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e study of gene environment, as well as epistatic interactions in schizophrenia, has provided important insight into the
complex etiopathologic basis of schizophrenia. It has also increased our understanding of the role of susceptibility genes in the
disorder and is an important consideration as we seek to translate genetic advances into novel antipsychotic treatment targets.  is
review summarises data arising from research involving the modelling of gene  environment interactions in schizophrenia using
preclinical genetic models. Evidence for synergistic e ects on the expression of schizophrenia-relevant endophenotypes will be
discussed. It is proposed that valid and multifactorial preclinical models are important tools for identifying critical areas, as well as
underlying mechanisms, of convergence of genetic and environmental risk factors, and their interaction in schizophrenia.

1. Introduction

Schizophrenia is a psychotic illness characterised by multi-
faceted psychopathology and dysfunction [ ], with a Euro-
pean prevalence estimate for psychotic disorders (including
schizophrenia) of . % [, ]. is debilitating disorder is
characterised by heterogeneous display of positive symptoms
(hallucinations, delusions, and thought disorder), negative
symptoms (avolition, restricted a ect, poverty of speech, and
social withdrawal), and cognitive dysfunction (e.g., working
memory de cits, executive function, and attentional dysfunc-
tion), which typically emerge during late adolescence and
young adulthood. Antipsychotic drugs which are currently
available and commonly prescribed are e cacious against
positive symptoms including hallucinations and delusions
but are associated with signi cant side e ects which nega-
tively impact on compliance [ , ], have little bene ciale ect
against the negative or cognitive symptoms, and moreover are
note ective in all patients [ 1.

Schizophreniaisalso a highly heritable disorder of neuro-
development, where the development and expression of posi-
tive or psychotic symptoms are best viewed as signifying the
outcome of a pathobiological cascade which originates in
early brain development[ , ].Research over the past decade
has signi cantly advanced our understanding of the genetic
basis of schizophrenia, identifying risk loci, and suggesting
biologically plausible mechanisms by which genetic risk is
conferred [ ], but much is still unknown [ ]. A multitude of
factors including, but not restricted to, gene environment
(G E)and gene gene (G G) interactions, epigenetic
modi cations, and considerable heterogeneity at a genetic
and phenotypic level, complicate our understanding of the
role of these genes in the disorder and the translation of
genetic advances into novel biological treatment targets [ ,

1. G Einteractions in schizophrenia might re ect genetic
control of responses to protective or adverse environmental
factors, as well as context-dependent phenotypic expression.



However, recent articles have highlighted the challenges
associated with selecting appropriate statistical methods for
identifying G E interactions in schizophrenia and other
neuropsychiatric disorders[ , ]

Adoption and twin studies have con rmed that schizo-
phreniahasasigni cant heritability component[ ] with risk
to develop schizophrenia or a related psychotic disorder pos-
itively correlated with degree of genetic similarity [ ]. How-
ever, twin studies conducted in schizophrenic patients indi-
cate that genes contribute no more than % to aetiology sug-
gesting that developmental and environmental factors also
have a major role to play [ ]. Epidemiological studies have
suggested that a diversity of factors including prenatal infec-
tion/immune activation, paternal age, malnutrition, hypoxia-
related obstetric complications, and childhood/adolescence
social stress and cannabis abuse are associated with increased
risk for development of this disorder [ ]. A multihit model
has been proposed, and two crucial time windows associated
with early brain development and maturation during adoles-
cence have been identi ed as particularly sensitive periods
for exposure to adverse environmental events, which could
eventually trigger schizophrenia-relevant biological sequelae
[ ]

Recent genomewide association study (GWAS) analyses
have identi ed multiple common schizophrenia risk alleles,
each contributing asmall e ect, although they have provided
mixed support for some of the more prominent common
risk allelesidenti ed in case-control and family-based genetic
association studies [ , , ]. Additionally, the discovery of
microRNA changes and copy number variations (CNVs) in
schizophrenia highlight the contribution and impact of rare
and highly penetrant alleles in conferring genetic risk for
schizophrenia[ , ].Ifamultiple-hit hypothesisisinfactan
underlying model for the majority of cases for schizophrenia,
it is likely to involve a combination of single nucleotide
polymorphisms (SNPs), rare penetrant mutations, and envi-
ronmental factors [ ]. A large number of G E interaction
studies in patients with schizophrenia have focused on one
candidate gene interacting with a speci ¢ environmental
exposure. Since these studies have a speci ¢ prior hypothesis,
they can be investigated with a modest sample size. Recent
reviews of G E interactions across clinical and preclini-
cal studies in schizophrenia have however highlighted the
relative paucity of relevant clinical data, noting that several
of the animal models discussed in the present review have
consequently selected G E manipulations based on either
combinations of genetic and environmental factors which
have been (a) independently associated with schizophrenia,
but not in combination, and/or (b) target common biological
pathways implicated in schizophrenia, for example, distur-
bance of dopaminergic (DA) transmission [ 1

G E interactions in schizophrenia may also take the
form of environmental factors impacting on DNA methyla-
tion, producing changes in gene expression through epimu-
tations [ , ]. Epigenetic factors represent an important
mechanism whereby the adverse e ects of environmental risk
factors may impact gene expression.  is topic has previously
been discussed in more detail in relation to schizophrenia
(e.g, [ 1) and genetic models of schizophrenia [ ]. One
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notable example is advanced paternal age (APA), which has
been shown to be a risk factor for schizophrenia [ ] as
well as a host of other adverse neurodevelopmental outcomes
(attention de cit hyperactivity disorder (ADHD), ; autistic
spectrumdisorder (ASD),[ ]). epredominant hypothesis
in the eld postulates age-related accumulation of de novo
mutations in paternal sperm DNA [ ], with a growing body
of evidence suggesting that epigenetic changes in these cells
could also be implicated [ , 1.

e present review will seek to summarise recent research
which has been conducted on modelling of G E interactions
in schizophrenia using preclinical genetic models, primarily
constitutive knockout or transgenic lines.  ere will be an
emphasis placed on summarising evidence for psychosis-
relevant features in the models, together with any evidence
for mechanistic-based interrogation of the underlying patho-

physiology.

2. Genetic Basis of Schizophrenia

Meta-analyses of twin and adoption studies have shown that
heritability accounts for approximately % of disease risk in
schizophrenia[ ], where the magnitude of risk varies widely,
from relatively modest odds for common genetic variants
to substantial risks due to rare variants. Rare chromosomal
deletions and duplications can increase risk for the disorder,
with the magnitude of the increase in risk substantially
greater than that observed for common variants [ 1

GWAS data has implicated several candidate genes with a
strong link to the pathophysiology of the disorder, while ques-
tioning the impact of hitherto prominent susceptibility tar-
gets (e.g., disrupted-in-schizophrenia- (DISC ), neuregulin-

(NRG))[ 1. e most recent analysis has identi ed
agreed loci that contribute to risk for schizophrenia; specif-
ically, the Psychiatric Genomics Consortium (PGC) collab-
orative molecular genetic study of almost patients
with schizophreniaand ,  healthy controls identi ed
novel risk markers and replicated  existing markers [ ].

e study pointed particularly to genes involved in neurode-
velopment, the immune and stress response, glutamatergic
neurotransmission, and DA D receptor activity.

