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Summary

Uniformly Convergent Finite Element Methods

for Singularly Perturbed

Parabolic Partial Differential Equations

Wen Guo

Department Of Mathematics

University College, Cork, Ireland

A thesis submitted for the degree of Doctor of Philosophy

April 1993

This thesis is concerned with uniformly convergent finite element methods for

numerically solving singularly perturbed parabolic partial differential equations in

one space variable.

First, we use Petrov-Galerkin finite element methods to generate three schemes

for such problems, each of these schemes uses exponentially fitted elements in space.

Two of them are lumped and the other is Bon-lumped. On meshes which are ei­

ther arbitrary or slightly restricted, we derive global energy norm and L2 norm error

bounds, uniformly in the diffusion parameter. Under some reasonable global assump­

tions together with realistic local assumptions on the solution and its derivatives,

we prove that these exponentially fitted schemes are locally uniformly convergent,
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with order one, in a discrete Loo norm both outside and inside the boundary layer.

We next analyse a streamline diffusion scheme on a Shishkin mesh for a model sin­

gularly perturbed parabolic partial differential equation. The method with piecewise

linear space-time elements is shown, under reasonable assumptions on the solution,

to be convergent, independently of the diffusion parameter, with a pointwise accu­

racy of almost order 5/4 outside layers and almost order 3/4 inside the boundary

layer.

Numerical results for the above schemes are presented.

Finally, we examine a cell vertex finite volume method which is applied to a model

time-dependent convection-diffusion problem. Local errors away from all layers are

obtained in the 12 seminorm by using techniques from finite element analysis.
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Chapter 1

Introduction

1.1 Statement of the Problem

We consider the singularly perturbed parabolic problem

Lu(x, t) == -eu_ +a(x, t)u. +b(x, t)u + r(x, t)Uc = f(x, t) V(x, t) E 0, (1.1.1)

where 0 =(0, 1) x (0, T], T is a positive constant,

u(O, t) =qo(t) and u(l, t) =(}I(t) for °< t ~ T,

u(x,O) =uO(x) for °~ x ~ 1,

(1.1.2)

(1.1.3)

e is a small positive parameter, and the functions G, b, r and f are sufficiently smooth

with

0< a ~ a(x,t) ~ a*, 0< II ~ r(x,t) ~ 11*, V(x,t) EO.

We also assume that qo, (}I and uO are piecewise smooth.

(1.1.4)

Under these hypotheses, we may assume without loss of generality (by making

a change of dependent variable if necessary) that

1
b(x, t) - 2a.(x, t) ~ 2Ct on 0,

3
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where Ct E (0,1] is a positive constant independent of £ and any mesh used.

The conditions (1.1.1) - (1.1.5) define a time-dependent convection-diffusion

problem. Problems of this type arise, for example, in the modelling of steady and

unsteady viscous flow problems with large ReYnolds numbers (see Peaceman and

Rachford [37] and Van Dyke [50)), convective heat transport problems with large

Peclet numbers (see Jacob [18)), oil reservoir simulation (see Ewing [11)), radioac­

tive corrosion in the water cycles of an atomic reactor, adsorption processes in gas

piplines, spread of medicaments with the blood circulation or of plumes of poisonous

industrial wastes in river systems (see Baumert et ale [3)), petroleum reservoir me­

chanics (see Price and Varga [38)) and electromagnetic field problems in moving

media (see Hahn [42)). In (1.1.1) £ is a diffusion coefficient and the function a is a

flow rate.

The differential operator in (1.1.1) is of mixed parabolic-hyperbolic type and has

mainly hyperbolic nature when £ is small when compared to a, b, r, and f. In the

limit case £ = 0, (1.1.1) degenerates into a purely hyperbolic equation where the

initial-boundary condition is restricted only to the inflow sides t =°and z = O.

The solution of this hyperbolic problem, which is called the reduced solution, can be

obtained by integrating along the characteristics starting on the inflow boundary (see

Bobisud [4)). It is known that when £ -+ 0, the solution u(z, t) of the full problem

(1.1.1) - (1.1.5) converges weakly in L2(O) towards the reduced solution (see Vishik

and Lyusternik [51)). However, the reduced solution is in general not identical with

u(z, t) at the outflow boundary z =1. Hence the solution u(z, t) will generally vary

rapidly in a layer region of width 0(£ In(I/£)) at boundary z =1, even for smooth

initial-boundary data. This layer region is ca.lled a boundary layer. The boundary
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layer phenomenon has been discussed by many authors since Prandtl's original work

in 1905; see, e.g., Vishik and Lyusternik [51], &khaus and de Jager [10], Nayfeh [30]

and O'Malley [33].

In addition to having a boundary layer along z = 1, the solution u(z, t) also

shows internal layers of width O(yE) (see Nivert [29] and Eckhaus and de Jager

(10)) along those characteristics at which the reduced solution is discontinuous. Such

discontinuities typically occur if the inflow boundary data have a jump discontinuity

on the inflow boundary z = 0 or t = 0, or if I has a jump discontinuity across a

characteristic.

Due to the presence of these layers, the solution u(z, t) will in general not be

globally smooth; it will vary rapidly in layer regions. This causes serious difficulties

when solving (1.1.1) - (1.1.5) numerically. In the next section, we will review some

numerical methods proposed for this singularly perturbed parabolic problem.

1.2 Previous Numerical Analyses

For parabolic partial differential equations, conventional numerical schemes such

as the finite element Galerkin method or finite difference methods typically yield

centered difference approximations for the convective term. For small values of £,

such methods will produce severely oscillating solutions, which do not accurately

approximate the exact solution of (1.1.1) - (1.1.5) unless an unacceptable large

number of mesh points is used or the exact solution happens to be globally smooth.

Indeed, the inadequacy of the conventional methods for the singularly perturbed

parabolic problem is a well-documented fact (d. for example, Hindmarsh et al. [IS)).

In the finite element approach, this deficiency is usually remedied by replacing the
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Galerkin method by a so-called Petrov-Galerkin method, in which the test functions

may be selected differently from the trial functions. The key problem then is how to

choose test and trial functions. We give here a brief survey of the extensive literature

on this topic.

For a singularly perturbed ordinary differential equation, Barrett and Morton

[2] constructed a set of special test functions from a set of trial functions by approx­

imately symmetrizing the bilinear form and obtained an almost optimal approxi­

mation in a SPecial norm. This symmetrization method based on a symmetrized

bilinear form has been applied to singularly Perturbed parabolic equations with

mixed boundary conditions and periodic boundary conditions by Wu [52]. Optimal

estimates in the H t norm are derived. However, the analysis does not apply to

parabolic problems with Dirichlet boundary conditions due to a lack of coercivity.

The streamline diffusion method of Hughes and Brooks [16] was initially in­

troduced in the case of steady convection-diffusion problems. In this method, the

test functions w are constructed from the trial functions v by taking w =v +6v/J'

where 6 is a small positive parameter of order h, h being the mesh diameter and

v/J the derivative in the streamline direction (i.e., the direction of propagation of

the reduced problem). Johnson et oZ. [20] extended the method to time dependent

convection-diffusion problems. Navert [29] proved that when piecewise polynomial

finite elements of degree k are used, the method is of order k +1/2 in the L2 norm

in smooth regions (i.e., away from any layers).

The Eulerian-Lagrangian localized adjoint method of Celia, Ewing, Herrera

and Russell [5, 40] is a finite element method SPeCially proposed for time depen­

dent convection-diffusion problems. It combines finite element techniques with the
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method of characteristics by using test functions satisfying a local adjoint condition

that introduces a Lagrangrian frame of reference.

The previous pair of methods were constructed to reflect the almost hyperbolic

nature of the problem (1.1.1) - (1.1.5). Hence they perform well provided that one

is far from the boundary layer near z = 1. However, they are not accurate inside

layers. All global error bounds obtained for these methods involve Sobolev norms

of u. Since such norms generally involve negative powers of the parameter E, the

bounds are in general of large magnitude and do not provide evidence of convergence

of the methods.

It is desirable to have numerical methods whose accuracy inside the boundary

layer is retained irrespective of the value of E. In the singular perturbation literature,

numerical methods with this property are said to be uniformly convergent.

Most uniformly convergent methods have been obtained for singularly perturbed

ordinary differential equations (see, e.g., Doolan, Miller and Schilders [8], O'Riordan

and Stynes [34], Gartland [13] and Liseikin and Petrenko [24]).

Uniformly convergent methods for problem (1.1.1) - (1.1.5) have been examined

by Duffy [9], Han and Kellogg [14] and Ng-Stynes et ale [31] on uniform meshes, by

Stynes and O'Riordan [45] on an arbitrary mesh and by Shishkin [41] on a special

nonuniform mesh.

Duffy [9] gave an algorithm which consists of Allen and Southwell [1l/D'in [17]

differencing in the z-direction and forward differencing in time. For this scheme he

claimed a uniform convergence result of order one in the discrete LOO norm. However

his argument relies on an unjustified differentiation of an asymptotic expansion of

the solution u.
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Ng-Stynes et ale [31] and Stynes and O'Riordan [45] presented a family of finite

difference schemes which are generated from Petrov-Galerkin finite element methods

with exponential test functions. Under certain compatibility conditions on the data

of (1.1.1) - (1.1.5), they showed that the scheme is uniformly convergent with order

one in the discrete LOG norm. However, their compatibility assumptions are very

strong and in practice unlikely to be satisfied.

Han and Kellogg [14] considered a semi-discrete finite element method for (1.1.1)

- (1.1.5) while assuming that all functions in (1.1.1) depend on x only. They used an

enriched finite element space consisting of piecewise linear functions plus an extra

function which is chosen to model the behaviour of the solution in the boundary

layer. A uniform error bound of order 3/4 in an energy norm was obtained. However

their argument is not applicable when the functions in (1.1.1) depend also on the

variable t.

Shishkin [41] constructed a special piecewise uniform mesh, which is fine in part

of the boundary layer. When it is used with a upwinded finite difference scheme, an

error estimate of order one in the discrete L- norm is obtained.

In most published research, analyses of theoretical uniform convergence are es­

sentially carried out in a consistency/stability framework associated with finite dif­

ference methods, which require the scheme considered to satisfy a discrete maximum

principle and also need strong global assumptions on the solution and its derivatives.

In contrast to the finite difference situation, there are only a few results which

use finite element arguments to yield error bounds which are uniform in E for approx­

imate solutions to (1.1.1) - (1.1.5). Recently, Stynes and O'Riordan [47] presented a

framework for the finite element analysis of a singularly perturbed two-point bound-
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ary value problem which yields uniform global L2 and energy norm bounds. They

also successfully applied the method to singularly perturbed elliptic problems in two

dimensions [36]. However, they do not obtain pointwise error bounds.

Johnson et ale [22] and Niijima [32] used purely finite element analyses to derive

localized pointwise error bounds outside any layers. This type of analysis requires

only reasonable local and global assumptions on the behaviour of the solution u and

its derivatives. When we carried out the research for this thesis, as far as we knew, no

counterpart of the results of [22] and [32] existed for singularly perturbed parabolic

problems. (We later became aware of the work of Zhou [53], which overlaps slightly

with our Chapter 5. See Remark 5.6.2.) Furthermore, no finite element analysis of

pointwise convergence inside the boundary layer exists in the literature.

1.3 Outline of the Thesis

The main aim of this work is to propose suitable finite element methods for solving

(1.1.1) - (1.1.5) numerica.lly and to analyse uniform convergence of these methods in

global L2 and energy norms and the local LOO norm using purely finite element tech­

niques. We will analyse several uniformly convergent methods: exponentia.lly fitted

schemes on an arbitrary mesh and the streamline diffusion scheme on a Shishkin

mesh. Results are obtained not only outside but also inside the boundary layer.

The analyses are carried out under reasonable assumptions on the solution and

its derivatives. We will also analyse a cell vertex finite volume method applied to

(1.1.1) - (1.1.5), using finite element techniques; in this way we obtain local and

global convergence results.

The outline of the thesis is as follows. In Chapter 2 we give a brief description of
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a combination of Petrov-Galerkin and finite difference methods which will be used

in Chapters 3 and 4. We also derive necessary conditions for uniform convergence

(in the discrete Loo norm) of a scheme on a uniform mesh, which will motivate the

choices of trial and test functions in Chapters 3 and 4.

In Chapter 3, two exponentially fitted lumped schemes are presented, using

various choices of trial and test functions. The inner product involving the time

derivative term in a weak form of (1.1.1) - (1.1.5) is approximated by two suitable

discrete inner products. Global error bounds in the discrete L2 and energy norms

are derived uniformly in e. The error analyses also show that the two schemes are

both first order accurate, uniformly in e, at all nodes.

Chapter 4 examines a non-lumped exponentially fitted scheme. Unlike the

schemes in Chapter 3, this scheme integrates the inner product involving the time

derivative term exactly. This small modification leads to a rather different scheme

which needs a certain stability condition to guarantee uniform convergence. Uniform

convergence results similar to those of Chapter 3 are obtained.

We note that the schemes considered in Chapters 3 and 4 are similar to the

ones studied in Ng-Stynes et ale [31] and Stynes and O'Riordan [45], but the finite

element analysis presented here is valid under weaker hypotheses than those required

for the finite difference analysis of [45]. In these two Chapters, in order to derive

pointwise error bounds we assume only that the solution of (1.1.1) - (1.1.5) and its

first order derivatives are uniformly bounded in a variant of the global Ll norm (cf.

(3.2.68» and that locally the solution is either smooth or exhibits typical boundary

layer behaviour (d. (3.2.74».

In Chapter 5 we combine the streamline diffusion method with a Shishkin mesh.
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Our method uses space-time finite elements. The global assumptions we make in this

Chapter are that the right hand side I of (1.1.1) and the initial data uO are bounded

in the L2 norm, uniformly in E, and the streamline derivative of the solution u and

EU•• are both bounded in the Lt norm, uniformly in E. Under these reasonable

global assumptions, we prove that the pointwise error bound is of order almost 5/4

in smooth regions and almost 3/4 inside a typical boundary layer, uniformly in E.

This improves the results of Nivert [29], who did not obtain convergence inside the

boundary layer and who analysed L2 rather that LOO local convergence.

In Chapter 6 we introduce a cell vertex finite volume method for (1.1.1) - (1.1.5)

with constant coefficients. The method has been widely used in the arospace indus­

try. However, analysis of this method has lagged far behind the application of the

method. Up to now, no fully satisfactory analysis of the cell vertex finite volume

method has been published. The best estimates available are in Morton and Stynes

[27], where a sharp convergence result for a two-point boundary value singularly

perturbed problem is obtained in a weighted discrete Sobolev Ht norm. There is

no previous convergence result for this method applied to a singularly perturbed

parabolic problem. Here we derive a local 12 error estimate for the model parabolic

problem by using finite element techniques. Under the assumption that the right

hand side I of (1.1.1) and the initial data uO are bounded in the L2 norm, uniformly

in E, we show that the method is locally first order accurate on a general tensor

product mesh. This result can be sharpened to second order accurate, if either E is

very small compared to the mesh diameter or the mesh is locally almost uniform.

Numerica1 results are given in the last section of Chapters 1 - 5.
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Chapter 2

Discretizing the Problem

2.1 Petrov-Galerkin Finite Elements in Space and Fi­
nite Differences in Time

An equivalent formulation of (1.1.1) - (1.1.5) is got by replacing (1.1.1) for each t

by

B(u, v) +(rut, v) = (I, v) Vv E HJ(O, 1). (2.1.1)

Here (.,.) is the usual L2(0,1) inner product, HJ(O,l) is the usual Hilbert space

given by

HJ(O, 1) ={v =v(x): IIvll + IIv.1I < 00, v(O) =v(l) =O},

where 11·11 is the norm in L2(0, 1), and we define

B(w,z) == e(w.,z.) +(aw.,z) +(bw,z). (2.1.2)

The weak form (2.1.1) can be discretized by means of a Petrov-Galerkin finite

element method with space elements. This yields a semidiscrete problem, which

corresponds a system of first order differential equations with an initial condition.

Then differencing in time gives a fully discrete problem.

12



To discretize the problem, we introduce an arbitrary tensor product grid on O.

Let M, N be positive integers. In the x-direction, let

o= Xo < Xl < ... < XN = 1 (2.1.3)

with hi =Xi - Xi-l for i =1, ... , N and set H =m8.Xt hi. In the t-direction, let

o= to < tl < ... < til =T (2.1.4)

with k; =t; - t;-1 for j =1, , M. Set k =min; ki and K =maxi ki'

Then for each j E {1, , M}, we wish to define trial and test functions on

[0,1] x {til. The question now is how to choose these trial and test functions so that

the resulting scheme is convergent uniformly in E. To show that standard piecewise

polynomial elements are inadequate for this purpose, we shall in Section 2.2 derive

necessary conditions for uniform convergence (in the discrete Lao norm) of a scheme

on a uniform mesh. These conditions imply that the coefficients of the scheme must

possess a certain exponential nature.

2.2 Necessary Conditions for Uniform Convergence of
a Scheme on a Uniform Mesh

We consider (1.1.1) - (1.1.5) with constant coefficients and zero initial-boundary

data, viz.,

Lu(x, t) =-EU_ +au. +bu + rUe = f(x, t) in 0, }
u(O,t) =u(l,t) =0, 0 < t ~ T,
u(x, 0) = 0, 0 ~ x ~ 1.

(2.2.1)

Assume that we have a uniform square mesh of diameter H. Applying a Petrov-

Galerkin method in the space variable and finite differencing in the time variable

13



typically leads to a difference scheme of the form

1 1

L L Qn,,,,U(Zi+,,, 'i+-) =H hJ,
",=On=-l

(2.2.2)

for i = 1, ... , N - 1 and j = 1, ... , M - 1, where U(Zi, ti) is our computed solution

at the point (Zi, ti) and hJ is an approximation to f(Zi, 'i)' Schemes which involve

more than three points in the z-direction and/or more than two points in the t-

direction can be treated similarly.

Assume that for all i and j,

(2.2.3)

for some s > 0, where C and s are constants independent of e and of the mesh

parameter H. We will derive necessary conditions on the coefficients {Qn,,,,} of the

scheme (2.2.2).

Necessary conditions for various singularly Perturbed problems have been previ-

ously examined by Doolan et ale [8] and Roos [39]. A result similar to that presented

below was claimed by O'Riordan and Stynes [35], but their proof omits any mention

of compatibility assumptions on the da.ta, which are needed for their argument. Our

proof uses a uniformly valid asymptotic expansion of Bobisud [4], then finishes using

the same argument as in O'Riordan and Stynes [35].

First, from the proof of Theorem 2 in Bobisud [4], we ha.ve

Lemma 2.2.1 Assume that f E C2(fi). Let Uo(z, t) be the solution of the reduced

problem

a(Uo). + bUo + r(Uo)c = f(z, t), V(z, t) E 0,

1£0(0, t) =0, 0 < t ~ T,

14



Uo(Z,O) =0, °~ Z ~ 1.

Then for the solution 1£(z, t) of (2.2.1), we have

1£(Z, t) =Uo(z, t) - Uo(I, t)exp(-a(l- z)/e) + z(z, t), V(z, t) E Sl,

where

Iz(z, t)1 ~ Cy'E, V(z, t) E Sl.

(2.2.4)

(2.2.5)

Next, set p =Hie. We will assume that the coefficients {a",m} in (2.2.2) depend

only on n, m and p. (This assumption holds for all schemes of which we are aware.)

Rewrite (2.2.2) in the form

1 1

L L ~,,,,U(I- zi+,,, T - tj+",) =H IN-i,JI-j.
m=O,,=-1

Fix p, i and j. Letting H -+ °yields

1 1° = L L ~,,,, }j!!:o U(I- Zi+,,, T - tj+m)
m=O,,=-1

1 1

= L L ~,,,, }j~o 1£(1- Zii-ft, T - tj+",), using (2.2.3),
m=O,,=-1

1 1

= L L ~,,,,{Uo(I,T) - Uo(I, T) exp(-a( i +n)p)},
m=O,,=-1

using (2.2.4) and the fact that for fixed p, H -+ °implies that e -+ 0, 80 that by

(2.2.5), z -+ 0.

In general Uo(l, T) ~ 0, 80

1 1

L L ~,,,,{1- exp( -a(i +n)p)} =0.
m=O,,=-1

This holds for any fixed i E {I, ... , N - I}. Taking i =1,2,

1 1

L L a",m{l- exp(-a(1 +n)p)} =0,
",=0,,=-1

15
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1 1

L L a ft,,,,{I- exp(-0(2 +n)p)} =O.
",=On=-l

(2.2.8)

Multiply (2.2.7) by exp(-op) and then subtract the resulting equation from (2.2.8)

to get

Lan,,,, =O.
"',ft

Put this into (2.2.6) to obtain

L aft,,,, exp( -o(i +n)p) =0,
"',ft

whence

L aft,,,, exp(-onp) =O.

(Cl)

(C2)

Conditions (Cl) and (C2) are the necessary conditions for uniform in E conver-

gence. We note that polynomial based schemes in general satisfy (Cl), but they

cannot satisfy (C2).

In Chapters 3 and 4 we will present some schemes generated by Petrov-Galerkin

methods with suitable spacial trial and test functions and backward differencing in

the time variable. These schemes have coefficients based on exponentials and satisfy

(Cl) and (C2).

2.3 Notation

We now introduce some notation which will be used in Chapters 3 and 4.

For any function v(z, t) and m E {I, ... , M},

v"'(·) =v(·,,-),

8v"'(·) = (v"'(·) - v--1(.»/k.,..

16



For any finite element space D C C([O,I] X {t",}), where m is fixed, (V)D denotes

the interpolant from D to v at {(Xi, t",)}~. Set

[0,1)" == [O,I]\{xo, ... ,XN}.

We use (., .) to denote the usual L2(0, 1) inner product, and (.,.)" denotes that the

integration is only over [0, 1]" .

Define

OK ={(X, t",) EO: 0 < X < 1, 1 ~ m ~ M},

Note that OK is a distance k1 from the boundary t = 0 of O. We will use the

following mesh-dependent norms for v E C(O):

JI

II v IlLl(Ll(OJr» = L k",lI v"'IIL1(O,I)'
",=1

JI

II v IlLl(Loo(OK» = L k",lI v"'IILoo(o,I)'
",=1

(2.3.1)

(2.3.2)

(2.3.3)

(2.3.4)

(2.3.5)

where II ·IIL1(O,I)' II ·IIL2(o,l) and II • IILoo(o,l) are the usual Ll, L2 and LOO norms.

When the norms are over all of 0 independently of the mesh, we omit 0 from
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the notation; define

{

T 1 2 }1/2
IIV Il£2(£l) = 1(1 Iv(z, t)1 dZ) dt ,

{

IT 2 }1/2
IIVIIi.'(V)= 1(1 Iv(z, t)1 dt) dz •

{

t,. 1 2 }1/2
IIvll£'(£l),M = fe-l (1 Iv(z,t)1 dZ) dt ,

(2.3.6)

(2.3.7)

(2.3.8)

Throughout the paper, C is a generic positive constant which is independent of e

and of any mesh used. When we say a quantity '1/ is O(H), it means that 1'1/1 ~ CH.

The analysis will frequently use the arithmetic-geometric mean inequality

(2.3.9)

18



Chapter 3

Exponentially Fitted Lumped
Schemes

3.1 Introduction

In this chapter we will cOilsider two schemes generated by Petrov-GaJerkin finite

element methods with various choices of trial and test functions. To approximate

the time derivative term (rut, v) in the weak form (2.1.1), we first use a discrete L2

inner product (rut, v)«I which will be defined in terms of the test functions used. We

then apply backward differencing in the time variable. Schemes generated by using

an approximation of this type to the time derivative are called lumped schemes.

We will define two combinations of trial functions and test functions. They are

(i) any trial functions and t·-spline test functions ( Section 3.2);

(ii) .i-Spline trial functions and piecewise linear test functions

(Section 3.3).

Each trial or test function is defined on [0,1] X {tftl } for some m.

The motivation for studying the two schemes is to explore the relationship be­

tween the choice of trial and test spaces and the norm in which one can prove a
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global convergence result which is uniform in E. When L·-spline test functions are

combined with any reasonable choice of trial functions, we obtain convergence re­

sults in the discrete L2 norm. Here L· is an approximation of L;, the adjoint of

the spatial part L. of the differential operator L. (A related idea is used by Celia

et ale [5], whose test functions are approximate solutions of L·z = 0.) If we then

choose the trial functions to be L-splines, where L is an approximation of L., we

can also prove convergence in an energy norm. These general results can be sharp­

ened if one makes compatibility assumptions on the data of the problem. If, on the

other hand, L-spline trial functions and piecewise linear test functions are used, we

obtain corresponding results in this situation. Our analysis shows that the scheme

with L·-spline test functions is better for discrete Loo and L2 convergence, and the

other scheme, which uses L-spline trial functions, is more suitable for energy norm

convergence.

