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Abstract

Abstract

Power efficiency is one of the most important constraints in the design of em-

bedded systems since such systems are generally driven by batteries with limited

energy budget or restricted power supply. In every embedded system, there are

one or more processor cores to run the software and interact with the other hard-

ware components of the system. The power consumption of the processor core(s)

has an important impact on the total power dissipated in the system. Hence,

the processor power optimization is crucial in satisfying the power consumption

constraints, and developing low-power embedded systems.

A key aspect of research in processor power optimization and management is

“power estimation”. Having a fast and accurate method for processor power es-

timation at design time helps the designer to explore a large space of design

possibilities, to make the optimal choices for developing a power efficient pro-

cessor. Likewise, understanding the processor power dissipation behaviour of a

specific software/application is the key for choosing appropriate algorithms in

order to write power efficient software.

Simulation-based methods for measuring the processor power achieve very high

accuracy, but are available only late in the design process, and are often quite slow.

Therefore, the need has arisen for faster, higher-level power prediction methods

that allow the system designer to explore many alternatives for developing power-

efficient hardware and software.

The aim of this thesis is to present fast and high-level power models for the

prediction of processor power consumption. Power predictability in this work is

achieved in two ways: first, using a design method to develop power predictable

circuits; second, analysing the power of the functions in the code which repeat

during execution, then building the power model based on average number of
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Abstract

repetitions.

In the first case, a design method called Asynchronous Charge Sharing Logic

(ACSL) is used to implement the Arithmetic Logic Unit (ALU) for the 8051 mi-

crocontroller. The ACSL circuits are power predictable due to the independency

of their power consumption to the input data. Based on this property, a fast

prediction method is presented to estimate the power of ALU by analysing the

software program, and extracting the number of ALU-related instructions. This

method achieves less than 1% error in power estimation and more than 100 times

speedup in comparison to conventional simulation-based methods.

In the second case, an average-case processor energy model is developed for the

Insertion sort algorithm based on the number of comparisons that take place in

the execution of the algorithm. The average number of comparisons is calculated

using a high level methodology called MOdular Quantitative Analysis (MOQA).

The parameters of the energy model are measured for the LEON3 processor core,

but the model is general and can be used for any processor. The model has been

validated through the power measurement experiments, and offers high accuracy

and orders of magnitude speedup over the simulation-based method.
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Chapter 1

Introduction

1.1 Motivation

In the past decade, the use of embedded systems has grown in almost every aspect

of our daily lives, including simple household appliances, transportation systems,

and many communication, recreation and entertainment products. As a result,

the design and implementation of efficient embedded software and hardware sys-

tems have gained utmost importance.

In the design of embedded systems, in addition to the need that the system has

to produce the desired outputs for the given inputs, there are a number of other

requirements which must be satisfied. These requirements could be imposed

by user expectations or resource constraints. Some examples of these types of

requirements are limits on the response time, memory space, battery capacity

or channel bandwidth. These requirements are integral to the correct operation

of the system. For instance, the response time of the electronic braking system

in automobiles, or the power consumption of remote sensor nodes that scavenge

their energy from the environment are critical for the correct functionality of

these systems [1].

1



1. Introduction 1.1 Motivation

Power efficiency is one of the most important requirements in the design of em-

bedded systems since such systems are generally driven by batteries with limited

energy budget or have a restricted power supply. The power consumption be-

comes a more critical element in the design of highly integrated systems with a

constant increase in the number of transistors per die, smaller chip area, and a

higher operating frequency from older to newer technology nodes.

In every embedded system, there are one or more processor cores to run the

software and interact with the other hardware components of the system. The

power consumption of the processor core(s) has an important impact on the

total power dissipated in the system. Hence, the processor power optimization

is crucial in satisfying the power consumption constraints, and developing low-

power embedded systems.

A key aspect of research in processor power optimization and management is

“power estimation”. Power estimation is important for several technical and

commercial reasons. Having a fast and accurate method for processor power

estimation at design time helps the designer to explore a large space of design

possibilities to make the optimal choices for developing a power efficient proces-

sor. This can be done well before the actual processor is designed, fabricated and

tested. Likewise, understanding the processor power dissipation behaviour of a

specific software/application is key for choosing appropriate algorithms in order

to write power efficient software [2]. From a commercial point of view, accurate

power estimation at the design stage avoids costly re-design cycles, and leads to a

product with better power consumption characteristics, and thus ensures higher

profitability.

The simulation-based methods for measuring the processor power achieve very

high accuracy, but they are available only late in the design process, and are often

quite slow. Thus, it is difficult to exploit these methods in order to measure the
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1. Introduction 1.2 Prior Work

power consumption of the processor for a large number of hardware or software

design alternatives. For this reason, the need has arisen for the faster, higher-

level power prediction methods that allow the system designer to explore different

alternatives for development of power-efficient hardware and software.

The motivation of this work is taking a step toward building a framework to

estimate the processor power consumption with high speed and accuracy early in

the design flow of embedded systems. The work presented in this thesis is mostly

focused on the estimation of the processor power for a given program code which

can help software developers in writing power optimized embedded software code.

In the rest of this chapter, the previous work in this area is outlined, and the

contribution of the thesis is explained.

1.2 Prior Work

The proposed methods in the area of processor power estimation can be classi-

fied into five categories: methods based on architectural simulation, system-level

models, hardware performance counters, on-chip temperature profile and pro-

gram execution profile. The first two categories (architectural-level models and

system-level models) are the only methods available at the design stage which are

useful to avoid re-design cycles and reduce the time to market in the processor

design. Three other categories are available at runtime to estimate the power con-

sumption of the software application. In the following, each of these categories

are concisely described. In Chapter 2, more detail of the methods proposed in

the literature in each category is presented.

Architectural-level models for power estimation are based on calculation of the

load capacitance of each functional unit inside the processor using circuit simula-

tion, analytic equations or empirical data. The activity factor of each functional

Average-Case Analysis of Power
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1. Introduction 1.2 Prior Work

unit during the execution of the test programs is generated through simulation,

and is applied to the processor model to compute the power/energy consump-

tion. The most famous work in this category is a power estimation framework

called Wattch [3]. In this framework, the instruction cache, branch predictor,

wakeup logic, register file, instruction window and the global clock are modeled

at architectural-level, and the access counts for functional units are calculated

using SimpleScalar [4] simulator. Other examples of architectural-level power

estimation are the works presented in [5, 6, 7].

System-level models are communication-oriented models which describe a system

of processing elements and the interactions between them. An important subset

of such kind of models are Transaction Level Models (TLMs) [8]. TLMs model

each message or event between processing blocks as a basic transaction. Most of

the works with system-level models are presented to estimate power consumption

for SystemC-based designs. In these works, the events relevant to power consump-

tion are captured by modifying the SystemC kernel or using additional custom

Application Program Interface (API). Some examples of this type of approach

are presented in [9, 10, 11, 12, 13, 14].

Hardware performance counters are a set of special-purpose registers built into

modern microprocessors to store statistics about the activity of different sub-

systems in the processor. These registers are typically readable by kernel-level or

user-level software entities. For the processor power estimation, the performance

counters that have a good correlation with the measured power are selected, and

the power model is built as a function (F ) of their sampled values. Different

techniques are used in the literature for determining function F . Some of the

approaches [15, 16] are purely mathematical and use regression based methods

to solve the problem. Some approaches [17, 18, 19] use micro-benchmarks to

generate events in a specific performance counter to determine the impact of

Average-Case Analysis of Power
Consumption in Embedded Systems

4 Nasim Zeinolabedini



1. Introduction 1.2 Prior Work

each counter on the total power. There are some other approaches [20, 21, 22]

which combine mathematical methods with micro-benchmark-based methods.

In on-chip temperature profile techniques, the power estimation is based on the

link between the power consumption and the temperature of a die. The problem of

finding the power consumption map of a die, given the temperature map is known

as the Inverse Heat Conduction Probem (IHCP) [23]. To collect the temperature

data either the InfraRed (IR) photograph of a die or embedded performance

counter based thermal sensors can be used. Some approaches [24, 25, 26] in this

category solve the IHCP problem assuming that temperature values are exact,

and some other approaches [27, 28] consider some thermal noise.

The last category of approaches for processor power estimation is based on pro-

gram execution profile. The work in this thesis also fits in this category. The

approaches in this category can be divided into three groups: instruction-level

methods, function-level methods and functional unit based methods.

In instruction-level methods, first the processor energy consumption of each in-

struction is characterized, and then the program code is analysed to get the

instruction counts. The total energy consumption is obtained by multiplying the

number of executed instructions of each type by their corresponding energy val-

ues. Some of the works [29, 30] based on instruction-level power characterization

are data independent. It means that the power models are built without taking

the impact of the instruction operands into account. Some other works [31, 32]

in this area are semi-data dependent. In these works, some parameters like the

inter-instruction effects, circuit state, pipeline stalls and cache misses are also

considered in building the power model. The last set of works [33, 34] are data

dependent which take the effect of program input data on the power consumption

into account.

Function-level power estimation approaches are based on the processor power

Average-Case Analysis of Power
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1. Introduction 1.3 Contributions of the Thesis

characterization at the level of functions and library calls. In these approaches,

the number of executions for the frequently invoked functions are counted, and

total power is estimated by multiplying this number by the corresponding energy

values. The examples of Function-level power estimation are presented in [35, 36,

37].

In functional unit based methods, the activity of the relevant functional units in

the processor during the execution of the code is extracted as task parameters

by analysing the program code. The total energy is computed by applying these

task parameters to arithmetic models developed for the functional units. This

method is also known as Functional Level Power Analysis (FLPA). In [38, 39, 40],

this method is used for processor power estimation.

1.3 Contributions of the Thesis

The work presented in this thesis is comprised of two main parts. The first part

of the thesis can be classified as an instruction-level approach in the category of

program execution profile based methods for processor power estimation. The

second part represents a function-level approach in the same category.

In the first part of the thesis, a power estimation method is proposed which is

based on a power predictable design methodology. This methodology that is

called Asynchronous Charge Sharing Logic (ACSL) is a dynamic design style

which offers two main properties. The first property is that it has lower power

when compared with the other dynamic circuits, and the second property is that

its power usage is almost constant and independent from the input patterns. This

second property makes the ACSL circuits power predictable.

In this work, the Arithmetic Logic Unit (ALU) of 8051 microcontroller is imple-

mented in ACSL. The power consumption of the arithmetic and logic operations

Average-Case Analysis of Power
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1. Introduction 1.3 Contributions of the Thesis

of this ALU has a very small variability, and is independent from the input data.

This makes it possible to estimate the power usage for the ALU only by knowing

the number and type of the operations it performs. The 8051 microcontroller is

chosen in this work since it is a common microcontroller in embedded systems ap-

plications due to being widely available, and having many variants with different

peripherals.

The power prediction method for the ACSL ALU is based on using an 8051 In-

struction Set Simulator (ISS) to run the programs, and analysing their instruction

trace to extract the number of ALU related instructions. This also provides the

information on the number of times each ALU operation is used by the instruc-

tions during the execution of the program on the 8051. The average power of the

ALU is then calculated by multiplying this number by the power consumption

associated with each operation. This method can estimate the power with less

than 1% error, and over 100 times faster than the gate-level simulation. Consid-

ering that the ALU is quite a small component in the processor core, when this

method is applied to the entire core the speedup will be much higher.

The novelty of this work lies in the fact that in other methods the processor hard-

ware is designed and implemented without considering the power predictability

of the final circuit. The accuracy of these methods is affected by the fact that

there is a high dependency of the power consumption on the input data profile

which is often unknown at design time. As a result, it is hard to capture the

behaviour of these circuits in terms of power to develop accurate power models.

In the second part of the thesis, an average-case processor energy model for

the Insertion sort algorithm is proposed. This model is based on the average

number of comparisons in the sorting algorithm that is calculated using MOdular

Quantitative Analysis (MOQA).

MOQA is a high level methodology for static average-case analysis of the program
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codes. This methodology enables the prediction of the average number of basic

steps during the execution of a program which facilitates the estimation of the

complexity measures such as average time or average power consumption.

The average-case analysis of the design metrics in embedded systems is important

because it provides useful insight about the typical behaviour of the system, and

complements the worst-case information to help the designer in taking better

strategies in implementing an efficient system.

The energy model is built based on the average number of times that each part

of the program code is repeated during the execution on the proceesor core, and

the energy consumption of each part. In this work, the parameters of the energy

model are determined for the LEON3 processor core, but the model is general

and can be used for any processor.

This energy model enables the static estimation of the average-case processor

energy consumption for the Insertion sort program for any given size of the input

list. The accuracy and speedup of the model has been evaluated for the LEON3

processor through the power meaurement experiments. The model achieves high

accuracy, and estimates the average energy in a fraction of a second in compare

with gate-level simulation method which can take days or weeks to be run for a

reasonable number of input samples.

1.4 Structure of the Thesis

The structure of the chapters in this thesis is as follows: In Chapter 2, the

previous work in processor power estimation area presented in the literature is

reviewed. In Chapter 3, the design concept of the Asynchronous Charge Sharing

Logic (ACSL) is introduced, and the structure and general operation of the ACSL

circuits are described. In Chapter 4, the implementation of the 8051 Arithmetic
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Logic Unit in ACSL is explained. In Chapter 5, the power prediction method

for the 8051 ACSL ALU is presented. Finally in Chapter 6, the average-case

processor energy model for the Insertion sort algorithm is described.
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Chapter 2

Processor Power Estimation

Techniques

In this chapter, different methods proposed in the literature for processor power

estimation are explored. In general, every processor power estimation method is

composed of two parts: model and input. The model is independent from the

program code, and can be built in different levels of abstraction. The input is

derived from the execution of the program code. The energy or power is estimated

by applying the input to the model.

The power estimation methods described in this chapter are classified in five

categories: methods based on program execution profile, architectural simulation,

system-level models, hardware performance counters and on-chip temperature

profile. Some of these methods work at design time, and are suitable for early

stage architectural exploration. Some other methods work at runtime, and are

useful for developing power efficient application software. The most prominent

works presented in the literature in each category are explained.

The structure of this chapter is as follows: In Section 2.1, the methods based

on program execution profile are described. In Section 2.2, the methods based

10
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on architectural parameters are presented. In Section 2.3, the methods using

system-level models are investigated. The performance counter based methods

and thermal profile based methods are introduced in Section 2.4 and Section 2.5

respectively.

2.1 Methods Based on Program Execution Pro-

file

Processor power estimation methods based on the program execution profile use

a group of instructions as the basic atomic unit. The generic approach is to

characterize the energy consumption of each instruction, and then analyse the

code to get the instruction counts. It is also possible to do the characteriza-

tion and profling at a higher level of granularity e.g. functions or traces. Some

approaches predict the functional unit access counts by using program analysis

or from instruction access counts. Subsequently, they compute the total energy

by multiplying the access counts with pre-characterized energy values. In the

following, each of these approaches are explained in more detail.

2.1.1 Instruction-Level Methods

All instruction-level approaches have a similar structure. In the first phase of

these approaches, a profling run performs which executes different pieces of code

repeatedly, and measures their energy usage. This allows the estimation of the

energy associated with the set of instructions. In the second phase, some counters

are embedded in the software that gives the execution frequency of each basic

block. In the final phase, the total energy consumption is obtained by multiplying

the number of executed instructions of each type by their corresponding energy
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values. The estimated energy is divided by the execution time to yield the average

power.

2.1.1.1 Data Independent Approaches

In [29], a tool called Jouletrack is proposed to estimate the processor power at

the basic block/instruction level. This tool also calculates the processor leakage

power. In [41] a similar approach is taken but the leakage power is not modeled

explicitly. Their model considers all sources of power that cannot be classified as

dynamic power as a lumped constant.