CNV analyses which detect structural variants in the
form of submicroscopic deletions and duplications of DNA
have identi ed rare de novo and inherited variants that confer
high risk for schizophrenia (Odds Ratio = )I 1 An
exome-sequencing study involving schizophrenia cases
and controls demonstrated a polygenic burden primar-
ily arising from rare (lessthan in , ), disruptive muta-
tions distributed across many genes[ ].  ese authors were
able to detect several small and highly enriched sets, notably
of genes related to N-methyl-D-aspartate (NMDA) receptor-
associated postsynaptic density- (PSD- ) protein com-
plexes, activity-regulated cytoskeleton- (ARC-) associated
interacting proteins and fragile mental retardation protein
(FMRP) targets[ 1.

Importantly, some of the genetic factors linked with
increased risk for schizophrenia also display association to
broader phenotypes including bipolar disorder, as well as
major depression, ADHD, and autism [ ], suggesting that
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clinical overlap between these disorders may in part re ect
a shared genetic basis. In a recent combined GWAS of
bipolar disorder and schizophrenia cases versus

controls, in addition to a direct comparison GWAS of

schizophrenia cases versus bipolar disorder cases, the
authors identify ve previously identi ed regions reaching
genome-wide signi cance as well asanovel locus|[ ]. ese
authors reported a signi cant correlation between a bipolar
disorder polygenic risk score and the clinical dimension of
mania in patients with schizophrenia. Overlapping disease
pathways may, in part, explain shared symptoms across
diagnoses, as well as multiple diagnoses within patients [ 1.

3. Mutant Models of G x E Interactions in
Schizophrenia

Interactions between genetic risk and environmental stres-
sors at various stages of life appear important in the devel-
opment of schizophrenia [ ]. Preclinical genetic models
provide tools for assessing the relative contribution of genes,
exposure to environmental pathogens, and their interaction,
on the development of schizophrenia-relevant phenotypes

., ] Preclinical modelling of G  E interactions
related to schizophrenia has typically involved examining
the phenotypic consequences of epidemiologically relevant
but also translationally valid, experimental manipulations in
various candidate risk gene mutant models [ , ]. Com-
bining an environmental challenge with a genetic mutation
can produce both protective and adverse e ects. It has been
noted that the potential to generate such results should be
incorporated within the study design and that exclusively
focusing on a limited set of prespeci ed outcome measures
may exclude the possibility of reporting such unexpected
and complex bidirectional results [ ]. Particularly in the
context of evidence for a shared genetic basis underlying
several major neuropsychiatric disorders, the discovery of
novel behavioural phenotypes in preclinical models of G
E interactions has the potential to inform us about the role
of the environment in evoking diverse clinical outcomes in
patients with the same mutation.

Timing of the environmental insult is an important factor
that needs to be considered during the development and
evaluation of the G E model. Mutant modelling of G E
interactions in schizophrenia studies has typically involved
environmental manipulations at particular periods of brain
development (e.g., early pregnancy or adolescence) which are
regarded as important to the pathogenesis of schizophrenia.

ese critical periods of brain development correspond to
early life (pre-, peri-, and early postnatal period) or later
(adolescent) stages in humans[ , 1.

While many of the studies discussed below, which aim to
simulate G E interactions implicated in psychosis in rodent
models, consist mostly of descriptive analyses, a growing
number of studies are starting to provide important mech-
anistic insight into the molecular/cellular basis underlying
such interactions. Elucidating the biological mechanisms
underlying synergistic G E e ects on emergence of neu-
ropsychiatric phenotypes necessitates interrogation of the
molecular basis of the observed phenotypes.

4. Modelling Schizophrenia in Rodents

While it is impossible to model schizophrenia per se in mice
or other rodents, three important criteria need to be satis ed
in order for any experimental model to claim validity for the
disorder. Firstly, the model should re ect, at least in part,
the etiopathological basis of the disorder. Secondly, while
research has emphasized the neurodevelopmental aspect of
schizophrenia, its clinical onset is postpubertal. is fact
emphasises the importance of examining the data of young
animals as part of any G E interaction modelling e ort,
so that the trajectory from insult during early development
or young adulthood to the emergence of adult phenotypes
can be established. irdly, the experimental model should
re ect endophenotypes relevant to schizophrenia in adult-
hood. Endophenotypes are quanti able, intermediate disease
features that bridge the gap between the overt manifestations
of schizophrenia and underlying risk genes [ ]. Earlier
reviews have highlighted the value of utilising endopheno-
typic endpoints in preclinical genetic studies, where inter-
mediate biological or behavioural phenotypes are less sus-
ceptible to confounding in uences and are therefore easier
to investigate [ ]. Schizophrenia-relevant endophenotypes
include behavioural de cits (e.g., working memory impair-
ment, de cits in sensory or sensorimotor gating, and social
withdrawal) and several histological/structural changes such
as enlarged lateral ventricles and de citsin a speci c subtype
of interneurons in the cortex.

Recently, e orts have been made to identify equivalent
behavioural domains and functional assays between humans
and animals, including the Measurement and Treat-
ment Research to Improve Cognition in Schizophrenia
(MATRICS) and Cognitive Neuroscience Treatment
Research to Improve Cognition in Schizophrenia
(CNTRICS). More recently, the Research Domain Criteria
(RDoC) initiative from the National Institute of Mental
Health (NIMH) aims to reclassify psychiatric disorders
according to basic dimensions of functioning, where each
behavioural domain is studied across multiple levels of
analysis, from genes to neural circuits to behaviour in both
animal models and humans, assuming that these behavioural
domains share more or less similar underlying mechanism
across species [ ]. RDoC includes the following domains:
negative valence systems (fear, anxiety, and loss), positive
valence system (reward learning, reward evaluation), cogni-
tive systems (attention, perception, working memory, and
cognitive control), systems for social processes (attachment
formation, social communication, perception of self, and
perception of others), and arousal/modulatory systems (aro-
usal, circadian rhythms, sleep, and wakefulness).

5. Modelling Environmental Risk Factors
Relevant to Schizophrenia in Rodents

ere is a general consensus among schizophrenia
researchers that diverse biological, environmental, and psy-
chosocial insults, across the lifespan, accumulate in their
adverse impact on an already developmentally compromised
brain to resultin the development of psychoticillness[ , 1.



Consistent with the well-considered stress-vulnerability
aetiological model, these extend from early biological and
psychosocial insults during the prenatal or perinatal period
(including winter birth, maternal infections or immune
challenge, and other obstetric complications[ , ]),through
exposure to adversity during infancy and childhood (e.g.
societal factors, childhood abuse; [ 1), to pathogenic factors
present during adolescence and young adulthood (exposure
to psychosocial stressors, prolonged exposure to drugs of
abuse including cannabis [ ]). As noted above in relation to
genetic factors, numerous environmental factors associated
with schizophrenia and other psychotic disorders are also
associated with a range of other neurodevelopmental and
neuropsychiatric outcomes, including autistic spectrum
disorder, attention-de cit hyperactivity disorder, and epile-
psy [ 1, leading some authors to propose that schizophrenia
is best conceptualised as one of a spectrum of clinical out-
comes that result from exposure to selected genetic or
environmental factors, or both [ ]. Translational e orts
to model such factors on rodents have generally sought to
develop ethologically appropriate (e.g., maternal deprivation,
postweaning social isolation, or social defeat during adole-
scence to study the e ects of psychosocial stress on neuro-
behavioural measures across development in mice/rats) or
practicable and exposure-relevant biological manipulations
(e.g., in ammatory responses a er infection and cytokine-
mediated e ects on brain development using polyinosinic-
polycytidylic acid (Poly I:C) and lipopolysaccharide (LPS) in
rats/mice) to investigate the biological underpinnings of G

E interactions.

