= —¢ /‘ _’ (uf,‘(:r:.-,t)—u',‘(a:.--;,t)) dt
+a/:‘i (u"(z.-,t) - u"(z.'_l,t)) dt
+r / ' (42, 1) - w4z, 1y-1) dit + / /x  buM(z, 1) dadt

~ % (uﬁ(z,-,t,-) — M (21, b)) + ulb(zi,tjo0) — ub(zioa, ij-x))

* _‘{? ("h(z" t;) - uh(zio, tj) + vz, tio1) — WPz, tj—l))
+ r_gl (uh(zl" t:') - uh(zl" tj—l) + u"(z.»_l, t,') - uh(zi—l;tj—l))
+ b—h;_ki (“h(”" t;) + uP(zic1, ;) + wM(@is tjo1) + wP(zi, tj-l)) .

(6.2.1)

With the approximation u*(z,t) parameterized by its values at the vertices, this

still leaves two problems to be solved. Firstly, how do we define u} at the nodes?
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There are several ways in which this may be done, but we consider here the so-called

Method A in Mackenzie and Morton (25). That is, we define
ub(zi,t5) = 1 (u"(x.-+1,t3) - u"(z;_t,t-)) , (6.2.2)
e hi + hiya 7
fori=1,...,N—1,and
h 2 (A A A
w(0.4) = (u (z1,15) — w™(0, t,-)) - wh(z1,1;). (6.2.3)

Similarly to (6.2.3) one can define u2(1,¢;). This solves the first problem.

The second difficulty is as follows. If we perform the discretization (6.2.1) on all
cells, we will have a system of N M equations in (N — 1)M unknowns, since u*(z,t)
will be prescribed on three sides of 2 using (6.1.2) and (6.1.3). That is, we have M
equations too many. To obtain an exact match, we choose upwind control volumes,
that is, each nodal unknown is associated with the cell upwind of it. We do this by
discarding the equations associated with Ky for j = 1,..., M. We then obtain a
system of equations (6.2.1) - (6.2.3),fori=1,...,N—-1and j =1,..., M, which
has exactly the same number of unknowns as that of equations. The second problem

then disappears.

Finite volume methods are often interpreted as finite difference methods. This
is often reflected in the finite difference techniques used to analyse such schemes.
However, for a scheme which does not satisfy a discrete maximum principle, such as
(6.2.1) - (6.2.3), a satisfactory finite difference analysis is difficult to obtain. In fact,
the cell vertex formulation of the finite volume method has a natural interpretation
as a Petrov-Galerkin finite element method. The finite element framework then
affords the possibility of applying some finite element techniques to estimate errors

in the finite volume method; see [28, 48, 49, 27].
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To reformulate the cell vertex finite volume scheme (6.2.1) - (6.2.3) as a finite

element method, we first define our trial and test spaces. Set
U = {ve H(Q)nC(): v(0,t) = v(1,t) = 0 for t € (0, T),

v is bilinear on each cell K},

MP = {pe L}(Q): pis constant on each cell K,

p=0oncells Kny;for j = 1,...,M}.

In order to simplify the presentation, we introduce the averaging operators u, uq

and pg,fori=1,...,Nand j=1,..., M,

1
pwig = I—II //x;,; w(z,t)dzdt,

1 [

HaWij = E w(a:,t,')dz,

81

1 (%
PeWwij = T w(z;, t) dt,
k:' tj-1

for all w(z,t) for which the right hand side is defined.

Remark 6.2.1 One can easily verify that for each v € U and for i = 1,..

j=1...,M,

1
P = z(”i—l,j + v 5 + Y-1,4-1 + Y% ji-1)
1
= '2'(ﬂ.v-',j + tiaYij-1)
1
= 5(/&%‘.5 + evi-1,5)s
1 »
w(ve)ij = E(I‘t”ﬁ.j — WhYi-15)s

1
w(ve)ij = ‘k;(llst’s‘.j — Pavij-1)s
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where v; ; denotes v(z;, t;).

Now the cell vertex finite volume approximation is defined as follows: find u* €

U} satisfying

B(v'p) =(fip) Vpe M,

<uh(,0),p* > =<u®pt >  VpeMb,
where (-,-) and < -, > are the usual L?(?) and L?(0,1) inner products,
(o) = I ¢
p7(z) = lim pz,?),

and we set for any (v,p) € H} () x MM,

M N-1
B(v, p)= —¢ E z k; upii {Be(va)i — fie(va)i-1,}
j=1 i=1

+ (ave + rve + bu, p).

