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Abstract: For the purpose of probabilistic risk 
assessment of long pipeline, pipeline was treated as a 
large-scale series system composed of a great number 
of segments. First of all, pipeline strength distribution was 
described with respect to different segment partitions. 
Then, the s-dependence among segment failures was 
expounded. Finally, a series system failure probability 
model was presented and the size-dependent variation 
of system failure probability was demonstrated. It was 
shown that there exists strong dependence among 
segment failures, and there exist an upper bound for the 
failure probability of a large-scale series system such as 
long pipeline. 

1. Introduction 

It is well known that, for the majority of pressurized 
pipelines, the load and resistance parameters have 
important uncertainties, and probabilistic approach 
should be applied to assess their behaviors.  
Concerning reliability estimation of passive components 
such as pipeline, there are two kinds of approaches - 
direct estimation using statistics of historical failure event 
data, and indirect estimation using probabilistic analysis 
of the failure phenomena of consideration. No matter 
which is applied, the statistical dependence among 
component failures has to be correctly treated. 

Besides, estimating pipeline failure probability by 
traditional reliability engineering and statistical analysis 
principles is complicated also because no generally 
applicable component partition approach exists [1,2].  

Asymptotic approach was also applied to evaluate 
large-scale system failure probability [3-6]. 
Mathematically, such an approach is based on the limit 
theorems of order statistics distribution. However, the 
s-dependences among component failures may violate 
the s-independent failure assumption underlying the limit 
theorems of order statistics distribution. 

2. Segment partition and system strength 
distribution 

One of the acceptable methods for modeling a run 
of a pipe in probabilistic risk assessment is to divide the 
pipe run into segments [7,8].  

Pipeline is taken as a series system comprising of a 
great number of virtual elements in the present paper. 
The strengths of the individual components, denoted by 
Xi (i=1~n), are independent and identically distributed 
random variables. Thus, the strength of the weakest link 
system, denoted by X, is equal to the smallest 
component strength in statistical sense, i.e. 

X=min(X1, X2, … Xn)              (1) 

It indicates that the system strength equals to the 
smallest sample value of the n component strengths Xi 
(i=1, 2,…, n). Obviously, it is more likely to achieve low 
system strength X if the component numbers n is large.  

    In order to estimate pipeline failure probability, firstly 
we divide the pipeline into n segments (virtual 



  

components). Furthermore, it is assumed that the 
strengths of the n segments are i.i.d random variables. 
Then, in the condition that all the segment failures are 
independent of each other, the relationship between 
pipeline (a series system) failure probability Pn and its 
segment failure probability p can be expressed as: 

Pn=1-(1-p)n                          (2) 

Consider a different partition to the pipeline by using 
larger segment, e.g., let k segments mentioned above 
make up one larger segment, the pipeline can be 
considered as composed of m (m=n/k）larger segments. 
Obviously, the failure probability of the larger segment 
equals: 

pk=1-(1-p)k                         (3) 

Then the relationship between pipeline failure 
probability and segment failure probability is: 

Pm=1-(1-pk)m=1-(1-p)k×m=1-(1-p)n      (4) 

It turns out that the partition to the pipeline does not 
influence the estimation of its failure probability in the 
condition of s-independent failures.  

As a system made up of statistically identical 
segments, the segments can be taken as the samples 
coming from the same population, and the strengths X1, 
X2, …, Xn of the segments in the system are i.i.d random 
variables. The order statistic X(k) stands for the strength 
of the kth weakest segment. Obviously, the strength of the 
series system is equivalent to the minimum order statistic 
X(1). According to probability theory [9], the cumulative 
probability function of the minimum order statistic X(1) is： 

G1 (x)=1-(1-F(x))n                   (5) 

Where, G1(x) and F(x) are the cumulative distribution 
function (cdf) of the minimum order statistic X(1) and that 
of the population X, respectively. 

    The probability density function of the minimum 
order statistic X(1) , which is just the probability density 
function (pdf) of the series system, is： 

)()](1[)( 1
1 xfxFnxg n−−=        (6) 

Where, g1(x) and f(x) are the pdf of the minimum order 
statistic and that of the population, respectively. 

Considering a different partition of m (m=n/k) larger 
segments, the cdf and pdf of the larger segment strength 
are respectively:   

H1(x)=1-(1-F(x))m                     (7) 

)()](1[)( 1
1 xfxFmxh m−−=     (8) 

Therefore,  

      )()](1[)( 1
1 xfxFnxg n−−=      (9) 

This proved that the segment partition scheme does 
not influence the system strength distribution. 
Nevertheless, one should remember in mind that such a 
conclusion is only hold true with the underlying 
precondition that the pipe material is continuous (no 
defect) and its strength is uniform along the length. 

