<table>
<thead>
<tr>
<th>Title</th>
<th>Fluid accretion onto a spherical black hole: Relativistic description versus the Bondi model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>Malec, Edward</td>
</tr>
<tr>
<td>Publication date</td>
<td>1999</td>
</tr>
<tr>
<td>Original Citation</td>
<td>Malec, E. (1999) 'Fluid accretion onto a spherical black hole: Relativistic description versus the Bondi model', Physical Review D, 60(10), 104043 (8pp). doi: 10.1103/PhysRevD.60.104043</td>
</tr>
<tr>
<td>Type of publication</td>
<td>Article (peer-reviewed)</td>
</tr>
<tr>
<td>Link to publisher's version</td>
<td>https://journals.aps.org/prd/abstract/10.1103/PhysRevD.60.104043 - 10.1103/PhysRevD.60.104043</td>
</tr>
<tr>
<td>Rights</td>
<td>© 1999, American Physical Society</td>
</tr>
<tr>
<td>Download date</td>
<td>2024-05-08 20:52:08</td>
</tr>
<tr>
<td>Item downloaded from</td>
<td>https://hdl.handle.net/10468/4579</td>
</tr>
</tbody>
</table>
Fluid accretion onto a spherical black hole: Relativistic description versus the Bondi model

Edward Malec
Jagiellonian University, Institute of Physics, 30-059 Kraków, Reymonta 4, Poland
and University College Cork, Physics Department, Cork, Ireland
(Received 26 April 1999; published 27 October 1999)

We describe general relativistically a spherically symmetric stationary fluid accretion onto a black hole. Relativistic effects enhance mass accretion, in comparison to the Bondi model predictions, in the case when back reaction is neglected. That enhancement depends on the adiabatic index and the asymptotic gas temperature and it can magnify accretion by one order in the ultrarelativistic regime. [S0556-2821(99)01120-0]

PACS number(s): 04.40.−b, 04.20.−q, 98.62.Mw

I. INTRODUCTION

In this paper we re-examine the spherical gas accretion onto a black hole, paralleling previous studies of fluid accretion of Michel and Shapiro and Teukolsky [1,2]. It is shown that relativistic effects can lead to a bigger mass accretion than that predicted by the corresponding Bondi model [3].

The order of this paper is as follows. Section II presents spherically symmetric Einstein equations expressed in the language of extrinsic curvatures. A suitable choice of a gauge condition leads to a “comoving coordinates” formulation that is particularly suitable for the description of self-gravitating fluids. In Sec. III we show that the original set of integrodifferential equations can be reduced to an integroalgebraic problem, whose solution would constitute a new stationary, general-relativistic solution of self-gravitating fluids. In Sec. III we show that the original set of integrodifferential equations can be reduced to an integroalgebraic problem, whose solution would constitute a new stationary, general-relativistic solution of self-gravitating polytropic fluids. That model is complete—it includes the back effect exerted by matter onto a metric; therefore it is capable of describing a stationary phase of the interaction of (even) heavy clouds of gas with a relatively light center. Section IV discusses a case when back reaction can be neglected. Under some circumstances, an accretion is shown [4] that relativistic magnification of the mass accretion becomes noticeable in the case of infall of a hot gas, when the correction factor can be bigger than 2.4(1 + 1′), where 1′ is the polytropic index.

II. EQUATIONS

We will use a spherically symmetric line element,

$$ds^2 = -N^2 dt^2 + adr^2 + R^2(d\theta^2 + \sin^2 \theta) d\phi^2,$$ \hspace{2cm} (2.1)

where \(N, a,\) and \(R\) depend on \(t\) (asymptotic time variable) and a coordinate radius \(r\). We will work in extrinsic curvature variables. Thus we need the mean curvature of centered two-spheres in a Cauchy slice,

$$p = \frac{2\partial_t R}{\sqrt{aR}}$$ \hspace{2cm} (2.2)

and the extrinsic curvature

$$\text{tr} K = \frac{\partial_t (\sqrt{aR^2})}{N\sqrt{aR^2}},$$

$$K_r^r = \frac{1}{2Na} \partial_0 a,$$

$$K_{\phi}^\phi = K_{\theta}^\theta = \frac{\partial_0 R}{NR} = \frac{1}{2}(\text{tr} K - K_r^r).$$ \hspace{2cm} (2.3)

Let \(T_{\mu}^\nu\) be the energy-momentum tensor of matter fields, \(\rho = -T_0^0\), and \(j_r = NT_r^r, R_{\mu\nu}\) the Ricci tensor, and \(R\) the Ricci scalar.