Here we define, for j = 1,...,M and v € C(),

x-‘_":k-t_l(”v“l*" - pvj), ifi=1,...,N-1,

Be(va)ij = { .
R 1015 — fe(Va)1ds ifi=0.

(6.2.9)

(6.2.10)

(6.2.11)

(6.2.12)

Remark 6.2.2 For the discretization of the diffusion term in B(v,p), we do not need

nodal values of v,, just its integral along two sides z = z;_; and z = z; of K;;.

For i = 1,...,N — 1, fiy(ve)sj is defined by associating uv;; with the cell centre

then taking the obvious divided difference. For i = 0, we define fi;(v,);; by an

extrapolation. It is easy to check that (6.2.1) — (6.2.3) is equivalent to (6.2.9) -

(6.2.12).

In the next section, we will show the existence and uniqueness of the finite volume

solution.
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6.3 Stability and Convergence

We begin our analysis of the cell vertex finite volume scheme (6.2.9) - (6.2.12) by

establishing the stability of the method in some appropriate mesh-dependent norms,

which in turn implies the existence and uniqueness of the finite volume solution u®.
We introduce the following mesh-dependent norms:

M N-1 12
[vli,(an) = { D h.'kjllwi,,'l’} ’

j=1 i=1

M N-1 1/3
|0li,0, %) = {E kilpeon_15l® + ) hslu.vml’} :

j=1 =1
N-1 1/3
[vli,0_0a8) = {E h-'lﬂ-"-'.olz} ,
i=1
1/2
M N-1 M
+hia, h .
|%lt,0n) = { > -’3-'—2—h’+—lkjlm(v.)ul’ +3 2 kslm(v.)o.jl’} ,
i=1 i=1 J=

for all v(z,t) for which the right hand sides are defined.
Remark 6.3.1 We note that these norms are seminorms on L*(Q). If |- liz(an) 8
restricted to the subspace of U{ defined by

{veu:: v(z,0)=0 forOSle},

then it is a norm. The first three of these seminorms are similar to those used in

Siili [49). The last seminorm is introduced here to deal with the diffusion term.

Define a projection R : U» — MP by

Ro = BV, onK,-.,’,fori:l,...,N—landj:1,...,M,
1o, otherwise.

The stability of the finite volume method (6.2.9) - (6.2.12) is proved by the following
discrete Garding inequality.
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Theorem 6.3.1 Assume that ¢ < a(hny-1 + hn). Then for each v € U},

o £ 2 2
B(v, RV) _>_ 5'”."‘2(0;) + blvllz(n.)
| r
+ 3 min{a, r}ol} o, ) = 310l 0_0s):

Proof. Recall the definition (6.2.11) of B(-,-). For each v € U},

) M N1
B(v,Rv)= -y _ ) kjpvi {fe(va)is — fe(va)i-1,i}

J=1 i=1

+ (avg + rve + by, Rv)

= 5L+ 1. (6.3.1)
Firstly, by summation by parts,

M
L=c¢ Z k,'{ —HUN-1,j Pe(va)N-1,5 + prj ie(va)o,j
j=1
N-2
+ ) (Wtigrg - uv-'.i)ﬂc(v-)-'.:'}- (6.3.2)

=1

Now

—pN-1,; fe(ve)N-1,5

= (UON.j — BON-1,7)ibt(Va)N-1,5 = BON; fe(va)N-1,j

1 n
= M—%ﬂ!lﬂt(%)n—ul’ = MON-1 fie(va)N-1,5s
using (6.2.12), (6.2.6) and pevn,; =0,
hn-1+hN,. 12 1 13 6.3.3
2> —"_4—'_“"‘(”')”-14' 4(hN-—1 + hN)imvN-ldl ( )

Similarly, using (6.2.6) and peve,j = 0, we have

B fe(va)o,j

1 .
= Eﬂt”l.j fe(va)oj
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= %(ﬁe(v.)o.j + fit(va)1,5)fke(va)oj, by (6.2.12),

> 2 (lin(omdol? = iu(oahrgl?) (6:34)