In [42], the instruction-level profiling method is extended to VLIW processors.

These processors execute a group of instructions as a bundle, therefore, the pro-

cessor power is characterized at the level of each bundle of instructions. In

this way, the power consumed by an instruction depends on three factors : op-

code/operands of the instruction, the pipeline/circuit state, and the other instruc-

tions in the bundle. In [43], a simpler approach is taken for VLIW processors. In

this approach, the instruction trace is passed to an architectural power simulator

which is calibrated with RTL models.

In [30], a very low level method for modeling the timing and power of C programs

is proposed. In the proposed method, every statement in the C language is

broken to a set of micro-instructions which resembles a very primitive RISC

ISA. The power consumption is characterized for each such micro-instruction.

Subsequently, the software counters are embedded in a block of C statements for

each high level construct such as a switch case or a loop statement. The total

power is estimated based on the access counts.

Average-Case Analysis of Power
Consumption in Embedded Systems

12 Nasim Zeinolabedini



2. Processor Power Estimation
Techniques

2.1 Methods Based on Program Execution
Profile

2.1.1.2 Semi-Data Dependent Approaches

For the first time, a systematic approach for the estimation of the processor

power during the execution of the instructions, with accounting for the inter-

instruction effects, was proposed in [32, 44, 31]. In these works, three types of

inter-instruction effects are considered: pipeline stalls, change in circuit state and

cache misses. The average number of switching bits for every consecutive pair of

instructions are measured through the extensive simulations. The other effects

are modeled by adding a constant to the total instruction power/energy. Consid-

ering all the above parameters, an instruction-level power model is presented to

estimate the total energy for the processor (EP ) during the execution of a given

program (P ).

EP =
∑

i

(Bi ∗Ni) +
∑
i,j

(Oi,j ∗Ni,j) +
∑

k

Ek (2.1)

where for each instruction i, Bi is the base cost, and Ni is the number of times it

is executed. For each pair of consecutive instructions (i, j), Oi,j is the circuit state

overhead, and Ni,j is the number of times the pair is executed. Ek is the energy

contribution of the other inter-instruction effects, k (stalls and cache misses), that

occures during the execution of the program.

In [45], this energy model is slightly simplified by using a constant power dissipa-

tion per instruction. This includes the effect of some of the inter-instruction fac-

tors. In [46], the impact of instructions inter-dependency on energy is accounted

for based on characterizing the energy for pairs of instructions, and building a

fine-grain 2-instruction-based model.
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2.1.1.3 Data Dependent Approaches

In [33], the work of [31] has been extended by introducing a new instruction

model able to consider the influence of the operands distribution on the processor

power consumption. This model tries to relate the instruction power usage to the

internal switching activity induced by operands. The power model in this work

(given in Equation 2.2) is developed for the execution unit (EX+MEM stage)

which is the main source of the power consumption in the processor, but it is

extensible to the entire microprocessor.

Power = K1n1 +K2n2 + ...+Knnn +K0 + Cij (2.2)

In this model, coefficients Ki and variables ni are respectively the weights and

the number of transitions of the activity indices. Activity indices are the elements

inside the processor that have a strong impact on the power consumption. The

activity indices used in this work are the data write bus, address bus, and ALU

bus. Ki and ni parameters represent the average effect of the operands on the

power, and are determined using uniformly distributed operands. K0 is the power

cost for null switching activity on activity indices. It is the minimum cost for the

particular instruction. Cij is the changing-instruction cost between instructions

i and j. That is a fixed cost due to the changing in the datapath configuration

because of changing instruction. Cij must be added to j instruction when it is

preceded by i instruction.

In [34], an automated method is proposed for characterizing the energy usage of

the instructions. In this work, the energy per cycle is decomposed into four parts:

instruction-dependent energy dissipation, data-dependent energy dissipation, en-

ergy dissipation of the cache system and the dissipation of all external components

including the bus system, memories, and peripherals. Since a complete character-
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ization of the whole range of values of the operands is only theoretically possible,

the data-dependent energy consumption is modeled in this work by means of

linear regression.

In [47], a multi-granularity power model is proposed at functional, architectural

and cycle-accurate micro-architectural stages of the design flow. These mod-

els offer a designer the flexibility to trade off estimation accuracy with estima-

tion/simulation effort. A 3-D power contribution LUT is created that holds the

power dissipation for each instruction, at each pipeline stage, for every functional

unit in the processor. For improved accuracy, a set of three such 3-D LUTs is

created, corresponding to average power, minimum power and maximum power

depending on the operands values.

2.1.2 Function-Level Methods

Function-level power estimation approaches are based on the processor power

characterization at the level of functions and library calls. In these approaches,

number of executions for the frequently invoked functions are counted by putting

software counters at their entry point.

In [35, 48], a “power data bank” is built which stores the power information of the

built-in library functions and basic instructions. In this work, the machine code

is decomposed into library functions and user-defined functions. Then program

profiling/tracing tools are used to get the execution information of the target

software. Next, the total energy consumption and execution time is evaluated

based on the “power data bank”, and their ratio is taken as the average power.

In [36], two kinds of macro-modeling techniques for high-level energy estima-

tion for software functions are proposed: Complexity-based macro-modeling and

profiling-based macro-modeling. Both of the techniques are based on linear re-
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gression models. Complexity-based macro-modeling uses the algorithmic com-

plexity of the functions to determine the macro-model template. For example, for

an algorithm which has an average-case complexity of O(n2), the energy macro-

model is:

E = c1 + c2n+ c3n
2 (2.3)

where n is the input size. The regression analysis is used along with low-level

software power measurements to obtain the unknown coefficients cis.

In profiling-based macro-modeling, internal profiling statistics for the functions

are used as parameters in the energy macro-models. Several variants of profiling-

based macro-modeling is proposed, starting from simple basic-block profiling,

to different lengths of basic-block correlation profiling and Ball-Larus path [49]

correlation profiling.

[37] presents a systematic automated methodology for macro-model generation

for frequently used functions/libraries. This work is based on the observation that

large embedded software programs are rarely written from scratch, and a large

fraction of the execution time is due to the reused software components (includ-

ing embedded-operating systems, middleware, run-time libraries, domain-specific

algorithm libraries, etc.). The energy consumption macro-models for these func-

tions/libraries is generated by determining the right set of parameters, collecting

data through simulation, and building the models using symbolic regression.

2.1.3 Functional Unit Based Methods

In this type of approach, the activity of the relevant functional units in the proces-

sor (e.g. fetch unit, processing unit, clock network, internal memory and others)

during the execution of the code is extracted as task parameters by analysing
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the program code. The total energy is computed by applying these task param-

eters to arithmetic models developed for the functional units. This method is

also known as Functional Level Power Analysis (FLPA). Figure 2.1 depicts the

principal of this approach.

In the work presented in [50, 38, 51, 52], a tool called SoftExplorer is developed to

perform power and energy estimation of generic C programs for DSP applications

at both assembly level and C level. This work is based on three models: a pro-

cessor model, an algorithm model and a compiler model. To perform estimation

from the assembly code, only the two former models are needed. The model for

the processor represents the way the processor’s power consumption varies with

its activity. The model for the algorithm links the algorithm with the activity it

induces in the processor. To perform estimation at the algorithmic level (C level),

a model for the compiler is also needed to take the effect of compiler behavior on

the assembly code into account.

Figure 2.1: The basic FLPA principle
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The processor model is built by identifying the functional units, and characteriz-

ing the energy consumption of each unit through the physical measurements. The

algorithm model extracts the values of a few parameters from the code. These

values are injected in the processor model to estimate the power consumption.

The compiler model represents the behavior of the compiler, and how it will allow

the algorithm to use the processor’s resources.

Two sets of parameters are defined in this work: architectural and algorithmic

parameters. The architectural parameter values depend on the processor configu-

ration settled by the designer. This includes: clock frequency (F), memory mode

(MM), data mapping (DM) and data width (W) during Direct Memory Access

(DMA). The algorithmic parameters depend on the code execution, and represent

the activity rate of the functional units and their interactions. Five algorithmic

parameters are identified: fetch rate (α), execution rate (β), cache miss rate (γ),

activity rate between the data memory controller and the DMA (ε) and Pipeline

Stall Rate (PSR).

In [39, 53], an Energy-Aware Compilation (EAC) framework is presented that

estimates and optimizes energy consumption of a given code, taking as input the

energy/performance constraints, architectural and technological parameters and

energy models. The energy consumption in this work has been modeled for data-

path, clock network, buses, caches, and main memory. Some of the application-

dependent parameters extracted from the code using the compiler are: data-path

accesses, number of execution cycles, bus transactions, cache misses and memory

transactions.

In [54], the power consumption of the processor functional blocks has been mod-

eled in terms of parameterized arithmetic model functions. A parser which allows

to analyze automatically the assembler codes has been implemented. This parser

yields the input parameters of the arithmetic functions, e.g. the achieved degree
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of parallelism or the kind and number of memory accesses.

In [40], a hybrid method for processor power estimation is presented which com-

bines FLPA and instruction-level modeling approaches. In this work, an instruc-

tion dependent part is added to the FLPA in order to achieve high estimation

accuracy.

2.2 Methods Based on Architectural Parame-

ters

The generic approach for power estimation at architectural-level consists of the

following steps: First, the load capacitance for each functional unit in the proces-

sor is calculated using either circuit simulation, analytic equations or empirical

data. Next, the functional unit activity factor (α) is generated through simula-

tion. Finally, the total power is computed using Equation 2.4.

P = αCV 2f (2.4)

In [3], a framework called Wattch is presented for architectural-level power analy-

sis and optimization. In this framework different blocks are classified by their

structure and functionality. A suit of parameterized power models for different

hardware structures and on per-cycle resource usage counts is generated through

cycle-level simulation. Some of these hardware structures include instruction

cache, branch predictor, wakeup logic, register file, instruction window and the

global clock. Wattch calculates the access counts for functional units using Sim-

pleScalar simulator.

In [7], a new power, area, and timing modeling framework called McPAT (Multi-

core Power, Area, and Timing) is introduced which advances the state of the art
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in several directions in compared to Wattch. First, McPAT enables architects

to use new metrics combining performance with both power and area such as

energy-delay-area2 product (EDA2P ) and energy-delay-area product (EDAP ),

which are useful to quantify the cost of new architectural ideas. Second, Mc-

PAT models more than just dynamic power, which is critical in deep-submicron

technologies since static power has become comparable to dynamic power. All

three types of power dissipation (dynamic, static, and short-circuit power) are

modeled to give a complete view of the power envelope of multicore processors.

Third, McPAT provides a complete, integrated solution for multithreaded and

multicore/manycore processor power. Fourth, McPAT handles technologies that

can no longer be modeled by the linear scaling assumptions used by Wattch.

In [55, 6], an architecture-level power estimation framework called SimplePower

is presented which also takes the impact of input values on power consumption

into account in compare with previously mentioned architecture-level models that

only consider the number of accesses to the functional units.

2.3 Methods Based on System-Level Models

System-level models are communication-oriented models which describe a system

of processing elements and the interactions between them. An important subset of

such kind of models are Transaction Level Models (TLMs) [8]. TLMs model each

message or event between processing blocks as a basic transaction. SystemC [56]

is one of the most common TLM-based languages for high-level modeling which

contains a basic event-driven simulation engine (kernel), and provides an interface

for modeling system-level designs.

Most of the works with system-level models are presented to estimate power con-

sumption for SystemC-based designs. The first set of approaches modify the
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SystemC kernel. These approaches are more generic and user-friendly, but they

are not very flexible. The second set of approaches use additional custom Applica-

tion Program Interfaces (APIs) to capture events relevant to power consumption.

These approaches make no modification to the kernel.

2.3.1 Kernel Based Approaches

In [11, 10], a framework is presented for the estimation of area, power and delay

characteristics of hardware systems modeled at the Register-Transfer Level (RTL)

using the SystemC modeling language. The framework also allows for dynamic

power profiling and analysis based on the state of the modeled circuit. In this

work, SystemC kernel is modified to calculate the number of 0-to-1 transitions

at input and output ports of each component. The power consumption is then

calculated using the number of input and output transitions and the type of the

component.

[12] introduces a modeling and simulation technique that extends TLM method

and modifies the SystemC kernel to support multi-accuracy models and power

estimation. This allows the designer to trade off between simulation accuracy

and speed at runtime. Another work in this area is presented in [57] for designs

that have voltage scaling. [58] propose a tool called PowerSim on the same line.

PowerSC [59] is a commercial tool that supports power estimation for SystemC,

and PowerKernel [60] is one of the prominent open source tools in this domain.

2.3.2 API Based Approaches

In [13], a high-level power estimation methodology based on SystemC and Aspect

Oriented Programming (AOP) is proposed. AspectC++ [61] is used to define

special power-aware aspects. These aspects can be viewed as configuration files to
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link the power aware APIs and SystemC functionality model. This methodology

supports multi-macro-models and multi-accuracy power estimation.

In [62, 14], a VHDL to SystemC translator is described which can insert power

simulation routines in the SystemC code. In contrast to previous approaches, the

API calls in this work do not need input values, and estimate the average number

of transitions per operation using the stochastic methods. For this reason, they

are significantly faster.

2.3.3 Other Approaches

In [63, 64, 65, 66], a system-level methodology for energy and performance esti-

mation of System-on-Chip (SOC) architectures is proposed. This methodology

operates at a very high abstraction level, namely the functional untimed level. For

this reason it has been called Funtime. Funtime approach achieves more speed

in compare to TLM methods since it needs no architectural-level simulation, and

all information is inferred from functional level.

Funtime consists of three layers. The bottom layer relies on building a library

of IP energy and performance models, where each IP’s functionality is pre-

characterized through gate-level simulation. At the intermediate layer, appli-

cations are run and profiled on a development host (a common PC). This allows

to create a trace of the executed source code, which is then mapped to the assem-

bly code of the target architecture. Once the target trace is inferred, energy and

performance figures can be extracted by using the IP models from the bottom

layer. The top layer is a refinement layer that accounts for the presence of caches

and for the fact that multiple applications normally run concurrently, share the

same resources and are controlled by an operating system. Statistical models are

built to account for the impact of each of these components.
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2.4 Performance Counter Based Methods

Hardware performance counters are a set of special-purpose registers built into

modern microprocessors to store statistics about the activity of different sub-

systems in the processor. These registers are typically readable by kernel-level or

user-level software entities.

Assuming that vector V represents the sampled values of performance counters,

the total power can be computed using Equation 2.5.

P = F (V ) = VW + Pidle (2.5)

In this equation, the power (P ) is a function (F ) of the sampled performance

counter values. W is a vector of weights, where Wi represents the weight associ-

ated with ith performance counter. Pidle represents the static power.

Three different approaches are proposed in the literature for determining func-

tion F . The first set of approaches are purely mathematical. They view the

problem as an optimization problem, and try to find a least squares based es-

timate. The works presented in [15, 67, 68] are in this category. In the second

set of approaches, the Wi coefficients are determined by measuring the total

power dissipated by a micro-benchmark that exclusively generates events for the

ith performance counter. The examples of using this approach is presented in

[17, 18, 19]. The third approach combines purely mathematical approaches with

with micro-benchmark based approaches. In this type of approach, additional

constraints are enforced in the optimization process by taking inputs from micro-

benchmark based methods or data from architectural simulators. [20, 21, 22] are

in this group.
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2.5 Thermal Profile Based Methods

In this type of method, the power estimation is based on the link between the

power consumption and the temperature of a die. The problem of finding the

power consumption map of a die, given the temperature map is known as the

Inverse Heat Conduction Probem (IHCP) [23]. This problem can be formulated

according to Equation 2.6.