The Einstein constraint equations \(R_{0\mu} - g_{0\mu}R/2 = 8\pi T_{0\mu}\) can be integrated to yield, assuming asymptotic flatness,

$$Rp = 2 \sqrt{1 - \frac{2m}{R} + \frac{8\pi}{R} \int_R^\infty \bar{R}^2 \rho d\bar{R} + \tau},$$ \hspace{2cm} (2.4)

$$R K_r^r - R \text{tr} K = \frac{C_1 - 8\pi \int_0^R (2\bar{R}^2 j_r/\sqrt{a\rho})d\bar{R}}{R^2} - 2 \int_0^R \text{tr} K\bar{R}^2 d\bar{R}$$

$$+ \int_0^R \text{tr} KK_r^r\bar{R}^2 d\bar{R},$$ \hspace{2cm} (2.5)

where \(m\) is the asymptotic mass and

$$\tau = \frac{3}{4R} \int_R^\infty \bar{R}^2 (K_r^r)^2 d\bar{R} - \frac{1}{4R} \int_R^\infty \bar{R}^2 (\text{tr} K)^2 d\bar{R}$$

$$- \frac{1}{2R} \int_R^\infty \text{tr} KK_r^r\bar{R}^2 d\bar{R}.$$ \hspace{2cm} (2.6)

By imposing the integral gauge condition
where \(\tau \) is given in Eq. (2.6), one can show that in vacuum, Eq. (2.7) is satisfied identically.

Differentiation of Eq. (2.7) with respect \(r \) yields, after some algebra,

\[
R_0(\tau - K)\frac{16\pi j_r R}{p} = 0
\]

which implies

\[
j_r = 0 = U_i
\]

in geometries without minimal surfaces and with \(\tau K = K' \).

Thus in this gauge coordinates are “comoving” — each particle of matter carries a fixed value of a radial coordinate ‘‘\(r \)’’.

The energy-momentum tensor of a self-gravitating fluid reads, in comoving coordinates,

\[
T_{\mu\nu} = (\rho + p)U_\mu U_\nu + p\ g_{\mu\nu}.
\]

Here \(U_\mu U^\mu = -1 \). Notice that the pressure is \(p \approx T'_{r} = T'_{\theta} \).

This space-time foliation is regular even at the vicinity of the boundary of a black hole, in contrast with other approaches [1,2] in which the Schwarzschild geometry is foliated by polar gauge slices.

Define a mass function

\[
m(R(r)) = 2\pi \int_0^r \frac{R^3 p}{\sqrt{a}} dx,
\]

where \(\bar{R} \) is an areal radius. The mass evolves as follows:

\[
\partial_0 m(R(r)) = -2\pi [N R^4 (\tau - K) p](r).
\]

Direct differentiation of \(m(R) \) gives

\[
\frac{\partial m(R)}{\sqrt{a}} = 2\pi R^4 p \rho.
\]

The relevant equations are the two continuity equations

\[
N \partial_0 \bar{p} + \partial_r N(\bar{p} + \rho) = 0,
\]

\[
\partial_0 \rho = -N \tau K(\bar{p} + \rho),
\]

and the Einstein evolution equation

\[
\partial_t (K'_{r} - \tau K) = \frac{3N}{4} (K')^2 - \frac{Np^2}{4} - \frac{p}{\sqrt{a}} \partial_t N
\]

\[
+ \frac{N}{R^2} + 8\pi NT'_{r} + \frac{3}{4} N(\tau K)^2 - \frac{3N}{2} \tau KK'_r.
\]

Using Eq. (3.1) one writes \(I = N R^2 \tau K(\bar{p} + \rho) \), while the stationarity condition (ii) allows one to write \(III = R^2 \partial_0 \rho = -N R^2 \tau K(\bar{p} + \rho) \) [the second equality follows from Eq. (2.15)]. Thus \(I + III = 0 \); since \(II = 0 \) [due to the momentum conservation Eq. (2.14)], we arrive at \(\partial_0 m(R) = 0 \).

Assume that the equation of state

\[
\bar{p} = K^{\rho f},
\]

\(\Gamma \) being a constant, and define the speed of sound as \(a^2 = \partial_0 \rho \). We assume that \(1 \equiv \Gamma \equiv 5/3 \), since we are primarily interested in comparing predictions with the Bondi model,
but it is quite likely that much of the forthcoming analysis applies to adiabatic indices in the standard in astrophysics range \([1, 2]\).

Let us point out that astrophysicists \([2]\) use a different equation of state, \(\bar{p} = Cn^\dagger\) (where \(n\) is the baryon number density); this reads in our notation

\[
\bar{p} = C \times \exp \left(\Gamma \int d\rho \frac{1}{\rho + K\rho^2} \right). \tag{3.4}
\]

In the Newtonian limit both approaches agree when \(\Gamma \neq 5/3\), but they disagree for \(\Gamma = 5/3\). The momentum conservation equation (2.14) can be integrated,

\[
a^2 = -\Gamma + \frac{\Gamma + a_\infty^2}{N^\dagger}, \tag{3.5}
\]

where \(\kappa = (\Gamma - 1)/\Gamma\) and the integration constant \(a_\infty^2\) is equal to the asymptotic speed of sound of a fluid.

Equation (3.5) asymptotically \((m/R \ll 1)\) yields the Bernoulli equation, hence it can be regarded as the general-relativistic version of the latter.