Also from (6.2.12), for i = 1,..., N — 2, we obtain

h|+h.+1

(Bvis1s = poig)ie(va)iy = = |ide(va)igl*. (6.3.5)
Substituting (6.3.3) — (6.3.5) into (6.3.2) we get
hn-1+ hN 3 1
> N L .12
L 6’2;,:, { Il‘t(vn)N-l,:l a(hn_1 + hN) I“l”N—l,;'
hy (. .
+ 5 (lie(va)osl* = lae(oa)rsl?)
+ ’l.
Z LELH |ie(ve)il } (6.3.6)
=1
Next,
M N-1
E Z hik; p(ave + rog + bv); pvij
Jj=1 i=1
M N-1
= Z Z {ak; (pevij — pevi-1,5) + vhi (Bevij — pavij-1) + buvi;} po;;,
i=1 i=1
by (6.2. 7) and (6 2.8),
a M -1 \
= 9 sz Z Il‘tvlgl - |l‘¢”t—l.:| + Z h; Z |P-U.,J| I;t.v,-.,'._1| )
I=1 =1 a_l j=1
M N-1
+63_ Y hikjluvigf?,  using (6.2.5) and (6.2.6),
j=1 i=1
a M N 1
Elem”N—l.Jl + = Z h; |l‘t”s.ll| - Il‘-”;.ol )
J-l l-—l
M N-1
+b Z Z h.'k,'lpv,"jl’, (6.3.7)
J=1 i=1

by telescoping and using pvej =0, for j =1,..., M.
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Hence
B(v,Rv)= L + 1)
13 a € M
> Zlval? — , |2
= 2""‘&(0*) + (2 4(hy-1 + hN)) = kslpeon -1l

N-1
+3 3 il - 2191} a_e) + B0l an)-
The desired result then follows from the assumption of the theorem. (n]
As a corollary we obtain the following stability result.
Theorem 6.3.2 Assume that ¢ < a(hn-1 + hn). Then (6.2.9) - (6.2.12) has a

unigue solution u* € UP and

h 2 A 3 h 2
€]t [(0%) + Iu INGD) Iu Il,(o+nu)
<C {lf |l’z(0“) + l"o'u’,(a_nt)} . (6.3.8)

Proof. As the existence of a unique solution follows from (6.3.8) because we are

dealing with a norm in this situation (cf. Remark 6.3.1), we only have to establish

(6.3.8).
Taking p = RuP in (6.2.9) and using the arithmetic-geometric inequality, we

obtain
B(u*, RuP) = (f, Ru*)
b| a2 1
<3 I" lz,(nb) + 2b|f ligasy:

Now an appeal to Theorem 6.3.1 completes the proof. n]

As another corollary of Theorem 6.3.1 we have the following global error bound.
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Theorem 6.3.3 Assume that € < a(hny-1+hy). Let ul be the interpolant from ug
to u. Then

+ lu = u“lb(mm)

<C {8 Im(“-) - i“(“:)l:;(ns) + Ia(“ - ﬂl). +r(u-— u’);l:z(n.)

N ke A
£ l[‘t(u.) - M(ul) ’;(ng) + Iu U lh(m)

2 2
+ |8 = o[, gy +u - "'Il,(o_nh)} ,

where
2 o, RS it b ) 2
Im(u-)-ﬁc(u'.‘) RED I hi . +1 lm(u,).' 5 — ie(ub); "'I
BOh IS
h1 M . h 2
+7 Y kj lm(u.)o.,' - #c(u.)o.jl ) (6.3.9)
i=1

and |py(u,) - ﬂ,(u{)l:g(m) is similarly defined.

Proof. Set
Then

We begin by estimating §.

3 N o 1 in{a, r}€]? 5. o

< B(&, RE) + -;-IEI,’,(,_(,.,- (6.3.10)

Set

eig = pe(ua)ij — e(va)ii- (6.3.11)
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From (6.1.1) - (6.1.3) and (6.2.9) - (6.2.12), we have

. M N-1
B(&,RE) = —e ) ) kjukij{es — 1)
J=1 s=1
+ (ane + rne + by, RE) (6.3.12)
and
|£|1’,(3_nh) = |'7|¢,,(9_0A)- (6.3.13)

We estimate the term involving ¢ first.