Both schemes have coefficients based on exponentials; it was shown in Chapter

2 that a scheme on a uniform mesh must possess this property if it is to be globally

Loo convergent, uniformly in E. The results mentioned above are all global in nature.

When internal layers are also present in the solution, it is important to also have

local convergence results for a numerical method. We provide such a local conver­

gence analysis for both of our schemes. We prove that, under reasonable assumptions

on the behaviour of u and its derivatives, our schemes are locally pointwise conver­

gent inside the boundary layer. To the best of our knowledge, no result of this type

exists in the literature on (1.1.1) - (1.1.5). When the cell Reynolds number is large,

the schemes are similar to upwinding, which is often described as being "formally

first order accurate", but has not previously been analysed in the literature as re-
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gards its local behaviour. We note that the schemes considered in this paper are

similar to the ones studied in Ng-Stynes et 01. [31] and Stynes and O'Riordan [45]

but the finite element analysis presented here is valid under weaker hypotheses than

those required for the finite difference analysis of [31, 45], and furthermore no local

convergence results are proven in these two papers.

The structure of this Chapter is as follows. In Sections 3.2 and 3.3 we examine

the two respective schemes. We will derive global estimates in energy and LJ norms

using finite element techniques similar to those of Stynes and O'Riordan [47]. We

also use a discrete Green's function, based on Niijima's analysis of an elliptic problem

(see Niijima [32]), to derive local pointwise error estimates inside and outside the

boundary layer for the schemes. (This entails a novel definition of a discrete Green's

function for our parabolic problem.) In particular we emphasize that many of our

error bounds are uniform in e. Numerical results are presented in Section 3.4.

3.2

3.2.1

I·-Spline Test Functions

Description of Scheme and Norms

In this section we shall consider a Petrov-Galerkin finite element method with L*­

spline test functions. A semidiscrete approximation with a similar idea was con­

sidered in Stynes and Guo [44] where the trial functions were chosen as i-splines.

We do not need at this stage to precisely specify the trial functions {cPi,m(z) : i =
0, ... , N and m = 0, ... , M}. We only assume that for m E {O, ... , M}, each

cPi,m(z) is defined and satisfies the following properties:

(i) cPi,m is continuous on [0,1] X {1m} and differentiable

on [0,1]" x {tm };

21
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where

(ii) 4>i,,,,(Xj) =6i';, for j =O,I, ... ,N,

6. . _ { 1, if i =j,
." - 0, otherwise.

(3.2.2)

Then it turns out that the scheme generated is completely determined, due to the

choice of the test functions.

We assume that the mesh is arbitrarily graded in the x-direction, Le., hi ~ hi-I

for each i. This is not a practical restriction, since the boundary layer is at x =1. To

define the L·-spline functions, we first introduce two approximations of the function

a(x, t) on t = twa for each m:

(3.2.3)

and

(3.2.4)

for i = 1, ... ,N, where

g(z) =(1 - exp( _Z»-1 - z-1 for all z > 0,

and P't = lJ,/,hi/e. Now the [·-spline functions {¢i,,,, : i = 1, ... , N - 1; m =

0, ... , M} are defined as:

(3.2.5)

(3.2.6)
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A maximum principle argument yields t};i,,,,(Z, tnt) ~ (z - Zi-l)/~ for Zi-l ~

(1, ~i,,,,) ~ ~/2 for all i and m.

To discretize (2.1.1) we define a discrete inner product for each t",:

N-l

(v,w).,. = L(I'~i,,,,)V(Zi,t,,,)W(Zi,t,,,) Vv,w E e([O,I] x {t",}).
i=1

(3.2.7)

(3.2.8)

For each m, let lI", and 8", be the linear spans of {~i,,,,(X): i =1, ... ,N -I}

and {4>.,,,,(x): i =0, ... , N} respectively. Then our first lumped Petrov-Galerkin

approximation can be formulated as follows: for each m E {I, ... , M}, find U'" E 8m

such that

where

B(U"', v"') +(r"'8U"', v"')". =(I"', v"')". vvm Ell""

B(w, z) =e(w., z.) + (aw., z) + (bw, z)"•.

(3.2.9)

(3.2.10)

(3.2.11)

(3.2.12)

The existence and uniqueness of U'" are implied by Lemma 3.2.1 below. The

scheme (3.2.9) - (3.2.11) is similar to one given in Stynes and O'Riordan [45] where

4 was used instead of a. We have used a in order to obtain the coercivity result of

Lemma 3.2.1. The approximation a is essentially that of Stynes [43]. In implement-

ing the scheme, at each time step we have to solve a linear system whose coefficient

matrix is tridiagonal and diagonally dominant; this can be done efficiently in O(N)

operations.

23



To analyse the scheme we introduce the following discrete norms, which are

defined for all w E Hl([O, 1] X {t",}):

(i) discrete L2 norm: IIwll.,. = (w, W )tj.2, (3.2.13)

(il) discrete energy norm: IlIwlll.,. = {Ellw.1I2 + IIwll~.}1/2, (3.2.14)

where 11·11 is the usual L2(0, 1) norm. For notational simplicity we do not refer to m

when we write these norms; its value will always be clear from the context in which

the norms are used.

We begin our analysis by showing the following coercivity result.

Lemma 3.2.1 For each v'" E SM' m E {O, ... , M}, and H sufficiently small (in-

dependently 0/ e),

B(v"', (v'" )v.) +(r"'8v"', (v'" )v.).,.

1
~ Cll1l(v"')v.III~. + 2k", {(rMv"',vM).,. - (rM v"'-l,v"'-l).,.},

where C1 is 08 in (1.1.5).

Proof. Recalling the definition (3.2.12), we have

B(v"', (v"')V.)

=B«v"')v.,(v"')V.) + iJ(v'" - (v"')V.,(vM)V.)

N-1 { 1 }=Ell «v"')v.).112 +?= bi(1,~i,,,,) - 2(a~1 - ail (v;')2, (3.2.15)
1=1

on integrating by parts and using (3.2.5).

A calculation shows that
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Combining the above with (3.2.15) and using (1.1.5), we obtain, for H sufficiently

small (independently of e),

For the other term, we have

(3.2.16)

Combining this with (3.2.16) yields the desired result. [J

In the following subsections we will derive error estimates for the scheme in

various norms.

3.2.2 Global L2 and Energy Norm Error Estimates

In this subsection we will derive a global discrete norm error estimate for (3.2.9) ­

(3.2.11). To this end, for each m, let uI(z, twa) be the interpolant from 8m to the

exact solution u(z, tm ), and let U'" be the solution of (3.2.9) - (3.2.11). Set

Then using (2.1.1), (1.1.2), (1.1.3), (3.2.9) - (3.2.11) and f7"'(Zi) = 0 for all i, we

have

B(Z"', va) + (r"'8Z'" , v"')~ =R(u"', va) "'Iv'" E V""

Z"'(O) =Z"'(1) =0, ZO =0,
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where

R(u'" , v"') = «a'" - a"')u:', v"') + {(B"',v"') - (lJ"',V"')d.}

+(r"'(lJu'" - u:'), v"'),

and

IJ = f - bu - rUe.

Lemma 3.2.2 For each mE {I, ... , M} and any v'" E V""

IR( u"', v"')1 ~ C H {lIu:'lIl1(0.1) +1Is:'lIl1(0.1)}

+ClIlJu'" - u:'l13- +(C1/2)lIv"'II3-,

where C1 is 08 in {1.1.5}.

Proof. We bound the three terms in (3.2.19) separately. First,

(3.2.19)

I(a'" - a"')u:', v"')1

::; ct h;[' lu:'lIv"l dx
i=l 8i-l

N-l L8i+l

~ C L (hi +hi+l)lvr'1 lu:'1 dz
i=l 8i-l

::; (C1/12)~ h;lvl"12 + C~ h; (f:' lu:'1 dX) 2 ,

by the mesh grading and (2.3.9),

~ (C1/6)~ (l,ibi,,,,) lvii' +cn {~['+'lu:'ldx}2, using (3.2.7),
• • 8.-1

~ (Cl/6)lIv"'II~.+CHllu:'lIl1(o,l)' (3.2.20)

Next, similarly to the derivation of (3.2.20), we have

I((J'" , v"') - «(J'" , v"'), I
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N-l

= L ((J'" - 11"(Xi), ~i,,,,) Vi
i=1

f.
.Hl

~ C~(1'~i.",)ltJi"1 "_I 1r.-(x)1 dx

s (Cl /6)lIv"'1I3- +CHIIs:'lIl1(o,I)·

Finally,

l(r"'(8u'" - u;"), 11"').1-1 s (Cl/6)lIv"'II~_ +C1I8u'" - u;"I1~_·

Combining (3.2.20) - (3.2.22), we are done.

(3.2.21)

(3.2.22)

o

We can now bound the error of our computed solution in a discrete L2 norm.

Theorem 3.2.1 Let U'" be defined by {3.2.9} - {3.2.11}. For H sufficiently small

{independently of E }, and any n E {I, ... , M},

IIUft - uftll..- S CH I
/
2 {lIu.IIL2(Ll(0.-» + 118.IIL2(Ll(0.-»}

+CKl/2I1uttIlL2(Ll(0,,»,

where 1I·1I£2(Ll(o.-» and 1I·1I£'(Ll(o,,» are defined in {2.3.3} and {2.3.5} respectively.

Proof. Take v'" =zm in Lemma 3.2.1 and v'" =(Z'" )9. in Lemma 3.2.2 to get for

each m,

C1 II I(Z"')V. 1112 + :... {(r"'Z"'. Z"')... - (r'"Z"'-\ Z"'-l)... }

S CH { IIu:' IIl1(O,I) +1Is:'lIl1(o,I)} +C1I8u'" - u;"II~.

Multiplying by k"" and summing from m =1 to m =n S M,

ft
Cl L k",III(Z"')9.1112 + IIl1znll3-

",=1

27



~ CH {lIu.II~2(Ll(nJr» + 118.1I~(Ll(nJr»}
ft-l

+CK (lIutclli,2(Ll(nB»Y· +C L k",IIZ"'1I3·,
",=1

since

AI

L k_1I8u· - u;"113·
_=1

Use a discrete Gronwall's inequality to complete the argument. []

Remark 3.2.1 Theorem 3.2.1 is valid for any trial functions {tP,,_( X)} which satisfy

(3.2.1) and (3.2.2). If the trial functions are specified as i-spline functions, then one

can prove the same bounds in the discrete energy norm.

That is, we have

Theorem 3.2.2 Suppose that the trial functions {4>" .. : i = 0, ... , Nand m =
0, ... , M} are given by

- - -II --,
LtPi,_ == -etPi,,,,(x) +ai'tPi,,,,(X) =° for x E [0, 1r,

4>i,_(X;) =6iJ for j =0, ... , N.
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If U- = E::o Ul"4>i."'(Z) 8atisfie8 {3.!.9} - {a.l.ll}, then for H 8ufficiently 8mall

{independently of e}, and an, n E {1, ... , M},

{

ft }1~
W' - u"l1... + ~ k...11IU'" - u-lII3-

~ CH
1

/
2 {lIu.lI£2cL1Co.rc» + 118.II£2cL1coK» + 118I1L2cLooco.rc»}

+CK1/2I1uttlli,2CLICOIl»'

where the norms on the right hand 8ide are defined in {!.3.3} - {!.3.5}.

Proof. Noting that IliZ-III... ~ CIII(Z-)9.11I... , it is straightforward to get, from

the proof of Theorem 3.2.1,

{

ft }1/2
IIZ" 11.1·+ fl k...111 Z'"1113·

~ CH
l

/
2

{lIu.lI£2cL1coK» + 118.IIL2CL1(0.rc»}

+C K
1

/
2 11UttIli,2CLl COil»' (3.2.25)

We now need to estimate the interpolation error ,.,. for all m. We have, for

t = t""

B(r{" , '7"') = (a'" - ti'" )u~(., t",), '7"') +(b"''7''', '7"') - (tr, '7"').

1'7"'(z)1 ~ f.8' lu:'(z)1 dz,·.-1
we also have

11
N f..'10 l,r(x)1 dz =~ _._. 1,,-(x)1 dx ~ Hllu::'IIL'(o,l)'
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Hence

B{rl", rim) ~ CHII'1"'IIL-(o,I)lIu:'IIL1(o,l) +CHllrIlL-(o,I)lIu:'IIL1(o,l)

~ CH {lIu:'II~I(o,l)+ 118"'1I~-(o,I)} .

On the other hand,

Thus

Combining this with (3.2.25) completes the proof.

(3.2.26)

o

3.2.3 Improved Accuracy Under Compatibility Assumptions

In this subsection we assume that we have certain bounds on the derivatives of

the solution u{z, t). Such bounds follow, for example, if we assume that the data

satisfies certain compatibility conditions at the comers (O,O) and (1,0) of S1. These

conditions are given in Stynes and O'Riordan [45], and it is shown how to use them

to obtain the bounds

ID~D:u{z, t)1 ~ C{l +e-i exp{-a{l - z)/e)} V{z, t) E S1,

for 0 ~ i ~ 1 and 0 ~ i +j ~ 2.

(3.2.27)

Using (3.2.27), it is possible to significantly improve the results stated in the

previous subsection. Before doing this, we give the following technical result, which

can be proved in the same way as Lemma 5.6 of Stynes and O'Riordan [46].

Lemma 3.2.3 For each m E {1, ... , M} and an1/11'" E V.

N-l (11
) (1-.+1 )t; _, 111::'Idx .. E-I exp(-a(1 - x)/ E) dx :5 CE

1
/

21111::' II.
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Using this lemma and (3.2.27) we now sharpen Lemma 3.2.2.

Lemma 3.2.4 Assume that {3.!.27} holds. For each m E {1, ... , M} and any

v'" E V""

where C1 is as in {1.1.5}.

Proof. Reca.ll (3.2.19). First, by (3.2.27),

N-l (11
) (18i

+
1

)+CN t; ., 111:1 dz .. E-
1 exp(-a(l - Z}/E} dz

S CHllv"'IIc1. +CHel
/
2 IIv:' II , by Lemma 3.2.3,

Next, we can show by an argument similar to the above that

Fina.lly, since by (3.2.27)

lIau'" - u;" 114- S CK,

we get
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Combining (3.2.28) - (3.2.30) yields the desired result.

Using Lemmas 3.2.1 and 3.2.4, it is easy to get the following results.

[]

Theorem 3.2.3 Assume that {3.2.27} and the hypotheses oj Theorem 3.2.1 hold.

Then

IIU" - u"l1~ S C(H +K), Jor n =1, ... , M.

Theorem 3.2.4 Assume that {3.2.27} and the hypotheses oj Theorem 3.2.2 hold.

Then

IIU" - u"I1.,· S C(H +K),

and

{" }1~l;k...IIIU'" - u"'llI~ ~ C(H1
/
2 +K),

Jor n =1, ... , M.

Remark 3.2.2 It can be shown that the factor Hl/2 in Theorem 3.2.4 is the optimal

order attainable.

Remark 3.2.3 It can be shown that results analogous to those of Sections 3.2.2 and

3.2.3 hold for the semidiscrete version of (3.2.9) - (3.2.11), except that no Uet term

is present.

3.2.4 Localized Pointwise Error Estimates

In this subsection we use a variant of Niijima's approach [32] to derive pointwise

error estimates under local smoothness assumptions. For simplicity, we consider a

constant coefficient problem with a(x, t) = b(x, t) = r(x, t) = 1, and we employ a

uniform mesh with space mesh size H and time mesh size K. Our trial space S",.,
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is as in Subsection 3.2.1, i.e., its basis functions tI>i,,. need only satisfy (3.2.1) and

(3.2.2).

Let (zio' t"'O) be an interior mesh point. We associate a discrete Green's function

G(z, t) with this point. That is, O"'(z) == G(z, t,.) E V,. is defined for m =0, ... , M

by

B(X",G"') - (x"',8G"'+l)d. =K-16",,"'OX"'(Zio) "'IX" E ~, (3.2.31)

0"'(0) =0"'(1) =0, (3.2.32)

where S~ ={X'" E S", : X"'(o) =X"'(I) =OJ, and we formally set

GJI+1(z) == 0. (3.2.33)

Note that the definition of the discrete Green's function here is not immediate

from the definition of such functions for elliptic problems (as used in [32]).

The following lemma gives the existence and uniqueness of G"'.

Lemma 3.2.5 The equation8 {3.2.31} - {3.t.33} have a unique 8olution G"'. Fur­

thermore,

G'{' ~ 0, for i =0, ... , N and m =0,1, ... , M. (3.2.34)

Proof. Equations (3.2.31) - (3.2.33) may be written as

Gi'-l iJ (4)i,,., ~i-l,,,,) + Gi{ iJ(4)i,,., ~i,,,,) + K-1(1, ibi,,,,)}

+61+1 iJ(4>i,,,,, ~i+l,..)

=K-1 {6",,"'06i,io +(1, ibi,..)G';'+I}, (3.2.35)

for i = 1, ... , N - 1 and m = 0, ... , M,

GO =ON =° for m =1, ... , M,

G:'+l =° for i =0, ... , N.
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Thus it suffices to show that the system (3.2.35) - (3.2.37) has a unique solution.

Inspecting the coefficients ofOJ on the left hand side, we see that the coefficient ma­

trix of the system is a strictly diagonally dominant tridiagonal matrix with positive

diagonal terms and nonpositive off-diagonal terms. Consequently it is an M -matrix

and so is invertible. That is, the system (3.2.35) - (3.2.37) can be solved iteratively

for G"' in terms of 0"'+1 for m = M, M - 1, ... ,0, since GJI+l is known. This

completes the proof of the existence and uniqueness.

Since for each m the inverse of the coefficient matrix is nonnegative, it is straight-

forward to show (3.2.34) by using induction on m.

Next, we derive an Ll estimate on G along mesh-lines parallel to the z-axis.

Lemma 3.2.6 For each n E {O, ... , M},

(1, G")cI. ~ 1.

Proof. Fix me {O, ... , M}. Taking X'" = E~114>i,,,,(z) in (3.2.31), we have

o

Integrating by parts and using the definition of the test functions, we get

L
~ 11(Eo:' +G"')4>i,,,,(z) dz + (Eo:' +G"')4>N_l,...(Z) dz

o -N-l

=G'{' (E¢L",(ZI - 0) +1) - aN-I (E¢N-l,,,,(ZN-l +0) +1)

=G'{'(1 - exp( -H/E»)-1 +aN-I (exp(H/E) - 1)-1.

Thus, we get from (3.2.34), (3.2.38) and (3.2.39) that
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Summing from m = n to m =M for any n S M, and noting that GAl+1 =0, we

obtain

(1,0").,. S 1

as desired. o

Using the Ll estimate on G, one now is able to estimate the error at (xio' t"'O),

provided (3.2.27) holds on the entire region O. However this assumption is stronger

than needed. We sha.ll need such an assumption (in Theorem 3.2.6 below) only on

a narrow region extending upstream from (xio' t"'O ). This is because the discrete

Green's function dies off outside region

00 ={(x, t) En: 0 < x~ X/o +Koe*1n (n1K) ,
Ix - t - (x/o - t".,,)1 ~ Kov0"1n (n1K) }.

with e* =max{e,H,K}, where Ko > °is a constant independent of e, H and K,

which we choose later. We sha.ll prove this fact in Lemma 3.2.7. Without loss of

generality, we assume that Sle is a mesh domain.

Lemma 3.2.7 Given a nonnegative integer 8, there exists a positive constant C =
C(s) such that

max G(x,t,.) S C(s)(HK)·
(-.t-)eO\Oo

for each m E {O, ... , M}.

Proof. We introduce a cut-off function .(~), defined on (-00,00) by
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with e(T) E C2( -00, +00) and e(T) = ITI for ITI ~ 1. Then define a cut-off function

w(z, t) on n by

(3.2.41)

where A = zio, P = zio - t.o, (1. =1£· and (1" =1../i*. Here 1 > 1 is some

constant (to be specified later) independent of £, H and K.

For aJl differentiable v(z, t), set

Then it is easy to show that

(3.2.42)

- wlJ > 0 on n, (3.2.43)

~~W/ rg~w ::; C, ~~ IWIJI/ rg~ IWIJI ::; c,
•• • •

for i =1, .. . ,N and m =1,ooo,M, with

~i ={(z, t): Zi-l ::; Z ::; Xi, '--1::; t ::; t",}.

Furthermore,

ID~~WI ::; C(1;;(1;'W on n for j + I ::; 2,

ID~D~wl ::; C(1;;+I(1;'lwlJl on n for j +I ::; 2 and j ~ 1,

W(zio' tmo ) ~ C,

(3.2.44)

(3.2.45)

(3.2.46)

(3.2.47)

W(X, t) ::; C(HK)Kol.,

Now we take x"' =(::)s. in (3.2.31) to get

on n\Oo. (3.2.48)
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We derive a lower bound for the left hand side of (3.2.49).

First, by integrating by parts,

iJ ((am) _G"" ,(;"') = ((G"") _G"",-e~ _~) =0,
w'" s,. w· w'" .. w· - •

since am E V",. Thus,

B (e;t...C?)
=B(~,C?)

=ell(w·)-1/2a:1I2+ lI(w"')-1/2G"'1I3.

+~ (C:.). ,(C?)2)+E (C:.).C?,a::} (3.2.50)

For the other term on the left hand side of (3.2.49), we have

(3.2.51)

Therefore from (3.2.50) and (3.2.51) we have

B ( (~) S- ,C?) -(~ ,aC?+lt
~ 2~ {1I(w"')-1/2G"'1I3. - !I(w"'+l )-1/2(;"'+1113. } + I. + Q""

(3.2.52)

where

(3.2.53)
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((
1 ) ) 1 (W- -w-+

1 (cm)2)
Q", =e w"'. C-,C: + 2 K + w,/" w'"

1 {(Wff& - W",+l 2) (Wff& - W",+l 2)}+ 2K (Wff& )2 ' (6"") It - (W'" )2 ' (6"") . (3.2.54)

We bound the three terms in (3.2.54) separately. For the first term, we use Cauchy­

Schwarz' inequality and (2.3.9), to obtain

IE(C~),~,~)I

~ ~1I(w")-1/2~1I2+CE IIC~).(W")1/2~r
2

~ ~1I(w")-1/2~1I2 + CE C~) (J (W..)1/2(;",

+ CEIIC~). (W")1/2~r

~ ~1I(wff&)-1/2~1I2 +Ce max IWt'1 (_1_) 1/2 G'" 2
4 • W w'" ~

+Ce max IWtI
2

11(w_)-1/2G"'1!2
w2

( )

1/2 2
~ ~1I(w")-1/2~1I2 + CElT;1 W~ (J ~

+CeO';2 II(w"')-1/26"" 11 2 , by (3.2.45),

~ ~1I(wff&)-1/2a:'1I2 +Ce(O';l +0';2)1",. (3.2.55)

We next proceed to estimate the second term in (3.2.54).
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since

I.:, (W")-1(G"")2 d%

~ C (1, ¢i_l.ftI)(w~t>-II~112+(1, ¢i",,)(wi')-IIGiI2) (3.2.57)

follows from (3.2.44) and (3.2.7).

To bound the last term in (3.2.54), we set

w'" - Wftl+1

IT'" = {W'" )2 .

Then writing om as l:~11 G'l'iiJi.'" we get

Set ~i = [%i-l, Xi]. Using (3.2.44) - (3.2.46), we have for i = 1, ... , N - 1,

max IIT-(%)I ~ K max Iwell min(w"')2
Ai A~+l Ai

~ CK u;1 I IIJtin w"',

and

max IIT:'(%)1
Ai

~ K max Iw.1I min(w"')2
A~+l Ai
•
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+2K max lwei max Iw:'(z)l/ min(w"')3
6j+l 6i 6i

~ K max(lwttl + IWlleD/ min(w"')2
6~+1 6i•

+2K max lwei max(lw:"(z)1 + Iwj(z)D/ min(w"')3
6~+1 6i 6i

•

~ CK (0'-2/ min w'" + 0'-1(1;1/2 max Iw"'I I / 2/ min(W",)3/2). (3.2.60)
"6i " 6i ~ 6i

Cauchy-Schwarz' inequality gives

1... (1... )1/2
"~, la-I d:r: ~ H

l
/
2 "~, {a-)2 d:r: .

Since am E V"" from the definition of the test space V", one can prove

(3.2.61)

1.•. (1... )1/2
.'~, 10:'1 d:r: ~ e

1/2 .'~, 10:'12
d:r:, (3.2.62)

(cf. Lemma 4.2 of Stynes and O'Riordan [47]). Thus from (3.2.58) - (3.2.62) and

(3.2.44) we get

by (3.2.57) and Cauchy-Schwarz' inequality,

< C {0'-2 H +0'-1(1-1/2H +0'-1 Hl / 2 } I
- " ". " "',
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using (2.3.9).