From the relation between pressure and energy density, one obtains, using Eq. (3.5)

\[
\rho = \rho_\infty (a/\alpha_\infty) ^{2(\Gamma - 1)} = \rho_\infty \left[-\frac{\Gamma}{a_\infty ^2} + \frac{\Gamma}{a_\infty ^2 + 1} \right] ^{1/(\Gamma - 1)}, \tag{3.6}
\]

where the constant \(\rho_\infty\) is equal to the asymptotic mass density of a collapsing fluid. From the evolution equation one obtains, using the stationarity assumption,

\[
\dot{R} \rho = \frac{1}{4} \left(pR \right)^2 \dot{\rho} - \frac{m(R)}{R^2} - 4 \pi RN\bar{p}. \tag{3.7}
\]

Equations (2.4) and (2.5) give

\[
U \dot{\rho} = \frac{pR}{4} \dot{\rho} (pR) - \frac{m(R)}{R^2} + 4 \pi R p\bar{p}. \tag{3.8}
\]

Comparison of Eq. (3.8) with Eq. (3.7) yields an ordinary differential equation

\[
\frac{\partial}{\partial t} \ln \left(\frac{N}{pR} \right) = \frac{16\pi}{p^2R^2} (\rho + \bar{p}). \tag{3.9}
\]

Integration of this, with the asymptotic condition at spatial infinity \(N = pR/2 = 1\), leads to the following relation between the lapse \(N\) and the mean curvature \(pR\):

\[
N = \frac{pR}{2} \beta(R), \tag{3.10}
\]

where

\[
\beta(r) = \exp \left(\int_r ^\infty 16\pi (\bar{p} - \rho) \frac{1}{p^2s} ds \right). \tag{3.11}
\]

The substitution of \(\rho K\) \([\text{as calculated from the continuity Equation (2.15)}]\) into Eq. (3.1) gives, employing the stationarity condition,

\[
\frac{\gamma}{p^2R^2} \ln \left(\frac{\rho}{|pR^2|} \right) = -\frac{\gamma}{p^2R^2} \frac{\partial \rho}{\rho + \bar{p}}. \tag{3.12}
\]

Notice that

\[
-\frac{\partial \rho}{\rho + \bar{p}} = \frac{\partial \rho (\rho + \bar{p})}{\rho + \bar{p}} - \frac{\partial \bar{p}}{\rho + \bar{p}}.
\]

The last term can be presented in another form (due to relations between \(a^2, \rho\) and \(\bar{p}\)),

\[
\frac{\partial \bar{p}}{\rho + \bar{p}} = \frac{\Gamma}{\Gamma - 1} \partial \ln \left(\frac{a^2}{\Gamma + 1} \right).
\]

That leads to the following solution of Eq. (3.12):

\[
U = C \left(\frac{a^2}{\Gamma + 1} \right) ^{1/(\Gamma - 1)}. \tag{3.13}
\]

The whole set of equations describing the collapsing stationary fluid is given by Eq. (3.13) and the previously written Eqs. (3.5), (3.10), and (3.11). Calculation of \(\partial \ln (a^2 + \Gamma)\), with \(a^2\) given by Eq. (3.5) and \(N\) being specified above, yields

\[
\frac{\partial}{\partial t} \ln \left(\frac{a^2 + \Gamma}{\Gamma + 1} \right) = \frac{16\pi}{p^2R^2} \left(\frac{m(R)}{R^2} + 4 \pi R^2 \bar{p} - 2U^2 \right)
\]

\[
+ \frac{1}{2R^2} \partial \ln \left(U^2 R^4 \right). \tag{3.14}
\]

One easily obtains from Eq. (3.13)

\[
\frac{1}{R^2} \partial \ln \left(U^2 R^4 \right) = -\frac{2U^2}{\kappa \bar{p}} \partial \ln \left(a^2 + \Gamma \right). \tag{3.15}
\]

The insertion of Eq. (3.15) into Eq. (3.14) gives

\[
\partial \ln \left(U^2 R^4 \right) \left(1 - \frac{4U^2}{a^2 \bar{p}^2 R^2} \right) = \frac{16\pi}{a^2 \bar{p}^2} \left(\frac{m(R)}{2R^2} + 2 \pi R^2 \bar{p} - 2U^2 \right). \tag{3.16}
\]

We define sonic points as such where the equality \(U = pR/2 = 0\) holds true. Let \(R_s\) be a radius of a sonic point. Equation (3.16) yields the relation

\[
a^2 \left(1 - \frac{3m_s}{2R_s} + c_s \right) = U_s^2 = \frac{m_s}{2R_s} + c_s, \tag{3.17}
\]

where \(c_s = 2 \pi R_s \bar{p}_s\), \(a_s^2 = a^2(R_s)\), \(m_s = m(R_s)\), and \(U_s^2 = U^2(R_s)\).

The constant \(C\) in formula (3.13) can be expressed in terms of \(a_s, U_s\), and \(R_s\), that is as a function of \(c_s, m(R_s),\) and \(R_s\). The infall velocity \(U\) reads
Above \(U_\ast \) means a negative square root in the case of falloff towards a gravity center and a positive square root in the case of exploding gas.