M N-1
S IPILT FICTEL R
=1 i=1
M N-1

=c) kj {—pfu,j en—1;+pErjeos + O (HEivrg — péis) e.',j} ,

J=1 =1

by summation by parts,

M 1 1
=¢ Z k; {—-2-;«6”-1.5 en-1,j + shel1j €0

=1

N-1 .
+), Ll'—%hﬂﬂt(fo)i.ieid},
i=1

by virtue of (6.2.12), (6.2.6) and peo,; = weén,; =0,

M h
=c) kj { —%#th—l,j eN-1,; + 71 (Pe(Ee)os + Ae(€a)r,i) €0,
et

N-1
3 MR e as), by (6212)
=1
M .
<e Z k; {ma—’r—}'lmfn—l.jl’ + Celen-1,51*

4 8¢
i=1

h hy .
+ TelieEedosl’ + Tgli(Ealral’ +Chaleosl”

N-1 N-1
1' e hithivr . o\ 42 hi + hit1, 2
LY B e Y B )

=1 i=1

£ - 2
< < min{a, T} €]} 0, n) + 716olf o) + C¢ lie(ua) - e(ug) s (qny » (6:3.14)

QO | =t
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using € < a(hny-1 + hN).

As for the other term in (6.3.12), we have
b
(ane + rn¢ + by, RE) < Elfl?,(nu) + Clane + riie + blj, qu)- (6.3.15)
Thus from (6.3.10), (6.3.12) — (6.3.15), it follows that

€ b 1 .
ZIE.I?’(“,,) + §|f|¢’,(m) +3 min{a, "Hfh’,(o,,,nb)

. 3
<C {e | e(ue) - m(“f)h;(m) + lane + roie + byl qu) + |’7|:’,(a.n~)} .
This, together with the triangle inequality, yields the desired result. o

6.4 Local Error Analysis

In this section we present local convergence results for the cell vertex finite volume

scheme (6.2.9) - (6.2.12).

We first derive various interpolation errors. Set
I={(ij):i=1,...,N-1,5=1,...,M}.
We have
Lemma 6.4.1 For any (i,5) € I, assume that u € C*(K; ;U Kiy1,5). Then
lumi gl + [1(ane + raedigl < C(hiki) ™2k |ulgsx, ;). (6.4.1)

|#athiol < Ch:/’ I“olgs(.‘_h...) ’ (6.4.2)

|e(ua)ig — in(ublis] < € {Ihs = hina llvllooa
+ (s + B +E]) ||“||03(xuux.-+u)} (6.4.3)
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with
|e(aos — fe(ubog] < C {1b1 = ha llullcage, ;)
+ (B ++ ) lllosm,yumeyy ) (64.4)

where | - | gs(p) denotes the usual seminorm on H3(D).

Proof. The proof of (6.4.1) can be found in the proof of Theorem 4 in Morton and

Siili [28]. In a similar manner one can prove (6.4.2).

We only have to prove (6.4.3) and (6.4.4). For ¢ > 1, using (6.2.12),

- 2
e(ua)ig = i ¥ by (wudya g = pul)
1
= S T ey W F 1~ Seng ~ ), by (62.9),
1 iv1 — by
= 5 (ta(2i,t)) + va(zistj1)) + 5%— (Sna(2ir ) + tma(Zir tj-1))

+ m {h3,1 (tawa(01,t;) + Uses(f3,tj-1))

+ h.a ("nn(ol, tj) + “m(obtj—l))} ’

by a Taylor expansion, where

Zi1 < 03,04 < z; < 01,03 < Zi41.
Thus

le(ue)ig— fe(ul)isl
‘.
L o t) di - 5 (un(ints) + val2isti1))
k" ‘j—l 2
+ C|hl'+l e hll Il“”cﬁ(K.-,,-) +C (hl?+l + ht,) "u"C':’(K,',,'UK.'.“J)

<

< Clhiss = hil llullexgr. ) + € (hdea + B + K] llvllos (i jumis )
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by the error estimate for the trapezoidal rule.
Similarly, for i = 0, by a Taylor expansion about z = 0 and using ugj = 0 for
all 5,
2

pe(u)os = ‘E;'l‘tu{,j - pe(udn

1 1
= E‘(“l.j +uy4-1) - m("u + u3,-1)
h
= u.(O, tj) + u.(O, t,'—l) + —2!' (u"(()’ tj) + u“(07tj—1))

+ %{ (u,,.(og, tj) + tgue(fs, t)"'l))
‘% (4a(0,15) + ua(0, 1)) — 2 7: 22 (100, 15) + tna(0, 1))
_(h1 4 ha)? (vuna(07,t5) + Yase(0s,5-1)),

12
= L (00,8) + 5a(0, )+ 2 (0,1 + Ume(0,15-1)

h3
+ —61 (uaasa(fs, t,‘) + tpea(0s, ti-l))

_(_hl_.;'é—h’—)z- (Yans(07,t5) + tana(fs, tj-1)),

where

0<f<zq forl=5,...,8.