6. Infection and Schizophrenia

It is well established that prenatal in uenza exposure is
associated with increased risk of developing schizophrenia
inthe o spring [ , ] s risk liability has been shown
to extend to other viral and bacterial agents, as well as
exposure to parasitic agents such as Toxoplasma gondii
[, 1 e emergence of schizophrenic symptomatology
in adult o spring has been shown to be dependent upon
maternal infection at di erent gestational points throughout
pregnancy[ , ], whichisanimportantconsideration when
developing valid animal models of maternal infection in
schizophrenia. While a multitude of infectious agents have
been associated with increased risk for schizophrenia, it is
proposed that the common pathophysiological mechanism
underlying their schizophregenicity involves activation of
the maternal immune system [ , 1.

Preclinical experimental models have been developed
which involve prenatal exposure to infection, immune acti-
vation, or another relevant biological insult.  ese models
have included gestational exposure to human in uenzavirus,
the bacterial endotoxin LPS, and Poly I:C, a synthetic ana-
logue of double-stranded RNA which is recognized as an
infectious pathogen by the human immune system [ ]. In
the rodent prenatal Poly I:C model, administration of Poly
I:C to pregnant dams causes elevations in maternal serum
cytokines that are accompanied by emergence in adulthood
of behavioural and neural phenotypes related to those evident
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in schizophrenia [ ]. Timing of immune challenge is a
signi cant determinant of brain and behaviour outcomes in
subsequent o spring. It has been shown that the e ects of
maternal immune challenge during gestation between early
(gestational day [GD] [ ]) and late (GD ) pregnancy periods
in mice are dissociable in terms of foetal brain cytokine
responses to maternal in ammation and subsequent func-
tionale ects[ , ]. esechallenge periods correspond to
the end of the rst trimester (GD ) and middle/late phase of
the second trimester (GD ) inhumans|[ , ].

Poly I:.C treatment during early pregnancy is associated
with schizophrenia-related endophenotypes in adult o -
spring including de cits in prepulse inhibition (PPI[ , 1)
aswell aslatent inhibition (LI ]), two measures of preatten-
tional and selective attention processes, respectively, which
are disturbed in schizophrenia. Across various measures of
social interaction, both early and late gestational treatment
Poly I:C in dams has been shown to disrupt sociability and
social cognition [ , , . Similarly, o spring of Poly I:C-
treated dams display a hyperexploratory phenotype in a novel
environment[ ], aswell as increased behavioural sensitivity
to DA agonists and NMDA receptor antagonists [ , ];
both of these features are considered proxy measures for
the positive symptoms of schizophrenia. Structural brain
endophenotypes associated with schizophrenia have also
been demonstrated in the brains of adult o spring of Poly
I:C treated mice; these include lateral ventricular enlargement
and decreased hippocampal volume [ , ]

As the majority of individuals exposed to neurodevelop-
mental insults such as infections do not develop schizophre-
nia in adulthood, it is important to assess the additive and
interactivee ects of infection and genetic vulnerability on the
development of schizophrenia-relevant endophenotypes.

..NRG Immune Challenge. Neuregulin- (NRG ) is puta-
tive risk gene which has been widely studied in relation to its
association with schizophrenia [ ]. In meta-analysis, the
association between the NRG schizophrenia-associated risk
haplotype (HapICE, rst reported by Stefansson et al. [ ])
and schizophrenia has proved replicable [ ]. NRG belongs
to a family of growth factors which are encoded by four
genes (NRG - ); it has greater than  isoforms, grouped into
six types (I VI) that are di erentiated on the basis of N-
terminal sequence, expression of the or epidermal growth
factor- (EGF-) like domain, and presence of a transmembrane
(TM) region [ , ]. NRG proteins are ligands for ErbB
receptor tyrosine kinases; this, in turn, activates intracellular
signalling pathways that are known to play a prominent role
in diverse developmental processes implicated in schizophre-
nia [ , ] NRG is expressed in diverse brain areas,
including the PFC, hippocampus, cerebellum, and substantia
nigra in both humans and rodents[ ]. NRG isoformsdi er
in domain structure and expression levels in various tis-
sues/cells during brain development and, later, in adulthood;
isoform-speci ¢ roles and properties, particularly in rela-
tion to the NRG -schizophrenia association, remain poorly
understood [ ]. is level of genetic complexity highlights
the di culty associated with generating accurate preclinical
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genetic models of NRG dysfunction in schizophrenia. Clin-
ical genetic analyses have supported the association between
NRG variation, in ammatory function, and neurogenesis.
Interaction between the genes encoding the proin ammatory
cytokine interleukin ~ (IL- ) and NRG genotype increases
the risk of schizophrenia and shortens the age of onset for
the disorder [ ]. Additionally, a missense mutation in NRG
has been reported to increase activation of proin amma-
tory cytokines such as interleukin  (IL- ), tumor necrosis
factor (TNF- ), and interleukin  (IL- ) in patients with
schizophrenia[ 1.

Various NRG knockout and transgenic mouse lines have
been developed to study the relationship between altered
NRG signalling and impact on behavioural and brain
endophenotypes relevant to schizophrenia [ , ]. Mice
with heterozygous knockout of the transmembrane- (TM-)
domain truncation of exon  NRG , which is associated
with the disruption of several NRG splice variants, display
increased novelty-induced hyperactivity, which is reversed by
antipsychotic treatment [ , , ]. Disruption to PPl has
also been reported in the TM-domain NRG mutant line [

], and they also display de cits in social interaction [ 1].

Comparisons with alternative TM-domain or more
isoform-speci ¢ NRG deletions indicates that di erences in
the targeting strategy, as it relates to the NRG gene, can pro-
duce very di erent e ects across various neurobehavioural
measures. For example, in contrast with the exon  TM-
domain lines, mutant mice with targeted disruption of type
I/type 11 NRG do not show a hyperactive phenotype [

]. Similarly, no signi cant behavioural impairments, aside
from mild cognitive de cits, were observed in a TM-domain
mutant line with a truncation fromexon [ ].

O Leary et al. [ ] examined the unique and combined
e ects of prenatal immune challenge (via administration of
Poly I:C at GD ) and postnatal cross-fostering (a control
procedure which can also act as a stressor, where o spring
are separated from dams and raised by surrogate mothers) in
mice with partial TM-domain (exon ) deletion of NRG . In
this study, distinct phenotypic e ects across schizophrenia-
related behavioural measures (social interaction, PPI, and
open- eld exploration) were observed for both individual
environmental variables as well as interactions between these
factors and genotype [ ]. NRG mutants demonstrated
impaired social novelty preference, PPI, and a sex-speci ¢
(females only) decrease in spatial working memory perfor-
mance, irrespective of exposure to the stressor. Poly I.C
treatment also disrupted PPl and working memory perfor-
mance across both genotypes. Combining NRG disruption
and prenatal immune challenge caused de cits in social
behaviour and spatial working memory, whereas combining
NRG disruption with the early life stressor (cross-fostering)
impaired social novelty preference, a measure of social cog-
nition. No synergistic e ect of NRG disruption and prenatal
immune challenge was observed in relation to PPI, which
may be attributable to a masking e ect of NRG -related PPI
disruption on potential NRG  prenatal immune challenge
interactions on sensorimotor gating. However, the combina-
tion of prenatal immune challenge and cross-fostering (i.e.,
E E) also produced several behavioural de cits in the

open eld, social behaviour, and PPI. e results of this
study suggest that the emergence of schizophrenia-relevant
endophenotypes can arise from multiple, o en very com-
plicated, interactions involving individual genes interacting
with several biological and psychosocial factors.