The rate of accretion of mass in Eq. (2.17) can be conveniently expressed by characteristics of the sonic point \(R_\ast \).

\[
m = -4 \pi R^2 \rho_\infty \left(1 - \frac{3m_\ast}{2R_\ast} + c_\ast \right)^{1/2} U_\ast
\]

For the sake of completeness we write down the space-time line element with the areal radius chosen as the radial coordinate,

\[
ds^2 = dt^2 - N^2 \left(\frac{4N^2U^2}{(pR)^2} - 4 \frac{U}{pR} dtdR \right) + \frac{4}{(pR)^2} dR^2 + R^2 d\Omega^2.
\]

IV. RELATIVISTIC ACCRETION: NEGLECTING BACK REACTION

The quasistationary accretion shall apply to the description of black holes interacting with a fluid. The description of the accretion onto other compact bodies (say, neutron stars) is more complex, since there can appear shocks that are excluded in our picture. The above model can be valid only if shocks are absent, for instance, when the inner boundary of a collapsing shell of gas is disconnected from the surface of a compact body.

All hitherto proven results are exact and—under the preceding reservation—they refer to a fully nonlinear stationary system consisting of a central mass and a cloud of gas that would dynamically influence a geometry through a back reaction. If the gas is heavy, compared with the central mass, then \(\beta(R) \) is nonconstant; metric functions do depend on the infalling matter. That means that back reaction should be taken into account in the description of such a system.

If the contribution of a fluid to the total asymptotic mass of a system is negligible, i.e.,

\[
m_f = 4\pi \int_{R>2m} drr^2 \rho \ll m
\]

and \(\bar{\rho} \ll \rho \), then \(\beta \approx 1 \) and

\[
N \approx \frac{pR}{2} = \approx \sqrt{1 - \frac{2m}{R} + U^2}.
\]

That would suggest that in this case the standard Schwarzschildian geometry constitutes a valid approximation. There is, however, one subtle point. The reasoning of the former section shows that in order to neglect the effect of back reaction the condition

\[
c_\ast = 2 \pi R^2 \rho \ll \frac{2m_\ast}{R}
\]

must hold at a sonic point. That can be interpreted as the demand that not only \(N \) be close to \(pR/2 \) but also \(\partial p N \) shall be approximated by \(\partial p (pR)/2 \).

We will say that back reaction is negligible if both Eq. (4.1) and Eq. (4.3) hold true. In such a case \(m = m_\ast \) and one obtains

\[
a^2_\ast \left(1 - \frac{3m}{2R_\ast} \right) = U^2_\ast = \frac{m}{2R_\ast}
\]

at the sonic point. The remaining two equations describing accretion are

\[
U_\ast = \frac{R^3 m}{2R^4} \left(\frac{1}{1 + \Gamma/a_\ast} \right)^{2(\Gamma - 1)} \left(1 + \frac{\Gamma}{a^2} \right)^{2(\Gamma - 1)}
\]

and

\[
a^2 = -\Gamma + \frac{\Gamma + a^2}{N^\ast}.
\]

This is a purely algebraic system of equations, describing the fluid accretion in a fixed space-time (Schwarzschild) geometry.

V. RELATIVISTIC ACCRETION WITHOUT BACK REACTION

Numerical analysis demonstrates—as pointed out by Michel [1]—the existence of two branches of solutions of the relativistic fluid equations. An analytic proof is given below.

In the first part we prove the existence of a sonic point in a black hole spacetime endowed with a Schwarzschild geometry. That black–hole–fluid system is shown to possess a sonic point, which leads, through a construction outlayed in the second step, to the existence of two accreting solutions.

A. Sonic points

Define

\[
L = a^2 + \Gamma,
\]

\[
P = \frac{a^2 + \Gamma}{\left[1 - 2m/R + U^2 \right]^{(\Gamma - 1)/(2\Gamma)}}
\]

where \(U^2 \) is given by Eq. (4.5) with parameters \(a_\ast \) and \(U^2_\ast \) specified by Eq. (4.4).

The equation \(L(R_\ast) = P(R_\ast) \) for a sonic point can be written as \(1 + y(3\Gamma - 1) = 3(a^2_\ast + \Gamma)^{y(\Gamma + 1)/(2\Gamma)} \), where \(y = 1 - 3m/(2R_\ast) \). One has to demand that \(y > 0 \) (i.e., \(R_\ast > 3m/2 \)), since at \(y = 0 \) (or \(R_\ast = 3m/2 \)) the coordinate sys-
The sonic point equation can be written as
\[y = \text{a unique sonic point characterized by} \]
If sonic points are exterior to a black hole then
1 cal value of \(a \) velocity of light and the dominant energy condition
from unphysical solutions that become superluminal.
In that case the speed of sound would be bigger than the velocity of light and the dominant energy condition [6] would be broken, even outside of a black hole. One easily infers that \(y_a \) is a monotonously decreasing function of the asymptotic sound density \(a_\infty^2 \). Therefore there exists a critical value of \(a_\infty^2 \) which separates solutions that are subluminal from unphysical solutions that become superluminal.
An interesting feature of the Bondi model is the simple relation \(a_\infty^2/a_\infty^2 = 2(5 - 3\Gamma) \) for \(\Gamma < 5/3 \) [5]. Below we will show that this relation appears in the nonrelativistic limit of a relativistic formula.