Collecting (3.2.55), (3.2.56) and (3.2.63) into (3.2.54) we get

IQ",I =:; ~1", +C{{e*)2(u;2 +u;4) +e*(u;1 +u;2)}I",

=:; ~1", +C'1-11"" recalling the definition of u. and u",
1

=:; 21"" (3.2.64)

by choosing '1 sufficiently large, independently of e, Hand K. Consequently, from

(3.2.49), (3.2.52) and (3.2.64) we get

il ", + 2~ {1I(w"')-1/2G'" 113. -1I(w"'+1 )-1/2G"'+1113. }

~ X-16...._ (:=:) (Zio)' (3.2.65)

Multiplying this by K , then summing it from m = n to m =M, and noting that

Gil+1 =0, we obtain

if n > mo,
if n ~ mo. (3.2.66)

Using (3.2.47) and Lemma 3.2.6,

Hence from (3.2.66), we get

AI

L K 1", + lI(w")-1/2G"1I3. =:; CH-l , for n =0, ... , M.

"'="

Choose Ko =,,(28 +2). Then by (3.2.48),

w(z, t) =:; C(HK)J.+I on 0\00.
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For each (z,t",) E a\flo, there exists i' E {l, .. . ,N} such that z E [Z"_I,Z,,]. Thus

G"'(z) ~ Gir'-1 +Gr,'

~ C(HK)_+1 (w"'(z»-1/2 (Gr,'-1 +~),

~ C(H K)_+1 (Wr.'_I)-1/2Gr,'_1 +(wr.')-1/2~), by (3.2.44),

~ C(H K)_+1/2Kl/211(w"')-1/2G"'1I~.

Using this and (3.2.67) we get the desired result. o

Now we can prove our first main result in this subsection. It is a pointwise

convergence result, which is obtained under assumptions of local smoothness and

reasonable global behaviour of the solution.

Theorem 3.2.5 Assume that the solution u(z,t) of (1.1.1) - (1.1.5) satisfies

and

lIuIlC2(ot) + II/I1C1(ot) ~ C, (3.2.69)

where lI'IIL1(Loo(OK» and lI'IIL1(Ll(OK» are defined in (2.3.2) and (2.3.1), and

at = {(z, t) E a: dist(z, t), ao) ~ H + K}.

Then

IU(zio, '-0) - u(zio, t"'o)1 ~ C(H +K).

Proof. With the discrete Green's function G, the pointwise error can be expressed

as
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=1Z{Zie>, twao)1
AI

= L K R{u·, 6""), by (3.2.31) - (3.2.33), (3.2.17) and (3.2.18),
",=1

AI N-l

~ L L KG? IR(ufA';Pi,,,,)I,
",=1 i=1

writing 0- as Ef:l1 Gr;Pi,fA and using (3.2.34).

Split the sum into two parts:

Recalling (3.2.19),

L KG? IR(ufA';Pi,.)1
(-i,t.)eno

~ L KGi'{I(9'" - fJ't, ;Pi,,,,)1 + I(Our' - un){I, ¢i,,,,) I}
(-i,t.)eOo

~ L KGi'(I, ¢i,,,,) {l'·...'Itr.1 dz +lt.. I",,(zi, t)1 dt}
(-i,t.)eOo -'-1 &.-1

~ C(H + K),

by (3.2.69) and Lemma 3.2.6.

To bound the other sum, we rewrite (3.2.19) as

R(U"', V
fA) = «afA - (lfA)u:', v"') +(r - b"'u"', v·)

(3.2.70)

(3.2.71)

(3.2.72)

- (r - b"'u"', vfA ).,. +{rfAOu"', v"')..- - (r"'u:" v"'),

80 that, using a'" == (11ft == 1,

IR{u"', ;Pi,,,,)I~ C {HllrIlL-(~i) +H K-l(lIu"'IILao(~i)

+lIu"'-lI1Lao(~i» + lIu;"IILl(~"} ,
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E KG'/' IR(u·, ~i,.)1
(-.,t.)eo\oo

~ C ( max ar) {lIfIlLl(LCID(OK» + K-1(lIu IlLl(LCID(OK»
(-.,t.)eO\Oo

+lI u oIlLCID(o,1» +lI u tIlLl(Ll(OK»}

~ CH, (3.2.73)

using Lemma 3.2.7 (with, =1) and the assumption (3.2.68).

Combining (3.2.70) with (3.2.72) and (3.2.73) completes the proof. 0

Remark 3.2.~ The assumption that KllutIlLl(Ll(OK» ~ C is reasonable in many

cases (see, e.g., Johnson [21] p.147 - 149). In fact, an inspection of the proof of

Theorem 3.2.5 shows that in (3.2.68) one can replace C by CK-I for any fixed

positive constant 6 without affecting the conclusion of this theorem.

We note that the assumption (3.2.69) implies that (zio' t"'O) is outside the bound-

ary layer. Theorem 3.2.5 gives a pointwise estimate of O(H + K), in regions where

the solution is smooth. To get a local pointwise error estimate inside the layer, we

need the following technica.l result.

Lemma 3.2.8 Set W(z) =exp(p/2)exp(-(1- z)/(2£» with p =H/e. Then

/.

-.+1
(-eW_ +W_, ~i,.) ~ (1/16) e-1 exp(-(1 - z)/e) dz,

-.-1

for i =1, ... , N - 1 and m =0, ... , M.

Proof. We have
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=(1/4)exp(p/2) (e-t exp(-(1- x)/(2E»,¢i,,,,)

~ (1/4)exp(p/2) E~,e-lexp(-(1- z)/(2E»{1- exp(-(z - z.-d/e)}

x {1 - exp( _p)}-t dx, from (3.2.5) and (3.2.6),

=(1/2)exp(-(1- xi+t)/(2e»(1- exp(-p»/(1 +exp(_p/2»2

~ (1/16) E~:' e-1 exp(-(I- z)/(2E»tk

~ (1/16) E~:' e-1 exp(-(1- z)/e) tk,

as desired. o

We can now give a pointwise error estimate inside the layer, under a realistic

local assumption on the behaviour of derivatives of the solution in the layer.

Theorem 3.2.6 Assume that the ezact solution u(x, t) of {1.1.1} - {1.1.5} satisfies

{9.2.68} and

ID~Dtu(x, t)1 + ID~f(x, t)1

~ C{1 +e-i exp(-(1- xl/e)} V(z, t) E at,

for 0 ~ i ~ 1 and i +j ~ 2, where at is as in Theorem 9.2.5. Then

I(U - u)(zio' t"'O)1 ~ C(H +K).

(3.2.74)

Proof. Note that (3.2.73) is valid under the assumption (3.2.68). Hence from

(3.2.70), (3.2.71), (3.2.73) and (3.2.74),

45



M N-1

~ C L K L(I,~,,_)G1"(-eW_ +W.,~,,_) +C(H +K),
_=1 '=1

by Lemma 3.2.8,
M

~ CH L K(-eW_ +W.,G"') +C(H +K),
_=1

since (1, ~,,_) ~ C H,
II

=CH L K{e(W.,o:') +(W.,G"')} +C(H +K)
m=1

AI

~ CH L K {e«W~).,G:') +«W~).,G"')} +C(H +K),
_=1

since (W - WS!! ,-e~ - 0:')" =0,-
G.(zo +0) ~ 0 and G.(ZN - 0) ~ 0,

AI

=CH L K{K-16_,naoW(Zio) - K-1(W~,G'" - G"'+1)~.
_=1

- (WS!! , G"')ti-} +C(H +K), by (3.2.31),-
=CH {W(:!:;,,) - (W,G1

)". +EK(W,G"')". } +C(H + K),

by telescoping,

~ CH 1~~a:--1W(Zi) +C(H +K), using Lemma 3.2.6 and (3.2.34),

~ C(H +K),

since max1~i~N-1 W(Zi) ~ 1. This completes the proof. o

Remark 3.2.5 The analysis in this subsection is carried out for a constant coefficient

problem, but the conclusions are valid for variable coefficient problems, provided

that one also assumes that lIu.IILl(Ll(nK» ~ C.
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3.3 i-Spline Trial and Hat Test Functions

In this section we choose the i-spline functions {~i,,,,(Z)} defined in (3.2.23) and

(3.2.24) to be the trial functions and piecewise linear "hat" functions {lPi,,,,(z)} to

be the test functions. A scheme of this type was considered in Stynes and 0 'Riordan

[47] for two-point boundary value problems. Let 8W& and VW& be the linear spans of

{~i,m(z)} and {lPi,,,,(z)} respectively. We work with an arbitrary mesh (no grading

requirement). Because of the new choice of the test functions, we use a discrete L2

inner product which is different from (v, w)~: set

N-l

(v,w).. = L(1,lPi,,,,)V(Zi,t,,,)W(Zi,t,,,) Vv,w E e([O,1] x {tm }).

i=1

The discrete L2 and energy norms are correspondingly changed into

(3.3.1)

(3.3.2)

The scheme considered here has a form similar to the one studied in the previous

section, with the approximation a replaced by a, defined in (3.2.3). It is formulated

as follows: find U'" E 8", such that

B(U"', vW&) +(r"'lJU"', vW&).. =(r, v"').. Vv'" E Vm ,

um(O) = qo(t",) and U"'(1) = Ql(tW&), for m = 1, ... , M,

Uo(z) =(1£°)10'

where

B(w, z) =e(W., z.) +(aw., z) + (bw, z)...

By an argument similar to that for Lemma 3.2.1 , we have
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Lemma 3.3.1 For each v- E S"", m E {I, •.. , M} ond H 8ufficiently 8moll {inde­

pendently of e},

B(v"", (v"')v.) +(r""ov'" , (v"")v.)~

~ Cllllv"l1l~ +2:.. {(r"v", v"')" - (r"v"-t, v..- l ),,},

where C1 is tJ8 in {1.1.5}.

This lemma guarantees that (3.3.3) - (3.3.5) have a unique solution U"" in S",.

To analyze the scheme (3.3.3) - (3.3.5), let us introduce a set of i·-spline func­

tions {¢i,,,,(X)}, which are defined similarly to (3.2.5) and (3.2.6) except that ar is

replaced byar. For any vIR E V"" set V'" =E~11 Vr'¢i,,,,,(X). Then integrating by

parts and using the definitions of 4>i,,,,(x) and ¢i,,,,,(x), one can prove that

(3.3.7)

where tl(.,t",,) is the interpolant from S"" to u(x,t_).

Set Z"" = u'(.,t",,) - U-. Then (2.1.1), (1.1.2), (1.1.3), (3.3.3) - (3.3.5) and

(3.3.7) yield

B(Z-, vM)+(r""oZ-, v"")~ = R(uM
, vM) 'tvME V"",

Z""(O) =Z""(I) =0 and ZO =0,

where

R(u"', v"") = «aM - o"')u:', vM)+{(tr, v"') - «(J"', v"')~}

+(r-(ou"" - u:"), VM)~.

Here 8 = f - bu - rUt as in the last section.
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To bound R{1.£"',11"'), we need a technical result given in Stynes and O'Riordan

[47].

Lemma 3.3.2 For each m E {I, ... , M} and any w'" E S""

for i =1, ... , N.

With this we can prove

Lemma 3.3.3 For each m E {I, ... , M} and any 11'" E V""

IR{1.£"', 11"')1 ~ CH { 1I1.£:'II~l(o,t) + 1Is:'II~l(o,t) + IIrll~2(o,t)}

+C1I81.£'" - 1.£:'113 +(Ct/2)lIlvj.1I13·

where Ct is as in (1.1.5).

Proof. From (3.3.10), we have

1R{1.£'",11"')1~ I((ii'" - a'" )1.£:' ,v"') 1+ 1(8'" , 11"') - {r ,11'" ).,1

+ l{r"'{81.£'" - 1.£:'),11"').,1 +1{lJ"',v'" - 11m )l. (3.3.11)

The first three terms can be bounded similarly to (3.2.20) - (3.2.22). For the last

term, if Z E [Zi-t, Zi] for some i E {I, ... , N}, then

Iv"'{z) - 11"'{z)1

= I{V~t - 11i'){~i."'{ Z ) - tPi,m{Z »1

~ 2[, 1( vj").1 dz, since 1';;" ..(z)1 + 11/>" ..(z)1 ~ 2,

~ CellI {f~, I(vj..).!' dz}111,
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by Lemma 3.3.2. Thus

Consequently

Combining this and the bounds for the first three terms (cf. (3.2.20) - (3.2.22))

completes the proof.

Using Lemmas 3.3.1 and 3.3.3, we now have an analogue of Theorem 3.2.2.

o

Theorem 3.3.1 Let un be defined by {9.9.9} - {9.9.5}. For H sufficiently small

{independently of E} and each n E {I, ... , M},

{

n }1~
IIU" - unlill + I k".IIIU" - u"'llI~

~ CH
1

/
2 {lIu.IIL2(Ll(OK» + 118.1IL2(Ll(OK» + 11811L2(L-(OK»}

+CK
1

/
2

II UuII i,2(Ll(OH»'

where the norms on the right hand side are defined in {!.9.9} - {2.9.5}.

Proof. Similar to the proof of Theorem 3.2.2. o

Remark 3.3.1 It can be shown that results analogous to Theorem 3.3.1 (except that

no Ute term is present) hold for the semi-discrete version of (3.3.3) - (3.3.5).

In what follows, we shall give a pointwise error analysis for the scheme on a

uniform mesh with space mesh size H and time mesh size K. For simplicity, we

assume, as in Subsection 3.2.4, that a(x, t) =6(x, t) =r(x, t) =1.
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For any mesh point(zio' t.o) E 0, we define a discrete Green's function G(z, t)

associated with (3.3.3) - (3.3.5), similarly to (3.2.31) - (3.2.33): for m =0, ... , M,

0"'(0) =0"'(1) =0, GJI+1 =0, (3.3.13)

where S~ = {x'" E S", : X"(O) =X"'(1) =O}. Then with arguments similar to be­

fore we can show that Lemmas 3.2.5 and 3.2.6 are valid for this G(z, t). Lemma 3.2.7

still holds; the main difference in the proof is that instead of 1m given by (3.2.53),

here we work with

We now can derive the following local pointwise error estimate.

Theorem 3.3.2 Assume that the hypotheses 0/ Theorem 3.2.5 or Theorem 3.2.6

hold. If U and u are the solutions of {3.3.3} - {3.3.5} and {1.1.1} - {1.1.5} respec-

tively, then

Proof. The error at (zio' t"'O) can (cf. proof of Theorem 3.2.5) be bounded by

II N-l

IU(Zio'tmo) - u(zio,t.o)1 ~ L L KGi' Ik(u"',¢,,,,,)I·
m=l '=1

Analogously to (3.2.73), we have

L KGi' /k(u"', ¢"",)I~ CR.
(-.,t-)eO\Oo
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By (3.3.10),

IR(u'" , tiJi,,,,)I
~ {I (8'", tiJi,..) - i1i(1, .pi,,,,)I+ I(aur - ur,i)(1, .pi,,,,) I}

~ {I(il'" - 8i",tiJi,,,,)1 +CH21iJil + I(aur - u;:i)(I,.pi,,,,)I},

since

- 21(1, .pi,,,, - .pi,,,,)1 ~ CH

follows from the uniformity of the mesh in the %-direction. Hence

similarly to the proof of Theorem 3.2.5 (or Theorem 3.2.6).

The desired result then follows from (3.3.14) - (3.3.16). o

Remark 3.3.! The previous uniform convergence result also holds for variable coef-

ficient problems, provided that one also assumes that lIu.IIL1(Ll(OK» ~ C. Theo­

rem 3.3.2 indicates that on a uniform mesh in the %-direction, the scheme (3.3.3) ­

(3.3.5) satisfies the same error bounds as the scheme (3.2.9) - (3.2.11). However, it

is not clear how to get the same convergence results for the scheme (3.3.3) - (3.3.5)

on arbitrary meshes.

3.4 Numerical Results

In this final section, we shall present the results of some numerical experiments and

compare the actual performance with the theoretical predictions for the schemes
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discussed above. We solved two problems for various values of t, H and K on

uniform meshes. In each experiment we held the ratio K / H equal to 1. Similar

rates of convergence are observed when K / H is some other constant.

All computation was performed in C double precision on an IBM PC.

Example 9.-1.1 (global convergence) We examine how both schemes perform when

applied to the variable coefficient problem

- tu•• + (4 +2x)u. + (2 +exp(xt»u + (1 +x 2 + t2
)Ut = f(x, t) on a, (3.4.1)

with analytical solution

u(x, t) = t exp((x 2 +4x - 5)/t ) +x2 + t 2
, (3.4.2)

where a = (0,1) x (0,1). The function f(x, t) and the initial-boundary conditions on

fi were chosen to fit this data. Here u(x, t) exhibits typical boundary-layer behaviour

near x = 1.

The global discrete Loo errors E~-,H) and corresponding convergence rates p1-,H)

of the scheme (3.3.3) - (3.3.5) are listed in Tables 3.5.1 and 3.5.2 respectively. These

are computed from

and

ftC-,B) - {In EC-,2H) -In EC-,H)} / In 2rc - c • ,

(3.4.3)

(3.4.4)

where u is the exact solution and UC-,H) is our computed solution with space mesh

size H. The rate of uniform convergence is estimated by the so-called "pt -method"

proposed by Farrell and Hegarty [12]. That is,

(3.4.5)
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where

(3.4.6)

and

(3.4.7)

Table 3.5.1 Global Maximum Errors

e N=8 16 32 64 128
1.00000e+00 2.601e-02 1.168e-02 5.463e-03 2.637e-03 1.295e-03
2.50000e-01 6.803e-02 2.5300-02 1.015e-02 4.424e-03 2.04&-03
6.25000e-02 1.10&-01 5.070e-02 1.944e-02 7.272e-03 2.892e-03
1.56250e-02 1.225e-01 6.323e-02 3.042e-02 1.328e-02 5.099e-03
3.90625e-03 1.255e-01 6.637e-02 3.365e-02 1.652e-02 7.774e-03
9.76562e-04 1.263e-01 6.716e-02 3.445e-02 1.734e-02 8.594e-03
2.44141e-04 1.264e-01 6.736e-02 3.465e-02 1.754e-02 8.79ge-03
6.10352e-05 1.265e-01 6.741e-02 3.470e-02 1.75ge-02 8.850e-03
1.52588e-05 1.265e-01 6.742e-02 3.472e-02 1.761e-02 8.863e-03
3.81470e-06 1.265e-Ol 6.742e-02 3.472e-02 1.761e-02 8.8600-03
9.53674e-07 1.265e-01 6.742e-02 3.472e-02 1.761e-02 8.867e-03

EI1 1.265e-01 6.742e-02 3.472e-02 1.761e-02 8.867e-03c

Table 3.5.2 Global Convergence Rates

e N=8 16 32 64 Average
1.00000e+00 1.15 1.10 1.05 1.03 1.08
2.50000e-Ol 1.42 1.32 1.20 1.11 1.26
6.25000e-02 1.13 1.38 1.42 1.33 1.31
1.56250e-02 0.95 1.06 1.20 1.38 1.15
3.90625e-03 0.92 0.98 1.03 1.09 1.00
9.76562e-04 0.91 0.96 0.99 1.01 0.97
2.44141e-04 0.91 0.96 0.98 1.00 0.96
6.10352e-05 0.91 0.96 0.98 0.99 0.96
1.52588e-05 0.91 0.96 0.98 0.99 0.96
3.81470e-06 0.91 0.96 0.98 0.99 0.96
9.53674e-07 0.91 0.96 0.98 0.99 0.96

~ 0.91 0.96 0.98 0.99 0.96

From Table 3.5.2 we see that the rates obtained numerically tend to 1 as the
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number N of nodes increases, and the uniform rate of convergence is pt = 0.96.

This agrees with the predictions of Theorem 3.3.2.

Similar results were obtained for the scheme (3.2.9) - (3.2.11). As mentioned in

Remark 3.3.2, the two schemes have similar error bounds when a uniform mesh is

employed.

Example 3..l.! (local convergence) We now test the local performance of our schemes

when applied to the following problem, which has discontinuous initial data:

- EU•• + (1 + %2)(1 + t)u. + 4u + (1 + %)Ut = f(x, t) on 0,

where

U(0, t) =", u(1, t) =(1 + t)' , for 0 < t ~ 1,

( 0) {xl, when %E [0,0.376),
U %, = %' +exp(-%/3), when %E [0.376,1].

(3.4.8)

(3.4.9)

(3.4.10)

The function f(x, t) is chosen such that the reduced solution Uo(%, t) of (3.4.8) is

% t _ { (% + t)' on Ot,
Uo( , ) - (% + t)' +exp( -%/3) exp( -t/4) on O2,

where Ot is defined by

0 1 = {(x,t) EO: arctan x + ~ In(l + x') - ~(l + t)2 < Co},

with
1 2 1

Co = arctan 0.376 +2ln(1 + (0.376) ) - 2'

and O2 = 0 \ Ot. The solution u(x, t) will have an internal layer along aOt n ao2•

We solve this problem using the scheme (3.3.3) - (3.3.5).

55



Table 3.5.3 Local Maximum Errors

£ N=8 16 32 64 128
1.00000e+00 2.772e-02 1.495e-02 7.73&-03 3.92ge-03 1.983e-03
2.50000e-0l 6.448e-02 2.732e-02 1.238e-02 5.857e-03 2.848e-03
6.25000e-02 1.205e-Ol 4.79ge-02 1.812e-02 7.307e-03 3.196e-03
1.56250e-02 1.302e-Ol 6.73&-02 3.175e-02 1.251e-02 4.683e-03
3.906200-03 1.302e-Ol 6.740e-02 3.43&-02 1.732e-02 8.058e-03
9.76562e-04 1.302e-Ol 6.740e-02 3.435e-02 1.735e-02 8.717e-03
2.44141e-04 1.302e-Ol 6.740e-02 3.435e-02 1.735e-02 8.715e-03
6.10352e-05 1.302e-Ol 6.740e-02 3.4300-02 1.7300-02 8.7100-03
1.52588e-05 1.302e-Ol 6.740e-02 3.435e-02 1.735e-02 8.715e-03
3.81470e-06 1.302e-Ol 6.740e-02 3.435e-02 1.735e-02 8.7100-03
9.53674e-07 1.302e-Ol 6.740e-02 3.4300-02 1.735e-02 8.7100-03

E:! 1.302e-Ol 6.740e-02 3.4300-02 1.735e-02 8.715e-03

Table 3.5.4 Local Convergence Rates

£ N=8 16 32 64 Average
1.00000e+00 0.89 0.95 0.98 0.99 0.95
2.50000e-Ol 1.24 1.14 1.08 1.04 1.13
6.25000e-02 1.33 1.41 1.31 1.19 1.31
1.5625Oe-02 0.95 1.09 1.34 1.42 1.20
3.90625e-03 0.95 0.97 0.99 1.10 1.00
9.76562e-04 0.95 0.97 0.99 0.99 0.98
2.44141e-04 0.95 0.97 0.99 0.99 0.98
6.10352e-05 0.95 0.97 0.99 0.99 0.98
1.52588e-05 0.95 0.97 0.99 0.99 0.98
3.81470e-06 0.95 0.97 0.99 0.99 0.98
9.53674e-07 0.95 0.97 0.99 0.99 0.98

P3 0.95 0.97 0.99 0.99 0.98

In Tables 3.5.3 and 3.5.4 we display the local discrete LOO(U') errors E~··H) and

the corresponding rates p~••B) of convergence based on the double mesh method,

where

a' = {(z,t) : 0 < z ~ 0.5, 0.5 ~ t ~ I}.
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Here

E~c,B) = ~ax IUCc,B)(Zi, t,.) - UC.,2B)(Zi, t,.)1
','"

and the rate p~.,B) is defined analogously to (3.4.4). We use the "pt -method" (see

Farrell and Hegarty [12]) to determine the rate of uniform convergence; the quantities

pt and pf are defined analogously to (3.4.4) - (3.4.7) based on E~·,B).

Note that the solution u(z, t) is smooth in a'. The results indicate that the

scheme (3.3.3) - (3.3.5) is first order accurate in a', as predicted by Theorem 3.3.2.

Similar results were obtained for the scheme (3.2.9) - (3.2.11).
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Chapter 4

An Exponentially Fitted
Non-lumped Scheme

4.1 Introduction

In this chapter, a scheme generated by a Petrov-Galerkin method is examined using

finite element techniques. The scheme is exponentiaJ.ly fitted in the z-direction.