Hence

|ie(e)o— fe(uz)ogl

‘.
£ wona- . (un(0,15) + 1a(0, 1)
kJ' tj-1

+Clhy = ha| lullcage, 5y + € (B3 + B) llullosmy jurag)s

<

< Clhy — ha| [[ullox (g, + C (3 + B + k) llwllesx, jukay)s

which completes the proof of (6.4.4).
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For each (3, j) € I, define
€ . .
B; j(w) = s Be(a)ij = fe(wadiz1,5) + p(awe + rwy + bu)i,

for all w for which the right hand side is defined. Then
M N-1

B(w,p) =Y Y hikjupij Bij(w).

=1 i=1

For I any nonempty subset of I, let {} = U(‘. et Kig- Set

1/2
'“"3({5):{ > hikilBi.j(w)l’} .

(3.9)el

(6.4.5)

(6.4.6)

(6.4.7)

We note that | - | B(as) is a seminorm on L3}(Q). It can be regarded as a gen-

eralization of the seminorm | 7 'Ih(a('))h,(nb) introduced in Morton and Stynes

[27].

Using Lemma 6.4.1 we get the following error bound in a local || B(as) seminorm.

Theorem 6.4.1 Let (2 = U(‘. g)el K;; be arbitrary. Set

={(i,j)eI: j=3'andli-¥| <1 for some (i',j) € I}.

Let Q+ = Ug.)et+ Kij. Assume that u € CY(§2*). Then

lu - Iam)

<Ce { mas. (h7hiss = il 4771 = il il

(ig)el
+ (ma.x {217, hiy k3R l}"“"c-’o(t'i-r)} +Ch? g3 (t)-
i.5)€

Proof. From (6.1.1), (6.2.9) and (6.2.11), we get
M N-1

B (u" - u’,p) = —£) Y kjppisleis — eioi}

J=1 i=1

+ (aﬂ. + re + bﬂ,p), VP € Mh’

147

(6.4.8)

(6.4.9)



where ¢; ; is as in (6.3.11).
Fix (i,5) € I. Take p in (6.4.9) to be the characteristic function of K; - From

(6.4.6) this yields
B; ; (uh - ul) = —eh {e;5 - €i-1,5} + u(ane + roe + bn);i ;. (6.4.10)
Applying Lemma 6.4.1 gives

|Bis (% = o) | < Ceni* {(Ihisa = hal + 1hs = el lullcae, ok
+ (ht?+1 + h’oz + k:) """cs(x.-_,_,ux;,,;ux.-“,,-)}
+C(hik;) k2 u| g, ;).
The desired inequality follows immediately from the definition (6.4.7). a

In what follows, we will derive a local error bound in an energy seminorm. To

this end, we introduce a cut-off function w(z,t) defined by
z -z .
=g =—=—)g(t-1t"),
o) =9 (125 ) ate- 1)

where (z*,t*) is a fixed node, v > 1 is a constant (which we choose later to be

independent of ¢ and the mesh), and

g(r) = m%(—l;(—r-)- Vr € (—00,00).
Set
Qo ={(z,t)eN:z2 <", t< 1}, (6.4.11)
QF = {(z,t) €ER:z<z" +s-yhln%, t<t'+syhln i—} , (6.4.12)
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where s > 0 is some integer (which we choose later to be independent of € and h).

Without losing generality, we assume that QF consists of cells, that is,

e
% =UUKis

J=1li=1

for some (#, j') € I. Set
l+l

aFt = U U Kis-

J=1i=1
Similarly to the previous chapters, one can easily show that

<0 and w<0 on§,

maxw/ minw < C, max Iw.l/mm |we| £ C,
(K] (%) D

with D;j = K;; U Kit1,5,
|wal < CY7 07w,

w(z,-n,t) S Ch‘, fort € [0, T},
w(z,t)21 onfl.