P = AT + C
dT

dt
(2.6)

Where P and T are column vectors representing the power and temperature of

each core, and C is a diagonal matrix which contains the thermal capacitance

of each node. The challenge is to estimate the matrix A which is called the

conductance matrix.

The first step to solve the IHCP problem is to collect the temperature data. This

can be done either through an IR (InfraRed) photograph of a die [24, 25, 27], or

using embedded performance counter based thermal sensors [26]. In either case,

the same mathematical techniques need to be used. The first set of approaches

try to solve the Equation 2.6 by assuming that the temperature values are exact.

The work presented in [24, 25] is based on this approach. The second set of

approaches consider some thermal noise which can arise due to the limits of heat

transfer or measurement error. [27, 28] are in this category.

2.6 Summary

In this chapter, the most important processor power estimation methods proposed

in the literature are investigated. Some of these methods work at design time,

and are useful for early stage architectural exploration. Some other methods work
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at runtime, and are suitable for developing power efficient application software.

The methods are classified in five categories, and the most prominent works in

each category are described. The methods in these categories are based on pro-

gram execution profile, architectural simulation, system-level models, hardware

performance counters and on-chip temperature profile.
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Chapter 3

Asynchronous Charge Sharing

Logic (ACSL)

In this chapter, the design concept of the Asynchronous Charge Sharing Logic

(ACSL) is introduced. ACSL is a dynamic design style which is proposed in [69] as

an ultra-low power methodology. ACSL circuits have two main properties. The

first property is that they consume lower power in comparison with the other

dynamic circuits, and the second property is that their power usage is almost

constant and independent from the input patterns. This second property makes

the ACSL circuits desirable in terms of power prediction. This property is the

base of the power prediction method that is proposed in Chapter 5.

The structure of this chapter is as follows: in Section 3.1, the background infor-

mation that is needed for understanding the ACSL design concept is presented.

This information includes the description of the asynchronous logic, dynamic

logic, and adiabatic differential logic family. In Section 3.2, the structure, general

operation and circuit design of the ACSL is described. ACSL has been developed

by combining an adiabatic differential logic with charge sharing technology. A

modified version of ACSL called Latch-less ACSL (LACSL) is also introduced that
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provides extremly low variation in the power consumption for the applications

that data independency of power is crucial for their operation.

3.1 Background

3.1.1 Asynchronous vs. Synchronous Logic

It is widely accepted that a single clock (global clock) scheme would not ad-

just to the nano-scaled Very Large Scale Integration (VLSI) circuits and, thus

asynchronous architectures (or hybrid) emerge as potential alternatives [70]. In

largely conventional systems such as modern system-on-chip designs, global clock

distribution has become such a challenge that some systems have separate clocks

for each processor and exchange data asynchronously between them, referred to

as Globally Asynchronous Locally Synchronous (GALS) [71].

As shown in Figure 3.1 (a), the synchronous design consists of the several stages

of the combinational logic which are separated by the memory blocks (registers)

that transfer signals from one stage to the next. Each memory block is controlled

by the clock signal (CLK) which is distributed through the clock tree. The whole

system is under the control of this global clock. However, the essential clock tree

results in large overhead in the area and the power consumption [72]. Other than

this, the speed of the system is constrained by the the worst-case delay of the

critical path.

Rather than using the global clock signal, the asynchronous circuits use a pro-

tocol called handshaking [73]. The basic structure of an asynchronous circuit is

exhibited in Figure 3.1 (b). In this circuit, the flow of the data is controlled by

the pipeline controllers (CTL) through the handshaking signals represented by

ack and req. The controllers detect the completion of each stage, and produce

Average-Case Analysis of Power
Consumption in Embedded Systems

27 Nasim Zeinolabedini



3. Asynchronous Charge Sharing
Logic (ACSL) 3.1 Background

Figure 3.1: Synchronous Architecture vs. Asynchronous Architecture [69]

the ack signal which is used to trigger the operation of the next stage.

Unlike the conventional synchronous logic whose operation speed is determined

by global worst-case latency, in asynchronous designs the speed depends on the

actual local latencies. In other words, an asynchronous circuit has the potential

to run at the highest possible speed. Moreover, not having to distribute a global

clock leads to power savings, since the effective distribution of such a clock can

cost 40% to 50% of the power in a modern digital system [74].

3.1.2 Dynamic vs. Static Logic

Most digital logic circuits are implemented using static CMOS logic gates for

the combinational functions. Static gates always provide a definite output based

on the current input, and update that output as soon as the input changes. As
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shown in Figure 3.2 (a), the static circuits are made of NMOS and PMOS logic

blocks. These blocks are dual, and for any given input only one of them creates

a path between output to either the power source or the ground [75].

Figure 3.2: Static Logic vs. Dynamic Logic

Dynamic logic refers to the logic gates where the gate does not drive the output

constantly. Instead, the output value is stored temporarily in stray and gate

capacitances. As shown in Figure 3.2 (b), a simple dynamic gate has just the

NMOS pull-down network in series with an evaluate NMOS transistor to ground.

There is no pull-up logic function, and just a single PMOS pre-charge transis-

tor connects the output to the power supply. The execution of these gates is

governed by a clock. When the clock goes low, the circuit goes to pre-charging

phase. In this phase, the pre-charge PMOS transistor pulls the output of the

gate high. When the clock goes high, the gate evaluates. In the evaluation phase,

if the NMOS pull-down network is satisfied, in series with the pull-down NMOS

transistor pulls the output low. If it is not satisfied, the output remains high due

to the gate capacitances [76].

Dynamic logic circuits are usually faster than static counterparts, and require less

surface area, but are more difficult to design. Static logic is slower because it has

twice the capacitive loading, higher thresholds, and uses slow PMOS transistors
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for logic. Dynamic logic can be harder to work with, but it may be the only

choice when increased processing speed is needed [77]. Dynamic logic has a

higher toggle rate than static logic [78] but the capacitative loads being toggled

are smaller [79], so the overall power consumption of dynamic logic may be higher

or lower depending on various tradeoffs.

3.1.3 Adiabatic Dynamic Differential Logic

Dynamic logic gates cannot directly be cascaded. The reason is that for the cor-

rect operation of the dynamic gates the inputs need to be monotonically rising

during the evaluation phase [80]. Considering the case where two gates are con-

nected directly, and the final output should take value ’1’, the pre-charged ’1’

on the intermediate node can partially discharge the output of the second gate

before the intermediate node takes its correct value.

Various designs are available to address this problem. Domino logic is one design

where each dynamic gate is followed by a static inverter. However this means that

all the intermediate nodes must be non-inverting, limiting the range of functions

that can be implemented. Thus dynamic logic families are often differential (dual-

rail), that is each signal is computed in both true and complemented form. There

are several dynamic differential CMOS logic types such as Dual-rail Domino logic

[81], DDCVSL (Dynamic Differential Cascode Voltage Switch Logic ) [82], SABL

(Sense Amplifier Based Logic) [83], etc.

Dynamic differential logic is well-known for its high speed property. However,

its drawaback is inevitably high energy dissipation. Adiabatic logic [84] is a new

type of low power differential logic which has drawn a lot of attention in recent

years. The term, adiabatic (meaning no heat transfer), comes from the fact that

an adiabatic process is one in which the total heat or energy in the system remains

constant.
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Adiabatic circuits recycle the energy after the evaluation through the Power Clock

Generator (PCG) which usually is a LC resonant circuit [85] or a switch capacitor

tank [86]. Power Clock Generator (PCG) is a replacement for DC supply (VDD)

that is used in the standard CMOS circuits. The general structure of the adiabatic

logic circuits is shown in Figure 3.3. The special design of the gate, and the use of

the Power Clock Generator (PCG) satisfies two fundamental rules that leads to

energy saving in the adiabatic logic. The first rule is never to turn on a transistor

when there is a voltage difference between the drain and source. The second rule

is never to turn off a transistor that has current flowing through it [84].

Figure 3.3: Basic Blocks of Adiabatic Logic System [85]

Figure 3.4 depicts three main styles in adiabatic logic family, which are Posi-

tive Feedback Adiabatic Logic (PFAL) [87], 2N-2N2P [88] and Efficient Charge

Recovery Logic (ECRL) [89]. All three structures are charged and discharged

through the Power Clock Generator (PCG).

Each PCG cycle consists of four intervals: evaluate, hold, recovery and wait. In

the evaluate interval, PCG is charged up to a certain value, usually VDD, and the

differential outputs are set as ’1’ or ’0’ depending on the function of the n-tree.

During the hold interval, outputs are kept stable for supplying the subsequent

gate with a stable input signal. In the recovery interval, PCG recycles the energy

stored in the circuit by discharging itself to zero. For symmetry resons, a wait

interval is also inserted [90].
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Figure 3.4: (a)General Schematic for PFAL, (b)General Schematic for 2N-2N2P,
(c)General Schematic for ECRL

PFAL has the lowest power dissipation and the best consistency of voltage scaling

in contrast to 2N-2N2P and ECRL [91]. However, the efficiency and performance

of adiabatic circuits is restricted by PCG. Sometimes it even minimizes the savings

achieved by adiabatic circuits itself. Also the area overhead due to resonant LC

circuits for PCG is high.

To avoid the effort of designing power clock generator for adiabatic circuits, a new

logic called Asynchronous Charge Sharing Logic (ACSL) is proposed in [69]. This

new logic achieves reduced power consumption as well as low power variability.

The ACSL design structure and general operation is explained in the next section.

3.2 Asynchronous Charge Sharing Logic

The main methodology of Asynchronous Charge Sharing Logic (ACSL) is to

combine PFAL adiabatic logic with charge sharing technology. The main body

of the PFAL is inherited by the ACSL, but the Power CLock Generator (PCG)

is replaced by the charge sharing mechanism.
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3.2.1 General Operation of ACSL

Figure 3.5: General Structure of ACSL [92]

The general architecture of the ACSL circuit is shown in Figure 3.5. The ACSL

circuit consists of some stages of logic which are controlled by an asynchronous

handshake. The internal structure of each stage is the same as the PFAL circuit

shown in Figure 3.4 (a). The charging, discharging and sharing are performed

by a power control block called VPC_Ctrl and a power sharing block called

VPC_Shr. The VPC_Ctrl enables the evaluation and discharging of the ACSL

circuit while the VPC_Shr is used to share the energy between two neighboring

stages [69].

In Figure 3.5, C1 is the capacitance load at VPC1, and C2 is the capacitance load

at VPC2. Before the charge sharing happens, the voltage of VPC1 is at VDD,

and the voltage of VPC2 is at zero. At the end of the charge sharing process

between VPC1 and VPC2, the voltage of both nodes equals to VDD/2 assuming

that C1 is the same as C2. After the charge sharing, VPC1 is discharged to zero,

and VPC2 is charged to full VDD. The waveforms for VPC signals are shown in

Figure 3.6 [69].

The stages of the ACSL circuit shown in Figure 3.5 make an asynchronous sys-

tem, and the VPC_Ctrl units control the flow of data between the stages. Firstly,
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Figure 3.6: VPC Signals Waveform [92]

VPC_Ctrl1 evaluates the logic block of stage 1 by charging the VPC1 to VDD.

The output of the stage 1 is latched to be available as the input to the stage

2. Then the VPC_Shr1 placed between stage 1 and stage 2 is switched on to

start the charge sharing process. Once VPC1 and VPC2 reach almost the same

level, nearly VDD/2, a Sharing Detector (SD) unit turns off the VPC_Shr1.

VPC_Ctrl2 is then activated to charge VPC2 from VDD/2 to full VDD. Mean-

while, VPC1 is discharged to zero by VPC_Ctrl1. This process repeats for the

following stages [69].

3.2.2 ACSL Circuit Design

Figure 3.7 shows the detailed architecture of a two stage ACSL circuit. The

evaluation and charge sharing in this circuit is controlled by an asynchronous

handshake. This handshake is based on the stage power clock, VPC(i) and three

other signals, Ctrl(i), Req(i) and SD(i). Ctrl(i) puts the gate logic in the evalu-

ation mode, and Req(i) indicates the completion of the stage. SD(i) triggers the

charge sharing between the stages.

A dynamic AND is used to generate Ctrl(i). Using the dynamic AND leads to

Ctrl(i) switching to low voltage immediately once Ctrl(i+1)_n becomes low. In

this way, activation of the next stage leads to the deactivation of the current stage.
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Figure 3.7: 2-Stage Architecture of The ACSL circuit [69]

A dynamic buffer which is controlled by the Ctrl(i) signal is used to accomplish

the completion detection. This buffer senses the VPC signal, and generates

the Req(i) signal. The completion of each stage triggers the activation of the

next stage. The signal transition diagram of the ACSL handshaking protocol is

exhibited in Figure 3.8. As seen in the figure, the control signal of an indivisual

stage is only valid when the control signal of two adjacent stages are low.

When the Ctrl(i) becomes low, the Sharing Detector (SD) gets active, and starts

the charge sharing between the stages. When both VPC s are higher than the

threshold voltage of the NMOS transistor, the signal SD becomes low. It indicates

that sharing operation can be stopped by switching off VPC_Shr.

The two-controlled latch placed between the stages is crucial for the correct op-

Figure 3.8: ACSL Handshaking Protocol [69]
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Figure 3.9: Schematic for (a) VPC_Shr, (b) VPC_Ctrl, (c) Dynamic AND, (d)
Sharing Detector, and (e) Two-controlled Latch [69]

eration of the ACSL. It assures that all the data from previous stage is loaded

before the sharing happens. The latch is accessed only when the signal Req(i)

is high and the signal Ctrl(i+1) is low, and it enters into hold mode as soon as

Ctrl(i+1) becomes high. In this way, the output is stored when the evaluation of

the current stage is complete, and stays unchanged when the next stage is in the

evaluation mode. The circuits of VPC_Shr, VPC_Ctrl, Dynamic AND, Sharing

Detector and two-controlled latch are all shown in Figure 3.9.

3.2.3 Latch-Less ACSL

Asynchronous Charge Sharing Logic (ACSL) has good power constancy, due to

the symmetry of the gates and the fact that the gates are completely discharged

in between executions. However, the latches which are necessary for the complete

discharge of the gates consume different amounts of power depending on whether

they are rewritten with the same or opposite value. In some applications like
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Figure 3.10: Block Diagram of Latch-Less ACSL [93]

cryptography, it is very important for the system to have extremly low power

variation to avoid power attacks [93]. In such cases, it is desirable to design

the circuit without the latches, since they are the only ACSL component with

intrinsic data dependence.

It is not practical to exclude the storage elements directly from ACSL, doing so

reduces the stability of the gates. without data retention devices, once the charge

sharing finishes, the input data for the next stage might not be valid (only at half

VDD), the consequent unequal voltage distribution not only slowing down the

evaluation speed but also leading to possible error occurrences like the write error

in SRAM cells [93].

To tackle this problem, interleaved charge sharing is considered, because it could

intuitively solve the voltage unbalance situation discussed above. The block di-

agram of the Latch-less ACSL (LACSL) is shown in Figure 3.10. It can be seen

that charge sharing occures between the Voltage Power Clocks (VPCi, i=1..4)

which are one stage apart instead of the adjacent stages. By doing this, input

data for each stage is always fully charged during the computation. Moreover, it

is found to be generally efficient in terms of performance, power consumption and

area. The main adjustment needed in LACSL is to re-design the VPC_Ctrl cir-

cuit to maintain the power-up situation across the stages. LACSL offers extremly
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low power variation, and thus very high predictability. In [93], a Montgomery

modular multiplier is developed using LACSL for cryptography applications.

3.2.4 Summary

The Asynchronous Charge Sharing Logic (ACSL) is a dynamic design style that

combines PFAL adiabatic logic family with charge sharing technology. The ACSL

has low power usage, and exhibits strong power predictability that is a useful

feature for high level power analysis.