Recall from Chapter 2 that any scheme on a uniform mesh must have coefficients

based on exponentials if it is to be globaJ.ly L- convergent, uniformly in E. In

Chapter 3, two similar exponentiaJ.ly fitted schemes have been studied, where the

integral involving the time derivative term was approximated by some quadrature

rule. This obviously introduces an error. An alternative approach is to integrate this

term exactly. This so-caJ.led "non-lumped method" has been analysed by Ng-Stynes

et ale [31] for the case a(z,t) =a(z), using finite difference techniques.

In this chapter, we shaJ.l prove that, under assumptions similar to those of Chap­

ter 3 on the behaviour of u and its derivatives, the non-lumped scheme is globaJ.ly

uniformly convergent in an energy norm and L' norm. H instead we make weaker

global assumptions together with some local assumptions on the behaviour of u and
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its derivatives, we can then prove that our scheme is loca.lly uniformly convergent in

a discrete Leo norm both outside and inside the boundary layer. Our analysis does

not need assumptions as strong as those in [31] on the behaviour of the solution u.

Our results are similar to those of Chapter 3, except that a less restrictive condition

on the ratio of time mesh size to space mesh size is required here. Furthermore, the

analysis here is more complicated.

The chapter is structured as follows: in Section 4.2 we describe our non-lumped

scheme and norms used in later analysis. In Section 4.3 global estimates in energy

and L2 norms are derived by finite element techniques. Section 4.4 discusses how the

results of Section 4.3 are improved when one has more information on the behaviour

of derivatives of u. In Section 4.5 we provide a local convergence analysis, using a

discrete Green's function and a cut-off function, based on Niijima's analysis of an

elliptic problem [32]. Numerical results are presented in Section 4.6.

4.2 Description of Scheme

Consider a tensor product mesh which is arbitrarily graded in the z-direction and

arbitrarily spaced in the t-direction as in Subsection 3.2.1.

On each time level 4. with m E {O, ... , M}, we define a basis {~i,,,,(Z) : i =

0, ... , N} for the trial space S", by

~it.(Zj) =6i,;, for i =0, ... , N,

(4.2.1)

(4.2.2)

where [0,1)" is defined in Section 2.3. Here iiI" is an approximation to a(z,4.) on

{Zi-l,Zi] given by (3.2.4). A basis {¢i,.: i =1, ... ,N -I} for the test space Vm is
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given by (3.2.5) and (3.2.6).

Now we formulate our non-lumped scheme as follows: for each m E {I, ... , M},

find U.... E Sm such that

B(Um
, v"") + (rm aum

, vm
) = (/"', v"")~ \lvm E Vm,

Um(O) =90('-) and Um(l) =f1(t.,.,),

UO = (uO)Io'

where B(.,.) and (.,. ).,. are as in (3.2.12) and (3.2.8) respectively.

(4.2.3)

(4.2.4)

(4.2.5)

The existence and uniqueness of U.... will follow from Lemma 4.2.2 below.

In addition to the discrete L2 and energy norms introduced in (3.2.13) and

(3.2.14), we will also use the following continuous energy norm:

for each w E Hl([O,I] x {t",}), where 11·11 is the usual L2(0,1) norm. A useful

relationship between the discrete and usual L2 norms is given by

Lemma 4.2.1 Fiz m E {I, ••. , M}. Suppose that either vm E S.... with vm(O) =
vm(1) = 0, or v'" E Vm. Then

Proof. Let v'" E S"" with v"'(O) = v"'(I) = O. Then

Note that 0 :5 fiJi,,,, :5 1 for all i and (a +6)' :5 2(a2 +62
). Consequently

N-l

IIvfllll2 :5 2 E (hi +ht+l)(vi)2
i=1
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N-l

~ 4 L hievi)2, by the mesh grading,
i=1
N-l
~ - ",2

~ 8 LJ (1, <!>i,,,,)(Vi ) ,
i=1

since it is easy to show that (1, ~."') ~ ~/2.

Similarly one can prove the result for 11'" E V,..

We now demonstrate the following coercivity result.

[J

Lemma 4.2.2 Let p =OH/E. Assume that H i8 sufficiently small (independently

of E) and that

ok-n > 2r(p),
v*

where

r(p) = (p coth(p/2) - 2) /p.

Then for each X'" E 5"" m E {O, .•• , M}, toe have

B(X"', (x"')v.) +(r"'8x"', (x"')v.>

~ (Cl/2)lIIx"'llI~+ 2:" {(r...x.... x...)- (r...x...-1.X...- 1)}.

where C l is as in (1.1.5).

(4.2.6)

(4.2.7)

Proof. From (3.2.16), for each x'" E 5'" and H sufficiently small (independently of

E), we have

Since for j = i - 1 or i,
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we have

II «x"')y·).11 = IIx:'lI·

Hence

For the other term, we have

(r'"OX'" , (x"')Y.)

= k;l {(r"'x"', (X"')Y.) - (r"'x"'-l ,(X"')Y.)}

~ k;.1 {(r"X'" (x"h,.) - i(r..x..- 1 ,X..- 1 )

-i(r"(X")t>., (x")t>.)}

= 2:.. {(r"x",x"') - (r..x..-t,x..-1
)}

-2:" (r", (X" - (X")t>Y)

~ 2:" {(r"x", X..) - (r..x..-t,x"'-l)}
II'"

- 2k", IIx'" - (x"')y.1I 2
•

(4.2.9)

(4.2.10)

(4.2.11)

For i = 1, ... , N - 1, let i1t = a'l'~/e. Then elementary computations show that

where f(·) is given in (4.2.7). For z > 0, write f( z) as

f(z) = z9(z),
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with

9(z) =(zcoth(z/2) - 2)/Z2,

and set Pi =a~/E. Then

since 9'(z) > 0 for z > O. Hence

since r'(z) > 0 for z > O. Inserting this into (4.2.12), we have

Hence, using 4>i-l,,,, +iI>i,. == 1 == 'fii-l,,,, + 'fii,. on each [%i-l, %.], we get

Therefore, by (4.2.11) and (4.2.14),

(r"'8x"', (X"')9'.)

1 Hv·
~ 2k", {(r·x"', X·) - (r"'x·- l

, X·- l
)} - ka r(p)ellx:' 11 2

•

(4.2.13)

(4.2.14)

Combining this with (4.2.10) and using the assumption (4.2.6) yields the desired

result, since 0 < C1 ~ 1. o

Remark -4.2.1 Condition (4.2.6) is not a serious restriction on the ratio k/H, as

lim,....o r(p) = 0, r'(p) > 0 for p > 0, and lim,....+_ r(p) = 1. A discussion of a

condition similar to (4.2.6) may be found in Ng-Stynes et ale [31].
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4.3 Global L 2 and Energy Norm Error Estimates

In this section we will derive global LJ and energy norm error estimates for our

non-lumped scheme using finite element techniques.

For each m E {I, ... , M}, let uI(z, t",) be the interpolant from 8", to the exact

solution u(z,t",) at {(Zi,t,.»~. Recall that U'" is the80lution of(4.2.3)- (4.2.5).

Set

Z"' = uI (z, tIft) - U'" and ,.,- = uI (z, t,..) - u(z, tIft).

Then using (2.1.1), (4.2.3) - (4.2.5) and "''''(Zi) = °for all i, we obtain, for any

v'" e V""

where

B(zm,v"') + (r'"0Z'" , v"') = B(u'" , v"') + (r'"0,.,'" , v"'),

Z"'(o) =Z"'(I) =0, ZO =0,

B(u"', v"') = «a'" - a"')u:' , v"') + {(I'" - b"'u"', v"')

- (I'" - b"'u"', v"')4-} + (r"'(Ou'" - u:"), v"').

(4.3.1)

(4.3.2)

(4.3.3)

This has a form similar to equation (3.2.19), except that the last term in (4.3.3) is

an ordinary L2(O, 1) inner product instead of a discrete one. Hence one can bound

differences of similar terms by arguments similar to those in Chapter 3 and by using

Lemma 4.2.1, to get

Lemma 4.3.1 For each me {I, ... , M} and an, 17'" E V""

IR(u"', ,,"')1 ~ CH {lIu:'lIi1(0.1) +11(1'" - b"'u"').lIi1(0.1)}

+CIIOu'" - u:"W' +(C1/8)1I""'1I3·,

64



where Ct is as in {1.1.5}.

Next, we bound the other term on the right hand side of (4.3.1).

Lemma 4.3.2 For each m E {I, ... , M} and any v'" E V""

where Ct is as in {1.1.5}, 11'11£2(£1),,,, is defined in {!.3.8}.

Proof. Fix m E {I, ... , M}. For i =1, ... , N and %E [%i-t, %d,

and

u(%, ti) =u(%, ti)~i,,,,(%) +u(%, ti)~-t,,,,(%), for j =m - 1, m.

O,,"'(z) =11:;,.1 { (L~, [IU.t(s,t) ds dt) ~."'-I(Z)

+ (1::-. ['-' u.e(S,t)dsdt) ~-I.__I(Z)}

+ (1.~i u8 ( 8, t,.) ds) a~i,,,,( %). (4.3.4)
8.-1

Consequently,

I(r'"a.,.,'",v"')I
N-t 1.8i+1

~ 11* L Ivil la.,.,"'(%)1 ibi.-(%) dz
i=1 8i-l

N -1 { ( /.'- 1.8i+1 )~ 11* L Ivil k;1 IU.,(%, t)1 dz dt (1, ibi,..)
i=l e.-I 8i-l
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+(L:' Iu,,(z, t",)1 dZ) (1, la~...1)}

~ Ck;,.l J~, {~I!lf'1 (L~:' lu.,(z, t)1 dZ) (1, th....)} tIt

+~ 1!If'1(f~:' lu.(z, t",)1 dZ) (1, th....),

since an elementary calculation shows that

Using (2.3.9) then completes the proof.

(4.3.5)

o

We can now obtain global L2 and energy norm estimates for the error between

our computed solution and the exact solution.

Theorem 4.3.1 Assume that the hypotheses of Lemma .4.t.t hold. Then for each

n E {1, ... ,M}, we have

{. }1~
IIU" - u"l1 + 1; k...1I1U- - u"'IIIJ

~ CH1
/
2 {lIu.IIL2(Ll(OK» + 11(1 - bu).IIL2(Ll(OK» + lI u.tllL2(Ll)

+ 111- bu - rUtIlL2(LClD(OK»} +CK1
/

2 I1 uttlli,2(Ll)' (4.3.6)

where the norms on the right hand side are defined in (t.3.3), (2.3.6) (2.3..4) and

(2.3.7).

Proo/. Take v'" = (zm )9. in (4.3.1) and use Lemma 4.2.2 with X'" = zm and

Lemmas 4.2.1,4.3.1 and 4.3.2 with 11'" = (Z"')9. to get for each m,

(Cl/2) IIIZ'" III~ + :... {(r'"Z'", Z"') - (r'"Z"'-\ Z"'-l )}

~ CH {lIu:'lI~l(o.l)+ lI(r - b"'u"').lIil(O.l)

+k;ll1u•tllh(Ll)••} +C1I8u· - urll2
•
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Multiplying this by km , and summing from m =1 to m =n ~ M, we get

'I

(C1/2) L kmlllZ"'III~. +1I11Z"1I2
",=1

~ cn {lIu.II~2(LI(OK»+ 11(1 - bu).1I~2(Ll(OK»
2 '1-1

+ lIu.cIl~(Ll)} +CK (lIutcIlV(Ll») +C L k",IIZ"'1I2
,

m=l

since

JI

L kmll8u'" - urll2

m=l

JI 1( e. )2
:$ I km 1. ft.-. lutc(z, t)1 dt dz

1 ( T )2
:$ eK1. 1. lutc(z,t)ldt dz

~ CK (lIu""£2(Ll») 1 •

Using a discrete Gronwall's inequality and Lemma 4.2.1 we obtain

'I

L k",1IIZ"'II12 + 1IZ"1I2

",=1

~ cn {lIu.llhCL1(OK» + 11(1 - bU).1I~2(Ll(OK»

+lIu.clli2(Ll)} +CK (IIUttIl£2(Ll»)I. (4.3.7)

Combining this with

which is similar to inequality (3.2.26), completes the argument. 0

Corollary 4.3.1 If

lIu.IIL2(Ll(OK» + 11(1 - 1m).IIL2(Ll(OK» + lIu.cIlL2(Ll)

+III - 1m - ru,IIL2(L-(OK» + lIu"II£2(Ll) ~ C, (4.3.9)
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then

Remark 4.9.1 It can be shown that the factor HI/2 in the energy norm bounds of

Theorem 4.3.1 and Corollary 4.3.1 is sharp.

4.4 Improved Accuracy Under Extra Conditions

In this section we will show that under certain compatibility assumptions on the

data at the comers (0,0) and (1,0) of {}, the error estimates in the last section can

be significantly sharpened. These compatibility conditions are given in Stynes and

O'Riordan [45]; using them, one can derive pointwise bounds (3.2.27) on the solution

and its derivatives.

Using (3.2.27), we can bound the interpolation error in the LOO norm.

Lemma 4.4.1 {Interpolation efTOr in the L- norm} .Assume that {9.!.27} holds.

Let ul(x,tm) be the interpolant from sa to u(x,t",) at {(Xi,tm)}~o. Then for

x E [Xi-I, Xi] and each m E {I, ... , M},

Proof. Fix i E {I, ... , N} and m E {1, ... , M}. Set L.z == -eZ••+iiiZ•. Then the

operator L. satisfies a maximum principle on [Xi-I, Xi], since iii > O. On (Xi-I, xd

we have

IL.(u - tl)(x,t,.)1

=IL.u(x, t,.)I, by (4.2.1),

= Ir(x) +(iii" - am(x»u:' - b"'(x)u'" - rm(x)u:"1
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~ C (1 +hie-1 exp{-0:{1- z)/e») ,

using (3.2.27).

Consider a barrier function

W{Z) = (z - Zi) +hi exp(-0:(1- z)/{2£».

Then

Choose a positive constant C sufficiently large, independent of £ and mesh size, to

get

Note that w(zi) ~ 0 = I{u - ul){zi,t",)I, for j =i-1 and i. Applying the maximum

principle we obtain

as desired. [J

We now improve the estimates of Theorem 4.3.1 as follows.

Theorem 4.4.1 Assume that the hypotheses of Theorem ~.3.1 and {3.2.27} hold.

Then for each n E {1, ... , M},

nun - u"11 ~ C(H +K),

{" }1~J; k..1IIU'" - ""III' ~ C(H1
/' +K).
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Proof· Similarly to the proof of Lemma 3.2.4, we have, for any m E {1, ... , M} and

11'" E V""

(4.4.1)

The term (r"'8'7'" , 11"') can be bounded in the same way. In fact, using (3.2.27) in

(4.3.5) we have

1(r'"8'7'",11"')1
N-l /.8.+1

~ C L 111,1(1,,,.,,,,) {1 +e-1 exp(-a(1- z)/e)} dz
.=1 8.-1

~ CH 2 +(C1/8)1I111"'1I13·, (4.4.2)

(cf. the proof of Lemma 3.2.4). The norm 1I1v"'11I~ in (4.4.1) and (4.4.2) can be

replaced by 11111;".111.,-, using (4.2.9). Thus, in the same manner as the derivation of

(4.3.7) we get from (4.3.1), Lemma 4.2.2, (4.4.1) and (4.4.2),

"L k",1IIZ"'II12 +1IZ"1I2 ~ C(H2 +K 2
).

",=1

By Lemma 4.4.1,

11'7"'11 ~ CH.

Combining this with (4.4.3) and (4.3.8) gives the desired results.

4.5 Localized Pointwise Error Estimates

(4.4.3)

(4.4.4)

o

In this section we use a variant of Niijima's approach [32] to derive pointwise error

estimates under reasonable assumptions on the solution u and its derivatives. For

simplicity, we consider a constant coefficient problem with a(z, t) = a > 0, b(z, t) =

b > 0 and r(z, t) =r > 0, and we assume that the mesh is uniform with the space

and time mesh sizes H and K respectively.
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Let (xio, tmo ) be an interior mesh point. To estimate the error at this point,

we define a discrete Green's function G(x, t) associated with the point (xio, tmo ) as

follows: for each me {O, .. . ,M}, find G(x,t.) == c;- E V", such that

G"'(O) = G"'(I) = 0,

where S~ = {X'" E S",: X"'(O) =X"'(I) =o}, and we formally set

G.Il+l(x) == o.

The following lemma shows the existence and uniqueness of G-.

(4.5.2)

(4.5.3)

Lemma 4.5.1 Assume that (.4.2.6) holds. Then there exists a unique solution G'"

for the equations (.4.5.1) - (.4.5.3). Furthermore,

G't ~ 0, for i = O, ... ,N and m = 0, 1, ... ,M.

Proof. Equations (4.5.1) - (4.5.3) may be written as

(A'" +K-1Di +J) G", =K-1 (fi'" +D2'G"'+l)

(4.5.4)

(4.5.5)

where A"', Di and Dr are N +1 by N +1 tridiagonal matrices with rows 0 and

N identically zero, and for rows i = 1, ... , N - 1 having non-zero entries in columns

i-I, i and i + 1 given by

r(4>i,,,,, ~'-1,.), r(4>i,f'A' ~.,.), r(4>.,f'A' ~'+l,f'A);

r(4>i,., ~'-1",,+1)' r(4>i,,,,, ~.",,+1)' r(4>i,., ~'+1""+1)'
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respectively; J (which is used solely to incorporate the boundary conditions) is the

N +1 by N +1 matrix with (0,0) and (N, N) entries equal to 1 and a1l other entries

0; 6m. and G", are N +1 by 1 matrices with the ith entries

respectively.

Thus it suffices to show that the system (4.5.5) has a unique solution. Inspecting

the coefficient matrix ofG"" we see that when (4.2.6) is fulfilled (A"'+K-1Di"+J)

is an irreducibly diagona1ly dominant matrix with positive diagonal terms and non-

positive off-diagonal terms. Hence it is an M-matrix and so is invertible. That

is, the system (4.5.5) can be solved iteratively for Gm. in terms of Gm.+l for m =
M, M - 1, ... ,0, since GAI+l is known. This completes the proof of the existence

and uniqueness.

Since for each m the matrices (A"'+K-l Di"+J)-l, 6'" and Dr are nonnegative,

it is straightforward to show (4.5.4) by using induction on m.

Next, we derive an Ll estimate on G along mesh-lines para1lel to the x-axis.

Lemma 4.5.2 Assume that (~.2.6) holds. Then for each n E {O, ... , M},

(1,0"), = (1, G") ~ c.

o

Proof. Taking X"" =L:~11 4>"".(x) in (4.5.1), multiplying by K, then summing from

m =n ~ M to m =M, we get

AIE K R(X"", G"') +(rx", G") ~ 1,
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using (4.5.3). Integrating by parts and using (3.2.5), we have

B(X".G"') =1~~, - ~;: +(b.G"')....

From (4.5.4), (4.5.6) and (4.5.7) we deduce that

x { a~ _ aGN-t } +(rx",G") S 1.
l-e' l-e'

Now

Thus (4.5.8) may be written as

(r,G") +W" S 1

with

where

and

aX {2P - e' +e-' P+ 1 - e' }
WN-t =e' _ 1 +rH p{1- e'){I- e-') - p{1- e') .
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(4.5.8)

(4.5.9)

(4.5.10)

(4.5.11)



By (4.2.6),

(4.5.12)

Set

r(p) = 2+p - 2e' +pe'.

Then

yeO) = 0,

lI'(P) =1 - e' +pe', 11'(0) =0,

lI"(P) = pe' > 0, for p > o.

Hence yep) > 0 for p > O. The denominator in (4.5.12) is obviously positive for

p > o. Consequently, Wr ~ O. Similarly, one can prove that W~-1 ~ o. Then it

follows from (4.5.11) and (4.5.4) that

W" ~ o.

Putting (4.5.13) into (4.5.10) completes the proof.

Now define a subdomain no associated with (Zio' t-o) by

(4.5.13)

o

fit = {(x, t) En: 0 < x ::; x.. +2Kge*ln (n1K),
Irx - at - (rx.. - at..)1 ::; 2KoRIn (n1K) },(4oSo14)

with e* =max{e, H, K}, where Ko > 0 is a constant independent of e, H and K,

which we choose near the end of the proof of Lemma 4.5.3. In Lemma 4.5.3 we

will demonstrate that the discrete Green's function G dies off outside a subdomain
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00 of nt, where 00 is defined similarly to n:, except that 2Ko is replaced by Ko.

Without loss of generality, we assume that 110 is a mesh domain.

Lemma 4.5.3 Assume that (./.t.6) holds. Then for any nonnegative integer 8, there

ezists a positive constant C =C(8) 8uch that

for each m E {O, ... , M}.

Proof. We define a cut-off' function w(z, t) on n by

w(z. t) = • (z;.A) •(rz -:; -P) •(P-::+at)
where .(~) is defined in (3.2.40), and

A =zio, P =rzio - atmo , (I. =,.,,£*, (I" = ,."v"i*.

(4.5.15)

Here,." > 1 is some constant (to be specified later) independent of £, H and K.

Clearly, w defined in (4.5.15) satisfies (3.2.43) - (3.2.48).

Now we take X" =(~)s. in (4.5.1) to get

Similarly to (3.2.50), we have

B((~),-,(?)
=£1I(w"')-1/2a:'1I2+ bll(w")-1/2G"'1I~.

+H(~);«(?)I) +e (().). (?,a:'). (4.5.17)

75



By Cauchy-Schwarz' inequality and (2.3.9),

It follows from (4.5.17) and (4.5.18) that

J -i /I(Wtll+1)-1/JG"'+1Ir

(4.5.18)

where

and

(4.5.19)

(4.5.20)
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We notice that 1"" given in (4.5.20) has the same form as in equation (3.2.53), and

the first two terms in Q. have the same form &I the first two terms of equation

(3.2.54). Hence, by analogous arguments, one can get

I (( 1 ) ) I r (w'" - w",+l (G"') 2)
E w"" _ G"', cr: + 2 K +w't , w""

1
~ 161"", (4.5.22)

on choosing 1 sufficiently lar~e, independently of e, H and K.

Next, we bound the third and fourth terms in (4.5.21). For the fourth term, we

have, using (y - Z)2 ~ (y - w)2 +2(y - w)(z - w) +(z - w)2 and (2.3.9),

~ (w"")1/2 ((G"') _G"') 2

2K w"" '- wm

<~ {~II (G"')S. -em 11 2+ C (w"')1/2 (G"')s. _(am) ) 2}.
- 2K 2 (wm )1/2 w'" wm s.

(4.5.23)
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+ ~ t m~", IW~I He 1.-' (wM )-I(G:')2 dz
II i=1 nuD6. w 8.-1

K
~ 11* (1 +CH«(1;1 +(1;1») ell(wM )-1/2G:'1I2,

by (3.2.45) a.nd (3.2.44).

For the other term in (4.5.23),

(4.5.24)
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by the properties of w, (4.5.24) and Lemma 4.2.1,

from the expressions for (7. and (7".

(4.5.25)

Inserting (4.5.24) and (4.5.25) into (4.5.23), we get the following bound for the

fourth term in (4.5.21):

r

2K
(W"')1/2 ((em) _em) ,

w'" s. w'"

$ {~ +C-y-l ( n; (to)-1 +1)}1....

From (4.2.6),

80

Hence

8 < C p < {Cp-l, for p < 1,
K - pcoth(p/2) - 2 - C, for p ~ 1,

8
2

< CE* for aJl p.
K -

We now tum to bound the third term in (4.5.21). We have

~ (W'I'A _ w",+l (em)' _(G"')')
2 K 'w"'s. w'I'A

$ctm~lwell·i ((0:) -0:)((0:) +O:)dZ
A. •. w. w w. W

i=l' .-1 ~ 07.

( , )1~
< C~ m~Ar lwei l·i

w'" ((G"') _G"') dz
- L...J mID . w'I'A. w'I'A. w'I'A

i=l A. ·.-1 .,..
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X(f~, w" ((:).. +:r dZr/2

$ Cl1;l (W")l/2 ((:t.. -:) (W..)l/2 ((:t_+:) ,

by (3.2.45),

~ CK1/2(1-1Jl/2 (w"')1/2 ((G"') + G"') (
" '" w'" '- w'" ' 4.5.21)

by (4.5.26). Next,

(W"')1/2 ((G"') +0"') 2
W'" '- w'"

N '"
$ C L (m.a.x6

' w )2H (~l)2+(Gi)2)
i=1 UllnA. w'"

N ( ",)2
$ C L (ma:'6' w_)2 H (w~t>-l(~l)2 +(wj")-l(Gi)2)

i=1 mJnA. w
N-l

~ C L H(Wr')-I(Gi')2, by (3.2.44),
i=1

~ CI/(w"')-1/2G"'1I3., since H ~ 2(1, ~i",,),

Substituting (4.5.28) into (4.5.21) and using the definition of (1", we obtain

~ (w'" - w"'+1 (am) 2 _(G"') 2) < C -1L .
2 K '", '" - '"1 '"w '. w

Collecting (4.5.22), (4.5.26) and (4.5.29) into (4.5.21) gives

(4.5.28)

(4.5.29)

(4.5.30)

by choosing '"1 sufficiently lar~e, independently of t, H and K. Consequently, from

(4.5.16), (4.5.19) and (4.5.30) we get

~I ... +2~ {I1(w..)-l/2G'"!I2 - !I(w..H )-l/2G"'H !l2}
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It follows from (3.2.47), Lemma 4.5.2 and (4.5.31) that

AI

L K1"" + II(W")-1/2G" II 2 ~ CH-l , for n =0, ... , M.