Notation. We introduce the following weighted norms:

’-l "I l/’
12l 08 )0 = {Z > hik; “"'-"l"”"dlz} ’

j=11i=1

1/2
[vli,0_08)w = {Z’h wi,1 | e vi0l } ,

=1
i &

4 by ,
|%elt (0w = {Z Z Lz'—ﬁ ks wiglie(va)igl?

j=1i=1

1/2
}: k; wn,5le(va)oil® } )

1=1
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(6.4.17)
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for all v(z,t) for which the right hand sides are defined.
Define R, : U} — MP by

Ryv = wij pvig, on Kij, fori=1,...,#, j=1,...,5,
0, otherwise.

Then we can prove a weighted Girding inequality.

Lemma 6.4.2 Assume that there ezists a positive constant co, which is independent

of € and of the mesh, such that
e<coh; fori=1,...,i'+1 (6.4.19)

Then

" 13 2
B(v, va) 2 Z'U.Ia(n:)” + blvllz(nd')#

r s 2
2ol o0ty - CH BT gy
where | - Ib(n:-p) is defined analogously to | - |,(an)-

Proof. Similarly to the derivation of (6.3.7), we have

(ave + roe + bv, Ruv)
2 Z Z kjwig (Imevigl? = lmevioagl®)
)-—1 =1
r " ¢ 3
+3 Z Z hi wij (uevigl® — IBeviial®)
J=1 i=1
L
+633 hikjwiglpvigl®
J=1i=1
ad J 3 2
=3 Zx k; { Z;(“’i.i — wignj) i gl? + wiarjlieow sl
1= =
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"' jl
r

+5 Y ki ) (@i — wige) i vigl? + wigrsr lievigrl? — wialpaviol?

2 =1 j=1

i

+6) Y hikjwig luigl, (6.4.20)

=1 i=1
by summation by parts and using peve,j = 0.

Next, the contribution to B(v, R,v) from the diffusion term is

j' “'

Qe = —€) ) kjwijpvi{ie(va)ig — fe(va)i-1,5)
Jj=11i=1

o

J
=€ z: k,{ — Wy § PV ﬂg(v.)"l.,' + w1,j 4015 ﬂg(v.)o’j
J=1
-1
= ) (Wig pig — Wi B3 e (Ve)i g } (6.4.21)

=1

Now, analogously to (6.3.3), we have

—pvy j fie(ve)ir

> hl" + h!"+l I

1
s (oY |3 — e | aq |2, 6.4.22
2 m(v.). ,)I h“'+h,"+1 I”'vl +1.J| ( )

Fori=1,...,-1,

—(wi,j uYi5 — Wig1,j Bi41,5)Ae(ve)i

= {wij (V41,5 — pvig) — (wij — wi+1,j)lwu'+l.j} fie(va)ij

- +2h‘+1 wi g |Ae(ve)igl® — (Wij — Wis15)Pvisrj Ae(ve)ig, by (6.2.12),
-———-——h' ' 1 ____-1 SUIAY NS YT
> L +4h:+1 Wi j |I‘t(v.)i.i|’ W7 ™ (wij = wisr,4) wij |vigr ). (6.4.23)

Substituting (6.4.22), (6.3.4) and (6.4.23) into (6.4.21) , we obtain

i 1

h' h" ~ . . . 2

Q‘ 2¢€ Z k’ { Lt +4 a2 Wy 5 l#t(v.)i'd'l’ - h,'l + h.'l+1 Wy 5 ll‘vt"Hqu
i=1
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hy

B (ol - ool + 3 R
=1
-1

(wig — wiprg P} I -I’}
gmh. 3~ +
,I

o2 -t wir + laveesy o|?
2 glveliatye har + hirgy g"’“’"“ Il

,'l

-y kj E T h' (wig — wir1 ) Wi} [svis sl (6.4.24)

j=1 =1
In (6.4.24), the second term can be bounded by using (6.4.17), to get

‘l

h_-:h._.n Z kjwq Il‘vi'-H,Jl
" ot

'l

C'——-——h' ks |pvg
<Crhm ,Z_; i |Bvirg i1
_<_ Ch‘h;-"llvllg(ﬂ:")’ (6.425)

using (6.4.19).