Theorem 2. Let \(a_\infty^2 \) and \(a_\infty^2 \) be the asymptotic and sonic speeds of sound, respectively. Define \(\alpha = (\Gamma - 1)/(2\Gamma) \):
\[A = \alpha(1 - 5\ln 4 - 1.5) \]
and
\[B = \frac{3}{2} \alpha^2 G(9\Gamma - 7). \]

If sonic points are exterior to a black hole then
\[\frac{1}{(5 - 3\Gamma)/2 + Ba_\infty^2/(1 + 3a_\infty^2)} \geq \frac{a_\infty^2}{a_\infty^2} \geq \frac{1}{(5 - 3\Gamma)/2 + Aa_\infty^2/(1 + 3a_\infty^2)}. \] \(\tag{5.2} \)

Proof. Define \(x = m/2R_* \) [or alternatively, \(x = a_\infty^2/(1 + 3a_\infty^2) \)], and
\[F = x(1 - 3\alpha)^\alpha + \Gamma(1 - 3\alpha)^{1 + \alpha} - \Gamma(1 - 3\alpha) \frac{5 - 3\Gamma}{2} x - Bx^2, \]
\[\Psi = x(1 - 3\alpha)^\alpha + \Gamma(1 - 3\alpha)^{1 + \alpha} - \Gamma(1 - 3\alpha) \frac{5 - 3\Gamma}{2} x - Ax^2. \] \(\tag{5.3} \)
The sonic point equation can be written as
\[\frac{a_\infty^2}{a_\infty^2} - \frac{5 - 3\Gamma}{2} = Bx + \frac{F}{x} = Ax + \frac{\Psi}{x}. \] \(\tag{5.4} \)

It suffices to show that \(F \geq 0 \) and \(\Psi \leq 0 \). We shall deal with the first inequality. The second derivative of \(F \) with respect \(x \) reads
\[F'' = \frac{\Gamma - 1}{2\Gamma} (1 - 3\alpha)^{-2} G(x), \] \(\tag{5.5} \)
where
\[G(x) = \frac{9\Gamma - 7}{2} (1 - 3\alpha) - \frac{\Gamma + 1}{2\Gamma} - \frac{1}{2} (\Gamma - 1)(9\Gamma - 7)(1 - 3\alpha)^{2 - \alpha}. \] \(\tag{5.6} \)

One shows that \(G' \leq 0 \) and \(G(0) = 0 \), thus \(G(x) \) is decreasing for \(0 \leq x \leq 1/4 \) and \(1 - \Gamma = 5/3 \). Therefore if \(F'(x_0) = 0 \) then \(F''(x_0) < 0 \) for any \(x > x_0 \). That means, taking into account that \(F''(0) > 0 \) and \(F'(0) = 0 \), that if \(F' \) vanishes at a point \(x_1 \), then it must be negative in the interval \((x_1, 1/4) \). In conclusion, either \(F \) is increasing (and then it achieves its minimum at \(x = 0 \) or it has a single extremum (a maximum) in \((0, 1/4) \). Notice now that \(F(0) = 0 \). Thence in order to show that \(F(x) \geq 0 \) it is enough to show that \(F(x) \) is nonnegative at \(x = 1/4 \), when
\[F(1/4) = \frac{\Gamma + 1}{2\Gamma} \frac{1}{4 + \alpha} - \frac{\Gamma}{8} - \frac{9}{128\Gamma} (\Gamma - 1)^2 (9\Gamma - 7). \] \(\tag{5.7} \)

A numerical calculation shows that \(F(1/4) \geq 0 \) and the equality is achieved only at \(\Gamma = 1 \).

In a similar vein, one proves the other inequality \(\Psi \leq 0 \).

At \(x = 0 \) one has \(\Psi = 0 \). On the other hand,
\[\Psi' = -\frac{9\Gamma - 5}{2} \left[1 - (1 - 3\alpha)\right] \]
\[- 3\alpha x (1 - 3\alpha)^{\alpha - 1} - 2\alpha x \left((9\Gamma - 5) \ln 4 - \frac{3}{2} \right). \] \(\tag{5.8} \)

Employing the estimate
\[1 - (1 - 3\alpha) \leq 4 \alpha \ln 4, \] \(\tag{5.9} \)
which is valid for \(0 \leq x \leq 1/4 \) and \(0.2 \geq \alpha \geq 0 \), one arrives at \(\Psi' \leq 0 \). Thus the function \(\Psi \) is non-negative, as desired. That ends the proof.