In this chapter, the background information for understanding the ACSL design

concept is presented, and the structure and operation of the ACSL circuits are

explained. A variant of ACSL is also introducd that offers even more constant

power usage by excluding the latches from the ACSL structure.

In next chapter, the implementation of the Arithmetic Logic Unit (ALU) of 8051

microcontroller in ACSL is described. A power prediction method for this ALU is

proposed in Chapter 5. The prediction method is based on the data independency

of power consumption which is one of the main properties of ACSL circuits.
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Chapter 4

Implementation of 8051

Arithmetic Logic Unit (ALU) in

ACSL

In this chapter, the implementation of the 8051 Arithmetic Logic Unit (ALU)

in Asynchronous Charge Sharing Logic (ACSL) is described. The aim of this

implementation is using the property of ACSL in providing power predictibility

for the circuits. The ALU operations in ACSL show almost constant power usage

independent from the inputs. This property makes it possible to estimate the

power usage for the ALU only by knowing the number and type of the operations

it performs.

The 8051 [94] is an 8-bit Complex Instruction Set Computer (CISC) design, with

an instruction set optimised for manually developed assembly code. Unlike many

8-bit microcontroller architectures, the 8051 has a generic architecture available

commercially from many manufacturers [95, 96] and as an open-source soft core

[97]. It is a common microcontroller in embedded systems applications due to

being widely available, and having many variants with different peripherals. For
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this reason, the ALU of 8051 has been chosen in this work for the purpose of

power prediction.

The 8051 ALU operations are implemented individually through ACSL design

flow, and then integrated in the final structure of the ALU. The functionality

of the ACSL ALU is verified through simulation, and the analysis of the power,

delay and area of the circuit is performed.

The structure of this chapter is as follows: in Section 4.1, the design flow used

for implementing the ALU in ACSL is described. In Section 4.2, the 8051 ALU

operations are introduced, and in Section 4.3 the implementation of each of these

operations in ACSL is explained. In Section 4.4, the structure of the ALU and the

integration of the indivisual operations in the final design is described. In Section

4.5, the approach for verifying the functionality of the ALU design is discussed.

Finally in Section 4.6 the ACSL ALU design and performance characteristics has

been analysed, and the simulation results for power, delay and area of the design

are presented.

4.1 ACSL Design Flow

In order to implement a specific digital unit in ACSL, a systematic approach needs

to be followed. In the absence of such approach, the ACSL design has to be done

by either analog IC schematic capture tools or directly using SPICE netlists. In

both of these approaches, hand editing of the netlists is necessory. Thus, it is

difficult and time consuming to use these methods for the large circuits.

The approach followed in this work is based on using a structural style of Ver-

ilog hardware description language in which the circuit is described entirely using

module instances of sub-modules. A tool reads this Verilog description, and trans-

lates Verilog modules to SPICE sub-circuits, and Verilog module instances therein
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Table 4.1: ACSL Gates and Primitive Modules
acsl_addsub_cell acsl_buffer acsl_inv

Gates acsl_xor2 acsl_and2 acsl_half_adder
acsl_full_adder acsl_mux2 acsl_or2
acsl_or3 acsl_mux_2to1 acsl_muxoh16
sram_latch dynamic_and vpc_ctrl

Pirimitive completion_detector vpc_shr sharing_detector
Modules inv c_element nand2

and2 or2

to SPICE sub-circuit instances. SPICE implementations of the basic modules are

provided to the tool as a library to replace the behavioural descriptions.

Verilog is the standard language in many modern VLSI design flows. The main

advantage of using Verilog is that it can be simulated at high level very quickly,

allowing for easy logical verification of the circuit. Verilog is a high level language,

with a much more readable syntax than SPICE. Verilog has detailed warnings,

making mistakes in schematic capture, such as disconnected wires much more

obvious and quicker to find than waiting for SPICE convergence to fail, and

having to manually diagnose the problem.

The Verilog description of the ACSL circuit uses the basic ACSL gates and prim-

itive modules as building blocks to describe any particular circuit. These gates

and modules are listed in Table 4.1. The basic blocks in the structure of the

ACSL circuits are also shown in Figures 3.7 and 3.9 in the previous chapter. The

ACSL gates are used in each stage of the circuit to generate the outputs for the

next stage. The primitive modules are used to implement the handshaking and

charge sharing logic between the stages.

Handshaking and charge sharing for asynchronous stages are implemented in a

modular way. That is a Verilog module is constructed corresponding to one stage

of the handshake and an array of these is implemented to support all the stages.

The Synopsys VCS 1 simulator is used to verify the operation of the circuit that
1Version C-2009.06
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is described in Verilog. Behavioural models of ACSL gates and primitive modules

are coded to be used in the simulation at this stage.

Figure 4.1 shows the ACSL design flow. The entry of the flow is the Verilog

description of the ACSL circuit. Synopsys V2S 2 translates this Verilog structural

description to SPICE. V2S is a generic Verilog-to-SPICE translator. It is designed

to be used on structural Verilog, translating Verilog modules to SPICE sub-

circuits and Verilog module instances therein to SPICE subcircuit instances. A

custom translator generates the SPICE netlists for the ACSL gates which is

given to V2S to replace the behavioral descriptions. SPICE implementations

of primitive modules are also available to V2S as a library.

Figure 4.1: ACSL Design Flow

The custome translator is a simple compiler written in Python. It converts the

Verilog gate definitions to SPICE netlists, with a generic gate core (cross-coupled

inverters) and NMOS pull-up networks corresponding to the given logic functions.

The SPICE implementation resulted from this design flow can be simulated at

transistor level using Synopsys HSPICE tool to analyse the timing and power of

the design.

2Version 2009-7.0
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4.2 8051 ALU Operations

The Intel MCS-51 (commonly referred to as 8051) is a Harvard architecture, CISC

instruction set, single chip microcontroller (µC) series which was developed by

Intel in 1980 for use in embedded systems [98]. The 8051 is classified as an 8-bit

processor, because the internal registers and the internal data bus are 8-bit wide.

However, in addition to the operations on 8-bit (byte) data, the ALU of 8051 can

perform operations on bit, nybble (4-bit), and double-byte (16-bit) in a limited

way [99].

The ALU of 8051 microcontroller can perform a set of arithmetic, logical and

shift operations. These operations are shown in Table 4.2.

Arithmetic operations are add, subtract, multiply and divide. Since the numbers

are in 2’s complement, the add and subtract operations are suitable for both

signed and unsigned operands. As well as 8-bit additions, 16-bit plus 8-bit addi-

tions are also supported for address calculations. The multiply and divide opera-

tions are unsigned. Having multiply and especially divide instructions contrasts

to many other microcontrollers which require the user to implement both or just

divide in software, or provide separate hardware outside the ALU or processor

core for these operations.

Three flags are set based on arithmetic function: carry (CY), auxiliary carry

(AC) and overflow (OV). The auxiliary carry is used as a half carry, being the

carry out associated with the 4th bit of the result. This is used in Binary-Coded

Table 4.2: 8051 ALU Operations
Arithmetic
Operations

Logical
Operations

Shift
Operations

Other
Operations

Add NOT RL XCH(Exchange)
Subtract AND RLC DA(Decimal Adjust)
Multiply OR RR NOP(No Operation)
Divide XOR RRC
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Decimal (BCD) arithmetic operations. The overflow flag is set when the result

has overflowed in a signed manner (unsigned overflow is the same as carry).

Logic and shift operations are also provided. Logical operations are AND, OR,

XOR and NOT. Shift operations are in the form of rotations (cyclical), allowing

rotating left or right (RL or RR) of the 8-bit input operand by itself or through

both the operand and the carry flag (RLC or RRC). An exchange operation is

also available to swap the low order nybbles of two 8-bit inputs.

Additionally a Decimal Adjust operation is provided to allow for BCD additions.

This assumes a packed BCD format. In this format, each nybble of a byte repre-

sents one BCD digit. Decimal Adjust is designed to be used after a binary add

instruction, and corrects each nybble for BCD operation based on half carry and

carry flag.

NOP (No Operation) is provided to be used when no other operation is needed to

perform. This means that when NOP is selected, ALU passes the input operands

and flags to the outputs without any change.

4.3 Implementation of the ALU Operations in

ACSL

The ACSL design flow described in Section 4.1 has been used to implement the

8051 ALU operations. Unlike many 8-bit microcontroller architectures, the 8051

architecture is a generic architecture available commercially from many manu-

facturers. The ALU operations in this work are in reference to programming

manuals, both the original from Intel [94] and the manuals from clone manufac-

turers [95, 96]. The interfaces of the ALU for this work resemble the ALU of the

opencores.org 8051 [97], an open-source soft-core 8051. In this ALU, there are 3
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input bytes and 2 output bytes, as well as flags.

4.3.1 Addition and Subtraction Operations

The 8051 ADD, ADDC and SUBB instructions are used for addition and subtrac-

tion operations. The ADD instruction adds a byte value to the accumulator and

stores the results back in the accumulator. The ADDC instruction adds a byte

value and the value of the carry flag to the accumulator. The SUBB instruction

subtracts the specified byte variable and the carry flag from the accumulator.

The SUBB instruction sets the carry flag if a borrow is required for bit 7 of the

result. If no borrow is required, the carry flag is cleared [96].

In addition to these 3 instructions, 8051 also has some other instructions which

need to use ALU for addition or subtraction as a part of their execution. For

example, an addition is required for calculating the destination address for the

jump (JMP) instruction. To satisfy the requirements of all of these instructions,

the 8051 ALU needs to support 16-bit plus 8-bit addition and subtraction.

A ripple carry adder circuit is used to implement addition and subtraction oper-

ations as shown in Figure 4.2. This circuit takes a 16-bit number (A), an 8-bit

number (B) and carry-in (Ci) signal as the inputs, and generates a 16-bit num-

ber (F), carry-out (Co), auxiliary carry (AC), and overflow (Ov) signals as the

outputs. The input signal (Sub) determines wheter addition or subtraction needs

to take place. Depending on which operation is selected, either (A+B+Ci) or

(A-B-Ci) are generated as the result on the output (F), and the flags are set

accordingly.

The main 8-bit result is computed using 8 XOR gates and full adders as usual

for 2’s complement. The 8051 carry flag is defined as always active high. The

half carry signal is generated from the middle carry of the array. The overflow
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Figure 4.2: ACSL 8051 Add/Subtract Circuit

flag, being defined as overflow of a 2’s complement signed number, is calculated

as the XOR of the 7th and final carry signals.

For the 16-bit plus 8-bit add and subtract, 8 full-adders are used in parallel with

the initial array to do the required operation on the high order 8 bits. In case

of addition these full adders compute the value of the A[15:8]+1, and in case of

subtraction, they compute the value of the A[15:8]-1. The final result is selected

using a multiplexer based on (Co) flag which is the carry or borrow of the add or

subtract operation on the lower 8 bits. The add-subtract circuit thus totals 11

stages of asynchronous logic: 1 set-up, 8 computation, 1 for flags generation, and

1 for high multiplexer.

4.3.2 Multiplication Operation

The 8051 MUL instruction multiplies the unsigned 8-bit integer in the accumu-

lator and the unsigned 8-bit integer in the B register producing a 16-bit product.

The low-order byte of the product is returned in the accumulator. The high-order

byte of the product is returned in the B register. The overflow (OV) flag is set if

the product is greater than 255 (0FFh), otherwise it is cleared [96].
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Figure 4.3: ACSL 8051 Multiplier Circuit

Figure 4.3 shows the implementation of multiplication operation in ACSL. The

circuit takes two 8-bit numbers (A,B) as the input, and generates a 16-bit output

(P), and the overflow flag.

An array multiplier [100] is used to implement multiplication. The array mul-
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tiplier was chosen since its rectangular array shape allows effective balanced

scheduling of ACSL stages, as required for smooth and effective sharing.

A 7-bit by 8 layer rectangular array is used. That is, there are 8 sets of 8

AND gates generating partial products, and 8 sets of 7 full adders combining

these partial results (each adder being a generalised 3 to 2 reduction, as opposed

to a ripple carry arrangement). These are implemented as 1 stages of initial

partial product generation, followed by 8 stages of adder array with further partial

product generation in each stage.

For the first version of multiplier the final adder is implemented using a static rip-

ple carry adder. The intention was to avoid having a large number of single-gate

stages. However when tested this is found to result in very variable performance

(33.5% variablity in delay and 9.8% variability in power). Thus a second version

of the multiplier is implemented, using an ACSL ripple carry adder. The first

multiplier uses 9 stages of asynchronous logic plus the static final adder. There

is 1 stage of initial partial product generation and 8 stages of array. The second

version adds 7 stages of final adder to make 16 total stages.

4.3.3 Division Operation

The 8051 DIV instruction divides the unsigned 8-bit integer in the accumulator

by the unsigned 8-bit integer in register B. After the division, the quotient is

stored in the accumulator and the remainder is stored in the B register. If the

B register begins with a value of 00h the division operation is undefined, the

values of the accumulator and B register are undefined after the division, and the

overflow (OV) flag will be set indicating a division-by-zero error [96].

Figure 4.4 shows the Implementation of division operation in ACSL. The circuit

takes two 8-bit inputs (y, div), and generates two 8-bit outputs (q, rem), and the

Average-Case Analysis of Power
Consumption in Embedded Systems

48 Nasim Zeinolabedini



4. Implementation of 8051 Arithmetic
Logic Unit (ALU) in ACSL

4.3 Implementation of the ALU Operations
in ACSL

Figure 4.4: ACSL 8051 Division Circuit

overflow flag.

Division is achieved using a non-restoring array divider [101]. This divider is

similar to the standard repeated-subtraction algorithm, but avoids using multi-

plexers at each stage for restoration by selecting addition for the following stage

instead of subtraction when overflow occurs. The main divider array consists of

9 by 8-bit add/subtract units, 8 producing 1 bit each of the 8 quotient bits and

1 to correct the remainder.

The add/subtract units are ripple carry adders the same as the core of the circuit

in Figure 4.2. Each add/subtract unit has 1 stage of set-up and 8 stages of XOR

gates and full adders. A stage of ACSL multiplexers is then used to select between
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the corrected and uncorrected remainder.

The basic non-restoring divider array performs signed division. To compute the

unsigned division required for an 8051, an additional side logic path is provided to

handle divisors with the most significant bit set. A single subtraction and restore

is performed. A final multiplexer is used to select between the main result and

the big divisor result.

The whole circuit consists of 94 stages of asynchronous logic. The logic for han-

dling large stages consists of 11 stages: 1 stage of buffer, 1 stage of multiplexer

and 9 stages for a subtracter. The main division array consists of 72 stages, and

the correction adder and multiplexer totals 10 stages. The final multiplexer for

selecting between the big divisor and regular results is the last stage.

4.3.4 Logic Operations

The 8051 ANL, ORL and XRL instructions perform bitwise logical AND, OR

and XOR operations on the two byte operands, leaving the result in the first.

The CPL instruction performs logical NOT operation on the specified operand

[96].

In addition to the byte-level operations, the ANL, ORL and CPL instructions can

also be used for bit-level operations. Bit-level manipulations are very convenient

when it is necessary to set or reset a particular bit in internal RAM or Special

Function Registers (SFRs). A part of internal RAM and some SFRs are bit

addressable. When ANL or ORL are used in bit-level, one of their operands is

carry flag (CY) and the other operand is an addressable bit. The result of the

AND or OR operations on carry flag (CY) and the source bit is written back in

the carry flag (CY). The 8051 also provides the option that the inverted value of

the source bit is used in ANL or ORL instructions. The CPL when used in bit
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Figure 4.5: ACSL 8051 Logic Operations Circuits

level can complement the carry flag (CY) or any directly addresable bit [102].