Choose Ko =1(2s +2). Then by (3.2.48),

(4.5.31)

(4.5.32)

(4.5.33)

For each (z,t",,) E 0\00, there exists i' E {1, ... ,N} such thatz E [Zi'-l,Zi'). Thus

G"'(z) ~ Git'-1 +6";

~ C(HK)·+l (w""(z»-1/2 (6";-1 +Git'), using (4.5.33),

~ C(HK)·+l (W;,'_1)-1/2G7_1 +(w;,')-1/2G'it'), by (3.2.44),

~ C(H K)·+1/2K 1/211(w"')-1/2G"'1I.,•.

Using this and (4.5.32) we get the desired result. o

We are now ready to derive an error estimate at (zio, tnao ) under reasonable

assumptions on the global and local behaviour of the solution and its derivatives.

Theorem 4.5.1 Assume that (./.2.6) holds and that the solution u(z, t) of (1.1.1)

- (1.1.5) satisfies {3.2.68} and either {3.2.69} or {3.!.7./}. Then

Proof. With the discrete Green's function G, the pointwise error can be expressed

as
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=1Z(xio, t"'O)1
M

= L K {R(u"', 6"") +(r8'7"', 6"")}, by (4.5.1) and (4.3.1),
",=1

II N-l

~ L L KGi'I R(u"', .j;i,,,,) +(r8'7"', .j;i,,,,)I'
",=1 i=1

writing am as L~11 or.j;i,,,, and using (4.5.4).

Split the sum into two parts:

II N-l

LL= L + L
",=1 i=1 (-.,e-)EOo (-.,e-)EO\Oo

Recall (4.3.3) and use (4.3.5) to get

where ~i =(Xi-I, Xi+l).

(4.5.34)

(4.5.35)

When (3.2.69) is satisfied, the terms in the brackets can be bounded by C(H+K).

Hence by Lemma 4.5.2, (4.5.35) is bounded by C(H +K). Ifinstead (3.2.74) is used,

we have

L KG'/' IR(u"', ~i,,,,) +(r8'7"', .j;i,,,,)1
(-.,e-)EOo

/.

"+1
~ C(H +K) +C L KG'/'(I, .j;i,,.) E-1exp ( - a(1 - X)/E) dx

(-.,e-)EOo -.-1
~ C(H +K), (4.5.36)

(cf. proof of Theorem 3.2.6.)
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In order to estimate the sum over n\ flo, we rewrite (4.3.3) to get

R(u'" , 1)"') +(rlJ","', 1)-)

=«a'" - a"')u:', 1)-) +(r - b-u·, 1)-) - (r - b"'u·, 1)"')",

+(r-lJuI (., t.), 1)"') - (r·u;", 1).).

Thus, using a'" == a'" == a,

IR(u"', ~i,,,,) +(rlJ",'" , ~i,,,,)1

~ C {HllrIlLOD(41d +HX-I (Ilu"'IILOD(41i)

+ lIu·-1I1LOD(41i») +lIu:"IIL1(41d} •

Consequently, using Lemma 4.5.3 (with 8 =1) we can bound the sum over n\ flo

as follows:

L X G'{' IR(u-, ~i,,,,) + (rlJ",'" , ~i",,)I
(-i,t.)eO\Oo

~ C{H X) {lIfIlLl(LOD(OK» +X-I (lIuIlLl(LOD(OK»

+ IIuollLOD(o,I») + II utIlLl(Ll(OK»}

~CH,

using (3.2.68).

Collecting (4.5.36) and (4.5.37) into (4.5.35) completes the proof.

(4.5.37)

Cl

Remark .4.5.1 The global assumption of Theorem 4.5.1 is reasonable in many cases

(see Remark 3.2.4).

We note that (3.2.69) implies that flo is outside the boundary layer, while (3.2.74)

permits (xio' t"'O) to lie inside the layer. Thus Theorem 4.5.1 gives a pointwise error

bound both outside and inside the boundary layer.
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Remark -I.5.! The analysis in this section is carried out for a constant coefficient

problem, but the conclusions are valid for variable coefficient problems, provided

that one also assumes that lIu.IIL1(Ll(OK» 5 c.

4.6 Numerical Results

In this section, we shall present some numerical results for the non-lumped scheme

(4.2.3) - (4.2.5). The numerical experiments were conducted on two problems to

examine the global and local. performance of the scheme. The two problems were

solved for various values of e, H and K on uniform meshes. In each experiment

we held the ratio K / H equal to 1. Similar rates of convergence are observed when

K / H is some other constant for which the stability condition (4.2.6) is satisfied.

The experimental results will be compared with the theoretical predictions of the

previous sections.

All computation was performed in C double precision on an IBM PC.

Example -1.6.1 (global convergence) We examine how the scheme performs when

applied to the variable coefficient problem

- eu_ +(1 +sin x)u. +(cos x +exp(t»u +U, =f(x, t) on a,

with analytical solution

u(z, t) =exp(t - (1 - z - cos 1+cos z )/ e) +z2,

(4.6.1)

(4.6.2)

where a =(0,1) x (0,1). The function I(x, t) and the initial-boundary conditions on

nwere chosen to fit this data. Here u(z, t) exhibits typical boundary-layer behaviour

near x = 1.
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The global discrete Loo errors E~·,B) and corresponding convergence rates p~.,B)

of the scheme (4.2.3) are listed in Tables 4.6.1 and 4.6.2 respectively. These are com­

puted from (3.4.3) and (3.4.4). The rate of uniform convergence, which is estimated

by (3.4.5) - (3.4.7), is given in the last line of Table 4.6.2.

Table 4.6.1 Global Maximum Errors

e N=8 16 32 64 128
1.00ooOe+00 7.367e-03 3.55&-03 1.747e-03 8.660e-04 4.30ge-04
2.50000e-Ol 1.173e-02 3.905e-03 1.437e-03 5.852e-04 2.592e-04
6.25000e-02 3.87ge-02 1.152e-02 3.075e-03 8.2000-04 2.34ge-04
1.56250e-02 7.264e-02 3.182e-02 1.111e-02 3.117e-03 8.135e-04
3.90625e-03 8.407e-02 4.3100-02 2.040e-02 8.475e-03 2.875e-03
9.76562e-04 8.700e-02 4.613e-02 2.338e-02 1.140e-02 5.24ge-03
2.44141e-04 8.774e-02 4.688e-02 2.413e-02 1.215e-02 6.003e-03
6.10352e-05 8.792e-02 4.70&-02 2.432e-02 1.234e-02 6.191e-03
1.52588e-05 8.797e-02 4.711e-02 2.437e-02 1.23ge-02 6.23ge-03
3.81470e-06 8.798e-02 4.712e-02 2.438e-02 1.240e-02 6.250e-03
9.53674e-07 8.798e-02 4.712e-02 2.438e-02 1.240e-02 6.253e-03

Ell 8.798e-02 4.712e-02 2.438e-02 1.240e-02 6.253e-03•

Table 4.6.2 Global Convergence Rates

e N=8 16 32 64 Average
1.00000e+00 1.05 1.03 1.01 1.01 1.02
2.50000e-Ol 1.59 1.44 1.30 1.17 1.38
6.25000e-02 1.75 1.91 1.91 1.80 1.84
1.5625Oe-02 1.19 1.52 1.83 1.94 1.62
3.90625e-03 0.96 1.08 1.27 1.56 1.22
9.76562e-04 0.92 0.98 1.04 1.12 1.01
2.44141e-04 0.90 0.96 0.99 1.02 0.97
6.10352e-05 0.90 0.95 0.98 1.00 0.96
1.52588e-05 0.90 0.95 0.98 0.99 0.95
3.81470e-06 0.90 0.95 0.98 0.99 0.95
9.53674e-07 0.90 0.95 0.98 0.99 0.95

~ 0.90 0.95 0.98 0.99 0.95

From Table 4.6.2 we see that the rates obtained numerica.lly tend to 1 as N
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increases, and the uniform rate of convergenc:e is pt =0.95. This agrees with the

prediction of Theorem 4.5.1.

Example -1.6.1 (local convergence) We now test the local performance of our scheme

when applied to Example 3.4.2, which has discontinuous initial data (see (3.4.8) -

(3.4.10) ).

In Tables 4.6.3 and 4.6.4 we display the local discrete LOO(O') errors E~·,B) and

the corresponding rates p~.,B) of convergence based on the double mesh method,

where

0' = {(x, t) : 0 < x ~ 0.5, 0.5 ~ t ~ I}.

Here

and the rate p~.,B) is defined analogously to (3.4.4). We use the "p! -method" (see

Farrell and Hegarty [12]) to determine the rate of uniform convergence; the quantities

p! and pf are defined analogously to (3.4.5) - (3.4.7) based on E~·,B).

Table 4.6.3 Local Maximum Errors

€ N=8 16 32 64 128
1.00000e+OO 1.812e-02 9.937e-03 5.300e-03 2.381e-03 1.261e-03
2.50000e-0l 7.264e-02 2.46ge-02 9.258e-03 3.878e-03 1.89ge-03
6.25000e-02 1.94Oe-0l 6.501e-02 2.021e-02 6.612e-03 2.404e-03
1.56250e-02 2.48Oe-Ol 1.2100.01 5.047e-02 1.683e-02 5.205e-03
3.90625e-03 2.496e-Ol 1.258e-01 6.307e-02 3.074e-02 1.274e-02
9.76562e-04 2.49ge-Ol 1.260e-01 6.321e-02 3.164e-02 1.583e-02
2.44141e-04 2.500e-Ol 1.261e-Ol 6.323e-02 3.1600-02 1.585e-02
6.10352e-05 2.500e-Ol 1.261e-Ol 6.324e-02 3.16&-02 1.585e-02
1.52588e-05 2.501e-Ol 1.261e-Ol 6.324e-02 3.16&-02 1.585e-02
3.81470e-06 2.501e-Ol 1.261e-Ol 6.324e-02 3.167e-02 1.584e-02
9.53674e-07 2.500e-Ol 1.261e-Ol 6.325e-02 3.1600-02 1.584e-02

E2 2.501e-Ol 1.261e-Ol 6.325e-02 3.167e-02 1.585e-02
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Table 4.6.4 Local Convergence Rates

e N=8 16 32 64 Average
1.00000e+00 0.81 0.91 1.15 0.92 0.96
2.50000e-Ol 1.56 1.41 1.26 1.03 1.31
6.25000e-02 1.58 1.69 1.61 1.46 1.58
1.5625Oe-02 1.03 1.21 1.58 1.69 1.39
3.90625e-03 0.99 1.00 1.04 1.21 1.01
9.16562e-04 0.99 1.00 1.00 1.00 1.00
2.44141e-04 0.99 1.00 1.00 1.00 0.99
6.10352e-05 0.99 1.00 1.00 1.00 0.99
1.52588e-05 0.99 1.00 1.00 1.00 0.99
3.81410e-06 0.99 1.00 1.00 1.00 1.00
9.53614e-01 0.99 1.00 1.00 1.00 1.00

11 0.99 1.00 1.00 1.00 1.00

Note that the solution u(x, t) is smooth in 0'. The results indicate that the

scheme (4.2.3) - (4.2.5) is first order accurate in 0', as predicted by Theorem 4.5.1.
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Chapter 5

A Streamline Diffusion Scheme
on a Shishkin Mesh

5.1 Introduction

The streamline diffusion method is a finite element method introduced in the case of

stationary convection-diffusion problems by Hughes and Brooks [16]. Mathematical

analyses of the method have been performed by Johnson et ale [20, 22] and Niijima

[32] for stationary problems. Navert [29] extended the method to time-dependent

convection-diffusion problems and obtained local L' error estimates of order k+ 1/2,

with piecewise polynomial finite elements of degree k, in smooth regions (Le., regions

away from any layers). However, in the literature there is no previous pointwise

convergence result, which is uniform in the diffusion parameter, for the method

inside the boundary layer.

In the present paper, we will improve the results just mentioned for the problem:

-EU_ +au. +u +tit =I(x, t) V(x, t) E 0,

u(O,t) = ,,(l,t) =° for 0 < t ~ T,

u(x,O) = "o(x) for 0 ~ % ~ 1,
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where 0 =(0,1) X (0, T), E is a small positive parameter, a > °is a constant, and

uO E L2[0, 1], f E L2(O). Here for simplicity we have taken the coefficients of the

differential equation to be constant.

We shall give pointwise error analyses for the streamline diffusion method both

outside and inside the boundary layer at % =1. We obtain convergence, uniformly

in E, at nodes inside the layer by introducing a special piecewise uniform mesh which

resolves part of the boundary layer. Our analysis shows that when the streamline

diffusion method is combined with this special mesh, it retains its usual accuracy in

smooth regions. In the case of piecewise linear finite elements, the pointwise error

bound is almost order 5/4 away from layers and almost order 3/4 near and inside

the boundary layer. The analysis uses techniques of Niijima [32] and of Johnson et

ale [22], who considered an elliptic problem on a quasiuniform mesh. In contrast

we deal here with a parabolic problem on a highly nonuniform mesh, which leads to

many differences and complications in our analysis. Indeed, our approach leads to

a slight sharpening of Niijima's results; see Remark 5.4.1 below.

The idea of using a piecewise uniform mesh to guarantee accurate numerical

results inside the boundary layer is due to Shishkin [41]. His analysis is set in

a finite difference framework and in particular seems applicable only to difference

schemes which satisfy a discrete maximum principle. It is therefore inappropriate

for the streamline diffusion method; an alternative approach, such as that presented

here, is needed.

The Shishkin mesh is remarkable in two ways: firstly, it resolves part but not aJ.l

of the boundary layer, yet still yields convergence which is uniform in E; secondly,

despite the fact that there is an abrupt change in mesh size, this does not destabilize
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the difference scheme.

An outline of the chapter is as follows: ia Section 5.2 we introduce a special

piecewise uniform mesh and construct a streamline diffusion scheme on this mesh.

Section 5.3 discusses the properties of our finite element space and analyzes the

interpolation errors. In Section 5.4 we define a discrete Green's function G associated

with the scheme and estimate it. Our main uniform convergence results are given

in Section 5.5. Finally, Section 5.6 presents some numerical results.

5.2 Mesh and Scheme

Let N and M be two positive integers, satisfying

max{N/M,M/N} ~ c.

We assume that N is even and

N > 4.

(5.2.1)

(5.2.2)

Let ~ E (0,1/2) denote a mesh transition parameter, which may depend on N

and e, and will be specified in Section 5.3. We write {} = at U a2 with at =
(0,1- ~) x (0, T) and a2 =a \ at. Introduce a set of mesh points {(Zi, 'i) E a :

i =0, ... ,N and i =0, ... ,M} with

and

for i =0, ... , N /2,
(5.2.3)

for i =N /2 +1, ... , N,

ti =TM- t i, for j =0, ... , M. (5.2.4)

By drawing lines through these mesh points parallel to the z- and t-axes, at and a2

are each partitioned into M N /2 rectangles. Divide each rectangle into two triangles
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by drawing the diagonal of the rectangle which runs from northwest to southeast

(here, as is customary, we have taken the z-axis running west to east and the t-axis

for T E af,
(5.2.5)

for TEat',

south to north). This yields a triangulation of 0, denoted by ar, for I =1,2. Each

of these ar is a uniform triangulation by means of right angled triangles T, with

base

and altitude

K = TM-1 for all TE aN, (5.2.6)

where aN =at' u af.

Since we are interested in the singularly perturbed case, we assume throughout

that

(5.2.7)

Our next aim is to formulate a time-stepping procedure for (5.1.1) - (5.1.3) so

that the discrete solution can be computed successively on a sequence of time levels.

On each time slab

Si = [0,1] x {ti-l' ti] for j = 1, ... , M, (5.2.8)

we define a finite element space lti by

lti = {v E C(5i): v(O, t) = v(l, t) = 0 Vt E (ti-l, til,

vl-r is linear Vr E aN such that rO ~ Si}, (5.2.9)

where C(Si) denotes the space of continuous functions on Si and TO is the interior

of r.
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We also introduce the streamline derivative w~ for all differentiable functions w

by defining

We shall apply the streamline diffusion method [20, 29] to the problem (5.1.1)

- (5.1.3) successively on each slab Si' imposing the initiaJ value at t =ti-l weakly

and the boundary condition strongly. To this end, we introduce the finite element

space on 0:

v == { vE L2(O): vlsj E l'j for j = 1, ... , M} ,

and define, for each v E l'j, for j =1, ... , M and 0 ~ % ~ 1,

v+(%, ti-l) = lim v(%, 'j-l +8),
_-+0

,,-(x, tj) = lim v(%, 'j +8)._--0

(5.2.10)

(5.2.11)

(5.2.12)

We also use the notation of (5.2.11) and (5.2.12) for those functions in C(Si) for

which the indicated limits exist.

Notation. For all measurable D ~ 0, set

(l1,W)D = JL11tDdzdt Vl1,W E L1(0),

II vllD =(v, V)~2 '-tv E L2(O).

For j =1, ... , M, set

Aj(D) ={(x, t) ED: ,= 'il,

and define

<V,W>i,D= I V(%,ti)w(%,ti)d% Vv,w E L 2(Ai)'
lA-jeD)
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I I 1/2
t1 .,D =< V,V > .D, ,.

When D = 0, we omit D from the notation.

(5.2.17)

We now formulate our streamline diffusion method as follows: for j =1, ... , M,

find U E V such that

e(U., v.)Sj +(U_ +U,V +pv_)Sj+ <U+, v+ >j-l

=(f, v +pV_)Sj+ <U-, ,,+ >j-l \Iv E Vj,

where we set

(5.2.18)

(5.2.19)

and

{

2(1- >.)N-l
p=p(x)=

o

for x E (0, 1 - >.),

otherwise.
(5.2.20)

Remark 5.2.1 Scheme (5.2.18) - (5.2.20) is essentially the same as that given in

[20, 29]. The only difference is that we take P = 0 on O2 • This is because later>' is

chosen quite small, which implies that the mesh in O2 is very fine in the x-direction.

Consequently our scheme is not upwinded OD O2 •

Remark 5.2.2 For each j, (5.2.18) - (5.2.20) is equivalent to a linear system of

equations. Since the space V is defined independently on each slab with no continuity

requirements from one slab to the next, the solution U will in general have jumps

across each time level tj.

Define

Hl(o) = {w E H 1(O): w+(.,tj) and .,-(.,tj) exist

and lie in L2(Aj) for j =0, ... , M},
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where we set w-(z,O) =0 and w+(z, T) =0 for 0 S z S 1.

In order to write (5.2.18) - (5.2.20) in a compact form suitable for analysis we

introduce the jump [v) ofv E HI (n) across each time level by defining, for 0 S z S 1,

[v)(z, ti) =(v+ - v-)(z, 'i), for j =0, ... , M.

By summation of (5.2.18) over a.ll Si' we get the following discrete analogue of

(5.1.1) - (5.1.3): find U E V such that

B(U, v) =(I, v +pv~)+ < uO
, v+ >0 Vv E V,

where for a.ll w, v E H1(n) we set

JI-l

B(w,v)=£(w.,v.)+(w~+w,v+pv_)+E < [w),v+ >; .
;=0

(5.2.21)

(5.2.22)

In our later analysis, we will also use the following expression for B(·, .) which is

equivalent to (5.2.22):

B(w,v) =£(w.,v.) +(w~,Pt1~) +(w,v)
JI

+(w,(p-1)v~)-E <w-,[v»;.
;=1

This can be obtained by integrating by parts the term (w~,v) in (5.2.22).

Notation. For a.ll measurable D ~ n and for all v E Hl(n), set

JI

"'vllib == £IIv.llb + IIpl/2v~IIb + IIvllb +E I[vllID·
;=0

When D = n we omit D from the above nonns.

(5.2.23)

The following theorem states a stability inequality for (5.2.21) which also guar-

antoos the existence and uniqueness of the discrete solution U.
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Theorem 6.2.1 If U is the solution of (5.1.11), then

Proof. From (5.2.22), we have

B(U, U) =EIIU.1I2+(U~, U) + Itp1/2U~1t2 + IIUII2
AI-I

+ (U,pU~) +L < [U), u+ >; .
;=0

An integration yields

(5.2.24)

.II-I

(U~,U)+ L <[U),u+>;
;=0

1 AI
=2L {<U-,U->; - <U+,U+>;_I}

;=1
AI-I

+ L {<u+,u+>; - <u-,u+>;}
;=0

1 AI 1 AI-I
= 2L <u- ,U- >; +2 L {<u+ ,u+>; - 2 <U-, u+ >;}

;=1 ;=0
1 II 2=2L IlUlI; . (5.2.25)

;=0

Cauchy-Schwarz' inequality and the arithmetic-geometric mean inequality give

since p ~ 2N-I ~ 1. Thus from (5.2.24) - (5.2.26),

B(U, U) ~ ~"IUIII2.

On the other hand,
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(5.2.28)

Taking v =U in (5.2.21), the desired result follows from (5.2.27) and (5.2.28). Cl

5.3 Properties of V and Interpolation Error

In this section, we shall discuss inverse and interpolation properties of our finite

element space V which will be used in the sequel. We also specify the transition

parameter ~ of the mesh.

First of all, we consider some properties of V.

Lemma 5.3.1 For any v E V, we have

(i) for T E or, 1 ~ q ~ p ~ 00 and I = 0, 1,

where W~ denotes the usual Sobolev space;

(ii) for T E of,

IIvllL-(7') ~ CNl/2~1/2I1v.IIsnn2'

where S is the unique slab (8~ (5.2.8}) containing rO;

(iii) for j =1, ... , M,

(5.3.1)

(5.3.2)

(5.3.3)

(5.3.4)

Proof. The first conclusion of the lemma is a standard inverse inequality, because

our assumption (5.2.1) implies that Or is a regular triangulation.
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Next, (5.3.2) follows by the standard argument of transforming to a reference

triangle of unit diameter.

We now tum to prove (5.3.3). For (z,t) ErE Or, let S be the slab containing

rO. Then since v{1, t) =0 for all t and V. is constant on each r in S,

1"(z, t)1 :s llv.(e, t)1 de

~ CK-1 J' I Iv.({, t)1 ~dtl sno2

~ CN[meas(S n 02)]1/2I1v.lIsn02'

by Cauchy-Schwarz' inequality. Noting that

we deduce (5.3.3).

(5.3.5)

It remains to show (5.3.4). From the definition of v~, it is sufficient to prove that

IIVtllsjnn2 ~ CN Allv.lIsj nD2 for j =1, ... , M.

In fact, for each r in Sj n O2 , by (5.3.2) and (5.3.3),

IIVtll.,. ~ CNllvIILCID(.,.)[meas(r)]1/2

~ CN[AN-1M-1]1/2N 1/1A1/2I1v.lIsjno2

~ CN1/2Allv.lIsjno2·

Thus

IIVtll~jnn, = L IIvtll: ~ CNIA2I1v.lI~jno2'
",~Sjn02

since Sj nOr contains N triangles. This implies (5.3.6).
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Lemma 6.3.2 Let p E (1,00]. Assume that tD E W:{O). Let r E ON. Let wi

denote the linear function which interpolates to tD at the nodes of r. Then

II w - wIIlLP(~) S C {H:llw_IILP(~) +H~Kllw.cIlLP(~)

+K2I1w"IILP(~)} , (5.3.7)

lI(w - wl).IILP(~) S C {H~lIw_IILP(~) +Kllw.cIlLP(~)}' (5.3.8)

lI(w - wl)cIlLP(~) S C {H~lIw.cIlLP(~) + KllwccIlLP(~)}' (5.3.9)

Iw - wlli.~ S CK-1
/
2 {H:llw••I1~ + H~Kllw.cll~ + K2I1wccll~} (5.3.10)

for j =0, ... , M.

Proof_ Let f denote the reference triangle with vertices at (O, 0), (I, 0) and (O, 1).

Let F be a one-to-one linear function which maps f onto r. Set

tb{z) = w{F{z» Vz E r.