. .DISC  Immune Challenge. DISC isaprominent schiz-
ophrenia risk gene, which was originally identi ed at the
breakpoint of a balanced chromosomal translocation coseg-
regating with mental disorders in a large Scottish kindred
[ 1 Subsequent clinical genetic studies have identi ed evi-
dence for involvement of common and rare risk variants at
this locus in the etiology of a range of neuropsychiatric disor-
ders, including schizophrenia, schizoa ective disorder, bipo-
lar disorder, and recurrent depressive disorder[ , ].DISC
is an essential synaptic protein, which interacts with a wider
molecular network to mediate processes associated with
cellular and synaptic function [ ]. Mutant models of DISC
gene function display anatomical, behavioural, and pharma-
cological phenotypes relevant to several neuropsychiatric dis-
orders, including schizophrenia and depression [ ]. As
with the NRG mutant data, these DISC mutant pheno-
typic analyses again illustrate how di erent mutations in
the same gene can result in divergent phenotypic out-
comes. For example, a transgenic line with inducible and
reversible expression of a DISC C-terminal fragment under
the calcium/calmodulin-dependent protein kinase Il alpha
( CAMKII) promoter demonstrated impaired social func-
tioning and disruption of spatial working memory [ ].Ina
transgenic line with expression of a dominant-negative trun-
cated form of DISC under the CaMKII promoter, mutants
exhibited novelty-induced hyperactivity but no other major
phenotypes [ ]. Double transgenic mice expressing human
DISC under the cytomegalovirus (CMV) promoter with
tetracycline under the CaMKII promoter showed a hyper-
active phenotype, as well as de cits in social interaction and
spatial memory [ ]. Another group described two mouse
line carrying point mutations in DISC (L P and Q L),
where abnormalities associated with schizophrenia were
observed inthe L P line; these included de citsin PPl and
L1, as well as working memory, many of which were shown to
be reversible by antipsychotic administration [ ].

Employing the Poly I:C immune challenge procedure,
Lipinaetal. [ ] demonstrated that the mutant o spring of
L P damswho had been given a single injection of Poly I:C
onGD demonstrated more prominent PPland L1 de cits, as
well as impaired working memory and sociability, relative to
L  Pcontrolsorboth challenged and unchallenged wildtype
controls, where moderate de cits in these tasks were already
observed following the genetic or environmental manipula-
tion alone. Coadministration of an IL- antagonist blocked
the disruptive e ects of prenatal Poly I:C on PPl and LI
performance in L P mice, providing a direct link between
Poly I:.C treatment and behavioural disruption in these mice.

e phenotypic e ects of combining prenatal immune
challenge with DISC disruption were also described in a
study conducted in mice with inducible expression of mutant
hDISC in forebrain neurons [ , ]. Poly I:C treatment
increased anxiety in mutants and controls in the open eld,



and both challenged and nonchallenged DISC mutants
displayed lateral ventricular enlargement relative to con-
trols. Male DISC mutant o spring of dams treated with
Poly I:.C at GD demonstrated decreased social approach
behaviours, as well as an anxiogenic phenotype (less time in
the open arms of the elevated plus maze) and depression-like
behaviours (i.e., decreased latency to immobility in the forced
swim test).  ese behavioural de cits were accompanied by
altered serotonergic neurotransmission in the hippocampus,
decreased hypothalamic-pituitary-adrenal (HPA) axis reac-
tivity and attenuation of genotypic enlargement of the lateral
ventricles, as well as di erential modulation of secretion of
in ammatory cytokines [ ].

Another study examined the interaction of DISC muta-
tion with neonatal treatment with Poly I:C between postnatal
days and [ ]. While neither the DISC mutation nor
neonatal immune challenge were independently associated
with any phenotypic e ects, transgenic mice expressing a
dominant-negative form of DISC displayed a pronounced
schizophrenia-related phenotype across several cognitive
endophenotypes (spontaneous Y-maze alternation [which
measures working memory processes], recognition memory,
and contextual fear memory) following neonatal immune
challenge. Social interaction and MK-  -induced hyperac-
tivity were also selectively altered in Poly I:C-treated DISC
mutants.  ese behavioural de cits were accompanied by a
decrease in parvalbumin-positive interneurons in the medial
prefrontal cortex (a cellular endophenotype for schizophre-
nia) of DISC  neonatal immune challenge mutants. It was
later shown, employing the same experimental design, that
the antipsychotic drug clozapine successfully reversed the
recognition memory de cits in DISC mutants exposed to
neonatal Poly I'.C[ 1.

A recent study examined the interaction between DISC
genotype, employing the transgenic model of inducible
expression of dominant-negative mutant human DISC , and
prenatal exposure to the toxin lead (Pb +), to assess the
development of neuropsychiatric phenotypes in resultant
lead-exposed o spring [ ]. Lead exposure was associated
with the expression of increased anxiety, disruption of PPI,
increased responsivity to the NMDA receptor antagonist
MK- | and ventricular enlargement (also observed in
nonstressed DISC mutants versus controls). e authors
reported several, 0 en sex-speci c, synergistice ects, demo-
nstrating more pronounced PPl de cits, heightened MK-

responsivity, and alterations in exploratory activity and
ventricular volume in DISC mice exposed to lead.

.. Nurr  Immune Challenge. Nurr is a member of the
orphan steroid hormone receptor family which is involved in
key processes including di erentiation, migration, and sur-
vival of midbrain DA neurons [ ], as well as regulation of
the expression of genes which are crucial for DA neurotrans-
mission[ ]. e combination of partial knockout of Nurr
and prenatal immune activation via late gestational Poly
I:C administration resulted in additive e ects on locomotor
hyperactivity in a novel environment and PPI disruption,
where de cits across both measures were already observed
following genetic disruption of Nurr or exposure to Poly I.C
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alone. In contrast, multiplicative disruptive e ects of both
genetic and environmental manipulations were observed
for measures of attentional function including LI persis-
tence and a measure of sustained attention [ ]. Synergistic
interactions between Nurr haploinsu ciency and prenatal
immune activation on DA D receptor density in the nucleus
accumbens core and shell were also reported, as well as a
signi cant decrease and increase in tyrosine hydroxylase and
catechol-O-methyltransferase (COMT) density, respectively,
in the medial prefrontal cortex [ ]