As shown in the Figure 4.5, logic operations are implemented using a single

stage of the relevant ACSL gates in parallel. To provide support for bit-level

operations, an extra gate is used to operate on carry flag (CY) and an input bit.

For the cases that inverted value of the input bit needs to be used in AND or

OR operations, the required circuit is provided as a part of the implementation

for the shift operations. This will be discussed in the next section. The reason

for this approach is to maintain the compatibilty with the opencores 8051 design

[97].

4.3.5 Shift Operations

The 8051 RR, RL, RRC and RLC instructions perform right or left rotation (cycli-

cal shift) on the accumulator register by itself or through both the accumulator

and the carry flag [96].

As shown in the Figure 4.6, shift operations are implemented using a single stage
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Figure 4.6: ACSL 8051 Shift Operations Circuits

of ACSL buffers, wired appropriately. The rotation is applied to an 8-bit input

(A), and the result is placed on an 8-bit output (B).

For rotate right (RR), the least significant bit of A transfers to the most significant

bit of B. Similarly for rotate left (RL) the most significant bit of A transfers to the

least significant bit of B. For rotate right with carry (RRC), the least significant

bit of A transfers to carry flag, and the previous value of carry flag transfers to

the most significant bit of B. This also happens to rotate left with carry (RLC)

but in the other direction.

As mentioned in the previous section, the required logic for AND and OR opera-

tions between carry flag and inverted value of an input bit is provided along with

the RR and RL circuits as shown in the Figure 4.6.
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In the opencores 8051 design [97], the RLC operation also performs a nybble swap

on the second 8-bit input of the ALU and transfers the result to the second 8-bit

output. To keep the consistency with this design, ACSL circuit for the nybble

swap is also provided for the RLC operation. This operation is used by 8051

SWAP instruction which exchanges the low-order and high-order nybbles within

the accumulator [96].

4.3.6 Exchange Operation

The 8051 XCH instruction loads the accumulator with the byte value of the spec-

ified operand while simultaneously storing the previous contents of the accumu-

lator in the specified operand. The XCHD instruction exchanges the low-order

nybble of the accumulator with the low-order nybble of the specified internal

RAM location [96].

The exchange operation of the ALU provides support for the execution of XCH

and XCHD instructions. Figure 4.7 shows the circuit for implementation of the

exchange operation. This operation is implemented using a single stage of two

ACSL multiplexers in parallel.

Figure 4.7: ACSL 8051 Exchange Operation Circuit
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The circuit has two 8-bit inputs (A, B), and two 8-bit outputs (C, D). Based on

the value of a select input (Sel), either the 8 bits or only the low order 4 bits of

the inputs are swapped, and transfered to the outputs.

4.3.7 Decimal Adjust Operation

The 8051 DA instruction adjusts the eight-bit value in the accumulator resulting

from the earlier addition of two variables (each in packed-BCD format), producing

two four-bit digits. Any ADD or ADDC instruction may have been used to

perform the addition [96].

If accumulator bits 3-0 are greater than nine, or if the auxiliary carry flag (AC)

is one, six is added to the accumulator, producing the proper BCD digit in the

low-order nybble. This internal addition would set the carry flag if a carry-out of

the low-order four-bit field propagated through all high-order bits, but it would

not clear the carry flag otherwise [96].

If the carry flag is now set, or if the four high-order bits now exceed nine, these

high-order bits are incremented by six, producing the proper BCD digit in the

high-order nybble. Again, this would set the carry flag if there was a carry-out of

the high-order bits, but would not clear the carry. The carry flag thus indicates if

the sum of the original two BCD variables is greater than 100, allowing multiple

precision decimal addition [96].

Essentially, this instruction performs the decimal conversion by adding 00H, 06H,

60H, or 66H to the accumulator, depending on initial accumulator and the flags

values [96].

Figure 4.8 shows the circuit which implements decimal adjust operation in ACSL.

The input of this circuit is an 8-bit number (A), carry flag (CYi) and auxiliary

flag (AC), and the output is an 8-bit number (DA), and the new value generated
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Figure 4.8: ACSL 8051 Decima Adjust Operation Circuit

for the carry flag (CYo). Decimal adjustment is applied on (A) based on the flags

values.

For correcting the bottom nybble of the input, a 3-bit adder is used to add ’011’

to A[3:1]. Full adders in stages 1 to 3 implement this 3-bit adder. For the top

nybble of (A) two 4-bit adders are used to generate the possible corrections. The

first one consists of 4 full adders that add ’0110’ and carry of the bottom nybble

to the top nybble (A[7:4]), and the second one consists of 4 half adders that only

propagate carry of the bottom nybble to the top nyyble (A[7:4]). These two

adders work in parallel in stages 4 to 7 of the ACSL circuit. In the last stage

multiplexers are used to choose the correct output for each nybble based on the

flags values and carry-out signals of the adders. The least significant bit of the

input transfers to the output without change. Decimal adjust operation totals 9

stages of asynchronous logic.

4.3.8 No Operation

For the 8051 instructions that do not need to use ALU operations during their

execution, No Operation (NOP) is selected by the ALU operation selecting signal.
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As the result, the ALU inputs are transferred to the outputs without any change.

To implement No Operation (NOP) in ACSL, a single stage of buffers are used

that transfer two 8-bit inputs and 3 input flags to the outputs.

4.4 The ALU Structure

The operations introduced in the previous section are integrated into the ALU

structure as shown in Figure 4.9. The ALU has a central part consisting of the

operations implemented in ACSL. The circuit for each operation has a request

input (req) and an acknowledgement output (ack). Each operation starts by a

short pulse on the req signal, and activates the ack signal when it is finished.

Based on the value of the Opcode input, one of the operations is selected for the

execution, and the others stay inactive. The inputs of the inactive operations are

set to zero by the input multiplexers to avoid unwanted switching activity in the

non-operative mode. A 4-to-16 decoder is used to generate the request signals for

the operations based on the Opcode value. A multiplexer is used to transfer the

output of the selected operation to the output of the ALU. An OR gate generates

the Ack output of the ALU based on the ack outputs of all the operations.

The Add/Sub module provides support for 3 of the 8051 ALU operations. These 3

operations are ADD, SUBB and INC. An OR gate is used to generate the request

for Add/Sub module when any of these operations are selected by the Opcode.

Based on the opencores [97] implementation of 8051 ALU, the INC operation

is used for 16-bit increment or decrement depending on the value of the ALU

Carry-in flag (CYi). If this flag is high, this operation performs decrement, and

if it is low, increment takes place.

Since this ALU is implemented to be used inside a clock-based design of the 8051

microcontroller, it needs to start operating on each rising edge of the clock signal.
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Figure 4.9: The ALU Structure

Average-Case Analysis of Power
Consumption in Embedded Systems

57 Nasim Zeinolabedini



4. Implementation of 8051 Arithmetic
Logic Unit (ALU) in ACSL

4.5 Functional Verification of the ACSL
ALU

For this reason, a pulse module is used to enable the Decoder only for a short

time after the clock edge. In this way, the Decoder generates a short pulse on

the request signal of the operation that is selected by the Opcode. The selected

operation needs to finish, and produce the outputs before the next rising edge

of the clock. This can take up to 4 clock cycles for multiplication and division

operations in order to be compatible with opencores 8051 design [97].

A beneficial point of this design is that at any moment only one of the operations

is active, and this prevents the other operations to consume power. This is an

advantage over the conventional design of the ALU in which all the operations

start working in parallel when the input signals change.

4.5 Functional Verification of the ACSL ALU

The verification method used to verify the functionality of the ALU implemented

in ACSL is shown in Figure 4.10. The reference model for the correct functionality

is the opencores 8051 ALU [97] which is designed in Verilog hardware description

language in RTL level.

As the figure shows, the test vectors are applied to the inputs of both ACSL ALU

and the reference ALU at the same time, and their outputs are compared. If the

results are not the same, the simulation stops, and the bug details are reported.

The required modifications is then applied to the ACSL design in order to fix the

bug. This process repeats until the design passes all the tests successfully.

The opencores 8051 ALU [97] has a sequential implementation for the multipli-

cation and division operations. Therefore, this ALU has a clock input which

connects to these operations modules. A clock signal with 12 Mhz frequency has

been used in the simulation testbench, and the test vectors are applied to both

ALUs with reference to this clock. 12MHz clock frequency is one of the most
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Figure 4.10: Verification Method for ACSL 8051 ALU

common crystal frequencies used for the 8051 [103].

At each rising edge of the clock, the next test vector is applied, and the results

of the previous test vector are compared. The mutiplication and division in

opencores [97] design take 4 clock cycles to complete their computation. For this

reason, applying the next test vector and comparing the results are delayed for 4

cycles after these operations.

To simulate the Verilog and SPICE designs together, Synopsys HSIMplus 3

tool has been used. HSIM [104] is a SPICE simulator which provides better

speed vs. accuracy trade-off in compare to Synopsys HSPICE. HSIMplus enables

VCS/HSIM co-simulation that is useful for simulation of the designs that con-

sist of a combination of SPICE transistor-level circuit netlists and Verilog gate

or RTL-level digital modules. It provids an interface from HSIM simulator to

Synopsys VCS Verilog simulator [105]. This mechanism is shown in Figure 4.11.

3Version 2009.07.5
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Figure 4.11: HSIMplus Co-Simulation Environment

4.6 Performance Analysis of the ACSL ALU

The ALU implemented in ACSL has been analysed through simulation to extract

its main design and performance characteristics. Synopsys HSPICE 4 has been

used for simulating the SPICE netlist of the ALU which results from the design

flow described in Section 4.1. Figure 4.12 shows the inputs to the HSPICE tool

to perform this simulation.

Figure 4.12: HSPICE Simulation of the ACSL ALU

BSIM4 MOSFET model 5 has been used for the transistor level simulation. BSIM

(Berkeley Short-channel IGFET Model) [106] refers to a family of MOSFET
4Version G-2012.06
5Version 4.5
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transistor models for integrated circuit design. It also refers to the BSIM group

located in the Department of Electrical Engineering and Computer Sciences at

the University of California, Berkeley, that develops these models. Accurate

transistor models are needed for electronic circuit simulation, which in turn is

needed for integrated circuit design [107].

To analyse the ALU circuit, 160 test vectors are applied to the ALU inputs. This

consists of 10 test vectors for each ALU operation. The numbers for ALU inputs

are generated randomly with the uniform distribution. These vectors are applied

in reference to a 12Mhz clock signal similar to the experience described in Section

4.5.

The circuit for the ACSL ALU has been implemented using 45nm technology.

The power supply voltage is set to 1.0V, and the circuit is simulated for 25◦C

operating temperature. Table 4.3 summarizes these main parameters.

HSPICE simulation is performed for the transient analysis with 100ps computa-

tion interval time. The initial condition for the node values is set to zero. The

simulation took about 4 hours CPU 6 time to be run for all the test vectors.

The simulation results for power, delay and area of the ALU circuit are shown

in Table 4.4. The longest path delay in the table is associated with division

operation of the ALU. As mentioned in Section 4.3.3, the ACSL circuit for divi-

sion operation consists of 94 asynchronous stages which is more than any other

operation. This justifies having the largest delay for this operation. The ACSL

ALU longest path delay is still far less than the typical operating clock period

Table 4.3: Technology Parameters and Operating Conditions
Transistor Channel Length (L) 45nm
Power Supply Voltage (VDD) 1.0V
Operating Temperature 25◦C

6Dual-Core AMD Opteron(tm) Processor 1222 - 3000.0Mhz
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Table 4.4: Power, Delay and Area for ACSL 8051 ALU
Average Power (µw) 47.9209
Peak Power (mw) 1.5731
Longest Path Delay (ns) 12.94ns
Number of Transistors 18026

of 8051 microcontroller, so it makes the ALU sufficiently fast to work in typical

8051 frequency range.

The division and multiplication operations in opencores 8051 ALU [97] design

need 4 clock cycles to complete their operation. The ACSL ALU makes it possible

to run these operations only in one clock cycle, and this highly increases the speed

of the microcontroller for the codes containing a large number of MUL and DIV

instructions.

The average power and peak power resulted from HSPICE simulation are also

reported in Table 4.4. The area is reported in terms of number of transistors in

the design. A more detailed analysis of power, delay and area for each individual

operation of the ACSL ALU would be presented in Chapter 5.

4.7 Summary

The ACSL circuits offer power predictibility by ensuring that the power required

to complete an operation is independent of its inputs. The 8051 ALU is imple-

mented in ACSL to exploit this property for having a power predictable ALU

design. The indivisual ALU operations are implemented separately, and then

integrated in the final ALU structure. The functionality of the ALU is verified

through the simulation, and its design and performance charcteristics are anal-

ysed.

In next chapter, the power, delay and area are measured for each indivisual ALU

operation, and a power prediction method is presented to estimate the ACSL
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ALU power consumption for any given program code.
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Chapter 5

Power Prediction Method for

The 8051 ALU

In this chapter, a power prediction method for the 8051 ACSL ALU is presented.

The ACSL ALU operations have been analysed through the simulation to deter-

mine their design and performance characteristics. The power consumption of

these operations has a very small variability, and is almost independent from the

input patterns. This property makes it possible to predict the power of the ALU

only by knowing the number and type of the operations it performs. The 8051 is

chosen in this work because of its popularity in embedded system applications,

but the method can be applied to any processor.

The prediction method is based on using an 8051 Instruction Set Simulator (ISS)

to run the programs, and analyse their instruction trace to extract the number of

the ALU related instructions. This also provides the information on the number

of times each ALU operation is used by the instructions during the execution of

the program on the 8051. The average power of the ALU is then calculated using

this information. This method can estimate the power with high accuracy, and

over 100 times faster than the gate-level simulation and hundreds of thousends
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times faster than the transistor-level simulation.

The structure of this chapter is as follows: In Section 5.1, the power, delay and

area of the ACSL ALU operations are analysed using the transistor-level simula-

tion. In Section 5.2, the power prediction method is presented. In Section 5.3 the

presented method is used to predict the ALU power for a number of benchmark

programs, and the results are compared to the simulation-based methods in terms

of accuracy and speed.

5.1 Analysis of Power, Delay and Area for the

8051 ACSL ALU Operations

All the operations of the 8051 ACSL ALU have been analysed separately

through the simulation to extract the power, delay and area of each of them.

The Synopsys HSPICE 1 is used to simulate the ACSL circuit for each operation

in transistor level. The general set-up for this experiment is the same as what

described in 4.6. The BSIM4 MOSFET model for 45nm technology is used, and

the circuit is simulated for 1.0V power supply at 25◦C operating temperature.

The initial condition for the node values is set to zero.

In order to evaluate each circuit, 30 random test vectors are selected. These test

vectors are applied to the circuit inputs every 82ns (12Mhz). A short pulse (0.5ns)

is generated on the request signal of the operation for each test vector applied.

This request signal triggers the circuit to operate on the inputs. The experiment

is also repeated without activating the request signal to evaluate the circuit in

non-operating mode. 12Mhz frequency is used in this experiment, because it is

one of the most common crystal frequencies for the 8051 [103]. This frequency is

also used in the later simulations for running the software on the 8051 core.

1Version 4.5
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Table 5.1: Power of the ALU operations in operative and non-operative modes
Operation ADD/SUB MUL DIV AND OR XOR NOT
Power (µw)
(Non-Operative)

1.44 3.04 33.65 0.32 0.31 0.57 0.25

Power (µw)
(Operative)

6.31 13.69 61.87 1.07 1.08 1.26 0.96

Variation (%) 8.9 13.44 3.9 6.5 6.2 5.5 6.3
Operation RR RL RRC RLC XCH DA NOP
Power (µw)
(Non-Operative)

0.29 0.26 0.25 0.36 0.52 1.04 0.40

Power (µw)
(Operative)

0.97 0.97 0.96 1.23 1.66 4.19 1.30

Variation (%) 8.1 7.2 6.9 13.2 9.6 8.7 9.1

HSPICE simulation is performed for the transient analysis with 10ps computation

interval time. The CPU2 time for the simulation was variable from 10 seconds to

3.3 hours depending on the complexity of the operations.