Let us remark that Eq. (5.2) can be written as, resolving the biquadratic inequalities,
\[\frac{\delta_0 - \sqrt{\delta_0^2 + 4a_\infty^2 \delta_2}}{2 \delta_2} \geq a_\infty^2 \geq \frac{\delta_0 - \sqrt{\delta_0^2 + 4a_\infty^2 \delta_1}}{2 \delta_1}, \] \(\tag{5.10} \)
where
\[\delta_0 = 3a_\infty^2 - \frac{5 - 3\Gamma}{2}. \]
\[\delta_1 = \frac{3}{2}(5-3\Gamma) + A, \]
\[\delta_2 = \frac{3}{2}(5-3\Gamma) + B. \]

Asymptotically, i.e., for \(x \to 0 \), one obtains the Bondi equality \(a^2_a + 2\alpha = 2/(5-3\Gamma) \) for \(\Gamma < 5/3 \). If \(\Gamma = 5/3 \) then the above gives asymptotically \(1.12a_\infty \approx a^2_\infty > 0.8a_\infty \), in a good agreement with the exact formula \(a^2_\infty = \sqrt{5/6a_\infty} \). If a sonic point is located at a horizon of a black hole (that is, \(a_\infty = 1 \)) then Eq. (5.2) or (5.3) (or the above inequalities) \(0.79 > a_\infty > 0.5 \) for \(\Gamma = 5/3 \). Notice also a rough bound \(a^2_\infty > 1.6a^2_\infty \), which is valid for any \(\Gamma \) and \(a^2_\infty \); outside of a black hole \(a^2_\infty < 1 \), therefore one infers that the asymptotic speed of sound is less than 1.

Let us point out also that Eq. (5.4) implies that the asymptotic sonic points can exist only for models with adiabatic indices \(\Gamma < 5/3 \).

B. Existence proof

We show that at least two solutions \((a,R,U)\) bifurcate from \(R_\ast \). We define \(a_\ast \) as a solution of the equation

\[\left(1 + \Gamma/a^2_\ast \right)^{2/(\Gamma-1)} = (R/R_\ast)^{7/2}. \]

From that and Eq. (4.5) it follows that \(U^2 = U^2_\ast \sqrt{R_\ast/R} \) and

\[a^2_\ast = \frac{\Gamma(R_\ast/R)^\beta}{\delta-(R_\ast/R)^\beta}, \]

where \(\beta = \frac{2}{5}(\Gamma-1) \) and \(\delta = 1 + \Gamma/a^2_\ast \).

A straightforward calculation gives

\[\frac{d}{dR \ln L(a_\ast)} = -\frac{\beta(R_\ast/R)^\beta}{R[\delta-(R_\ast/R)^\beta]}, \]

and

\[\frac{d}{dR \ln P(a_\ast)} = \frac{2(\Gamma-1)R_\ast U^2_\ast (1 - \sqrt{R_\ast/R}/8)}{\Gamma R^2[1 - 3m/2R_\ast + U^2_\ast (3 - 4R_\ast/R + \sqrt{R_\ast/R})]}, \]

\[\frac{d^2}{dR^2 \ln P(a_\ast)} \bigg|_{R=R_\ast} = \frac{d^2}{dR^2 \ln L(a_\ast)} \bigg|_{R=R_\ast} = \frac{29/14 + 7a^2_\ast/2}{\beta(1 + a^2_\ast/\Gamma) + \Gamma}. \]

One observes that

\[\frac{d^2}{dR^2 \ln P(a_\ast)} \bigg|_{R=R_\ast} = \frac{d^2}{dR^2 \ln L(a_\ast)} \bigg|_{R=R_\ast}, \]

if \(\Gamma < 79/49 \). This reasoning can be valid for adiabatic indices \(\Gamma < 5/3 \) assuming that the exponent 7/2 in Eq. (5.12) is replaced by \(x \epsilon (-\infty, 4.5 - \sqrt{15}) \). Therefore \(\partial_R L < \partial_R P \), for \(R > R_\ast \) and \(\partial_R P > \partial_R P \) for \(R < R_\ast \). Thus locally \(P \approx L \).

On the other hand, notice that \(L(a^2=0) > P(a^2=0) \) and \(L(a^2=\infty) > P(a^2=\infty) \), for all values of \(R \).

\(L \) and \(P \) are differentiable functions of their arguments. Combining the above facts one infers that, due to the continuity of \(L \) and \(P \), there must exist at least two solutions in a neighborhood of \(R_\ast \). Those solutions coincide at \(R = R_\ast \), due to the above construction. The set of those points constitutes at least two branches. Since \(\partial_R^2 (L-P) = 1 - 4U^2/(p^2R^2a^2) \neq 0 \) at any point of a solution branch with \(R \neq R_\ast \), the implicit function argument would be used to extend the interval of the existence onto a whole bounded domain. Those solutions are differentiable for \(R \neq R_\ast \).

One of the solutions is supersonic below \(R_\ast \) and subsonic above \(R_\ast \) and it can be interpreted as describing collapse of matter onto a black hole. The other solution is subsonic for \(R < R_\ast \) and supersonic above; it can correspond to an exploding gas.

C. Qualitative results

In what follows we shall deal with a solution that is subsonic asymptotically, i.e., describes accretion of a fluid.