7. Cannabis Use and Schizophrenia

Recent epidemiological surveys have calculated mean esti-
mates of lifetime prevalence of cannabisuse of %and . %
among youth aged - in the UK and USA, respectively
[ ., 1 erefore asigni cant number of young people
are exposed to cannabis during an important neurodevel-
opmental stage characterised by maturation of neural cir-
cuitry across several brain areas implicated in schizophrenia
and other neuropsychiatric disorders. Lifetime cannabis use
increases risk for developing a psychotic disorder [ , ],
where the risk quotient is highest among individuals who use
cannabis during adolescence [ ]. However, despite high
prevalence estimates for lifetime cannabis use, a relatively
small proportion of cannabis users go on to develop sub-
clinical symptoms or a clinical psychotic disorder [ ]. is
may be explained by the interaction between cannabis-related
psychosis risk and genetic disposition, as well as the cop-
resence of other adverse environmental conditions [ ]. It
may also re ect di erential concentrations of delta- -tetra-
hydrocannabinol (THC) and cannabidiol in cannabis prod-
ucts. THC is the principal psychotomimetic ingredient of
cannabis; cannabidiol, in contrast, is a cannabinoid which can
exert anxiolytic and potentially antipsychotice ects|[ , ]

A recent analysis, conducted in a population-based sam-
ple, revealed a negative association between cannabis use in
early adolescence and cortical thickness (a morphological
endophenotype for schizophrenia) in male adolescents with a
high genetic risk for schizophrenia, as indicated by their risk
pro les across genetic loci identi ed by the Psychiatric
Genomics Consortium in a large genome-wide comparison
of patients with schizophrenia and control individuals [ ].
G E studies examining the link between cannabis and psy-
chosis in humans face the challenge of conclusively excluding
the possibility that individuals with a particular genotype
or pro le of exposure to environmental adversity may be
more likely to use cannabis, as opposed to cannabis expo-
sure independently a ecting the pathway to psychosis [ ]
Delta- -tetrahydrocannabinol (THC) is the principal psy-
chotomimetic ingredient of cannabis; cannabidiol, in con-
trast, is another component of cannabis which is thought
to exert anxiolytice ects [ ]. Prolonged exposure to THC
during the period corresponding to adolescence in rats and
mice is associated with the emergence of de cits across sev-
eral schizophrenia-related endophenotypes, including atten-
tional and memory function (PPI, recognition memory),
novelty-induced hyperactivity [ ], and deterioration in
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reinforcement learning performance [ ]. It is also accom-
panied by neuronal hyperactivity in the mesocorticolimbic
DA pathway as well as modi cation of prefrontal cortical
molecular pathways[ ]. Cannabinoid modulation of activ-
ity of DA projections from the brain stem to the striatum, in
particular, has been linked with the development of cannabis-
induced psychosis[  ].

.. NRG  Cannabis Exposure during Adolescence. A puta-
tive association between NRG genotype and cannabis-
related psychosis has not yet been examined in clinical sam-
ples. A genome-wide linkage scan, and follow-up association
analysis, for cannabis dependence in African-American and
European-American families, revealed that NRG variation
was associated with increased risk for cannabis dependence
in African-Americans, and this e ect was pronounced in
females[ 1.

Male TM-domain NRG mutant mice have shown
increased susceptibility to several of the neurobehavioural
e ects of acute THC relative to wildtype controls.  ese
genotypic e ects have included greater sensitivity to the PPI-
enhancing and anxiogenic e ects of THC, as well as its loco-
motor activity suppressing e ects [ ].  ese authors
also observed that THC-induced increase in immediate early
gene (c-fos) expression was greater in the shell of the nucleus
accumbens, central nucleus of the amygdala, paraventricular
nucleus, and dorsolateral bed nucleus of the stria terminalis
of TM-NRG mutants relative to controls [ 1. Adding
complexity to the interpretation of G Ee ects in this model
and suggesting the presence of second-level E  E interac-
tions, this genotype-dependent increase in c-fos expression
was only observed in mice who had been subjected to
behavioural assessments. In a complementary manner, TM-
NRG mutants also demonstrated increased tolerance to the
locomotor suppressant and anxiogenic e ects of the synthetic
cannabinoidCP , ,administered duringadulthood[ 1].
TM-NRG mutants were also resistant to the cannabinoid-
induced decrease in investigative social behaviours compared
tocontrols[ ]. e latter study also showed that several of
adolescent THC e ects on cannabinoid receptor (CB R)and

-HT A receptor binding (decreased in TM-NRG mutants,
increased in wildtypes) in the substantia nigra and insu-
lar cortex were genotype-dependent. Adolescent THC also
selectively increased NMDA receptor binding in the auditory
cortex, cingulate cortex, and hippocampus of TM-NRG
mutants [ ], as well as inducing di erential expression
of proteins implicated in NMDA receptor tra cking and
glutamatergic function in the hippocampus of adolescent
THC-treated TM-NRG mutants versus controls[ ].

Cannabidiol is another psychoactive component of
cannabis which has been reported to possess anxiolytic
[ ] and putative antipsychotic properties [ ]. Long and
colleagues examined the neurobehavioural e ects of chronic
cannabidiol during adulthood in TM-NRG mutants relative
to controls [ ]. Chronic cannabidiol selectively enhanced
social interaction and increased GABA, receptor binding in
the granular retrosplenial cortex in TM-NRG mutants but
had no e ect on PPI or novelty-induced exploratory activity
[ 1 Collectively, studies conducted on THC, synthetic

cannabinoid, and cannabidiol e ects in TM-domain NRG
mutants would indicate altered sensitivity to the neurobe-
havioural e ects of this class of drugs, in a manner which is
dependent upon timing and duration of treatment.

. .DISC  Cannabis Exposure during Adolescence. A recent
study investigated the interaction, at a preclinical level,
between mutation in DISC and the e ects of chronic adoles-
cent administration of THC [ ]. In this model, a putative
dominant-negative form of DISC (DN-DISC ) which is
expressed under the control of the alpha-CAMKII promoter
in forebrain pyramidal neurons, chronic treatment with THC
during adolescence (postnatal days ) worsened de cits
in cue-dependent fear memory in DN-DISC mice, while
neuronal activation induced by fear memory retrieval was
also selectively impaired in DN-DISC mice. DN-DISC mice
also demonstrated de cits in contextual fear memory irre-
spective of treatment condition. e combinatorial e ect of
adolescent THC exposure and DN-DISC expression on the
endocannabinoid system was also indicated by a synergistic
reduction in synaptic CB R expression in the prefrontal
cortex, hippocampus, and amygdala.

. .COMT Cannabis Exposure during Adolescence. COMT
is an enzyme involved in the catabolism of catecholamines
and is the principal enzyme controlling the metabolism of
DA in the prefrontal cortex [ ]. A common functional
polymorphism in the COMT gene, the Val Met variant,
has been associated with di erential reactivity to stressful
stimuli. Individuals with the COMT Val/Val (high enzyme
activity) genotype exhibit decreased a ective reactivity to
stress relative to carriers of Met/Met, the low enzyme activity
allele [ ] Studies have shown that the disruptive e ects
of childhood abuse on adult emergence of cognitive de cits
[ ] and frequency of self-reported psychotic experiences
[ ]are present only in COMT Met/Met carriers. In one of
the rstclinical G E reports reported for schizophrenia, risk
to develop psychosis was shown to be highest among those
who used cannabis during adolescence and were COMT
Val/Val carriers [ ]. Preclinical genetic studies employing
a constitutive COMT gene knockout model, which looked
at the interaction between chronic intermittent THC and
Win (a synthetic CB R agonist) exposure during
adolescence and COMT deletion, demonstrated that COMT
genotype modulated responsivity to adolescent cannabinoid
e ects in relation to hyperactivity in a novel environment,
working memory,and PPI[ , ].Speci cally, THC treat-
ment reversed enhancement of working memory in COMT
knockout mice and produced changes in exploratory activity
and PPI that were not observed following COMT knockout
or THC treatmentalone  esede citswere accompaniedina
genotype-dependent manner by changes across morphologi-
cal measures of DA-ergic and GABA-ergic function[ 1.