As for the last term in (6.4.24), using (6.2.6) and (a + b)* < 2(a® + b?), we get

E h; + h. T (wi,j — wWit1,§)’] ll"h‘ﬂ,jl’

=1

<5 Z o h‘ Al D max |wal? wig (sevisl* + lpeviva il*)

!—1
- - 2
=¢ Z; hi + ‘“ W Kivva Jwal(lpevigl® + leviersl®)s
using (6.4.16) and (6.4.15),
i'-1
<077 Y max nl(lpevial” + Iievienal?)

=1
!

1)
<Ccy! Z (max |ws| + max lwal) |I‘¢”t.:|

t+lJ
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&
-1
<Cx ‘Z; (K.-,}B%“J Iw.l/ mm Iw.l) (wig — witr,5)|pevil?,

since (6.4.14) implies that w;j — w415 > 0,

(w.-,,- — wig1,5)|mevij|?, using (6.4.15),

< C7"1 Z

‘-l

s 2¢o Z h, (wig -“"+1»J)|l‘f"u| ’ (6.4.26)
i=1

on choosing v sufficiently large, independently of ¢ and of the mesh used.

Thus, from (6.4.24) - (6.4.26) and (6.4.19), we obtain

j' ‘-l

= 4I "[2(0"').“ 2 Z ki (Wi = wirag)lmevigl” — Ch*hi, ol 203 )
=1 =1
Combine this with (6.4.20) and use (6.4.14) to complete the proof. o

We now prove the main result of this section.
Theorem 6.4.2 Assume that ¢ < a(hy-1 + hn) and that (6.4.19) holds. If u €
C3(Q¢), then

Iu - u",E( < Ch (llullca(nH) + Iu°|n3(o.-‘.))

o)
+C (h*hzL,)"? (Ilf lzaay + [[8°| 20,0y + ¥l mrs(a +)) ’

where Qg and O+ are as in (6.4.11) and (6.4.13) respectively, s is as in (6.4.12),

1/2
,“"‘h,s(no) { eCa) = ), 13(00) l"—“hlt’e(no)}

with Iﬂt("-) - f"t(“b)lv(no) and | - |i,(a,) defined similarly to (6.3.9) and | - |i,(qs)-
2

and

Proof. Applying Lemma 6.4.2, we obtain

£ 2 2

a r 01—
< B(6, Rub) + 5 o_apyu + CW Bl sy (6:427)
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Recalling (6.4.6),

. Y
B(&,R¢) = z E hikjw; ; péi i Bij(€)

J=1 i=1

b 1 j' "
< S Wlhatye 35 20 2 hkiwig [Big(OF.  (6.4.28)

j=1i=1
Put this into (6.4.27) to get
ZIEl? o BlER
2 2(Q5 ).w 1L(0} )
< % ’}; g hikjwig | Big()* + rlél, o_ap ) + Ch* At €l s+
<C {’ﬂzm;, +¢ Ilzz(o_ng)} + Ch'h..',_h 1€ I,zz(gr), (6.4.29)

since w(z,t) < 2 on , where | - liy0_ng) i8 defined similarly to | - |1,i5_qs).

Appealing to Theorem 6.4.1, we obtain

€1pazt) < Ce 1'2{2’5'{h‘- '} { lrg%)g,{lhm = hilMlullgzayy + h’ll“llca(ng")}

+Ch?|ul g3 ag)

< Ch"u"cs(n:#'), (6.4.30)
using (6.4.19).
By (6.2.10),
Eliyo_a2) = 17,0ty < Ch* %] 30,0, (6.4.31)

by virtue of (6.4.2).

For the last term in (6.4.29), we have

ly,ag+) < '"h’:2(0:+ y + ¥liaze + lcag )

<C (|f liaas) + I“olz,(a_nt) + vl az +)) + Ch,l"'”’(";’ ty
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according to Theorem 6.3.2 and (6.4.1).