3. Pipeline failure probability estimation and failure 
dependence analysis 

    It is well known that the conventional assumption 
“component failures are s-independent of each other in a 
system” is not usually valid since common cause failure 
(CCF in short) exists in the majority of systems [10-14]. 
Subsequently, failure dependence has to be taken into 
account when estimate system failure probability.  

By means of order statistics, we can develop a 
pipeline (series system) failure probability model without 



  

any assumption on failure dependence. As mentioned 
above, pipeline can be taken as an n-segment series 
system, and its failure probability is equal to the 
probability that system strength (i.e. the minimum order 
statistic of segment strengths) is less than the load. That 
is, the failure probability of a series system made up of n 
segments equals to 

yddxxgyhP
yseri
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∞

=
0 0 1 ])([)(     (10) 

where, h(y) is the pdf of the load subjected to the 
segments. 

4. The upper limit of large-scale series system failure 
probability 

    In the following, discussed is the effect of component 
numbers on system failure probability. For a system such 
as pipeline, if the size of the segment is small, then the 
numbers of segment in the system will be very large. 
According to conventional s-independent series system 
failure probability model, system failure probability will 
approach to one quickly with the increase of component 
numbers. It means that for a series system comprised of 
a huge number of components, e.g. 10000 or more, its 
failure probability will approach to one, even though the 
individual component failure probability is very low. 
Obviously, the estimated failure probability (closed to one) 
is not reasonable even for a very long pipeline. 
Fortunately, different conclusions can be drawn with 
s-dependent system failure probability model.  

For example, let load pdf h(y)~N(300,50) (i.e. the 
load y follows the normal distribution with the expectation 
of 300 and the std of 50), segment strength pdf 
f(x)~N(600,50), which yield segment failure probability of 
1.105×10-5, the relationship between the failure 
probability of series system and segment numbers is 
shown in Fig.1. It shows that system failure probability 
increases with the increase of segment numbers, the 
system failure probability estimated by the conventional 

s-independent system model approaches to one quickly, 
but that estimated by the s-dependent system model 
does not show such a strong tendency.  
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Fig.1 The relationships between series system failure 
probability and segment numbers in condition of normal 
distributed load and segment strength 

If load pdf h(y)~W(200,3,100) (i.e. load follows the 
Weibull distribution of which the minimum load equals to 
100), and segment strength pdf f(x)~W(300,3.5,420) (i.e. 
segment strength follows the Weibull distribution of which 
the minimum strength equals to 420), which yield a 
segment failure probability of 1.575×10-5, the relationship 
between series system failure probability and segment 
numbers is shown in Fig.2. In the situation of which the 
minimum of the segment strength random variable is 
greater the minimum of load, system failure probability 
will not exceed a limit of less than one whth the numbers 
of segment approaching infinite (Fig.3). The limit equals 
to the probability of load random variable exceeding the 
minimum order statistic of segment strength. The reason 
is simply that, in the situation of infinite segments, the 
strength minimum order statistic becomes into a 
deterministic constant which is equal to the minimum 
strength parameter of the Weibull-distributed random 



  

variable. 
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Fig.2 The relationships between series system failure 
probability and segment numbers in condition of Weibull 
distributed load and segment strength 
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Fig.3 The upper limit of large-scale series system failure 
probability in the condition of Weibull distributed load and 
segment strength (the upper limit = 0.017) 

5. Conclusion 

Aimed at failure probability estimation of pipeline 
type continuous system, the present paper discussed the 
issues on segment partition including segment size 
selection, relationship between segment strength and its 
size, relationship between system strength and segment 
strength/numbers, failure probability model for 
s-dependent series system, and limit of large-scale 
series system failure probability.  

The investigation showed that segment 
size/numbers selection does not normally affect system 
failure probability estimation. In situation that segment 
strength distribution has finite lower limit, series system 
failure probability has an upper limit of less than one. 
That is, with the increase of segment numbers, series 
system failure probability will not approach to one, but to 
a limit value much less than one, which is equal to the 
probability that the lower limit of the segment strength is 
less than load random variable. 

It is also shown that there are considerable 
differences between the independent system failure 
probability model and dependent system failure 
probability model. It means that failure dependence plays 
an important role in system of which the components are 
subjected to the same random load. Obviously, here the 
load has a general meaning, it can be mechanical stress, 
temperature, corrosion intensity, and so on. 
Correspondently, the component strength will be the 
property against mechanical stress, temperature, 
corrosion, and so on. 
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