8. Social Stress and Schizophrenia

Exposure to psychosocial stressors, particularly at develop-
mentally important time points, has been shown to both
play a role in the development of a psychotic disorder and



precipitate the onset of psychotic illness when the stressful
experience occurs closer to the onset of the disorder [

]. One particular social stressor which has been both
linked with increased risk for schizophrenia and modelled in
preclinical assays is social defeat, which refers to the defeated
feeling of subordination which is experienced following an
adverse social encounter [,  ]. Animals studies have
consistently shown that exposure to social defeat is associated
with changes across several schizophrenia-related endophe-
notypes, as well as HPA axis function, and corticolimbic DA
neurotransmission (see[ ] for detailed review of evidence).
Generally, rats or mice subjected to social defeat demonstrate
impaired social behaviour, as well as increased behavioural
signs of anxiety and depression[ , 1.

. NRG Social Stress. e combined e ect of NRG
heterozygous knockout and chronic social defeat stress (via
intermittent access to an aggressive CD strain conspeci ¢)
during adolescence produced genotype-dependent working
memory de cits and elevated basal cytokine levels during
adulthood in TM-NRG mutant mice relative to controls
[ 1 TM-NRG mutants displayed a genotypic increase in
novelty-induced activity, disruption of PPI and social nov-
elty preference, and decreased anxiety relative to wildtypes.
However, the combination of repeated social defeat stress
and partial NRG knockout produced de cits in the Y-
maze spontaneous alternation task (a measure of working
memory), which were not observed in stressed wildtype
controls. In contrast, in the sucrose preference test (a measure
which is utilised to model anhedonia in rodents), stressed
control mice displayed reduced sucrose preference (i.e., an
anhedonic pro le), whereas no such e ect was observed
in stressed NRG mutants. Another recent study which com-
pared the e ects of acute and chronic exposure to a nonsocial
stressor, restraint stress, during adolescence in TM-NRG
mutants versus controls reported increased sensitivity to the
anxiogenic e ects of acute stress exposure in mutants [ .
Chronic intermittent stress during adolescence also produced
de cits in PPl in NRG mutants relative to both stressed
wildtypes and nonstressed mice belonging to both genotypes.
NRG mutants also demonstrated decreased corticosterone
levels, as well as increased apical dendritic spine density and
decreased apical dendritic lengths and complexity in layer
1I/111 pyramidal neurons of the medial prefrontal cortex,
following chronic restraint stress.

. . DISC  Social Stress. e phenotypic e ects of social
defeat stress during adulthood in mice were examined
in DISC L Pand Q L (a DISC line which demon-
strates more a ective disorder-related phenotypes and fewer
psychosis-relevant phenotypes than the L P line) mutants
[ 1 ey reported decreased vertical activity levels dur-
ing exploration in a novel environment, as well as social
interaction in mice with heterozygous mutation in DISC
(L P) following exposure to social defeat. While L P
mice displayed a de cit in PPI, and both L Pand Q L
mice displayed disruptions in LI, social defeat did not worsen
de citsinthese tasks for any group. Social defeat stress during
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adulthood was also associated with increased immobility
in the forced swim test, as well as an anhedonic pro le
in the sucrose consumption test, but these e ects were not
genotype-dependent.

Another study employed the C -truncated DN-DISC
model, where expression is under the control of the widely
expressed prion protein promoter. Mutants and controls were
subjected to three weeks of social isolation during middle
and late adolescence (postnatal days ). is manip-
ulation resulted in the emergence of schizophrenia-related
behavioural de cits, including PPl disruption, increased
immobility in a forced swim test (a measure of behavioural
despair which has been used to model apathy), and increased
methamphetamine-induced locomotion, in mutants relative
to isolated wildtypes and nonisolated mice of both genotypes
[ 1 DN-DISC isolation mice also displayed decreased
tyrosine hydroxylase expression, total tissue DA levels, and
basal extracellular DA in the frontal cortex relative to all other
genotype and environmental conditions. e same genotype-
dependent e ect of increased DA release was observed
in the nucleus accumbens of isolated DN-DISC mutants
relative to all other groups. e observed behavioural and
cellular endophenotypes were rescued by administration of
the glucocorticoid receptor antagonist RU- , suggesting
that the heightened stress-induced corticosterone response in
DN-DISC isolation mice might represent the mechanism
underlying the schizophrenia-relevant behavioural and cel-
lular phenotypes. A recent follow-up study which assessed
DNA methylation of HPA-axis/glucocorticoid-related genes
in the mesocortical DA-ergic neurons of DN-DISC  iso-
lation mice revealed altered DNA methylation of tyrosine
hydroxylase, brain-derived neurotrophic factor (BDNF) and
FK  binding protein genes[ ]; these epigenetic changes
were once again reversed by glucocorticoid receptor antago-
nist treatment.

9. Other Genes Implicated in
Pathogenesis of Schizophrenia:
Evidence for G x E Interactions

. . Dystrobrevin Binding Protein (DTNBP ). Several studies
have identi ed DTNBP (or dyshindin- ) as a potential risk
gene for schizophrenia [ ]. Genetic association stud-
ies have shown that variations in this gene are associated
with abnormal prefrontal cortical function in patients with
schizophrenia, as well as episodic and working memory
performance in healthy subjects [ ]. e relevance of
regionally speci c loss of DTNBP expression to the patho-
physiology of this neurodevelopmental disorder is high-
lighted by postmortem studies revealing a decrease in
DTNBP expression in neurons of the dorsolateral prefrontal
cortex and hippocampus [ ]. At a cellular level,
DTNBP is mainly expressed in synaptic sites and plays an
important role in synaptic homeostasis by regulating neuro-
transmitter vesicle exocytosis and vesicle biogenesis in neu-
rons. DTNBP is also found in the nucleus, where it is
reported to regulate transcription factor NF-kappa B activ-
ity to promote the expression of matrix metalloproteinase
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protein- (MMP- ), a matrix metalloproteinase that in u-
ences synaptic plasticity and learning and memory, and TNF-

[ 1 In mice containing a loss-of-function mutation in
DTNBP (sandy, sdy), they demonstrate hyperactivity, de cits
in spatial learning and memory ability that are indicative
of disrupted hippocampal function, and disruption of DA-
ergic, glutamatergic, and GABA-ergic transmission in the
prefrontal cortex [ ]. While genetic background does
appear to be an important factor in determining whether spe-
ci ¢ schizophrenia-related phenotypes are reported for the
sdy mouse, memory impairment is a consistent phenotypic
trait of DTNBP -de cient mice irrespective of the mouse
strainadopted[ , , ]