Then it is well known that

(5.3.11)

where {1ol is the linear function which interpolates to 10 at the vertices of f and

i, i are the variables used in f. On observing that (1Ol =wi of, 10.. =H:w_oF,

10., = H~Kw.c 0 F and 1011 = K2w" 0 F, transforming (5.3.11) to integrals over r

yields (5.3.7).

Next, using Lemma 2.3 from KtiZek [23], we get

and
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The desired estimates (5.3.8) and (5.3.9) now follow by transforming the above to

integrals over r.

Finally, using the Bramble-Hilbert lemma [6],

Ilw - (wlllvcr-lcAICT))) ~ c {lIw..lI. +IIwilll. +IIwgll.}.

Again transforming to r, one obtains (5.3.10). This completes the proof. [J

An immediate inference from Lemma 5.3.2 is the following interpolation error

results on those r where the solution is smooth.

Theorem 5.3.1 For any r E ON, if lIullC2(YO) ~ C, then

flu - ui/lLOO(YO) ~ CN-J

and

(5.3.12)

(5.3.13)

In order to obtain a satisfactory pointwise error bound in our later estimates, we

shall require the local L- interpolation error for a solution with typical boundary

layer behaviour to be at least first order in Ot and second order in OJ' A calculation,

based on (5.3.7) and (5.3.23) below, then motivates the choice

(5.3.14)

with the constant Q chosen to satisfy 0 < Q ~ G. We shall assume from now on that

(5.3.14) holds.

Note that this choice of ~ implies (cf. (5.2.5» that the mesh in the x-direction is

very fine in OJ and coarse in Ot. Note also that the boundary layer at x =1 is typ­

ically of width O(£ln{I/£») and in practice one usually has £-t > N; consequently

{cf. (5.3.14» the mesh resolves only part of the layer.
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The following theorem gives interpolation error bounds on each T where the

solution exhibits boundary layer behaviour.

Theorem 5.3.2 For any T E aN, assume that

I::(z, t)1 :5 C {I +e-1 exp(-0(1 - z )/e)} '9'(z, t) E T

and that for i +j ~ 2 we haDe

If)i+iu I .
lJxalJti(x, t) ~ Ce-t V(x, t) E T.

Then

(i) if TEar, we have

(ii) if TEar, we have

and

(5.3.15)

(5.3.16)

(5.3.17)

(5.3.18)

(5.3.19)

Proof. Without loss of generality, we assume that the vertices of r are (Xi-I, tm),

(Xi, 4.-1) and (Xi-I, t"'-I). Thus on T, we have

where

u1(X, t) = U(Xi-l, "")4>1(x, t) +U(Xi, t"'-I)4>2(X, t)

+U(Zi-l, t,.-I)<Pi(Z, t),

4>1(Z, t) =(t - '--1)/K,

4>2(z, t) =(x - Zi-l)/H.,.,

<Pi(x,t) =(Xi - x)/H.,. - (t - '--I)/K.
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Clearly
a

L4>i(Z,t) =1 and 0 ~ </>s(z,t) ~ 1 on T.

i=1

By (5.3.20) and (5.3.22), for (z, t) E T we get

I(U - uI
) (z, t)I

=Iu(z, t)(4)1 + <1>2 +<I>a)(z, t) - uI(z, t)1

(5.3.22)

~ Iu(z, t) - U(Zi-l, t",)1 + Iu(z, t) - U(Zi, t",-t>1 + Iu(z, t) - U(Zi-l, t"'-I)1

~ Iu(z, t) - U(Zi-l, t)1 + Iu(Zi-l' t) - U(Zi-l, t",)1

+ Iu(z, t) - U(Zi-l, t)1 + Iu(zi-h t) - U(Zi-l, t"'-I)1

~ 3 f~, Iu.({, t)1 d{ +L~, (2I Ut(Zi-l, ,,)/ +I",(z., ")1) d"

~C{f~, [1+e-1exp(-a(1-OIe)] d{+ L~, d"},
by (5.3.15) and (5.3.16),

~ C {N-1 + exp( -0(1 - Zi)/t)}

~ C {N-1 +exp(-o>'/t)}, (5.3.23)

since T E Or means that Zi ~ 1 - >.. This, together with the choice (5.3.14) of >.,

implies the result of part (i).

To prove part (li), we note that for T E or, H.,. =2>.N-l =4o-1t In N. Using

this and (5.3.16) in (5.3.7) and (5.3.8), we obtain (5.3.18) and (5.3.19). [J
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5.4 Discrete Green's Function

Let (x·, t·) be a mesh node in G. The discrete Green's function G E V associated

with (x·, t·) is defined by

B(X, G) =X(x*,t*) "Ix E V, (5.4.1)

where we recall that G(x,t) == 0 for t > T. From (5.2.27), G is well defined.

In this section we will derive a global estimate for G in the energy norm III . III

and prove that G is negligible outside a narrow region extending upstream from

(x· ,t·). This region is defined by

no = {(x,t) En: 0 < x S x· +Kot7~lnN,

Ix - at - (z* - at·)1 S Kot7r, In N}, (5.4.2)

where K o is a positive constant independent of E, N and M. We choose K o in

the proof of Theorem 5.4.2 below; t7~ and t7" will be given in (5.4.13) and (5.4.14)

respectively.

We start by introducing a cut-off function with exponential decay. Set

(
X - x.) (x - at - (x· - at.») (x. - at· - (x - at»)

w(x,t)=g -- 9 9
t7~ t7r, t7r,

where

2
g(r) - for r E (-00, +00).

- 1 + exp(r)

By some elementary calculations, one can easily show

Lemma 5.4.1 For w(x, t) defined in (5..4.3), there hold

(i) 0 < w(x,t) S 8 on G;
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(ii) - w~(x, t) > 0 on 0;

(iii) lor each T EON, il (1~ 2: HT' and (1" 2: K, then

maxw/ minw ~ C, max Iw,1I min Iw~1 ~ C;
T' T' T' T'

(iv) lor alii and m,

I
lJl+"'w(x, t)1 C ' '" ( )a{j'at'" ~ (1i (1; w x, t

(v) lor all I 2: 1 and all m,

IlJl+mw(x,t)1 C 1-' -"'I ( )1a{j'at"'" ~ (1, (1" w~ x, t

(vi) on any triangle T* which contains (x*, t*),

w(x, t) 2: C;

on 0;

on 0;

(vii) w(x,t) ~ CN-Ko on 0\00.

by

We shall first derive a global estimate on G in a weighted energy norm, defined

AI

+IIw-1
/

2GW' +L l[w-1
/

2Gll'.
;=0

(5.4.5)

This estimate will be obtained by demonstrating the following three lemmas.

Lemma 5.4.2 II (1~ 2: 1N-l and (1~ 2: 1£, then lor 1 2: 1 8ufficiently large and

independent 01 N, M and £,

Be,G) ~ ~IIIGIII~.
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Proof·

B(~,G) =. ((~);G.) + ((~).pG#) + (~,G)

+ (~'(P-l)G#) - t (:- ,[G))J

=•11",,-1IIG. III +. ((~).G, G.) +1I",,-l/l pl/IG#1I1

+ ( (~)/' pG#) +1I",,-I/IGII I+ (~, pG#)

- (G,GfJ) -t (G- 'lGl).. (5.4.7)
w ;=1 W ,

Integrating by parts gives

We bound the last three terms separately. First, by Cauchy-Schwarz' inequality

and the arithmetic-geometric mean inequality, we have

I. (G).G, G.)I
~ ~IV1/IG.1I1 +~ 1/",,1/1(~).G!r

~ ~1I",,-I/IG.1I1 +C. { ""III (~) # G I + 1/",,1/1G) t Gf}
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Finally,

1(~ ,pGll) I ~ ~lIw-1/2l/2GIl1l2 +IIpl/2w-l/2GII2

~ ~lIw-1/2pI/2G~1I2 + ~lIw-1/2GII2,

since (5.2.20) and (5.2.2) imply p < 1/2.

Collecting (5.4.9) - (5.4.11) into (5.4.8), we get

B (~ ,G) ~ ~IIIGIII~ - CIIIIIGIII~

·th (J {-I -2 N-1 -I} U· < N-l hWI =max: £(1~ , £(1", (1~. sIng £ _ ,we ave

(5.4.10)

(5.4.11)

by hypothesis. Choosing 1 sufficiently large, independently of N, M and E, com-

pletes the proof.

Lemma 5.4.3 Assume that (1~ ~ N-l. Then

I(~) (ZO, to>1 ~ 116111GIII~ +CN In' N,

o

lDhere 6 ={ ~:
when (z*, t*) E {l1,

otherwise.
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Proof. Let r* be a mesh triangle containing (z*, t*) and satisfying t S t* for all

(z, t) E r*.

Suppose that (z*,t*) E 0 1 • We must have r* E Or. By Lemma 5.4.1 (vi) and

(5.3.1), we have

(5.4.12)

A direct calculation shows that for (z, t) E r*

(1)-1z:; ~ (z, t)

(1~ (z - z*) (z - at - (z* - at*») (x* - at* - (x - at»)=2-exp --- 9 9
a (1~ (1" (1"

(1~ (NT.)S 8-exp --
a (1~

< CN-1- ,

by hypothesis. Inserting this into (5.4.12) and using an arithmetic-geometric in­

equality yields the desired result for (z*,t*) E 0 1 •

Now suppose instead that (x*, t*) E O2• Let S* be the slab which contains r*.

Using (5.3.3),

I( ~) (z·, t· >1 $ CN t/2At/211G.lIs·nn.

S CN1/2..jiJnl/2 Nllw-1
/

2G.lIs.no2'

by Lemma 5.4.1 (vi) and (i). This proves the lemma for (x*, t*) E O2 •

Lemma 5.4.4 .A88ume that
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and

(5.4.14)

AIN-l/2 i'E < N-2" ~ - ,
with 1 > 1 8ufficiently lorge, independent of N, M and e. Then

B((~r-~ ,G) ~ l~IIIGIII~,

where (~)
1

is the interpolant from V to ~.

Proof. For convenience we set

E{z,t) =(~) I (z,t) - e) (z,t).

Then Cauchy-Schwarz' inequality gives

IB(E,G)I

s ellw1/ 2E.llllw-1/ 2G.1I + IIpl/2W l/2E~lIl1w-l/2pl/2G~1I

+IIwl/2Ellllw-1/ 2GII + IIp-l/2wl/2Ellnll1w-l/2pl/2G~lInl

JI

+ IIwl/2Elln:lllw-l/2G~lIn:l + E Iw1
/
2E-I.I[w-1

/
2Gll.· (5.4.15)

;=1 ' ,

Note that there is no term IIw-l/2G~lIn:l in IIIGIII~, 80 we will deal with this first.

Obviously

For each T e Or,
IIw-1/ 2Gcl1,.. S maxw-1

/
2 I1Gcll,..,..

< CNIIGII,../ minw1
/

2
, by (5.3.2),- ,..

S CNllw-1
/
2GII,..,
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using Lemma 5.4.1 (iii). Hence

Since G(I, t) =0 for all t E (0, T], we have for (z, t) E nl,

l(w-1/ 2G)(z, t)1 S [1(W-1/ 2G)e({, t)1 II{
S >.1/2{tl l(w-1/2G)e({, t)r II{}1/2,

thus

(5.4.17)

(5.4.18)

(5.4.19)

IIw- 1/2GIln. S {{tl [>.t}w-1/2G)e({,t)r II{] dzdtf'2

~ ~I/(w-I/2G).I/02

~ ~ {I/w-I/I G.1l02+ I/(w-I/I )_GI/02+ lI(w-I/2)eGIl02 }

~ C~ {lIw-l/2GeIl02 +ai1
/

2 (~) 1/2G +a;ll1w-l/2Gllo2} ,

- 02
by Lemma 5.4.1 (iv),

~ C~ (e- I/2+(iiI/I +0',;1) "'G"'..,
~ Ce- I /

2 ~IIIGIII.."

using 0'_ ~ e and 0'" ~ e1
/
1

•

From (5.4.16), (5.4.17) and (5.4.19), using e ~ N-I, we get

IIw-1/ I G_I/02 ~ (e-1
/
1 + Ce-l/IN~) "'Gil'..,

~ Ce-1
/

l ln Nil 'Gil'..,· (5.4.20)

Now using (5.4.20) in (5.4.15) and applying the arithmetic-geometric mean in-

equality, we obtain
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(5.4.21)

From Lemma 5.3.2, we have, for any T EON,

~ C { H: II (~) -'IT +HTK IIe).JL +KIll (~)JJ. (5.4.22)

IIE.IIT ~ C { HTII (~)_t +K II(~)JJ (5.4.23)

and

(5.4.24)

On each T E ON, G_ =G., =G" =O. Consequently we have, for each T,

Set

Using Lemmas 5.3.1 and 5.4.1, and u~ ~ u", we have the following upper bounds

(in some cases two or more bounds are given for the same term in order to handle

different values of e and N later):

(5.4.28)
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for each T EON;

lIa)_GII~+11(~).,Gt

~c{ (~)HG ~+ (~)~G ~+II(~tGIIJ
~ C { 17i a/2 ( ~) ~2G ~ + /T.;211w-1/2GII~ } / ~

for each T EON;

II
U) Gell ~ { Cu;l (/Iw-l/2G~/I.,. + /Iw-l/2G./I.,.) /w.,.

w t.,. CN u;lllw-l/2G/I.,./w.,.

for each T EON;

(5.4.29)

(5.4.30)

C(ui l
/ 2N "(:)~/2GIL + u;lllw-l/2G~/I.,.

+u;1/lw-l/2G.II.,.) / w.,.,

CN(ui1/211(:)i2GIL + u;l/lw-l/2GII.,.) /w.,.

(5.4.31)

for each T EON;

1 { Cu;lllw-l/2G./1.,./w.,.

II (~) t G-IL ~ CN/T;1I1w-1/2GII~/~ (5.4.32)
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Let

L2 - U-1Nl/2-" '

L { -1/2 -1/2N }
1 = max CTIf ,CTIf '

(5.4.34)

Let IIIGlllw,D denote that the integrations and summations in IllGlllw (see (5.4.5»

are extended only over D for any measurable D ~ O.

(5.4.35)

Then collecting (5.4.28) - (5.4.33) into (5.4.25) - (5.4.27) yields

C(L1 + L4)IIIGIII..,.~/w~ Vr E or,
II (~)..II .. ~ C(Ll1 +La +L41 )IIIGIII...../w.- "IT E Of,

C(L12 +La + L41)IIIGlllw,~/w~ Vr E Or;

C(La+L4)"IGlllw.~/w~ Vr E or,
II (~)J.. ~ C(Ll1 +La +La + L41 )1 IIGill...../ w.. "IT E Of, (5.4.36)

(5.4.37)

Vr EON.2 ,

Vr E Or,
C(Lll +La + L4)IIIGlllw.~/w~

II (
G) II ~ { C(Lll +L2+ L41)IIIGlllw,~/w~

w tt ~ CL4I1w-l/2GII~/w~ Vr EON.

We may now bound the terms in (5.4.21). From (5.4.23), (5.4.35) and (5.4.36),

using Lemma 5.4.1 (iii), we have

ellw1/2E.1I2 ~ e L (m:x w) IIE.II:
~EnN

~ CeN-2{(L~1 +LI +LI +L~I) IIIGIII~.nl

+ [.\2 (L~2 +LI +L~I) + L~l +LI + L~] IIIG"I~.n2}

~ CeN-2{L~1 +L~2 +LI +LI +L~} IIIGIII~
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~ C {N-1(1;1 +N-1(1il +eN-1(1;1 +eN-1(1il

+e(1i1 +eN-I (1;4 +e(1;I} IIIGIII:

~ C1-111IGIII~, (5.4.38)

Similarly, using (5.4.35) - (5.4.37), we get two different upper bounds:

II I

Nllwl/IEII~l + IIwl/l pl/IEJlIII +E Iw1/IE-I.
i=l ,,01

{

CN-3(LI + L~)IIIGIII:

$ CN-'(LIl +LI +Ll +L~l)llIGIII~

{

C (N-3(1i' +N-l(1i1+N-3(1;4 +N-l(1;I) IIIGIII:

$ C (N-'e-lq.;1 +N-lq.;1 +N-'qi' +N-lqi1 +N-'q.;4) IIIGIII~
~ C1-111IGIII:, (5.4.39)

from (5.4.13) and (5.4.14), where the first bound above is used when e ~ N-I and

the second when N-I < e~ N-l.

Finally,

II I

e-1lnl Nllw1/1EII~2 +E Iw1/1E-I·
. 1 ,,0,,=

~ C (e-1N-1lnl N +1) N-1 {.\4 (L~I +L: +L~l) IIIGIII~,o,

+.\1 (L~l +L: +L~) IIIGIII~,n, +L~lIw-1/IGII~2}

~ Ce-1N-4.\2lnl N {L~l +L~2 +L: +L~l +L~e-l} IIIGIII~,

using 1 ~ e-1 N-1 , .\ ~ C and (5.4.19),

~ CN-4ln4N {(1;1 +(1i l +e(1il +eN2(1i 1 +(1;4 +N2(1;I} IIIGIII~,

recalling (5.3.14) and (5.4.34),

112



since u~ ="'(N-t and u" ~ "'(N-a/4 from (5.4.14).

Substituting (5.4.38) - (5.4.40) into (5.4.21), we get

(5.4.40)

The desired result follows on choosing "'( sufficiently large, independently of N, M

and E.

We are now in a position to present our main results of this section.

CJ

Theorem 6.4.1 Assume that u~ and u" are chosen as in {5../.13} and {5../.1./}

respectively. Then

"IGIII' ~ 8111GIII~ ~ CNln' N,

where 6 ={ 0,
1,

when (z*, t*) E nt,
othenDise.

Proof. The first inequality can be easily obtained by using Lemma 5.4.1 (i). To

show the second inequality, we take X = (~)' in (5.4.1) to get

But by Lemmas 5.4.2 and 5.4.4,

Now Lemma 5.4.3 yields the desired result.

With Theorem 5.4.1 we may derive our second estimate on G.
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Theorem 6.4.2 Assume that the hypothese8 of Theorem 5../.1 hold. Then for each

nonnegative integer s, there ezists a positive constant C =C(&) such that

and

(5.4.41)

(5.4.42)

where we have used the usual notation for the Sobolev space W:O and its associated

seminorm and norm.

Proof. Define {}~ ~ {} by (5.4.2) with Ko replaced by Ko/2. Assume without loss of

generality that {}~ is a mesh domain, by enlarging it slightly where necessary. Given

s, choose

Ko = 4(8 +3).

Then by Lemma 5.4.1 (vii), w ~ eN-Ko/2 ~ CN-J(·+3) on {} \ {}~. Hence

by Theorem 5.4.1. Then (5.4.41) follows using the inverse estimate (5.3.1).

Next, let (x', tI) E {}2 \ 00 be arbitrary. Suppose first that

x' - at' ~ x· - at· - KoO'"ln N.

Then we have

IG(z',t')1 =Il-A
G.(s,t')u +fA G.(S,t')UI

~ CN {I!G.I!T1ncl1 +v'XIIG.I!T1nn2 } ,
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since G. is piecewise constant, where Tt is the union of those mesh triangles which

contain the line segment {(z, t') E n\no : 0 ~ z ~ z'}. Note that by our supposition

T1 ~ n \ n~.

Now suppose instead that z' - at' ~ z· - at· +KOC1"ln N. Then

IG(z', t')1 =Il G.(s, t') lUI S CNv"XIIG.IIT.nn"

where T2 ~ n\n~ is the union of those mesh triangles which contain the line segment

{(z, t') E n \ no: z' ~ z ~ I}.

Hence for (z', t') E n2 \ no we always have

IG(z',t')1 ~ CN {IIG.llnl\n~+Viln
t
/
J NIIG.lln2\n~}

~ CN {NIIGllnl\n~+v'iln1
/

J NIIG.lln2\n~}, using (5.3.1),

by (5.4.44). This proves the LOO(n2 \ 00) estimate in (5.4.42).

It remains to show the eIGlw~(n2\00) estimates. We may assume that (z', t')

does not lie on the boundary of any triangle. Suppose that (z', t') lies in the triangle

TO. Now G. and G, are constant on TO. Hence

IG.(z', t')1 + IG,(z', t')1

= [meas(To)]-l/J (IIG.IITb + IIG,IITb)

using (5.3.2), the fact that TO ~ n\ n~ and (5.4.44). o

Remark 5../.1 In obtaining the global energy norm estimate ofG in Theorem 5.4.1, we

used a sharpening of Niijima's approach [32] for elliptic problems. Using the ideas
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above, one can improve the global L"- and HI-estimates of the Green's function

given in Lemma 2.2 of [32], by removing all In factors there.

Remark 5.-1.2 Theorem 5.4.2 shows that the discrete Green's function G essentially

vanishes outside flo with u., u" and Kodetermined by (5.4.13), (5.4.14) and (5.4.43).

Since the dimensions of flo are much greater than the maximum diameter of the mesh

triangles, we may assume that 0 0 is a mesh domain.

5.5 Localized Pointwise Error Estimates

In this section we will estimate the nodal error between the exact solution u and

our computed solution U. In order to derive a nodal error formula suitable for an

analysis under weak assumptions on u, we need the following lemma.

Lemma S.5.1 For any 10 E V and any mesh subdomain D ~ 0, there exist P10 E V

and a positive constant C, independent of N, M and £, such that

P1O=1o on D, (5.5.1)

(5.5.2)

(5.5.3)

(5.5.4)

tDhere 1·lwHO) denotes the usual seminorm in WI(O).

Proof. For each j E {I, ... , M}, let {<Pi';}:£:-1) be a set of basis functions in l'J.

Then any 10 E V can be expressed as

"(N-l)

1O(x, t) = E tOi'; <Pi';(x, t) for (x, t) E Sj and j =1, ... , M.
i=1
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We define Pw by

2(N-l)

Pw{z, t) = L ViJ t/>iJ{z, t) for (z, t) E 5J and j =1, ••. , M,
i=l

(5.5.5)

where

{
WiJ,.... -

"I" - 0,
when sUPP (t/>iJ) n DO ;: e,
otherwise, (5.5.6)

and DO denotes the interior of D. Then Pw E V, (5.5.1) is satisfied and

dist(supp(Pw), D) ~ 2N-1•

By (5.5.6), the nonzero terms in (5.5.5) are associated with i's such that

for some T with TO ~ D n5j. Thus the nonzero ViJ'S can be bounded by

From (5.5.5) - (5.5.7) we get

II PwIlSj \D ~ L IViJIII~iJlIsj\D
i

~ CN-1IlwIlL-(sjnD),

(5.5.7)

(5.5.8)

since lI~iJlIsj\D ~ CN-l for a1l i and j, and there are at most four terms in the

sum.

Summing (5.5.8) over all j we get

Now (5.5.2) follows easily.
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Note that for all j and i,

(5.5.10)

Using (5.5.10), one can prove analogously to the above that

(5.5.11)

and

(5.5.12)

Now (5.5.4) is immediate from (5.5.12). To show (5.5.3), we use (5.5.7) and (5.5.10)

to get

JI

Iwlw/(D) ~ C E E IIwIlLGD(7iJ)N-1

;=1 TfJ~DnSj

~ CNllwIlLGD(D)'

This, together with (5.5.11), proves (5.5.3).

(5.5.13)

o

Let uI be the interpolant from V to u. Using Lemma 5.5.1, we define PuI E V

such that

and

IIPuIII +N-1 IPu1 Iw/(o) + (1,I(Pu
I
)-I);

~ C IIuIIILGD(Oo) ~ ClluIlLGD(Oo)'

(5.5.14)

(5.5.15)

Take X =U - PuI in (5.4.1). Note that (PuI ) (x*,t*) =u{x*,t*). We get

(U - u)(x*,t*) = B (U - PuI,G).
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Set '1{x,t) = (u - PuI ) (x,t). Using (5.2.21) and (5.1.1), we have

B (U - PuI
, G) =(/,G + pGlJ)+ < u',a+ >0 -B (PuI

, G)

=B{'1, G) - e{u_,pGlJ). (5.5.17)

Combining (5.5.16) and (5.5.17) and using (5.2.23) we obtain the following nodal

error formula:

(U - u)(x·, t·) = e('1., G.) + ('1IJ,pGlJ) +('1, G) +('1, (p - I)GIJ)
JI

- e(u_, pGlJ) - L < '1-, [G] >;
;=1

z R( '1, G). (5.5.18)

Let RD( '1, G) denote that the integrations in (5.5.18) are extended only over D,

for any domain D. Then

where < '1-, [G) >; is split by

< '1-, [G] >; = < ,,-, [G] >;,00 + < '1-, [G] >;,0\00 .

Lemma 6.5.2

IRn\Oo('I, G)I ~ CN-2 ln N {II/II + lIuoll£2(o,l)

+ lIull£-(Oo) + lIulJlI£l(o) + lIeu_II£I(o)} .