Theorem 3. An asymptotically subsonic solution of the system (4.2)–(4.6) satisfies the following conditions, (i) If \(R \neq R_\ast \) then \(\partial_R(U^2R^2) > 0 \) and the speed of sound decreases, \(\partial_R a^2 \leq 0 \), with the equality only at spatial infinity, (ii) \(U^2 > m/2R \) for \(R < R_\ast \) and \(U^2 < m/2R \) for \(R > R_\ast \). (iii) Inside the supersonic region \(a^2(pR)^{1/4} < U^2 < m/2R \). (iv) Mass density \(\rho \) monotonously decreases and \(P \) is bounded in the supersonic region, \(R < R_\ast \).

\[\rho \leq \rho_\infty \left(1 + (\Gamma-1) \frac{4m}{R^2a^2} \right)^{1/(\Gamma-1)}. \]

The proof is postponed to the Appendix.

The estimates of (ii) and (iii) in theorem 3 require an explanation. It proved to be convenient to define a sonic point by requiring that \(a^2(pR)^{1/4} = U^2 \) instead of the condition (used in the Bondi model) \(a^2 = U^2 \). Therefore the speed of sound can be bigger than infall velocity in regions close to horizons if the factor \(pR^2 \) is significantly smaller than 1. In the traditional terminology such a solution would be called subsonic. Numerical data in the next Section show that the value \(|U|/a \) at a horizon depends strongly on the location of a sonic point, on the ratio \(R_\ast/(2m) \), which in turn depends on the asymptotic speed of sound \(a_\infty \). \(|U|/a \) decreases with the increase of the asymptotic speed of sound.

VI. BONDI MODEL AND THE RELATIVISTIC SOLUTION

The insertion of Eq. (4.4) and (4.6) into Eq. (3.19) (with \(c_\ast = 0 \)) yields the mass accretion rate

\[\frac{\delta^2}{\delta R^2 \ln P(a_\ast)} \bigg|_{R=R_\ast} = \frac{\delta^2}{\delta R^2 \ln L(a_\ast)} \bigg|_{R=R_\ast}, \]
Bounding from above the left hand side of Eq. (5.10) and below Eq. (5.11), one can write the above in terms of asymptotic data,
\[
\left(1 + 3 \frac{\delta_0 - \sqrt{\delta_0 + 4 a_\ast^2 \delta_2}}{2 \delta_2} \frac{1}{G} \right) \geq \Omega \geq \left(1 + \frac{1.6 a_\ast^2}{G} \right) e^{-C}.
\]

(6.9)

The relativistic correction factor \(\Omega \) is close to 1 when \(a_\ast^2 \ll 1 \), i.e., when the asymptotic gas temperature is low. \(\Omega \) is bounded from below by 0.99. Equation (6.5) yields, in the ultrarelativistic regime \(a_\ast^2 \approx 1 \),
\[
4 \left(1 + \frac{1}{G} \right) \geq \Omega \geq 2.4 \left(1 + \frac{1}{G} \right).
\]

(6.10)

Ultrarelativistic effects enhance accretion, with the strongest effect for the isothermal gas with \(\Gamma = 1 \). The enhancement is smaller for \(\Gamma \approx 5/3 \), as seen from the preceding estimate.

The Bondi model fails only in describing the hot gas mode. The correction factor \(\Omega \) tends quickly to 1 when sonic points are far away from the Schwarzschild sphere, for instance, if \(\Gamma = 4/3 \), then \(\Omega < 7 \) at \(R_\ast /m = 2 \) but \(\Omega < 1.1 \) at \(R_\ast /m = 25 \).

We analyze numerically a relativistic gas, with the adiabatic index \(\Gamma = 4/3 \), falling onto a black hole. Results complement analytic estimates and they are comprised in Table I.

Some features of accreting solutions depend in a crucial way on the location of sonic points. When sonic points are close to a horizon, the speed of sound is close to one while the infall velocity at a horizon is smaller and it barely exceeds 1/2. When sonic points are far away from a horizon, \(R_\ast \gg 2m \), the infall velocity nears to the speed of free fall \((U \approx 1 \) close to a horizon) while the speed of sound is then much smaller than \(U \). An interesting fact is that the energy density changes quite moderately—by a factor of the order of unity—if sonic points are close to the Schwarzschild sphere. In contrast to that, solutions with \(R_\ast \approx 2m \) are characterized by a rapid growth—up to ten orders—of the energy density near the horizon. The energy density changes by a factor not greater than eight in the region exterior to a sonic point with \(\text{Re}(R_\ast \equiv \infty) \); that type of moderate decay is com-

Table I. Numerical data \((R_\ast = 1.001 \times 2m)\).

<table>
<thead>
<tr>
<th>(R_\ast / (2m))</th>
<th>(a^2(R_\ast)/a_\ast^2)</th>
<th>(a(R_\ast))</th>
<th>(U(R_\ast))</th>
<th>(\rho(R_\ast)/\rho_\infty)</th>
<th>(\rho(R_\ast)/\rho_\infty)</th>
<th>(\rho(2 \times R_\ast)/\rho_\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 000</td>
<td>2</td>
<td>0.168</td>
<td>0.999</td>
<td>1.41 \times 10^9</td>
<td>8</td>
<td>3.14</td>
</tr>
<tr>
<td>50</td>
<td>1.99</td>
<td>0.173</td>
<td>0.92</td>
<td>1595</td>
<td>7.89</td>
<td>3.9</td>
</tr>
<tr>
<td>5</td>
<td>1.91</td>
<td>0.34</td>
<td>0.78</td>
<td>56.4</td>
<td>6.95</td>
<td>3.46</td>
</tr>
<tr>
<td>1.1</td>
<td>1.62</td>
<td>0.86</td>
<td>0.53</td>
<td>4.82</td>
<td>4.24</td>
<td>2.1</td>
</tr>
</tbody>
</table>
mon for all solutions, irrespective of the value of $2m/R^*_u$.
This actually follows from theorem 2, which bounds a^2_u/a^2_∞
and—consequently—also $\rho(R_u)/\rho_\infty$. Solutions with sonic
points close to a horizon have a approaching 1 and they
describe a high temperature (circa 10^{10} K) gas, with $a_\infty
=0.5$.