Clearly, for any w € L3(Q),
w2+ < 10l < llwlle,(a),
by Cauchy-Schwarz inequality. Also
Iullzay < € (1 Mzzay + 9%l 10,) -
Thus
€l ag+) < € (Ifllay + [ 2gay) + CHlul gy

Collecting (6.4.30) - (6.4.32) into (6.4.29) yields

2 2 1/’
{5 lelr 2 )0 + Kltycag ).w}

< Chllullgsip+y + Ch* 4l gs(o,a)

+C (h*h3}, ok (llf lz2(a) + Mu“llmo.n + |l gs(ag ")) '

Note that by (6.4.18),

2 2
elfnli(n:) + 'fla(no) < 5'6-’[2((3:)'. + Iflb(g; )

(6.4.32)

(6.4.33)

(6.4.34)

Combining (6.4.33) with (6.4.34), invoking the triangle inequality and using

Lemma 6.4.1 we obtain the desired result.

o

Remark 6.4.1 The assumption that u € C¥(Q¢*) in Theorem 6.4.2 can be guaranteed

if the data is sufficiently smooth and satisfies certain compatibility conditions at the

corner (0, 0) of 9.
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Corollary 6.4.1 Assume that the hypotheses of Theorem 6.4.2 hold and

hiy1 = hi + O(h?), fori=1,...,¢ (6.4.35)
and
hyy1 = O(R"®)  for some x > 0. (6.4.36)
Then
h
[~ 9 0y < O (Iullescag) + 187150000 + ISl + 140l a0 -

Proof. By inspecting the proof of Theorem 6.4.2, we see (cf. (6.4.30)) that when

(6.4.35) holds,
Klpaz) < C h’llullc,(,,:+). (6.4.37)

Hence from (6.4.29), (6.4.37), (6.4.31) and (6.4.32) we have
2 2 1/3
{eleall oty + Klhiatre
< Ch? (llullgsap+) + 141300, 0,))
-1,\1/2
+ C (h.h‘.’ll) / (”f"l'z(n) + "uo"lﬂ(o,l) + Iulas(n:*')) . (6.4.38)
Since (6.4.36) implies h‘-’,il = O(h™*), we take s = x+4 in (6.4.38). Now arguments

exactly the same as in the proof of Theorem 6.4.2 lead to the desired result. o

Corollary 6.4.2 Assume that the hypotheses of Theorem 6.4.2 hold and that there

ezists a positive constant ¢y, which is independent of ¢ and of the mesh, such that

e<ah?, fori=1,...,{+1. (6.4.39)

Then

Ju-wt| <A (Iullgsaps) + 18°lmo(o,mn + 17 lzaqay + 18]l ooy

E(fo)
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Proof. From the proof of Lemma 6.4.2, we see that when (6.4.39) holds, one can get

(cf. (6.4.25)), for each v € UD,

5 €1, 12 2 LT
B(v, va) 2 4'”"&»(0:),- + blvllz(g:)', - Elvllz(’_n:)’“ - Ch.lvlg’z(ng-#)-

Hence, similarly to the derivation of (6.4.29), using (6.4.28),

.2 2
2l¢=liat)w T Ul aty0

’ ’

1<
<320 hikjwis | Bis(OF + rlEl}o_atye + CHIEL qa+)

I=1i=1

<C {|5 lBag) + 1€ |a’,(a_ng)} + Ch* Kl (as+): (6.4.40)

Also, from (6.4.30) we see that (6.4.39) implies (6.4.37). It then follows from

(6.4.40), (6.4.37), (6.4.31) and (6.4.32) that

1/3
{5,€cli(ng ) + 'ﬂl:(ng’).o}
< CK? (I[ullgsiag+y + [4°lmo(o,0,))

+CR (1 fllzagy + 6] pagony + Mlisag+) -

Choose s = 4 and follow the same argument as in the proof of Theorem 6.4.2 to

complete the proof. o

Remark 6.4.2 The assumption (6.4.19) is reasonable, since we are interested in the
singularly perturbed case. Theorem 6.4.2 tells us that under this assumption, away
from any layers, the scheme (6.2.9) — (6.2.12) on an arbitrary tensor product mesh
is first order accurate in the I3 seminorm, as one can choose s sufficiently large to
make the term C’h‘h{,_}_l negligible. Corollary 6.4.1 indicates that if we work with an

almost uniform mesh, then the method becomes second order accurate in smooth
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regions. Corollary 6.4.2 shows that when the diffusion parameter ¢ is relatively
small, the method is second order accurate on any general tensor product mesh,
away from any layers. However, this I3 seminorm is of course not strong enough to

exclude chequerboard oscillations from the computed solution.
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