The average power and delay of the operations are measured for each test vec-

tor applied. The average power is measured over 82ns period, and the delay is

measured as the time interval between the rising edge of the request signal to the

rising edge of the acknowledgment signal. The results for the first test vector is

discarded to ignore start-up effects, and the average of the results is calculated

for the rest of the test vectors.

The results for the average power of the ACSL ALU operations are shown in

Table 5.1. The average power is measured for both operative and non-operative

modes. In non-operative mode the input values are all zero, and the request

signal is inactive, so the power has a lower value and is constant. The power in

non-operative mode is mostly consumed by the latches placed between the stages

of the ACSL circuit. For this reason, the division circuit which has the maximum

number of the ACSL stages consumes the most power in non-operative mode in

comparison with the other operations.

2Dual-Core AMD Opteron(tm) Processor 1222 - 3000.0Mhz
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Table 5.2: Power of Multiplication and Division Operations over 4 Clock Cycles
Operation MUL DIV
Power (µw) 6.10 40.66
Variation (%) 10.6 3.23

The power values in the operative mode slightly change for each test vector. The

average value and the variation are given in the table. The variation metric is

the percentage change that the furthest outlier is away from the average, thus

represents worst case variation.

The power values in Table 5.1 are measured for all the operations over one cycle

of a 12Mhz clock. In the opencores 8051 ALU [97] design, Multiplication and

division operations take 4 clock cycles to operate. In order to predict the power

of the ACSL ALU when it is used inside the opencores design, the average power

for these operations is also measured over 4 clock cycles. The results of this

measurement are given in Table 5.2. These power values would be used in the

next section of this chapter to introduce the power prediction method for the

ACSL ALU.

The delay and the number of transistors for the ACSL ALU operations are given in

Table 5.3. As described in Chapter 4, DIV, MUL, ADD/SUB and DA operations

have 94, 16, 11 and 9 ACSL stages respectively. Therefore, the power, delay and

area of these operations are more than the others which are implemented in a

single stage of ACSL.

Table 5.3: Delay and Area of the ACSL ALU operations
Operation ADD/SUB MUL DIV AND OR XOR NOT
Delay (ns) 2.22 3.34 13.06 0.79 0.79 0.80 0.78
Variation (%) 1.0 3.0 0.6 0.8 1.0 0.9 1.1
Transistors 1546 4140 8968 222 222 258 186
Operation RR RL RRC RLC XCH DA NOP
Delay (ns) 0.78 0.78 0.78 0.80 0.85 1.83 0.81
Variation (%) 0.9 0.8 0.7 0.9 0.6 0.8 0.9
Transistors 190 190 186 282 382 942 312
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The low variation observed in the power usage of the operations is due to the

dynamic nature of the gates. ACSL gates are always discharged and evaluated

fully once for each evaluation of the circuit. Static gates only evaluate if the inputs

change, but can evaluate many times per circuit evaluation due to glitching. The

large timing variation in the static circuit occurs due to the combinatorial, non-

synchronised nature of the circuit. ACSL is synchronised to the handshake, thus

has less timing variability.

The low power variability of ACSL ALU makes it possible to predict its power

just by knowing the types of the operations and the number of times they get

activated during the execution of the software on the processor. In next section,

a power prediction method for the ALU is presented based on this property.

5.2 Power Prediction Method

5.2.1 The 8051 ALU related Instructions

The opencores 8051 [97] that is used in this work includes a 2-stage pipeline. The

first pipeline stage fetches and decodes the instruction and its operands. The

second pipeline stage computes the result of the first stage and writes it to the

memory. An execution cycle is associated with each pipeline stage. In the first

execution cycle, the operation code is forwarded to the decoder module where

all control signals are set. This includes ALU operand and operation selecting

signals. In the second execution cycle, signals reach their destination, the ALU

operands are chosen, the operation in the ALU is executed and the result is

written to the selected address in the memory.

Not all the instructions need an ALU operation to be performed during their

execution. For those that do not need an ALU operation, the operation selecting
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Table 5.4: The 8051 Instructions Using ALU operations
Operation Instruction Operation Instruction

ADD/SUB

ADD ADDC SUBB
INC DEC CJNE
DJNZ JMP CLRa

MOVC

RR RR ANLb

MUL MUL RL RL ORLc

DIV DIV RRC RRC
AND ANL RLC RLC SWAP
OR ORL XCH XCH XCHD
XOR XRL DA DA
NOT CPL NOP Others
a : CLR A b : ANL C, /bit c : ORL C, /bit

signal is set to NOP (No Operation). Table 5.4 shows all the instructions which

need an ALU operation for their execution. As seen in the table, the ADD/SUB,

RR, RL, RLC and XCH operations are used by more than one instruction, and

the rest of the operations are related to only one single instruction.

Several instructions need to use the ADD/SUB operation of the ALU. For some

of thses instructions, addition or subtraction is their main function, and for some

others, it is only one of the steps during their execution. A brief description of

each of these instructions follows.

The ADD, ADDC and SUBB instructions are used for addition or subtraction of

two 8-bit operands. They store the result of the operation in accumulator, and

also set the flags. The INC and DEC instructions increment or decrement the

specified 8-bit operand by 1 [96].

The CJNE instruction compares two operands and jumps to the specified desti-

nation if their values are not equal. This needs a subtraction to be performed and

a zero flag has to be checked to verify the equality of the operands. The DJNZ

instruction takes two 8-bit operands. It decrements the byte indicated by the

first operand and, if the resulting value is not zero, jumps to the address specified

in the second operand [96].

Average-Case Analysis of Power
Consumption in Embedded Systems

69 Nasim Zeinolabedini



5. Power Prediction Method for The
8051 ALU 5.2 Power Prediction Method

The JMP instruction transfers execution to the address generated by adding the

8-bit value in the accumulator to the 16-bit value in the DPTR register [96].

This means that the JMP instruction needs to use an ALU addition operation to

calculate the target address. For this reason the circuit for ADD/SUB operation

is implemented so that it can also support 16-bit plus 8-bit addition as described

in Section 4.3.1.

The CLR instruction sets the specified destination operand to a value of 0 [96].

In the case that the operand of this instruction is the accumulator (CLR A), a

subtraction takes place that subtracts the accumulator from itself, and writes the

result back in the accumulator. This is the way that opencores 8051 [97] design

implements this instruction. If the CLR is used with other operands rather than

accumulator, it does not need to use the ADD/SUB operation.

The MOVC instruction moves a byte from the program memory to the accumu-

lator. The address of the desired byte in the code space is formed by adding

the accumulator to either the DPTR register or the Program Counter (PC) [96].

Therefore, the MOVC instruction also needs an addition to be performed by the

ALU.

The RR and RL operations are used by the RR and RL instructions which rotate

the eight bits in the accumulator one bit position to the right or to the left

[96]. As described in 4.3.5, the required logic for the AND and OR operations

between carry flag and the inverted value of an input bit is provided in the

circuit implementing the RR and RL operations. For this reason, ANL and ORL

instructions also need to use RR and RL operations when their operands are

carry flag and an inverted bit value (ORL C, /bit or ANL C, /bit). If the ORL

and ANL instructions are used with other operands, they will use ORL and ANL

operations for their execution.

The RRC and RLC operations are used by RRC and RLC instructions to rotate
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the eight bits in the accumulator and the one bit in the carry flag one bit position

to the right or to the left [96]. As mentioned in 4.3.5, the RLC operation circuit

also implements an 8-bit nybble-swap. Because of this, the SWAP instruction

also uses this operation to exchange the low-order and high-order nybbles within

the accumulator.

The last operation which is used by more than one instruction is XCH. The XCH

and XCHD instructions use this operation to exchange either the 8-bit or only

the low-order nybble between the accumulator and another operand [96]. The

rest of the operations are used only by one single instruction. These instructions

were introduced in 4.2 for each operation.

5.2.2 Steps to Predict the ALU Power

After identifying the instructions which use the ALU, the program code can be

analysed to extract the number of times these instructions are used during the

execution of the software on the processor. For this purpose, an Instruction Set

Simulator (ISS) for the 8051 microcontroller is used [108].

An Instruction Set Simulator reproduces the operation of an actual microproces-

sor by means of a high level microprocessor model. An instruction set simulator

can also determine the states of the registers in an actual microprocessor when a

specific program is executed [109]. The advantage of using the instruction set sim-

ulator is its speed which is much higher than the gate-level or Register Transfer

Level (RTL) hardware simulators [110].

Figure 5.1 depicts a block diagram presenting the steps of the proposed power

estimation method. In the first step and the second step, the program code

is compiled and run on the 8051 Instruction Set Simulator, respectively. The

instruction set simulator produces the instruction trace associated with the code.
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In the third step, the number of each ALU instruction is extracted from the

instruction trace. In the last step, the power calculation unit generates the power

estimation for the ALU from the information about the ALU instructions and

about the power consumption that is associated with each ALU operations. In

the following, the four steps to predict the power consumption of a the ALU are

described in more detail.

Figure 5.1: Power Prediction Flow

In the first step of the flow, the C program source code (.c) is compiled by the

Small Device C Compiler (SDCC)3. The SDCC is a retargettable, optimizing

ANSI - C compiler suite that targets the Intel MCS51 based microprocessors

[111]. The SDCC compiles, assembles and links the source code, and generates

the binary file in Intel hex format (.ihx). In addition to the binary file, the

assembler source file (.asm) and some other output files are generated.

In the second step, the source code converted into the hex format is fed as the

input to the 8051 Instruction Set Simulator (ISS). The 8051 instruction set sim-

ulator used in this work is implemented as a part of a project in University of

California, Riverside [108]. This simulator4 is written in C++, and provides

statistics on the number of the instructions executed, the number of the clock cy-

cles required for the 8051, the average instructions per second and the execution

time for the 8051 working at 12Mhz frequency.

3SDCC is a free open source software, distributed under GNU General Public License (GPL)
- Version 3.5.0

4Version 1.4
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The simulator continues the execution of the code until the program completion

condition is met. The program completion condition is set by the user, and it

could be defined as having a specific value in a memory address or on the output

ports. The simulator also has the option to print out the value of the output

ports of the 8051 anytime that one of them changes during the execution.

The instructions associated with the code are executed one by one on the sim-

ulator, and an instruction trace file is generated as the output. The instruction

trace is the sequence of all the instructions the 8051 executes while running the

code. The Program Counter (PC) and the operands related to each instruction

can also be included in the trace file.

In the third step of the power prediction flow, a program (written in C) searches

the instruction trace to find the number of the ALU related instructions given

in Table 5.4. The number and type of the ALU related instructions along with

the power consumption of each ALU operation (given in Table 5.1 and 5.2) are

used in the last step to calculate the power of the ALU based on the following

equations:

PALU = P0_ALU + (1/Ncycles)
∑
op

NopCop(Pop − P0_op) (5.1)

P0_ALU =
∑
op

P0_op (5.2)

In the equation 5.1, PALU is the average power dissipated in the ALU during

the execution of the code. P0_ALU is the power consumed by the ALU in the

non-operative mode. This is calculated as sum of the non-operative mode power

for all the operations as given in the equation 5.2.

Ncycles is the number of clock cycles required for the 8051 to run the program. This

number is provided by the instruction set simulator along with the other statistical

information. Cop is the number of clock cycles that each ALU operation needs.

Average-Case Analysis of Power
Consumption in Embedded Systems

73 Nasim Zeinolabedini



5. Power Prediction Method for The
8051 ALU 5.3 Results and Analysis

For MUL and DIV operations, Cop is equal to 4, and for the other operations it

is equal to 1.

P0_op is the power consumption of the ALU operation in the non-operative mode.

Pop is the power consumption related to each ALU operation in the operative

mode, and Nop is the number of instructions which use that operation. For NOP,

this number is calculated as the number of clock cycles minus the total number

of cycles related to the other operations. This is given in the equation 5.3.

NNOP = Ncycles −
∑
op

NopCop (5.3)

Each ALU operation power consumption is P0_op when it is not operating. If

the operation gets active, (Pop − P0_op) is added to that amount. This explains

the equation 5.1 in which this extra amount is multiplied by the number of times

the operation is used, and the average of that over all of the cycles is added to

P0_ALU .

5.3 Results and Analysis

The method for the power prediction described in 5.2.2 has been applied to a

number of benchmark programs in order to estimate the ALU power consump-

tion during their execution on the 8051 microcontroller. These programs repre-

sent some popular functions and algorithms in the embedded applications. These

include: greatest common divisor (gcd.c), Fibonacci (fib.c), checksum calculator

(csumex.c), square root function (sqroot.c), sorting algorithm (sort.c), Propor-

tional Integral Derivative controller or PID controller (pid.c) and discrete cosine

transform (dct.c).

In Table 5.5, number of times that each ALU operation has been used by each

Average-Case Analysis of Power
Consumption in Embedded Systems

74 Nasim Zeinolabedini



5. Power Prediction Method for The
8051 ALU 5.3 Results and Analysis

Table 5.5: Number of Times the ALU Operations Used by Benchmark Programs
Operation gcd fib csumex sqroot sort pid dct
ADD/SUB 146 340 512 565 942 24366 722404

MUL 0 0 0 3 0 1243 165184
DIV 0 0 0 0 0 106 0
DA 0 0 0 0 0 0 0
NOT 0 0 0 2 0 103 0
AND 0 0 0 12 0 1047 66
XOR 10 19 0 2 10 262 9288
OR 0 0 69 38 2 2556 0
RL 0 0 0 0 3 0 0
RLC 0 45 0 154 20 8853 165056
RR 0 0 0 50 0 1275 0
RRC 0 0 0 470 0 14097 495616
XCH 0 9 0 937 90 24118 324577
NOP 228 805 1320 1798 3171 101996 2370093

benchmark program is displayed. This number for each operation is the total

number of the instructions which use that operation during the execution of the

program. It is generated by analysing the instruction trace of the program and

counting the number of ALU related instructions given in Table 5.4.

The predicted power of the 8051 ACSL ALU for the benchmark programs is

given in Table 5.6. The number of instructions and the number of execution

cycles showed in the table are provided by the 8051 instruction set simulator.

The power is estimated using the method described in 5.2.2.

To verify the accuracy of the prediction method, the average power of the ALU

is also measured through the HSPICE simulation. For this purpose, first the

Table 5.6: Predicted Power and Measured Power for The Benchmark Programs
gcd fib csumex sqroot sort pid dct

#Instructions 384 1218 1901 4031 4238 180022 4252284
#Cycles 543 1669 3082 4819 6439 224474 5571360

Predicted
Power (µw) 44.65 44.40 44.26 44.10 44.18 44.12 44.45

Measured
Power (µw) 45.07 44.85 44.62 44.38 44.48 - -

Error (%) -0.95 -1.00 -0.81 -0.63 -0.66 - -
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ALU in the opencores 8051 [97] design is replaced with the ACSL ALU. Then

the benchmark programs are run on the processor core using HSIMplus5 co-

simulation, and the signal values on the input pins of the ALU are stored in

a file. In the next step, these values are applied as the input vectors to the

ACSL ALU, and the circuit is simulated at transistor level using HSPICE 6. The

HSPICE simulation is very time consuming, but the power measurement result

has very high accuracy.

The structure of the 8051 core and its peripherals is shown in Figure 5.2. This

structure is depicted based on the opencores [97] implementation of the micro-

controller. The main components of the 8051 core are the instruction decoder,

ALU, Special Function Registers (SFR), memory interface and internal RAM and

ROM memories. The core has four 8-bit I/O ports , and is connected to a UART

unit and external ROM and RAM memories.