Proof. From (5.5.18)

(5.5.19)

(5.5.20)

IRO\Oo('1,G)1

~ IIGllwJc.(ol \00) {ell'l.II£I(ol) + IIp'1IJII£I(ol) + 11'111£1(01) + IIpeu••II£I(ol)}
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We have

+eIGlwJo(02\00) {lIfJeIlLl(02) + e-
1
1l"IIL1(02)}

+ IIGII£~(o\lIo) { 11"11£'(0) +~ (1,1,,-1); } . (5.5.21)

ell11.IIL1(01) + IIP11IJIIL1(Od +1I11I1LI(OI)

:5 C{ellu.IIL1(01) +N-1IluIJIIL1(ot) + lIuIIL1(01)

+e II (Pu
I ).IIL1(01) + N-

1
I/(PU

I
)IJI/LI(Ot> + II PuI IIL1(01)}

:5 C {ellu.llot + N-1IluIJIIL1(ot) + lIullot + lIuIILoo(Oo)} , (5.5.22)

using e :5 N-l and (5.5.15).

Since 11(1, t} = 0 for all t E (0, T),

Hence

1I".IIL1(02) + e-
1

1111I1Ll(02)

:5 C In NII11.IILl(02)

:5 CIn N {lIu.IIL1(02) + II (Pu
I
).IIL1(02)}

:5 CIn N {v'i1n1/2 Nllu.1l02 +NlluIILoo(Oo)} ,

using (5.5.15) again.

Finally, from (5.5.15)

t (1, 1,,-1); ~ t {< 1, lui >; + (1, I(Pul)-I)J
;=1 ,=1

JI

:5 E lui; + CNlluIILOO(Oo)·
;=1
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From (5.1.1) it is easy to show that for each j E {I, ... , M},

where Si =uf=1 Si·

(5.5.25)

Collecting (5.5.22) - (5.5.24) into (5.5.21), using (5.5.25) and Theorem 5.4.1 with

8 =3, we obtain

IRO\Oo{l1,G)1

~ CN-S
{ ellu.llo1 +N-1I1 uJlIILI(OI) + lIullo1+N-1I1eu_IILI(OI)

II

+y'£InS
/

2 Nllu.llo2 +N In NlluIlLOD(Oo) +L luli}
i=1

~ CN-s{ (InS
/
2 N +N +1) (11/11 +lIuoIlL2(o,I»)

+NIn NlluIlLOD(Oo) +N-1I1uJlIILI(O) +N-1I1eu_IILI(O)}.

The desired result follows immediately.

We are now ready for our main theorems.

Theorem 6.5.1 (Pointwise error estimate GtDGy from layers) Assume that

[J

and

lIullC2(Oo) ~ C.

Then

(5.5.26)

(5.5.27)

where 17" is giuen in (5../.1./) and { = { ~~2,
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Proof. Recalling (5.5.18), we have

IROo(11,G)1

~ JEII11.IILOO(Oo)JEIIG.IILl(Oo) + N-I/JII11~IILOO(Oo)lIpl/JG~IILl(Oo)

+ 1I11I1LOO(Oo)IIGIILl(Oo) + 1I11I1LOO(Oo)IIG~IILl(Oo)
JI

+EN-1/2I1u_IILOO(00)lIpl/2G~IILl(00) + 1I11I1LOO(Oo) E < 1, I[G]I >;,no •
;=1

Using (5.5.27), Theorem 5.3.1 and

meas(Oo) + meas(A;(Oo») ~ Cu,,1n N,

where A;(no) is as in (5.2.15), we get

IROo(11,G)1

~ Cu~/2lnl/J N {EN-1IIG.llno + N-J/2I1pl/2G~II00

+ N-JIIGIlOo + N-2 (IIG~lIo1nno + v'XIIG~lIo2nOo)
JI

+EN-l/Jllpl/2G~II00+ N-JE I[GlI;,Oo}'
;=1

Hence, using E ~ N-l and (5.3.4),

IRno(11,G)1 ~ Cu~/2N-J
/
2lnl/2NIIIGIII

< Cul / 2N-l ln(l+l)/2 N
- " '

(5.5.28)

(5.5.29)

by Theorem 5.4.1.

Applying (5.5.29) and Lemma 5.5.2 to (5.5.19) concludes the argument. []

We next give a pointwise convergence result for the case when (z·, t·) lies in the

boundary layer, under the assumption that the solution u exhibits typical boundary

layer behaviour in the neighbourhood no of (z·, t·).
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(5.5.30)on no

Theorem 5.5.2 {PointuMe error estimate inside the boundary layer} Assume that

{5.5.26} holds and that

1
~+;U(X,t)1 .axia,; ~ C {1 +e-'exp(a(1- xl/e)}

for i +j ~ 2. Then

where tT" is given in (5.././-1) and ( ={ :i2,
Proof. Set

when (x*, t*) E nt,
othertDise.

(5.5.31)

where 0 ~ p < 1/2 is a constant which is chosen 80 that 1 - ~. E {Xi: i =
1, ... ,N/2}.

Divide no into three parts:

(5.5.32)

where

11 ={(x, t) E no: 0 < X ~ 1 - ~.},

I., = {(x,t) e no: 1-~. < z ~ 1- ~},

Is ={(x, t) E no: 1 - ~ ~ z}.

Clearly Ii (i =1,2,3) are mesh domains with 11 U I., ~ n1 and Is ~ n.,.
In order to estimate Rno('1,G), we bound Rl.('1,G) (i = 1,2,3) successively.

First, from (5.5.30) we have lIullc2(11) ~ C. Thus by arguments similar to the proof

of Theorem 5.5.1, we have

(5.5.33)
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Next, we bound the terms in RI2(T/,G). Integrating f.,."., with respect to z and

using Theorem 5.3.2 (i),

I(et].,G.)I. I = L G.I..1et].
.,.~1, .,.

:5 C L IG.I.,.IEN-2

.,.~1,

:5 CEIIG.IIL1(1,).

Similarly

I(T/~' pGIJh21:5 CN-
1

I1GIJIIL1(1,),

I(T/, G)12/ :5 CN-1 I1G IIL1(12)'

,(T/, (p - 1)GlJh,1 :5 CN-1 IIGIJ IILI (12),

IE (U_, pG~h,1

~ c L N-1eIGIlI..11 [1 +e-2 exp(-a(l - "')/e)] d.,.
.,.~1, .,.

:5 C L N-1EIGIJI.,.1 {N-J +N-1E-1 exp(-a~/E)}
.,.~1,

:5 CN-2 I1GIJIIL1(12)'

Finally
JI II

L (,,-, [GJ);.12 :5 CN-1 L (1, I[GJI);,1, .
;=1 ;=1

From the above estimates and Cauchy-Schwarz' inequality, we get

IRl,(T/,G)I:5 CN-1/211IGIII {[meas(/2)]1/2

+N-1/ 2 m;.x[meas (A;(/2»jl/2} .
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Now

meas(IJ) ~ C(~. - ~)O'"ln N

~ C (E In(EN)-l +N-1) O'"ln N

using In(EN)-l ~ {EN)-l. Also

Thus from (5.5.34) - (5.5.36) and Theorem 5.4.1, we obtain

Finally, for RI3 ('7, G), recall that p =0 on la, 80 that

II

RI3('7,G) =E('7a,G.)I3 +('7,G)Ia - ('7,G~)Ia - E ('7-, [G])j,13 .
;=1

By Theorem 5.3.2 (ii) and Cauchy-Schwarz' inequality,

IRI3('7,G)1 ~ C {N-1 lnNIIG.II13 +N-JlnJ NIIGIII3

+N-J ln2 NIIG~1I13} [meas(Ia)]I/J
II

+CN-J In2 N E /[GJI;,13 [meas (A;(Ia»]I/J .
;=1

Since

and

meas(A;(Ia» ~ CO'"ln N,
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thus from (5.3.4) and Theorem 5.4.1,

IRl3 (f7, G)I ~ C(1~/2N-t ln2 NIIIGIII

~ C(1~/2N-t / 2 ln2+1/2 N. (5.5.38)

Combining (5.5.33), (5.5.37) and (5.5.38) gives

IRoo{ '7, G)I ~ C(1~/2N-t
/
2 ln( N, (5.5.39)

which together with Lemma 5.5.2 and (5.5.19) proves the desired result. []

Recall (5.4.14). From Theorems 5.5.1 and 5.5.2, we reach the following conclusion

for our streamline diffusion scheme (5.2.21).

Corollary 5.5.1 Assume that {5.5.26} holds. Then in smooth regions, the scheme

{5.2.21} is pointwise accumte of order almost O(et/4N-t) whenN-a/2 ~ e ~ N-t,

order almost o (e- t / 4N-7/4) when N-2 ~ e ~ N-I/2 and order almost O(N-I/4)

when 0 < e :s; N-2. In the regions where the solution exhibits typical boundary

layer behaviour, on the other hand, the scheme i8 almost order O(et/4N-t/2),

O(e-t / 4N-I/4) and o(N-I/4) in the above three cases respectively. These results

are uniform in e.

Remark 5.5.1 The assumption (5.5.26) in Theorems 5.5.1 and 5.5.2 is reasonable in

many cases. In fact, an inspection of the proof of Lemma 5.5.2 shows that in (5.5.26)

one can replace C by CK-fj for any fixed positive constant p without affecting the

conclusions of our error aIlalysis.

Remark 5.5.2 Applying the initial conditions in a strong form on each time level

leads to a three-level scheme. Then the above analysis starting from (5.2.21) still
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applies, except that the terms involving integrals of the form < .,. >; now disappear.

That is, this three-level scheme is theoretically as accurate as our two-level scheme

above.

5.6 Numerical Results

In this section, we verify experimentally the theoretical results obtained in Section

5.5. Nodal errors and convergence rates for our scheme (5.2.18) - (5.2.20) with

(5.3.14) are presented for two test problems.

In each computation we take N = M and solve the problems for various E and

N. We note that the characteristics of the reduced solution of (5.1.1) run from

southwest to northeast, while our division of rectangles into triangles in Section 5.2

used gridlines running from northwest to southeast. Thus our mesh is not tailored

to the reduced problem. In fact, similar rates of convergence are observed when the

gridlines coincide with the characteristics.

The scheme (5.2.18) - (5.2.20) is used successively on a sequence of time levels.

On each level, the scheme is equivalent to a system of 2(N - 1) linear equations.

The coefficient matrix of the system can be easily permuted to yield a pentadiagonal

matrix. Hence it is possible to solve the system by triangular decomposition with

O(N) operations.

All calculations were carried out in C double precision on an IBM PC.

Example 5.6.1 We first test the performance of our scheme when applied to a

problem with typical boundary layer behaviour:

-EU_+U.+U+u, = I(z,t) on n
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with analytical solution

u(z, t) = t exp(- (1 - z)IE) + 1 - Zl + tl , (5.6.2)

where n=(0,1) X (0,1]. The function f(z, t) and the initial-boundary values on n
are chosen to fit this data.

The problem is solved with a =0.61 in (5.3.14).

Table 5.8.1 Global Maximum Nodal Errors

E N=8 16 32 64 128 256
1.56250e-2 1.645e-l 8.277e-2 3.331e-2 1.336e-2 4.880e-3 1.677e-3
3.90625e-3 1.99ge-l 1.055e-l 4.763e-2 2.097e-2 8.7600-3 3.385e-3
9.76562e-4 2.147e-l 1.195e-l 6.186e-2 3.035e-2 1.403e-2 6.097e-3
2.44141e-4 2.191e-l 1.24ge-l 6.951e-2 3.687e-2 1.897e-2 9.232e-3
6.10352e-5 2.202e-l 1.265e-l 7.217e-2 4.006e-2 2.201e-2 1.162e-2
1.52588e-5 2.205e-l 1.26ge-l 7.291e-2 4.113e-2 2.313e-2 1.27ge-2
3.81470e-6 2.206e-l 1.270e-l 7.310e-2 4.142e-2 2.346e-2 1.316e-2
9.53674e-7 2.206e-l 1.270e-l 7.315e-2 4.14ge-2 2.354e-2 1.326e-2
2.3841ge-7 2.206e-l 1.270e-l 7.316e-2 4.151e-2 2.356e-2 1.32ge-2
5.96046e-8 2.206e-l 1.270e-l 7.317e-2 4.151e-2 2.357e-2 1.32ge-2
1.49012e-8 2.206e-l 1.270e-l 7.317e-2 4.151e-2 2.357e-2 1.330e-2
3.7252ge-9 2.206e-l 1.270e-l 7.317e-2 4.151e-2 2.357e-2 1.330e-2

Table 5.8.2 Global Convergence Rates

E N=8 16 32 64 128
1.56250e-2 0.99 1.31 1.32 1.45 1.54
3.90625e-3 0.92 1.15 1.18 1.26 1.37
9.76562e-4 0.85 0.95 1.03 1.11 1.20
2.44141e-4 0.81 0.85 0.91 0.96 1.04
6.10352e-5 0.80 0.81 0.85 0.86 0.92
1.52588e-5 0.80 0.80 0.83 0.83 0.86
3.81470e-6 0.80 0.80 0.82 0.82 0.83
9.53674e-7 0.80 0.80 0.82 0.82 0.83
2.3841ge-7 0.80 0.80 0.82 0.82 0.83
5.96046e-8 0.80 0.80 0.82 0.82 0.83
1.49012e-8 0.80 0.80 0.82 0.82 0.83
3.7252ge-9 0.80 0.80 0.82 0.82 0.83

128



The global maximum nodal errors E(·,N) between the exact solution u and the

computed solution U(··N) and the correspondin~ convergence rates p(.,N) are dis­

played in Tables 5.6.1 and 5.6.2 respectively, where E(·,N) and p(••N) are computed

from (3.4.3) and (3.4.4).

We remark that the maximum errors in Table 5.6.1 occur at nodes inside the

boundary layer. Table 5.6.2 shows that for this test problem, the uniform conver-

gence rate of our scheme is 0.83 as N -+ 00, which is close to the value 0.75 proven

in Theorem 5.5.2.

Example 5.6.1 We now examine how our scheme performs locally away from all

layers. Consider

- tu_ + 3 u. + u + ut = I(z, t) on 0 (5.6.3)

with discontinuous initial data at x =0.5, so that the solution u(x, t) has an internal

la.yer lying along the line x =3 t +0.5.

Using UR(X, t) to denote the sum of the reduced solution to (5.6.3) and the

boundary layer component of u(x, t) at z =1, we choose the initial and boundary

data and I(z, t) so that

UR(Z, t) =(z + t)J + Aexp(-z - t) + (1 + tJ)exp(-3(1- z)/t), (5.6.4)

(5.6.5)
{

0, when z < 3 t +0.5,
A=

1, otherwise.

We do not have an explicit expression for the exact solution u(z, t), so we compare

where

our computed solution U(··N) with UR(Z,t) on 0', where

0' = {(z,t) EO: 0 ~ z ~ 0.99, 0.5 ~ t ~ I}.
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It is valid to use Us instead of. when £ is small, since a is then outside the internal

and boundary layers, Le., the solution of (5.6.3) - (5.6.5) is smooth in {l/.

We solve this problem with Q =1.6 in (5.3.14).

Table 5.8.3 Local Maximum Nodal Errors

£ N=8 16 32 64 128 256
9.76562e-4 3.651e-2 1.13ge-2 3.108e-3 7.886e-4 1.907e-4 4.56ge-5
2.44141e-4 3.668e-2 1.152e-2 3.184e-3 8.286e-4 2.070e-4 5.003e-5
6.10352e-5 3.673e-2 1.155e-2 3.204e-3 8.412e-4 2.137e-4 5.305e-5
1.52588e-5 3.674e-2 1.155e-2 3.210e-3 8.445e-4 2.1500-4 5.408e-5
3.81470e-6 3.674e-2 1.1500-2 3.211e-3 8.453e-4 2.161e-4 5.43&-5
9.53674e-7 3.674e-2 1.15&-2 3.211e-3 8.455e-4 2.162e-4 5.443e-5
2.3841ge-7 3.674e-2 1.15&-2 3.211e-3 8.45&-4 2.163e-4 5.445e-5
5.96046e-8 3.674e-2 1.15&-2 3.211e-3 8.456e-4 2.163e-4 5.445e-5
1.49012e-8 3.674e-2 1.156e-2 3.211e-3 8.456e-4 2.163e-4 5.446e-5
3.7252ge-9 3.674e-2 1.15&-2 3.211e-3 8.456e-4 2.163e-4 5.446e-5

Table 5.8.4 Local Convergence Rates

e N=8 16 32 64 128
9.76562e-4 1.68 1.87 1.98 2.05 2.06
2.44141e-4 1.67 1.85 1.94 2.00 2.05
6.10352e-5 1.67 1.85 1.93 1.98 2.01
1.52588e-5 1.67 1.85 1.93 1.97 2.00
3.81470e-6 1.67 1.85 1.93 1.97 1.99
9.53674e-7 1.67 1.85 1.93 1.97 1.99
2.3841ge-7 1.67 1.85 1.93 1.97 1.99
5.96046e-8 1.67 1.85 1.93 1.97 1.99
1.49012e-8 1.67 1.85 1.93 1.97 1.99
3.7252ge-9 1.67 1.85 1.93 1.97 1.99

Table 5.6.3 lists the local maximum nodal errors Er,N) given by

Er,N) = max IUC.,N)(Zi' til - US(Xi, ti)l. (5.6.6)
C-.,tj)eo'

The corresponding convergence rates pr,N) are listed in Table 5.6.4, which are com­

puted from Er,N) analogously to (3.4.4). Our numerical results indicate that in
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this smooth region, the scheme is approximately second order as N -+ 00, which is

better than the order of 5/4 predicted by Theorem 5.5.2. A similar gap between

theory and numerical experience is present in all analyses of the streamline diffusion

method (see, e.g., [22, 29]).

We also tested the method on (5.6.3) and (5.6.4) with A =0 on O. In this case

(5.6.4) gives a smooth exact solution to (5.6.3). The numerical results on 0' for this

smooth problem are identical to those displayed in Tables 5.6.3 and 5.6.4, except

for a little difference in the errors when N = 8 and 16. This means that for (5.6.3)

- (5.6.5), the local performance in 0' of our scheme is not strongly affected by the

presence of the internal and boundary layers.

Remark 5.6.1 Comparing Tables 5.6.1 and 5.6.3, we see that our method is much

more accurate away from layers, as predicted by Corollary 5.5.1.

Remark 5.6.t After the work in this chapter was completed, we became aware of

the existence of Zhou [53], who has recently performed a similar analysis, obtaining

pointwise error estimates only outside all layers on a quasiuniform mesh.
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Chapter 6

A Cell Vertex Finite Volume
Method

6.1 Introduction

The cell vertex finite volume method is a commonly used discretization scheme for

conservation laws. It has been highly successful in modelling flows in aerodynamics.

Since the method fits very naturally with convection problems, it has advantageous

properties for convection-diffusion problems. However, all analyses for cell vertex

methods have been carried out either for pure convection problems (see, e.g., Morton

and SOO [28], Siili [48, 49] and Morton and Stynes [27]), or for convection-diffusion

two-point boundary value problems (see, e.g., Mackenzie and Morton [25] and Mor­

ton and Stynes [27]). So far, there has been no similar analysis for a parabolic

convection-diffusion problem in the literature.

In this final chapter, we examine a cell vertex finite volume method when applied

to the following model time-dependent convection-diffusion problem:

Lu(z, t) == -eu_ + au. + bu + rUt =I(z, t) V(z, t) E a,

u(0, t) = u(1, t) = 0 for 0 < t ~ T,
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u(z,O) =uO(z) for 0 ~ z ~ 1, (6.1.3)

where 0 < e < 1 and 0 is as in the last chapter. For simplicity, we assume that a,

band r are constants with

a > 0, b > 0 and r > O. (6.1.4)

We also assume that I E L2(0) and Uo E L2(0, 1).

The outline of the chapter is as follows. In Section 6.2 we describe the cell vertex

method for (6.1.1) - (6.1.4) and reformulate it as a finite element method. Section

6.3 is devoted to the derivation of a discrete Gi.rding inequality which guarantees

the existence and uniqeness of the finite volume solution. Local errors in the 12

seminorm (defined in Section 6.3) are analyzed in Section 6.4. (We note that, when

restricted to certain piecewise bilinear trial spaces, this seminorm becomes a norm.)

Our analysis indicates that on a general tensor product mesh, the method is first

order accurate away from all layers, in the 12 seminorm. We can sharpen this result

to local second order accuracy in 12 , if either e is very small compared to the mesh

diameter or the mesh is locally almost uniform.

We hope in the future to continue this analysis of the cell vertex finite volume

method. In particular we intend to investigate the causes and treatment of chequer­

board modes.

6.2 Description of the Cell Vertex Scheme

To discretize (6.1.1) - (6.1.4), we first define a partition of 0 as follows. For any

pair of positive integers N and M, we consider the arbitrary tensor product grid

133



n" ={(Zi, ti) en: 0 =Z8 < ZI < ... < zN =1,

o= to < '1 < ... < tM = T},

with hi =Zi-Zi-l,ki =tj-ti-l and h =m&XiJ{ht,ki}. Define the "finite volume"

or "cell" KiJ by

KiJ =(Zi-l,Zi) X ('i-l,ti), for i =1, ... ,N and j =1, ... ,M.

In the finite volume context, the discretization of (6.1.1) is performed on each

cell. The basic idea is to integrate (6.1.1) over a cell 80 that the convection and

diffusion terms are converted into line integrals of normal fluxes along the cell edges.

Then use the trapezoidal rule to approximate the integrals. Thus, letting vA denote

the computed solution, for cell KiJ we have

J'I I(z, t) dzdt
1K iJ

=-t lei (U~(ZI' t) - U~(Zi-l' t») dt
1'j_l

+al~, (u"(Zl, t) - u"(Zi-t. t») tlt

+r f.~~, (u"(Z, ti) - u"(Z, ti-1») tlt +JL'
J

bu"(z, t) dztlt

I'I:l t~i (U~(Zi' til - U~(Zi-t. ti) +U~(Zi' ti-tl- U~(ZI-I'ti-1 »)

+a~i (u"(Zl, ti) - u"(Zi-1. ti) +u"(Zl, ti-l) - u"(Zi-l, ti-tl)

+ r:i
(VA(Zi' ti) - VA(Zi, ti-l) + V

A
(Zi_l, 'i) - VA(Zi_t, ti-1»)

bh·k· ( A A A() A( »)++ v (Zi, 'i) +v (Zi-l, 'i) +v Zi, ti-l +v Zi-l, ti-l .

(6.2.1)

With the approximation v"(z, t) parameterized by its values at the vertices, this

still leaves two problems to be solved. Firstly, how do we define v~ at the nodes?
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There are several ways in which this may be done, but we consider here the so-ca.lled

Method A in Mackenzie and Morton [25]. Tha.t is, we define

u~(%i, ti) = hi +1
hi+! (u·(%;+1, ti) - u·(%;-1. ti») , (6.2.2)

for i =1, ... , N - 1, and

u~(O, ti) = ~ (U·(%I. ti) - .·(0. ti») - U~(%I. til. (6.2.3)

Similarly to (6.2.3) one can define u~(l, tj). This solves the first problem.

The second difficulty is as follows. If we perform the discretization (6.2.1) on a.ll

cells, we will have a system of N M equations in (N -1)M unknowns, since u"(z, t)

will be prescribed on three sides of n using (6.1.2) and (6.1.3). That is, we have M

equations too many. To obtain an exact match, we choose upwind control volumes,

that is, each nodal unknown is associated with the cell upwind of it. We do this by

discarding the equations associated with KNJ for j = 1, ... , M. We then obtain a

system of equations (6.2.1) - (6.2.3), for i = 1, ... , N - 1 and j = 1, ... , M, which

has exactly the same number of unknowns as that ofequations. The second problem

then disappears.

Finite volume methods are often interpreted as finite difference methods. This

is often reflected in the finite difference techniques used to analyse such schemes.

However, for a scheme which does not satisfy a discrete maximum principle, such as

(6.2.1) - (6.2.3), a satisfactory finite difference analysis is difficult to obtain. In fact,

the cell vertex formulation of the finite volume method has a natural interpretation

as a Petrov-Galerkin finite element method. The finite element framework then

affords the possibility of applying some finite element techniques to estimate errors

in the finite volume method; see [28, 48, 49, 27].
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To reformulate the cell vertex finite volume scheme (6.2.1) - (6.2.3) as a finite

element method, we first define our trial and test spaces. Set

u: = {V E H1(O) n C(O): V(O, t) =,,(1, t) =0 for t E (0, T),

" is bilinear on each cell X},

Mia = {p E L'(O) : p is constant on each cell X,

p == 0 on cells XN,; for j = 1, ... , M}.