Clinical studies provide some evidence indicating poten-
tially signi cantassociations between DTNBP gene variation
and the impact of adverse environmental risk factors on risk
to develop schizophrenia[ , ]. A study which examined
potential interactions between DTNBP variation and serious
obstetric complications in a cohort of schizophrenia patients
reported that the interaction of both factors in uenced risk
for schizophrenia [ ]. It is also suggested that a common
underlying molecular defect involving DTNBP contribution
to the development of anxiety and stress-related disorders
may involve changes in glutamatergic neurotransmission
or DA-ergic function [ ]. Indeed, characterisation of the
behavioural phenotype of the sdy mouse revealed enhanced
anxiety in these mutants, as indicated by a reduced habitu-
ation to novelty, reduced locomotor activity and time spent
in the center of an open eld test, and fewer open arm
entries in the elevated plus mazetest[ , ]. Itis possible,
therefore, that DTNBP mutation directly or indirectly a ects
neuronal circuitry subserving anxiety behaviours and stress
responsivity, meriting further examination of potential inter-
actions between stress-related environmental risk factors in
schizophrenia and DTNBP gene abnormalities.

e timing of environmental insults during development
and speci ¢ genetic vulnerability are important considera-
tions in determining susceptibility to neurodevelopmental
disorders and could di erentially a ect the degree to which
DTNBP mutations impact on structural and functional
properties of neuronal cells, circuit connectivity, and overt
behavioural phenotypes such as cognition, anxiety, and a ec-
tive behaviour, leading to heterogeneous clinical phenotypes
in schizophrenia[ , 1. Evidence indicates that endogenous
levels of the dysbindin protein in the mouse brain are higher
during embryonic and early postnatal ages [ ] suggesting
adverse experiences during these vulnerable periods are more
likelytoa ectthe developmental course of dysbindin protein
expression than those experienced during later stages of
development.  ese ndings highlight the critical nature of
the temporal expression of DTNBP in the brain and suggest
that environmental factors experienced in early postnatal life
and in adolescence may signi cantly impact on the trajectory
of brain development and susceptibility to schizophrenia in
those with DTNBP -related genetic vulnerability.

.. SNAP- . Synaptosomal-associated protein of  kDa
(SNAP- ) is a gene associated with both synaptic transmis-
sion [ ] and increased risk for schizophrenia [ , 1
Mice containing a point mutation in the SNAP-  gene
display several schizophrenia-associated endophenotypes
including hyperactivity and increased behavioural sensitivity
to psychostimulants, which are both mediated through DA
D receptor activation [ , ]. SNAP-  mutants were
demonstrated to be particularly sensitive to the disruptive
e ects of variable prenatal stress on social novelty preference
[ 1 Inthe same study, both the point mutation and variable
prenatal stress independently produced disruption of PPI.
In a recent study, prenatal exposure to nicotine throughout
gestation and early perinatal development in mice with
partial loss of function of SNAP-  resulted in increased
hyperactivity, social interaction de cits, and de cits in long-
term depression, which are paralleled by changes in the
a nityofthe DAD receptor[ 1.

. . BDNF. Brain-derived neurotrophic factor (BDNF) is
implicated in diverse neurodevelopmental processes, includ-
ing neuronal di erentiation and survival, and plasticity, and
may be important to the pathophysiology of schizophrenia
[ ., 1 eleritis et al. [ ] demonstrated that BDNF
genotype is related to childhood trauma but not to cognitive
de citsin rst episode schizophrenia. Exposure of pregnant
mice to restraint stress was associated with increased BDNF
expression in the frontal cortex and hippocampus of adult
o spring [ ] A recent study evaluated the interaction
between prolonged adolescent exposure to escalating doses
of methamphetamine and heterozygous disruption of BDNF
in mice and demonstrated that decreased BDNF expression
may alter sensitivity to psychostimulant exposure at impor-
tant developmental periods[ ]. Methamphetamine-treated
wild-type mice, but not BDNF heterozygous mice, showed
locomotor sensitization to acute mg/kg D-amphetamine,
and this study also demonstrated increased sensitivity to
amphetamine-induced disruption of PPI in BDNF heterozy-
gotes[ 1.

. . RELN. Reelin is a protein that is involved in brain
development and synaptic plasticity; Reelin-mediated sig-
nalling pathway dysfunction has been linked with the patho-
physiology of schizophrenia [ , ]. Reeler is an autoso-
mal recessive mutant mouse containing a mutation in the
RELN gene, and several studies have examined the pheno-
typic consequences of interaction between early life adversity
and the heterozygous reeler mouse phenotype. Interestingly,
reeler mutants who were prenatally exposed to the neuro-
toxin chlorpyrifos [ ] or early maternal separation [ ]
demonstrated a reversal of genotypic de cits across a number
of schizophrenia-relevant endophenotypes; these included
abnormalities in ultrasonic vocalisations and exploratory
behaviour, as well as social interaction [ ]. Neither chlor-
pyrifos exposure nor maternal separation alone exerted any
e ects on o spring behaviour. A recent study examined
the phenotypic consequences of prenatal hypoxia on schiz-
ophrenia-related phenotypes in heterozygous reeler mice
[ 1 Exposure to prenatal hypoxia at embryonic day



(E ) was associated with a genotype-independent increase
in anxiety (measured in the open- eld test). No e ect of
genotype on PPl was observed, but a small treatment-related
increase in PPl across both genotypes was reported [ ]
RELN genotype  prenatal hypoxia interaction was found
in relation to frontal cortex volume, which was increased in
wildtypes, but the genotypic increase in RELN mutants was
decreased following prenatal hypoxia exposure. A selective
reduction in glucocorticoid receptor protein levels in the
hippocampus of stressed RELN mutants was also observed.

10. Discussion

e current review provides a summary of ndings arising
from the growing body of research on the generation of
animal models of schizophrenia based on the interaction
of genetic mutations and well-characterised environmental
factors([ , , ];seeTables and forsummaryofG E

ndings related to selected schizophrenia-associated genes).
ese ndings support the proposed multihit diathesis-
stress model, whereby vulnerability to schizophrenia involves
both the independent contribution and synergistic conver-
gence of temporally sensitive biological and environmen-
tal factors across development. Identi cation of biological
and environmental in uences across critical developmental
periods and the mechanistic basis for their interaction may
eventually result in enhanced identi cation of schizophrenia
risk and the development of suitable preventative strategies.

A number of caveats and methodological considerations
arise from our review of preclinical G E models relevant to
schizophrenia. Firstly, the heuristic value of a G E model
depends upon the level of construct validity possessed by the
experimental model of the environmental stressor. Transla-
tion of epidemiologically appropriate environmental factors
into current animal models of G E interactions constitutes
a particular challenge for models of G E interplay in schiz-
ophrenia[ ]. Secondly, it has to be noted that the majority
of the studies outlined above have been conducted using
rodent models involving a single gene mutation, while schiz-
ophrenia is a polygenic disorder [ ].  irdly, much of the
evidence outlined in the preceding sections is essentially
descriptive, or the studies cited have focused on a limited
number of molecular markers; more detailed molecular
interrogation of phenotypic e ects, at di erent time points,
is required. In particular, neural circuits in animal models
of G E interactions will need to be examined with respect
to behavioural changes, with a particular attention to the
pathological trajectory from early development to the emer-
gence and expression of the speci ed disease-relevant endo-
phenotypes in adulthood [ ].  ese mechanistic studies will
provide a solid basis for the development and evaluation of
targeted preventative or rescue strategies. Lastly, several of the
G E models discussed have demonstrated that the e ects
of coexposure to a genetic mutation and an environmental
stressor can result in modi cation of the phenotypic e ects
of one factor or the other but may also produce phenotypic
e ects, both protective and adverse, which may not be
observed following exposure to any one factor alone [ ].