Figure 5.2: The 8051 Microcontroller Structure

5Version 2009.07.5
6Version G-2012.06 32-BIT
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The 8051 has separated data and program memory (Harvard architecture). There

is 64KB of program memory that 4KB of it is on-chip, and the remaining is

external. The program memory is read-only. On-chip data memory is 256 bytes

which includes Special Function Registers (SFR). 64KB of external data memory

is also available [112] .

Each benchmark program is compiled into Intel hex format using the SDCC

compiler. The hex file is then converted to a memory pattern file using a ROM

maker program provided by opencores [97]. This memory pattern file is the

binary representation of the program memory content, and is used to initialise

the external ROM memory.

The benchmark programs send the result of their computations to the output

ports of the 8051 (P0 to P3). The simulation is terminated when the expected

outputs are seen on these ports. Having the expected results on the output ports

is also the program completion condition for the instruction set simulator.

As seen in Table 5.6, the percentage error of the estimated power is very small,

and even less than the power variability of the operations. The reason is that only

one ALU operation is active in each clock cycle, and the rest of the operations

are in non-operative mode with completely constant power.

In the simulation-based method for the power measurement, the design needs to

be synthesized to generate the gate-level netlist for the target technology. Then

the timing information that results from the timing analysis is back annotated

to the netlist to define the delay of the gates. Next, a gate-level simulation

is performed to generate the switching activity for all of the nodes inside the

circuit. At the end, the switching activities are given to the power analysis tool

to generate the power consumption for the design. These steps could be very

time consuming specially if the circuit is large.

The power consumption of the ALU in opencores 8051 design is also measured
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Table 5.7: Speedup of The Power Prediction Method

Benchmark Prediction
Method

Gate-Level
Simulation Speedup

Transistor-
Level

Simulation
Speedup

gcd 2s 1m 44s 52 11h 28m 20646
fib 2s 1m 43s 52 27h 10m 48904

csumex 2s 1m 45 53 35h 46m 64380
sqroot 2s 1m 49s 55 72h 30m 130503
sort 2s 1m 53s 57 103h 21m 186031
pid 4s 5m 50s 88 - -
dct 6s 14m 28s 145 - -

for the benchmark programs using a gate-level simulation. The purpose of this

measurement is to assess the speed of the simulation-based method at gate-level,

and to compare it to the prediction method. The opencores 8051 design is im-

plemented in RTL-level using Verilog language. Only the ALU module in this

design is synthesized to the gate-level and instantiated inside the RTL level im-

plementation of the core. This approach is adopted because only the switching

activity of the ALU nodes is needed for the power measurement, and the rest of

the components could be kept in RTL level to increase the speed of the simulation.

In this experiment, Synopsys Design Compiler7 and Synopsys PrimeTime8 tools

are used for the synthesis and timing/power analysis of the circuit respectively.

For the synthesis of the circuit, a TSMC 65 nm process is used operating at 0.9

V. The Synopsys VCS9 tool is used for the gate-level simulation.

Table 5.7 compares the speed of the power estimation for the prediction method

with the simulation-based methods. As seen in the table, the prediction method

calculates the power only in a few seconds, but it can take several minutes for the

gate-level simulation or several days for the transistor-level simulation depending

on the size of the program. This means that the prediction method can be over

100 times faster than the gate-level simulation for the program power estimation,

7Version B-2008.09-SP4
8Version B-2008.12-SP2
9Version C-2009.06
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and hundreds of thousends times faster than the transistor-level simulation. For

the last two benchmark programs (pid and dct), only the gate-level simulation

has been performed since the transistor-level simulation could take hundreds of

days to complete.

It is worth to mention that the ALU is a quiet small component of the processor

core. If the simulation-based methods are used to measure the power of the

entire core, it will be much more time consuming due to the growing number of

the switching nodes in the circuit. On the other hand, the prediction method will

have the same speed if it is implemented for the entire core since it only uses the

Instruction Set Simulator (ISS) and the power formulas.

5.4 Summary

In this chapter a power prediction method is presented for the 8051 ACSL ALU.

The power consumption of the operations of the ACSL ALU are constant and

independent from the input patterns. This property makes it possible to estimate

the ALU power only by knowing the number of times each ALU operation is

activated during the execution of the program.

In the proposed prediction method, the program is run on an Instruction Set

Simulator (ISS) which is a fast and high-level model of the processor core. The

instruction set simulator generates the trace of the instructions for the code which

is then analysed to extract the number and type of the ALU related instructions.

Using the information about the ALU instructions and the energy consumption

that is associated with each ALU operation, the ALU power for the software

program is calculated.

The presented method achieves less than 1% error and more than 100 times

speedup over the gate-level simulation method and hundreds of thousends times
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speedup over the transistor-level simulation method.

The proposed methodology can be scaled to full core as well as to other larger

processors and processing units. Hence, it can be a first step for design time

software power performance estimation.
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Chapter 6

Static Average-Case Power

Analysis of a Sorting Algorithm

The average-case analysis of the design metrics in the embedded systems is impor-

tant for efficient budgetting of the resources, and satisfying the design constraints.

The average-case analysis provides useful insight about the typical behaviour of

the system, and complements the worst-case information to help the designer in

taking better strategies in implementing an efficient system.

MOdular Quantitative Analysis (MOQA) is a high level methodology recently

proposed for static average-case analysis of the program codes. This methodology

enables the prediction of the average number of basic steps during the execution

of a program which facilitates the estimation of the complexity measures such as

average time or average power consumption.

In this chapter, an average-case processor energy model is presented for the In-

sertion sort algorithm based on the average number of comparisons in the sorting

algorithm resulted from the MOQA analysis. In this work, the parameters of the

model are determined for the LEON3 processor core, but the model is general and

can be used for any processor. This energy model enables the static estimation of
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the average-case processor energy consumption for the Insertion sort program for

any given size of the input list. The accuracy and speedup of the model has been

evaluated for the LEON3 processor through the power meaurement experiments.

The structure of this chapter is as follows: In Section 6.1, the MOQA method-

ology and its underlying concepts are introduced. In Section 6.2, the MOQA

analysis for the Insertion sort algorithm is presented. In Section 6.3, the LEON3

system design, and the structure of the LEON3 processor core is described. In

Section 6.4, the experimental method for the processor power measurement dur-

ing the execution of the program code is explained. In Section 6.5, the processor

energy model is presented, and in Section 6.6 the model is validated using the

experimental results.

6.1 MOdular Quantitative Analysis (MOQA)

The average-case timing analysis in the embedded systems is important for imple-

menting the applications that satisfy the certain design constraints, and also for

allocating the system resources in an efficient way. The worst-case timing analysis

that usually takes place may be too pessimistic, and overshoot the actual time

of a large portion of the executions. Average-case information can complement

worst-case information to improve budgetting of resources, support soft real-time

analysis, and support low-power design [113].

MOdular Quantitative Analysis (MOQA) [114] is a high level methodology for

average-case timing analysis of the programs. Time in this context refers to a

broad notion of cost, which can be used to estimate the actual running time, but

also other quantitative information such as power consumption. In fact, MOQA

methodology enables the prediction of the average number of basic steps per-

formed in a computation which can be used to statically analyse the complexity
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measures such as average time or average power.

The compositionality is the key property for the static timing analysis. This

property allows to estimate the average time of a program code as the sum of

the times related to each part of the code. To have a better view of this con-

cept, consider the sequential execution of two program codes P1 and P2. If the

compositionality is achieved, average-case time of the execution of P1;P2 could

be calculated as the sum of the average-times for each of the programs as shown

in Equation 6.1.

T P1;P2(I) = T P1(I) + T P2(OP1(I)) (6.1)

The problem is that the computation of P1 over its input data (I) will produce

new input data (OP1(I)) for P2, and the average-case time of P2 depends on

the distribution of this new input data. However, one typically cannot track

the distribution throughout the computation, and the methods for distribution

transformations [115] are purely mathematical, and cannot be used for effective

computing of new distributions from prior ones [114].

The compositionality problem for average-case analysis has been overcome in the

MOQA approach through the randomness preservation of data. MOQA intro-

duces the notion of “random bag” to represent the data distribution, and uses

carefully designed basic operations to ensure that the capacity for such distribu-

tion representation is preserved through the computation. This approach makes

it possible to track the data distribution during the computation of MOQA pro-

grams [116].

To achieve random bag preservation and compositionality, MOQA presents a

novel programming language [117] which consists of a suite of data structuring

operations, together with conditional, for-loops and recursion. MOQA language
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constructs have been designed, when needed, to replace the standard data struc-

turing operations to achieve compositionality. In this way, MOQA enables the

compositional determination of the average-case number of basic operations of the

programs. MOQA has been specified and implemented in Java 5.0 at CEOL1.

However, MOQA data structuring operations can be implemented in any stan-

dard programming language [116].

The MOQA average-case timing analysis has been focused on data restructur-

ing algorithms which are comparison driven, i.e. for which each action (data-

reorganization) is based on a prior comparison between data. The examples are

the popular sorting and searching algorithms which are implemented and anal-

ysed using the MOQA approach as reported in [114]. The average-case time

TA(n) of an algorithm A is defined as the average number of comparisons carried

out over inputs of size n. To fine-tune the static analysis further, other basic

operations (such as swaps and assignments) can also be accounted for [116].

6.2 MOQA Average-Case Analysis for The In-

sertion Sort

Sorting algorithms are used to arrange elements of a list in a specific order. Effi-

cient sorting is important to optimize the use of search and merge algorithms that

require sorted list. Furthermore, sorting algorithms are widely used in parallel

computation, image processing, data aggregation, scheduling, database manage-

ment and other applications. Due to their widespread applicability, analysing the

performance and energy consumption of these algorithms is an important issue.

There are numbers of popular sorting algorithms, like Bubble sort, Heap sort,

Insertion sort, Quick sort, Merge sort and etc. Quick sort is the fastest sorting

1Centre of Efficiency-Oriented Languages, University College Cork, Ireland
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algorithm which is used in many programming languages and libraries, but it is

not the most energy saving one. The experiments has shown that Insertion sort

provides the best rationale between performance and energy consumption [118].

For this reason, Insertion sort is chosen in this work for static energy analysis

based on MOQA approach.

In this section, the Insertion sort algorithm is described, and its average-case

analysis by MOQA is presented. This analysis generates the number of compar-

isons that take place in the computation of the algorithm. This number is used

later in this chapter for building the energy estimation model.

6.2.1 Insertion Sort Algorithm

As its name indicates, the Insertion sort algorithm is based on “inserting” a new

element into a sorted list, so that the list remains sorted after this insertion. The

pseudocode for the Insertion sort algorithm is shown in Figure 6.1. At each stage

of the algorithm, the input list (A) consists of two sub-lists: a sorted one and an

unsorted one. Each repetition of the algorithm moves one item from the unsorted

list into the right position in the sorted list, until there are no elements left in the

Figure 6.1: Insertion Sort Pseudocode
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unsorted list. At the beginning, the sorted list contains only the first element of

the list. Each time, one element (key) of the unsorted list is compared with the

elements of the sorted list until it gets to the right place. The elements that are

bigger than key are shifted one place to make space for inserting the key into the

list. Figure 6.2 shows that how the element X is inserted into the sorted part of

a list.

Figure 6.2: Insertion of an element into the sorted part of the list [119]

In the best case of an already sorted list, the insertion sort takes O(n) time: in

each iteration, the key element is only compared with the last element of the

sorted list. It takes O(n2) time in the average and worst cases [120].

6.2.2 MOQA Analysis

The MOQA code for the Insertion sort captures the traditional insertion oper-

ation, of inserting a single element into a sorted list, via the MOQA product

operation (⊗) [114]. This code is shown in Figure 6.3.

Figure 6.3: MOQA Code for Insertion Sort [114]

The MOQA product is a randomness preserving operation which allows the es-

timation of the average-case time based on the compositionality property. The

average-case time for the Insertion sort program (T I(n)) is defined as the average
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number of comparisons carried out over input size n. The formula for T I(n) re-

sulted from MOQA analysis is given in Equations 6.2 and 6.3. As these equations

show, the algorithm has O(n2) average-case time as expected.

T I(n) = n2 + 7n− 8Hn

4 (6.2)

Hn =
n∑

i=1

1
i

(6.3)

For simplicity, the mathematical detail of the MOQA analysis is not given here,

but it is available in [114] for further reading.

6.3 SPARC LEON3 Processor

The LEON3 is a synthesisable VHDL model of a 32-bit processor compliant with

the SPARC V8 architecture [121]. This open-source processor is designed by

Aeroflex Gaisler [122] and is provided as a part of GRLIB IP library [123] under

GNU GPL license. The GRLIB IP library is an integrated set of reusable IP

cores, designed for System-On-Chip (SOC) development.

Figure 6.4 shows the structure of the LEON3 system platform which consists of

the pocessor core, memories and peripherals connecting together via a central

AMBA AHB/APB on-chip bus. This structure supports multi-processor design,

with up to 4 processor cores capable of delivering up to 1600 Dhrystone MIPS of

performance [124].

The LEON3 processor has a 7-stage pipeline and separate instruction and data

memories (Harvard architecture). Figure 6.5 shows the internal structure of the

processor core. The Integer Unit (IU3) is the heart of the processor which enables

the execution of the instructions through the pipeline. The register file contains a

configurable number of register windows within the limit of the SPARC standard
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Figure 6.4: Leon3 System Design [125]

(2 - 32), with a default setting of 8. There is the flexibilty in the design to have

division and multiplication units inside the core, or to use compiler to implement

the multiply and divide instructions in software. Using the Floating Point Unit

(FPU) and cache memory is also optional. The trace buffer in the core is a

circular buffer for storing executed instructions and their results. The buffer can

be read out by any AHB master, and in particular by the debug communication

link.

Figure 6.5: LEON3 Processor Core Structure
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Figure 6.6: Pipelined Stages of LEON3 Integer Unit [126]

The pipeline stages of the LEON3 Integer Unit (IU) are shown in Figure 6.6.

These stages include Instruction Fetch (IF), Instruction Decode (ID), Register

Access (RA), Execute (EX), Memory (MEM), Exception (EXP) and Write-Back

(WB).

The LEON3 uses off-chip external PROM and SRAM memories as the instruc-

tion and data memories respectively. These memories along with the memory

mapped I/O are connected to an external memory bus which is controlled by

a programmable memory controller. The memory controller also works as an

interface between the memory bus and the AMBA AHB bus [127].

A full set of scripts is available for the simulation and synthesis of the LEON3

system for ASIC technologies, and a wide range of FPGA boards. The processor

is able to work with up to 125 MHz clock frequency in FPGA and with 400 MHz

frequency on 0.13 µm ASIC technologies [124].

The LEON3 model is fully parametrized through the use of VHDL generics, and

this makes it highly configurable. A graphical configuration tool is available to

configure the processor and other on-chip peripherals. Number of processors,

number of register windows, size of the cache memories and many other param-

eters are configurable [124].

The LEON3 also provides a Debug Support Unit (DSU) which allows non-

intrusive debugging on the target hardware by entering the processor in the dubug

mode, and providing full access to all the registers and caches through a debug

support interface. A SPARC Reference Memory Management Unit (MMU) is
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also provided for advanced memory management and protection. Having the

DSU and MMU in the design is optional [128].

Being SPARC V8 conformant, compilers and kernels for SPARC V8 can be used

with LEON3. To simplify software development, Aeroflex Gaisler is providing

BCC (Bare-C Cross Compilation) [129], a free C/C++ cross-compiler system

based on GCC [130] and the Newlib [131] embedded C-library [124]. The required

scripts are also provided to compile the C programs, and generate the ROM and

RAM images for initializing the PROM and SRAM memories with instruction

and data contents.