ACKNOWLEDGMENT

This work has been supported by the KBN grant 2 PO3B 010 16.

APPENDIX

Proof of Theorem 3.

(1) Equation (3.16) yields, ignoring the back reaction term, the crucial relation

$$\partial_R(U^2 R^4) \left(1 - \frac{4U^2}{a^2 a^2 R^2} \right) = \frac{16R}{p^2} \left(\frac{m}{2R} - U^2 \right). \quad (A1)$$

(2) The first observation, which states that signs of $\partial_k a^2$
and of $\partial_k(U^2 R)$ are opposite and that they vanish simultane-
ously at finite values of R, can be drawn from Eq. (3.15).

(3) Let R_u be a position of the sonic point; thus

$$U^2(R_u) = m/2R_u.$$ Assume that in the vicinity of R_u the
expression $\partial_R(U^2 R^4)$ is strictly negative. Then Eq. (A1)
yields $U^2 R < m/2$ for $R < R_u$ and $U^2 R > m/2$ for $R > R_u$.
Therefore, $U^2 R$ is increasing in the region of interest and
that is incompatible with the assumption that $\partial_R(U^2 R^4)$ is
strictly negative. Therefore, it must be weakly positive at least around the outermost sonic point. This in turn implies
that in a neighborhood of a sonic point $2U^2 R < m$ for $R
> R_u$ and $2U^2 R > m$ for $R < R_u$.

(4) The expression $\partial_R(U^2 R^4)$ cannot have zeroes. As-
sume it vanishes at some $R_1 > R_u$; Eq. (A1) gives $U^2(R_1)
= m/2R_1$ and we would have $\partial_R(U^2 R) > 0$ at R_1. But that is
incompatible with the assumption that $\partial_R(U^2 R^4) = 0$ at R_1.

Let us now consider a region $R < R_u$. If R_1 is a zero point
of $\partial_R(U^2 R^4)$ but the latter does not change sign at R_1, then
$2U^2 R$ decreases for $R < R_1$ towards the value m and in-
creases for $R > R_1$ [due to estimates proven in the final part
of (3)]. Hence $\partial_R(U^2 R) = 0$ at R_1. But that contradicts
$\partial_R(U^2 R^4) = 0$ at R_1. Similarly, if $\partial_R(U^2 R^4)$ changes sign in
the vicinity of R_1, then we are led to the contradiction.

Thus $\partial_R(U^2 R^4) > 0$ in the domain of existence of the so-
lution. That implies, in conjunction with Eq. (A1), that in the
supersonic zone $U^2 > m/(2R)$ and that $U^2 < m/(2R)$ in the
subsonic zone $(R > R_u)$. This accomplishes the proof of (ii).

(5) We rewrite Eq. (3.14), with back reaction terms being
dropped out,

$$\partial_R \ln(a^2 + \Gamma) = -\frac{4\kappa}{p^2 R^3} \left(\frac{m}{2R} \frac{U^2}{2R} + \frac{1}{2} \partial_R(U^2 R) \right). \quad (A2)$$

Let R be the largest point $R < R_u$ such that $U^2 R = 2m$; then
$\partial_R(U^2 R)|_R < 0$ and from Eq. (A2), it follows $\partial_R a^2 |_R < 0$, in
contradiction with hitherto proven monotonic falloff of a^2.
This shows the bounds of (iii)—that $U^2 R < 2m$. Equation
(A1) and (ii) imply, in the supersonic region, $a^2 p^2 R^2 /4 < 1$.
Extremal values of the speed of sound (achieved at a horizon
of a black hole) cannot exceed $4/(pR)^2$, while the speed of
infalling particles does not exceed 1, the speed of light.

(6) The decrease of the speed of sound together with Eq.
(3.6) leads to the conclusion that the mass density also de-
creases, $\partial_R a^2 \equiv 0$ and $\partial_R \rho \equiv 0$. The numerical estimates of
(iv) are obtained from inserting inequalities proven in (5) for
the expression (3.6).

This ends the proof of theorem 3.

(1933); R. C. Tolman, *Relativistic Thermodynamics and Cosmo-
Zh. 41, 28 (1964) [Sov. Astron. 8, 19 (1964)]; Ch. W.
[6] S. W. Hawking and G. F. Ellis, *The Large Scale Structure of
Spacetime* (Cambridge University Press, Cambridge, England,
1973).