Neural Plasticity

It has been suggested that genetic risk to develop a
psychotic disorder may be expressed as altered responsivity
to everyday stressful situations [ ], such that idiopathic
responsivity to stressors may be an important determinant
of induction of psychosis. At a phenotypic level, both the
human genetic and preclinical G E data related to schiz-
ophrenia have highlighted the importance of incorporating
behavioural and physiological measures of stress responsivity
in any phenotyping strategy. Both streams of evidence have
clearly shown that it represents a modulating trait which
might increase risk for schizophrenia[ , ] and mod-
ulate the expression or severity of schizophrenia-relevant
endophenotypes in preclinical G E models (e.g., [ ]).

As evident in the above description of G E interaction
in relevant mutant models, sex-speci ce ects are commonly
observed, even allowing for the limited number of studies
which have examined such e ects in both sexes. Gender
di erences in schizophrenia have been noted across such
domains as symptomatology and course of illness. Males
show lower premorbid functioning, earlier age of onset, more
severe cognitive de cits, and poorer prognosis at an earlier
age of onset, and a poorer course of illness[ , ] ere
issu cientevidence to conclude that independent and inter-
active e ects of genetic and environmental manipulations on
behavioural indices can di er between the sexes.  erefore,
there is a requirement for G E models to be validated for
both sexes.

Despitethedi culty ininterpreting the evidence for rst-
and second-order interactions arising from multifactorial G
E studies conducted in nonhumans, some authors have pro-
posed common biological mechanisms or processes which
might underlie such interactions [ ]. One such mechanism
is a disturbance in glutamatergic function, which may be
related to dysfunction of parvalbumin-positive interneurons
in the cerebral cortex and hippocampus, which are sensitive
to alterations in NMDA-type glutamate receptors [ 1.
One of the common ndings in both animal models and
postmortem tissue from patients with schizophrenia is a
reduction of mRNA or protein levels of the calcium-binding
protein parvalbumin in cortical fast-spiking (FS) interneu-
rons. Both preclinical genetic and environmentally based
models using schizophrenia risk genes or stressors, respec-
tively, have consistently observed a decreased number or
impaired function of parvalbumin-positive interneurons in
the hippocampus or cortex [ ]. A di erent model has
suggested that genetic risk factors interact with social envi-
ronmental risk factors (including early life adversity and psy-
chosocial stress) to impact on the DA system, increasing its
response to environmental stressors and to the abuse of drugs
such as cannabis and psychostimulants[ , ]. ereare
various strands of evidence to support this theory, includ-
ing the well-characterised impact of acute and long-term
exposure to stress and drugs of abuse on mesolimbic DA-
ergic pathway dysfunction, and the fact that many of the
genetic risk factors implicated in schizophrenia are associated
with underlying alterations in the DA system[  ]. Mesolim-
bic DA-ergic dysregulation is posited to be a uid and
dynamic process that may be reactive to acute and chronic
stressors, including early brain insult, prolonged exposure to
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Neural Plasticity

T : Summary of evidence for gene, environment, and gene  environment e ects in mutant models for selected genes associated with
schizophrenia.

Impact on schizophrenia-relevant

Gene Environmental Reference(s) behavioural endophenotypes Use of preventative
target exposure Genetic Environmental ) or rescue strategy
: . . - Gene environment
manipulation manipulation
Increase_d Additive e ects on
Increased novelty-induced noveltv-induced
novelty-induced activity; decreased h ergctivi tv: svneraistic
activity; decreased  PPI; spatial rgguction inyétt}éntic?nal
Prenatal Poly PPI, reduction in working memory S -
Nurr . [ 1] - Lo . shi ing and sustained
1.C tyrosine de cits; increase in attention: decrease in
hydroxylase- tyrosine DA D réce tor
positive cells in the  hydroxylase- immunoreaf:)tivit in the
substantia nigra positive cells in the nucleus accumbe)llws
VTA
Clozapine and
haloperidol (to a
Variable Decreased PP1 in Decreased social novelt lesser extent)
Snap- [ 1] the blind-drunk PPI disruption Y reversal of PPI
prenatal stress - preference .
point mutant de cits was most
pronounced in G
E group
More pronounced
novelty-induced
Increased hyperactivity and greater
Prenatal novelty-induced disruption of social
Snap- nicotine [ 1 activity and interaction; de citsin
exposure decreased social DAD
interaction receptor-dependent
induction of long-term
synaptic depression
rc:;:ggrlri- Locomotor Decreased locomotor
BDNF hetamine [ 1] sensitisation and sensitisation and entropy
P increased entropy  in BDNF heterozygotes
exposure
Locomotor
. Decreased PPl and _sensmsatlon; Increased sensitivity to
Chronic . - increased L
increased acoustic S amphetamine-induced
metham- o sensitivity to - S
BDNF hetamine [ 1] startle reactivity in MK-  and PPI disruption in
P BDNF - preexposed BDNF
exposure heterozygotes amphetamine- heterozygotes
¥ induced PPI ¥
disruption
Decreased
frequency of Decreased sensitivity to
Maternal ultrasonic disruptive e ects of
RELN separation [ 1 vocalisations; maternal separation in
P decreased activity heterozygous RELN
in a novel mutants
environment
Prenatal chlorpyrifos:
selective increase in
Prenatal ultrasonic vocalisation
in RELN mutants;
exposure to the Decreased disrupted behavioural
pesticide frequency of P
RELN ] [ 1] - response to acute
chlorpyrifos ultrasonic sconolamine
Maternal vocalisations Ma?ernal separation:
separation P '

decreased social
motivation in WT but
not RELN mutants
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T : Continued.
) Impact on schizophrenia-relevant )
Gene Environmental Reference(s) behavioural endophenotypes Use of preventative
: . - - Gene environment
manipulation manipulation
Increase in frontal cortex
volume in WT but
opposite e ect observed
in RELN mutants;
Reduction in selective reduction in
Increase in frontal  glucocorticoid glucocorticoid receptor
Prenatal - - - .
RELN hypoxia [ 1 cortex volume in receptor protein protein levels in

RELN mutants

levels in frontal
cortex

hippocampus of RELN
mutants; selective
changes in brain
expression of
hypoxia-related proteins
in mutants

BDNF, brain-derived neurotrophic factor; DA, dopamineg;

inhibition; RELN, reelin; SNAP- , synaptosome associated protein

drugs of abuse, and psychosocial stress, across the lifespan
of the individual. Another theory places a greater emphasis
on the convergence of genetic and environmental factors
upon regulation of synaptic plasticity and function, as well
as the stabilisation of cortical microcircuitry[ ,  ]. Ithas
been observed that intact synaptic function depends on a
large number of molecular pathways which will be a ected
by several environmental factors throughout brain develop-
ment. Additionally, stress-associated signalling cascades are
well known to modulate the development and maintenance
of synaptic connectivity [ ].

What existing animal studies of G E interactions
relevant to schizophrenia highlight is that developing valid
multifactorial models which are amenable to investigations
not yet possible in clinical studies will become increasingly
important in determining the mechanisms underlying con-
vergence of genetic and environmental risk factors and their
interaction.
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