In order to simplify the presentation, we introduce the averaging operators Il, Ile

and Jlt, for i =1, ... ,N and j =1, ... ,M,

IlWi,; = h~ . J'{ w(z, t) dzdt,,k, lKiJ

1 J.ei

lleWi,; = ~ w(z, 'i) dz,
ei-l

I1tj

IltWi,; = r: W(Zi, t) dt,
, tj-l

for a.ll w(z, t) for which the right hand side is defined.

Remark 6.2.1 One can easily verify that for each v E UG and for i = 1, ... , N and

j=I, ... ,M,

1
Il"i,; =-(Vi-I'; +Vi'; +"i-l';-1 +"ij-l)

4
1

= -(lleVi,; +lleVij-l)
2
1=2(l-'tVi,; +IltVi-l,;),

1
Il(Ve)i,; = ~(IltVi,; - IltVi-l,J),

1
Il(Vt)i,J = r:(lleVi,; - lleVi,;-I),,
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where Vi"; denotes V(Xi, 'i).

Now the cell vertex finite volume approximation is defined as follows: find u" E

UG satisfying

< u"(·,O),p+ > =< uO,p+ > Vp EM",

(6.2.9)

(6.2.10)

where (.,.) and < .,. > are the usual L2(n) and L2(0, 1) inner products,

and we set for any (v,p) E Rl(n) x M",
JI N-l

B(v,p) = -£ E E kiJ'PiJ {Pe(V.)iJ - p,(V.)i-lJ}
i=1 i=1

+(av. +rVe +bv,p).

Here we define, for j = 1, •.. , M and V E C(O),

.... { ~(J'Vi+lJ - J'ViJ), if i =1, ... , N - 1,
lJe(v.)iJ =

lilJtVIJ - Pe(v.>tJ, if i =0.

(6.2.11)

(6.2.12)

Remark 6.2.2 For the discretization of the diffusion term in B(v,p), we do not need

nodal values of v., just its integral along two sides x = Xi-l and x = Xi of KiJ.

For i = 1, ... , N - 1, p,(V.)iJ is defined by associating J'ViJ with the cell centre

then taking the obvious divided difference. For i = 0, we define Pe(V. )iJ by an

extrapolation. It is easy to check that (6.2.1) - (6.2.3) is equivalent to (6.2.9) -

(6.2.12).

In the next section, we will show the existence and uniqueness of the finite volume

solution.

137



6.3 Stability and Convergence

We begin our analysis of the cell vertex finite volume scheme (6.2.9) - (6.2.12) by

establishing the stability of the method in some appropriate mesh-dependent norms,

which in turn implies the existence and uniqueness of the finite volume solution 'I".

Remark 6.3.1 We note that these norms are seminorms on L2(O). If 1. I,:z(o.) is

restricted to the subspace ofU: defined by

{v eU:: v(z, 0) = 0 for 0 ~ z ~ 1} ,

then it is a norm. The first three of these seminorms are similar to those used in

Siili [49]. The last seminorm is introduced here to deal with the diffusion term.

Define a projection R :U: -+ M" by

{
I'ViJ, on KiJ, for i =1, ... , N - 1 and j =1, ... , M,

Rv = h .0, ot erWlse.

The stability of the finite volume method (6.2.9) - (6.2.12) is proved by the following

discrete Garding inequality.
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Theorem 6.3.1 Assume that e ~ a(hN-l +hN). Then for each 11 E U:,
.. e 2 2

B(11, Rl1) ~ 2111• 112(0") +61111'2(0")

+~ min{a, r }1111~(.+()A) - iI111~2(8_0").

Proof. Recall the definition (6.2.11) of B(.,.). For each t1 E U:,

JI N-l
B(11, Rl1) = -e L L k; IJt1i,; {ji,(11.)i'; - Pe( t1.)i-l';}

;=1 i=1

+(011. + rt1e +bv, Rl1)

Firstly, by summation by parts,

AI

11 =e L k;{ -IJl1N-l,; ji,(11.)N-l'; +IJ11t,; Pe(11.)0';
;=1

N-2

+ L (IJl1i+l,; - IJt1i,; )ji,( t1. )i,; }.
i=1

Now

-IJl1N-l,; Pe(V.)N-1J

=(IJl1N'; - IJt1N-I';)ji,(V.)N-1J - IJVN'; ji,(V.)N-l';

hN-1 +hN .. () 12 1 .. ( )= 2 IIJe 11. N-l'; - 2IJeVN-1'; IJe 11. N-l';,

using (6.2.12), (6.2.6) and IJeVNJ =0,

hN-l +hN.. ) .12 1 I .12
~ 4 11Je(v- N-1J - 4(hN-l +hN) IJel1N-1J .

Similarly, using (6.2.6) and IJetJo.; = 0, we have

IJ11t.; Pe(11. )0';

= ~1Je11tJ ji,(11.)oJ
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h
= 4

1
{{Ic{v.)oJ + (Ic{tJ.hJ){Ic{v.)oJ, by (6.2.12),

~ i OPe(tI.)oJ11 -11it(tI.)lJI1
) •

Also from (6.2.12), for i =1, ... , N - 2, we obtain

Substituting (6.3.3) - (6.3.5) into (6.3.2) we get

Next,

(6.3.4)

(6.3.5)

(6.3.6)

JI N-l

12 = L L hik; p(av. + rVt +btJ)iJ PtJiJ
;=1 i=1
JI N-l

=L L {ak; (PttJiJ - Pt t1i-1J) + rhi (P.ViJ - P.ViJ-l) +bptJiJ} pViJ'
;=1 i=1

by (6.2.7) and (6.2.8),
JI N-l N-l JI

= ~L k; ?: (IPtviJI
2

- IPttJi-1JI
2
) +i ?: hi ?: (Ip. tJiJl

2
- Ip. tJiJ-11

2
)

;=1 1=1 1=1 ,=1
JI N-l

+bL L hik;lpviJI2, using (6.2.5) and (6.2.6),
;=1 i=1

JI N-l

= i?: k;IPttJN-IJI 2 +i ?: hi (Ip.tJi,JI12 -1~.tJi,oI2)
,=1 1=1

JI N-l

+bL L hik;lpViJI2, (6.3.7)
;=1 i=1

by telescoping and using PttJoJ = 0, for j = 1, ... , M.
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Hence

The desired result then follows from the assumption of the theorem.

As a corollary we obtain the following stability result.

o

Theorem 6.3.2 Assume that E 5 a(hN-t +hN). Then {6.2.9} - {6.2.12} has a

unique solution u" E UG and

(6.3.8)

Proof. As the existence of a unique solution follows from (6.3.8) because we are

dealing with a norm in this situation (d. Remark 6.3.1), we only have to establish

(6.3.8).

Taking p = Ru" in (6.2.9) and using the arithmetic-geometric inequality, we

obtain

Now an appeal to Theorem 6.3.1 completes the proof. o

As another corollary of Theorem 6.3.1 we have the following global error bound.
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Theorem 6.3.3 Assume thot e ~ a(hN-1 +hN). Let v' be the interpolant from UG
to v. Then

where

Proof. Set

e= via - v', " = a - 'fl.

Then

a - ala = '1 - e.

We begin by estimating e.
Applying Theorem 6.3.1 we obtan

(6.3.9)

Set
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From (6.1.1) - (6.1.3) and (6.2.9) - (6.2.12), we have

JI N-l

B{e, Re) = -e E E k; PeiJ {esJ - es-lJ}
;=1 i=1

+(a". +r", + lnJ, Re)

and

We estimate the term involving e first.

AI N-l

-e E E k; JJ.eiJ {eiJ - et-lJ}
;=1 i=1

(6.3.12)

(6.3.13)
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using E ~ a(hN-l +hN).

As for the other term in (6.3.12), we have

Thus from (6.3.10), (6.3.12) - (6.3.15), it follows that

(6.3.15)

E 1 12 b 2 1. 24' ~. ;2(0·) + 21~1'2(0.) +8nun{a, r}I~I'2(8+~)

~ C {E IJlt(u.) - fsc( u~)I:~(o.) +14'" +r'1t +b'7I~(o.) + 1'71~(8_0.)} .

This, together with the triangle inequality, yields the desired result.

6.4 Local Error Analysis

o

In this section we present local convergence results for the cell vertex finite volume

scheme (6.2.9) - (6.2.12).

We first derive various interpolation errors. Set

1= {(i,j): i = 1, . .. ,N -1, j = 1, .. . ,M}.

We have

Lemma 6.4.1 For any (i,j) E I, assume that u E CJ(KiJ U Ki+lJ). Then

IPt(U.)iJ - Peeu~)iJI ~ C {Ihi - hi+lll1u IIC2("iJ)

+ (h1+1 +hI +k;) IIullc3 (KiJUKi+1J)}
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with

/1£'( U.)OJ - fie(U~)oJ/ :5 C {/h1 - hI/ I/uI/02(.IJ)

+ (hI +hI +k') I/uI/C3(K1JUK2J)} ,

where /·/H3(D) denotes the usual seminoma on H3(D).

(6.4.4)

Proof. The proof of (6.4.1) can be found in the proof of Theorem 4 in Morton and

Siili [28]. In a similar manner one can prove (6.4.2).

We only have to prove (6.4.3) and (6.4.4). For i ~ 1, using (6.2.12),

by a Taylor expansion, where

Thus

/11'( U.)iJ- fie(U~)iJ/
1 Lei 1:5 --:- u.(zi,t)dt- 2(U.(Zi,tj)+ U.(Zi,tj-l»
k, 'j-l

+C/hi+l - hi/ I/U!lc2(R'iJ) +C (h1+1 + h1) I/ul/c3(KiJUKi+1J)

:5 C/hi+l - hi/ I/ul/02(R'iJ) + C (h1+1 + h1 + kJ) !Iu!lC3(KiJUKi+1J)'
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by the error estimate for the trapezoidal rule.

Similarly, for i = 0, by a Taylor expansion about % = °and using UoJ = °for

all j,

... ( 1) 2 1 1)
JJt u. OJ = hi JJtUIJ - JJt(u. 1.1

1 1
=hi (UIJ +UIJ-l) - 2(h

1
+hI) (UIJ +UIJ-l)

hi= u.(O, t;) +u.(O, t;-I) +2" (u_(O, t;) + ,,_(0, t;-d)

hI
+ 61(u_(9., t;) +u•••(8., ';-1»

1 hi +hI-2 (u.(O, ';) +U.(O, t;-I» - 4 (u_(O, t;) + u••(O, t;-I»

(hi +hl)1- (u__(87, t;) +u_(8a, t;-I» ,
12

1 hi - hI= 2(u.(O,t;) +U.(O,t;-I» + 4 (u_(O,t;)+u_(O,t;_I»

hI+ 61 (u_(8., ,;) +,,_(8., t;-I»

(hi +hl)1- (,,_(87, ,;) +,,_(la, ';-1»,
12

where

o< 8, < %1 for I =5, ... , 8.

Hence

IJJt(u.)OJ- ilt(u~)oJI

1 Lti
1~ --: u.(O, t) dt - 2(u.(O, t;) + u.(0, ';-1»

k, ti-l

+Clh1 - hl lllullC2(.I'lJ) + C (h~ + h~) lI u IlC3(KIJUK2J)'

~ Clh1 - hl llluIlC2(.I'lJ) + C (~+ h~ + k;) lI uIlC3 (KIJUK2J)'

which completes the proof of (6.4.4).
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For each (i,j) E I, define

(6.4.5)

(6.4.7)

(6.4.6)

(6.4.9)

for all w for which the right hand side is defined. Then

JI N-l

B(w,p) = E E hik;IJPiJ BiJ(W).
;=1 i=1

For i any nonempty subset of I, let n= U(iJ)EI KiJ. Set

IwIJ(n) = { E hik;IBiJ (W)1 2
} 1/2 •

(iJ)el

We note that I ·IJ(o.) is a seminorm on L2(0). It can be regarded as a gen-

eralization of the seminorm I \l .I"(a(·»II~(o.) introduced in Morton and Stynes

[27].

Using Lemma 6.4.1 we get the following error bound in a locall·IJ(o.) seminorm.

Theorem 6.4.1 Let n= U(i';)EI KiJ be arbitfYJ'1I. Set

i+ = {(i,j) E I: j =l and Ii - i'l S 1 for some (i',l) E i} .

- + J -+Let 0 =U(iJ)E/+ KiJ. Assume that u E C (0 ). Then

,u" - uII
J(n)

S Ce { max {hi1Ihi+l - hil, hi11hi - hi-ll}lIullc~(n+)
(iJ)el

+ max {hf+lhi1, hi, k;hi"l} lIullc3(n+)} + Ch2IuIB3(n). (6.4.8)
(iJ)el

Proof. From (6.1.1), (6.2.9) and (6.2.11), we get

JI N-l

B(u" - ,l,p) = -e E E ki IJPi.;{eiJ - ~-IJ}
i=l i=1

+(a11a + r'1c +btl,p), Vp EM",
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where eiJ is as in (6.3.11).

Fix (i,j) E i. Take p in (6.4.9) to be the characteristic function of KiJ. From

(6.4.6) this yields

(6.4.10)

Applying Lemma 6.4.1 gives

IBiJ (u" - u
I

) I ~ CEh,1 {(Ihi+l - hil + lhi - hi-II) lIuIlC2 (Ki_1JuKiJ )

+ (h1+1 +hl +k;) lIu IlC3 (Jri-lJUKiJUKi+1J)}

+C(hik;)-1/2h2IuIH3(JriJ)·

The desired inequality follows immediately from the definition (6.4.7). 0

In what follows, we will derive a local error bound in an energy seminorm. To

this end, we introduce a cut-off function w(z, t) defined by

(
z - z*) *w(z, t) = 9 --;yh g(t - t ),

where (z*, t*) is a fixed node, "y ~ 1 is a coBstant (which we choose later to be

independent of E and the mesh), and

2
g(r) = Vr E (-00,00).

1+exp(r)

Set

no ={(z, t) E a :z ~ z*, t ~ t*}, (6.4.11)

at ={(Z,t) E a: z :$ z· +&1hln~, t:$ t· +&1hlnH' (6.4.12)
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where 8 > 0 is some integer (which we choose later to be independent of £ and h).

Without losing generality, we assume that at consists of cells, that is,

i' i'

at = UUKiJ,
i=1 i=1

for some (i',j') E I. Set
i' i'+l

at+ = UUKiJ.
i=1 i=l

Similarly to the previous chapters, one can easily show that

W. < 0 and w. < 0 on a,

W(Zi"t) ~ Ch', for t E [O,T],

W(Z, t) ~ 1 on no.

Notation. We introduce the following weighted norms:
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(6.4.14)

(6.4.15)

(6.4.16)

(6.4.17)

(6.4.18)



for all vex, t) for which the right hand sides are defined.

Define R", : UG -+ Mia by

K I • 1 .,. 1 .,on i';, lor. = ,··.,•, J = ,... ,J ,
otherwise.

Then we can prove a weighted Girding ineq.a1ity.

Lemma 6.4.2 Assume that there exists a positive constant Co, which is independent

of e and of the mesh, such that

t ~ CO hi for i = 1, .•. , i' + 1.

Then

... t 2 1 2
B(v, R.,v) ~ 4Iv• I(2(Ot),.., + b VI'2(Ot),..,

- ~lvl:2(8_0t)..., - Ch·h~~llvl:2(Ot+)'

Proof. Similarly to the derivation of (6.3.1), we have

(av. + rVe +bv, R.,v)
i' i'

=iLL kiWi'; (IPeVi.;1
2

-1P,Vi-1JI
2

)

i=l i=1
i' i'

+~ L L hi Wi'; (lp.Vi.;12 -lp.Vi';_11
2

)
2. . 1,=1 1=

i' i'

+bL L hiki Wi'; IpVi.;1
2

i=1 i=1

=! t Ie; {t (WiJ - Wi+1J)II"IliJ/' +Wi'+1J 11Jt11" JI'}
2 . . 1,=1 1=
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+it 11; {'t<WiJ -WiJ+l)Ip-tliJI
1 +WiJ'+lIp-lItJ·1

1
- Wi.IIP-lIt.ol

l
}

i=1 i=1

i' i'

+bL L hikiwi,; IJJvi,;12
, (6.4.20)

;=1 i=1

by summation by parts and using JJt110'; =o.

Next, the contribution to B(v, R",v) from the diffusion term is

j' i'

Q. == -E L L kiwi'; I'Vi';{fle(V.)i'; - fle(V.)i-l';}
i=1 i=1

i'
=EL ki{ - Wi''; JJVi',; fle( V.)i''; +WI,; JJV1,; Pe(V.)o,;

i=1
i'-1

- L(Wi,; JJVi,; - Wi+l,; JJVi+l,; )Pe(V.)i'; }.

i=1

Now, analogously to (6.3.3), we have

For i = 1, ... , i' - 1,

(6.4.21)

(6.4.22)

Substituting (6.4.22), (6.3.4) and (6.4.23) into (6.4.21) , we obtain

.,
f.. { h·, + hi'+1 ..) 12 1 I 12Q. ~ ELJ ki • 4 Wi''; IJJe(v. i',; - hi' +hi'+l Wi''; JJ

V
i'+I,;

i=1
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In (6.4.24), the second term can be bounded by using (6.4.17), to get

(6.4.25)

using (6.4.19).

As for the last term in (6.4.24), using (6.2.6) and (a + b)2 ~ 2(a2 + b2), we get

i'-1
~ Cl-1 L max Iw.I(IPtViJI2 + IPtt1i+1JIJ

)
. 1 K'+l';1=

~ C.,-l t (max Iw.1 +m~lw.l) IPet1iJIJ

. K'+1'; K,,J
1=1
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(6.4.26)

.,
~ C'"'(-1 t ( max Iwel/ min lWei) ....1 (WiJ - wi+1J)I""viJI2

,
i=1 Kij UKi+1J Ki+1J 'ti+1

sinee (6.4.14) implies that WiJ - Wi+1J > 0,
.,

$ C..,-t t hal (""J - WS+t'; )IPttli.;II, 118ing (6.4.15),
i=1 +1.,

a ~ 1 2
~ ~ LJ ;:-:- (WiJ - Wi+1";) I""Vi..;1 ,° i=1 '''i+1

on choosing '"'( sufficiently large, independently of £ and of the mesh used.

Thus, from (6.4.24) - (6.4.26) and (6.4.19), we obtain

;' i'

Q E I 12 a~ ~ I 12 - -1 2
c ~ 4 Ve 1

2
(nt),... - 2LJ k; LJ(Wi"; - Wi+1";) PtViJ - Ch hi '+1Ivl'2(nt+r

;=1 1=1
Combine this with (6.4.20) and use (6.4.14) to complete the proof. 0

We now prove the main result of this section.

Theorem 6.4.2 Assume that £ ~ a(hN-l +hN) and that (6.-I.19) holds. 1/ u E

C 3(nt+), then

lu - u"IB(llol $ Ch (lIuIlC3(ot+l + luolJl3(o,."l)

+C (h-h";1)1/2 (11/11£2(0) +lIuoll£2(o,1) + lulg3(nt+») ,

where no and nt+ are as in (6.-I.11) and (6.-I.13) respectively, 8 is as in (6.-I.11),

and

Proof. Applying Lemma 6.4.2, we obtain

~1~.112(nt)...,+ bl~I:2(nt)...,

~ iJ(~, R..,~) + ~1{1:2('-0:)"" +Ch-h"~11{1:2(nt+r
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Recalling (6.4.6),

i ' i'
B(e, R.,,!) =L L hikiwiJ ~iJBiJ(e)

i=1 i=1
b 1 i ' i'

~ 2"lel:2(ot),w + 2b L L htkiwiJ IBi.;(e)12
•

i=1i=1
Put this into (6.4.27) to get

(6.4.28)

e1 12 22 e. (2(ot),,., +blel'2(ot)...,
i ' i '

5 ~ ~~ hakiWiJ IB,JWI'+rl{I:.(ut)... +Ch·h;;~ll{I:.(ot+)
,=1 1=1

~ C {Iel~(ot) +lel~(ILot)} +Ch·h";1Iel:2(ot+)' (6.4.29)

since w(x, t) ~ 2 on 0, where l'I'2(8_ot) is defined similarly to 1,1'2(8_0.)'

Appealing to Theorem 6.4.1, we obtain

1{IS(ot) 5 CE1~ft..{hi1
} L~,~. {Iho+l - halHIullc>(ot) +h'lIullc3(ot+)}

+Ch2IulJl3(ot)

(6.4.30)

using (6.4.19).

By (6.2.10),

(6.4.31)

by virtue of (6.4.2).

For the last term in (6.4.29), we have

1{1,.(ot+) 5IU"I,.(or) +luIMot+) +1,,1,.(or)

~ C (1/1'2(0.) + fuOf'2(8_0.) + lul'2(ot+») +Ch2IuIB3(ot+)'
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according to Theorem 6.3.2 and (6.4.1).

Clearly, for any w E L2(n),

by Cauchy-Schwarz inequality. Also

Thus

(6.4.32)

Collecting (6.4.30) - (6.4.32) into (6.4.29) yields

{ 2 2 }1/2
e1e.I(2(Ot).... + lel'2(Ot),w

~ ChlluIlC3(ot+) +Ch2IUOIB3(O'.i')

+C (h·h~;1)1/2 (11/11£2(0) +"uOll£2(O,I) +luIB 3(Ot+»). (6.4.33)

Note that by (6.4.18),

(6.4.34)

Combining (6.4.33) with (6.4.34), invoking the triangle inequality and using

Lemma 6.4.1 we obtain the desired result. o

Remark 6.-1.1 The assumption that u E Ca(nt+) in Theorem 6.4.2 can be guaranteed

if the data is sufficiently smooth and satisfies certain compatibility conditions at the

corner (0,0) of n.
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Corollary 6.4.1 A88ume that the hypothe8U of Theorem 6.-I.! hold and

~+1 =~ +O(hI), for i =1, ... , i'

and

~I+l =O(hlC
) for 80me IC > o.

Then

(6.4.35)

(6.4.36)

(6.4.37)

lu - u"IE(llo) $ Ch' (liullC3(nt+) + luol••(o....)+ IIJII£2(n) +lIuoll£2(o.l») .

Proof. By inspecting the proof of Theorem 6.4.2, we see (cf. (6.4.30» that when

(6.4.35) holds,

lel'(ot) ~ ChllluIlC3(ot+)·

Hence from (6.4.29), (6.4.37), (6.4.31) and (6.4.32) we have

{
2 2 }1/1

c1e•IC2(ot),w +lel'2(ot),w

~ Ch
2 (lIu IIC3(0:+) +luOIH3(O'.il »)

+C (h·h~~I)1/2 (11/11£2(0) + lIuollv(o,l) +luIH 3(0:+»). (6.4.38)

Since (6.4.36) implies h~~1 =O(h- IC
), we take 8 =1C+4 in (6.4.38). Now arguments

exactly the same as in the proof of Theorem 6.4.2 lead to the desired result. 0

Corollary 6.4.2 A88ume that the hypothese8 of Theorem 6.-I.! hold and that there

ezi8t8 a po8itive constant Cl, tDhich is independent of £ and of the me8h, .uch that

Then

£ ~ Clh!, for i =1, ... , i' +1. (6.4.39)
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Proof. From the proof of Lemma 6.4.2, we see that when (6.4.39) holds, one can get

(d. (6.4.25», for each tJ E U:,

Hence, similarly to the derivation of (6.4.29), using (6.4.28),

Also, from (6.4.30) we see that (6.4.39) implies (6.4.37). It then follows from

(6.4.40), (6.4.37), (6.4.31) and (6.4.32) that

{
2 2 }1/1

ele.li2(nt).., + lel'2(nt)".,

~ Ch
2 (llullc3(nt+) + luoIB3(O,_.,»)

+Ch·/
I

(lIfIlL2(n) +IIuOllL2(e,1) + luIH3(nt+») .

Choose 8 = 4 and follow the same argument as in the proof of Theorem 6.4.2 to

complete the proof. o

Remark 6.-i.! The assumption (6.4.19) is reasonable, since we are interested in the

singularly perturbed case. Theorem 6.4.2 tells us that under this assumption, away

from any layers, the scheme (6.2.9) - (6.2.12) on an arbitrary tensor product mesh

is first order accurate in the II seminorm, as one can choose 8 sufficiently large to

make the term Ch·h~;l negligible. Corollary 6.4.1 indicates that if we work with an

almost uniform mesh, then the method becomes second order accurate in smooth
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regions. Corollary 6.4.2 shows that when the diffusion parameter E is relatively

small, the method is second order accurate on any general tensor product mesh,

away from any layers. However, this 12 seminorm is of course not strong enough to

exclude chequerboard oscillations from the computed solution.
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