6.4 Experimental Method

The sorting algorithm takes a list of numbers as the input, and generates the

sorted list as the output. For building the average-case energy model for the

algorithm, the processor power consumption needs to be measured for a large set

of random input numbers and permutations. In this section, the method used for

generating the random numbers, the power measurement flow, and the way this

flow is automated are described.

6.4.1 Random Number Generation

In this work, the random numbers are generated using the Pseudo-Random Num-

ber Generator (PRNG) libraries developed at Technical University of Denmark

[132]. These libraries are written in C++ language, and provided with open

source under the GNU general public license. They can be used to generate float-

ing point or integer random numbers with uniform distributions, or non-uniform

random numbers with several different distributions.
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These C++ libraries implement the following PRNGs for uniform distribution:

Mersenne Twister, SFMT and Mother-of-all [133]. In this work, the Mersenne

Twister [134] PRNG is used to generate the input numbers with uniform distri-

bution for the sorting algortithm. The Mersenne Twister is the first PRNG to

provide fast generation of high-quality pseudo-random integers , and has become

very popular in recent years because of its long cycle length [135].

The random numbers generated for the sorting algorithm can be placed in the

input list in different permutations. The number of the permutations for a specific

combination of numbers can be very large, and it is not always possible to run

the experiment for all of them. In such cases, it is needed to select a set of the

possible permutations randomly.

The number of permutations for a list consisting of n numbers is n!. These

permutations can be numbered from 0 to n! − 1 where the first permutation

is the ordered list, and the last permutation is the reverse-ordered list. The

list gets more and more disorderd going from the first to the last permutation.

For selecting a set of permutations for the experiment, the Mersenne Twister

PRNG is used to generate random numbers between 0 to n! − 1 with uniform

distribution. In this way, the level of disorder for the selected permutations has

a uniform distribution, and this is useful for getting more precise results for the

average-case.

6.4.2 Power Measurement Flow

Figure 6.7 shows the flow for measuring the power consumption of the LEON3

processor core. According to this flow, the processor core is first synthesised to

generate the gate-level netlist. Then, the timing analysis is performed, and the

delay of the gates is extracted, and back-annotated to the netlist. Next, the

switching activities of the nodes are recorded through the gate-level simulation.
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Additionally, the RTL-level simulation is performed to extract the timing interval

for the execution of the code on the processor. In the final step, the information

about the exection time interval and switching activities are used to analyse the

processor power consumption.

Figure 6.7: Power Measurement Flow

The power analysis is also possible with the switching activities extracted from the

RTL-level simulation. However, the accuracy of this method is low, because all
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of the design nodes are not covered in such analysis. Specifically for the LEON3

processor, most of the signal names are changed during the gate-level synthesis,

and cannot be mapped to the names at the RTL-level. This leads to the poor net

coverage in the power analysis. The extensive use of the record data structure

in the VHDL code for the LEON3 processor is the reason for the change of the

signal names at the gate-level.

The default configuration is used in this work for the LEON3 system. In this

configuration, the LEON3 processor core has the multiply/divide units, and uses

4KB 1-way (direct-mapped) instruction and data caches. The FPU is not used

by default, and the size of the PROM and SRAM external memories is 4MB.

In the following, each step of the power measurement flow is described in more

details.

6.4.2.1 Compiling The Code

As mentioned in 6.3, the BCC (Bare-C Cross Compilation) is provided as a

free C/C++ cross-compiler system for the LEON3 processor. It supports hard

and soft floating-point operations, as well as SPARC V8 multiply and divide

instructions. The BCC2 compiler is used in this work to compile the C program

code for generating the SRECORD [136] files to initialize the PROM and SRAM

memories. The SRECORD files convey the instruction and data memory images

in the form of binary information in ASCII hex.

Since the Floting Point Unit (FPU) is not used in the processor core, the required

option is selected for the compiler to emulate the floating point operations in

software. The optimization option is also set for the maximum performance and

minimal code size.

2Version 3.4.4
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6.4.2.2 RTL-Level Simulation

To determine the processor power consumption during the execution of a specific

part of the program code, it is required to find the time interval in which the

processor executes the instructions associated to that part of the code. The

purpose of the RTL-level simulation is to find this execution time interval which

would be used later in the flow for analysing the power.

The required scripts for a number of popular design simulators are provided by

Aeroflex Gaisler to facilitate the simulation of the LEON3 system . In this work,

Mentor Graphics ModelSim3 simulator is used for the RTL-level simulation.

The entire LEON3 design including the external memories is instantiated in a

VHDL testbench. In this testbench, the PROM and SRAM memories are loaded

with the instruction and data contents generated by the compiler. The initial

value for the input signals and the condition for terminating the simulation are

also set.

A SPARC disassembler is provided in the LEON3 design to disassemble the exe-

cuted instructions during the simulation, and print them in the simulator console

[127]. This also prints the exection time for each instruction. The execution time

is the time that the execution of the instruction is completed, and it leaves the

processor pipeline.

To find the execution time interval, the dissassembly feature is enabled using the

LEON3 configuration tool, and the instruction trace for the code is generated

during the RTL-level simulation. The first and last assembly instructions are

determined for the specific part of the code that its power consumption is de-

sired. A program searches the instruction trace to find these instructions, and

the execution time associated to them are recorded to be used later in the flow

3Version SE-64 6.5c
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for measuring the power.

6.4.2.3 Synthesis

The LEON3 processor core is synthesised using the Synopsys Design Compiler4

tool for the TSMC 65nm general-purpose (GP) CMOS technology. The nominal

process with the worst-case operating condition (0.9V VDD voltage and 125◦C

temperature) is used in the synthesis, and the timing constraint is set for 300Mhz

clock frequency. The required commands are used to fix the hold time violations

reported by the tool.

The LEON3 design needs to be configured to adapt with the synthesis tool and

the target library [127]. This configuration determines whether the technology

dependant mega-cells (ram, rom, pads) get automatically inferred or directly

instantiated by the synthesis tool. The LEON3 supports a number of target

technologies for using the direct instantiation option. For any technology that is

supported by synthesis tool, and is capable of automatic inference of mega-cells,

the inference option can be used. The target technology and synthesis tool used

in this work supports automatic inferring of RAMs and pads, so this option is

used in the synthesis configuration.

The gate-level netlist for the LEON3 processor core is generated in both DDC

and Verilog format. The hierarchical boundaries of the top-level submodules in

the core are preserved by using the required synthesis constraints. This makes

it possible to also have the report of the power consumtion of the submodules

later in the flow. Integer unit, cache controller, multiply and divide units are

considered as one submodule. The other submodules are the register file, cache

memory and trace buffer. The area and timing information resulted from the

synthesis of the design are reported in Table 6.1.

4Version B-2008.09-SP4
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Table 6.1: Area and Delay for the LEON3 Processor Core
Combinational Area (µm2) 334,509.84
Non-Combinational Area (µm2) 813,892.65
Total Cell Area (µm2) 1,148,402.49
Leaf Cell Count 183,373
Levels of Logic in Critical Path 24
Critical Path Delay (ns) 2.16
Critical Path Slack (ns) 1.06

6.4.2.4 Timing Analysis

The timing analysis for the gate-level netlist is performed using the Synopsys

PrimeTime5 tool. This analysis produces the SDF (Standard Delay Format) [137]

file which contains timing information of all the cells in the design according to

the target technology [138]. This timing information is needed for simulating the

gate-level netlist.

6.4.2.5 Gate-Level Simulation

The gate-level simulation is required to find the switching activity of the signals

in the processor core. For the gate-level simulation, the timing information in

the SDF file is back-annotated to the cells in the netlist. The RTL model of the

LEON3 processor core is replaced with the gate-level model resulted from the

synthesis. Since the rest of the system is still in the RTL level, the RTL/gate-

level co-simulation is performed using the Mentor Graphics ModelSim6 simulator.

For this simulation, the library of the standard cells for the target technology is

compiled along with the processor netlist.

The name of most of the I/O ports for the processor module changes through the

gate-level synthesis. The change in the names happens since the I/O ports with

record type are converted to the bit vector type by the synthesis tool. For this

5Version B-2008.12-SP2
6Version SE-64 6.5c
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reason, a Verilog interface is added to the netlist to adapt the gate-level names

with the RTL-level names.

The switching activity of the signals are recorded in the VCD (Value Change

Dump) [139] file format. In order to use Verilog language features for generating

the VCD file, the LEON3 VHDL testbench is converted to the Verilog format for

the gate-level simulation.

If the size of the VCD file gets very large, it can stop the simulation. To avoid this

problem, when the the number of input samples for the simulation is large, the

samples are divided into the smaller groups to perform the simulation separately

for each group. In this way, the size of the VCD files is kept under 1.8GB.

6.4.2.6 Power Analysis

The power consumption of the processor during the execution of the code is

determined in the final step of the flow. The Synopsys PrimeTime PX7 tool is

used for measuring the power. The switching activity of the processor signals

(VCD file), the execution time interval for the code, and the gate-level netlist

are given to the power analyser, and the processor power during the given time

interval is measured. This measurement is very accurate since it achieves 100%

net coverage. The power for the top-level submodules in the core is also reported.

6.4.3 Automation of The Flow

To run the power measurement flow for a large number of input samples, it is

needed to automate the flow using the required programs and scripts. Figure 6.8

shows the programs and scripts used in this work to automate the different parts

of the flow.

7Version B-2008.12-SP2
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Figure 6.8: Programs and Scripts to Automate the Power Measurement Flow

For generating random numbers and permutations with uniform distribution, a

C++ program is written using the PRNG libraries mentioned in 6.4.1. This

program generates the random numbers, selects the random permutations, and

permutes the list of numbers according to the selected permutations. The per-

muted lists for each set of random numbers are stored in a separate input data

file.

In the next step, a C program reads the input data file, and generates the program

code for the sorting algorithm operating on the input lists. The generated code

is a C program in which the input lists are stored in the array data structure,

and the sort function is called repeatedly to operate on the lists. The large input

data files are broken in smaller parts, and the code is generated for each part

separately. This prevents the problem of having large VCD files later during the

gate-level simulation.

A shell script is written for automating the RTL-level simulation. The script

calls the required Makefiles to compile the program code and the LEON3 system,

and performs the RTL-level simulation to run the code on the processor. This is
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repeated for all of the codes generated for different input data , and the instruction

trace for each code is produced.

Another shell script automates the rest of the flow. A C program is called in this

script to extract the execution time intervals from the instruction traces produced

by the RTL-level simulation. This program extracts the time intervals, and gen-

erates a TCL (Tool Command Language) [140] script for the power analysis tool

to measure the processor power during those intervals. The shell script also com-

piles the design, runs the RTL/gate-level simulation for all the program codes,

and records the switching activities in the VCD files. It also launches the power

analysis tool using the TCL script, and produces the reports for the processor

power measurements. In the final step, a C program is called to extract the power

results for the processor core and its submodules from the reports generated by

the power analysis tool.

The synthesis of the processor core, and the timing analysis of the netlist are also

performed using TCL scripts.

6.5 Processor Energy Model For the Insertion

Sort Algorithm

The average-case processor energy model for the insertion sort algorithm is based

on the average number of times each part of the program code is executed, and

the processor energy consumption associated to those parts. In Table 6.2, the

program code for the insertion sort is divided into the smaller parts, and the

average number of the executions for each part is given. The SPARC assembly

code for each part of the C program is also shown in the table.

The Insertion sort program consists of a for loop with a while loop nested inside
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Table 6.2: Partitioning of the code for the Insertion Sort Program

SPARC Assembly Code Program Code in C
Average of
Execution

Times

Energy
Usage

mov 1, %o7 for(i=1; i<LIST_SIZE; i++){ N1 = 1 E1

L1: sll %o7, 2, %g1
add %o7, -1, %i4
ld [%i0 + %g1], %i2
clr %i1

key = num_list[i];
j = i - 1;
done = 0;

N2 = n − 1 E2

sll %i4, 2, %g1
ld [%i0 + %g1], %i5

L2: cmp %i5, %i2
ble L3
add %g1, %i0, %i3

do{
if (key < num_list[j]){ N3 = T I(n) E3

addcc %i4, -1, %i4
st %i5, [%i3 + 4]
bneg L3
sll %i4, 2, %g1

num_list[j+1] = num_list[j];
j--;
if (j < 0)
done = 1;

}else
done = 1;

N4 =
T I(n)−(n−1)

E4

cmp %i1, 0
be,a L2
ld [%i0 + %g1], %i5

}while (!done); N5 = T I(n) E5

L3: add %g1, %i0, %g1
inc %o7
cmp %o7, 7
ble L1
st %i2, [%g1 + 4]

num_list[j+1] = key;
} N6 = n − 1 E6

it. The for loop is executed for all the elements in the input list except the first

one. Therefore, the parts of the code inside the for, and outside the while loop

are executed n− 1 times (N2, N6), assuming the size of the list is n.

According to the Insertion sort algorithm explained in 6.2.1, the while loop is used

for comparing one element (key) of the list with the previous elements which are

already sorted. This comparison continues until the key element reaches to the

right place to be inserted in the sorted list. The average number of comparisons

(T I(n)) is known from the MOQA analysis described in 6.2.2, and is given in the

Equation 6.2. The third part of the code in the table is related to the comparison

operation, so it is executed T I(n) times in average (N3).
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One shift operation takes place after each comparison except for the last com-

parison when the key reaches to the right place. For this reason, the number

of shift operations for each execution of the for loop is equal to the number of

comparisons minus one. For the entire algorithm, the shift operations take place

n− 1 times less than the comparisons (N4).

By knowing the average number of the executions of each part of the code, the

average-case energy for the Insertion sort program can be estimated using the

energy model given in the Equation 6.4.

EI(n) =
6∑

i=1
NiEi (6.4)

By substituting the Ni values from the Table 6.2, and T I(n) from the Equation

6.2, the extended form of the energy model can be obtained as shown in the

Equation 6.5.

EI(n) = E1 + (n− 1)(E2 − E4 + E6) + (n
2 + 7n− 8Hn

4 )(E3 + E4 + E5) (6.5)

The energy consumption of each part of the code (Ei) is determined for the

LEON3 processor through the power measurement flow described in 6.4.2. How-

ever, the energy model is general, and can be used for any processor core. Only

the Ei parameters need to be measured for the target processor to customize the

model.

The proposed energy model enables the estimation of the average-case processor

energy consumption for the Insertion sort algorithm statically for different sizes of

the input list, and eliminates the need for the time-consuming simulation-based

measurements.
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6.6 Results and Analysis

The processor energy model presented for the Insertion sort program has been

validated through the power measurement experiments. The LEON3 processor

energy consumption is measured for the Insertion sort program for size 4, 8 and 16

of the input list. The experimental results are compared to the energy estimation

results to evaluate the accuracy of the model.

6.6.1 Energy Model Parameters

One of the factors which impacts the processor energy consumption is the range of

the input data for the program. The energy consumption depends on the number

of switching bits in the input data. The bigger numbers with more toggling

bits create more switching activity inside the processor which leads to the higher

energy consumption.

The LEON3 is a 32-bit processor, so the input numbers for the programs are

represented in 32-bit format. However, depending on the range of the numbers,

the switching bits can be between 0 to 32 bits. Figure 6.9 shows the LEON3

processor power for the Insertion sort program with size 4 for the input list.

The power is measured for four different data input ranges: 8-bit, 16-bit, 24-bit

and 32-bit. For each range, 10 different sets of random numbers with uniform

distribution over the range are selected, and the processor power is measured for

all the possible permutations (4! = 24) of each set. As expected, the results show

that power consumption goes high when the range of the numbers increases.

Considering the impact of the input data range on the processor power con-

sumption, it is reasonable to take this factor into account as a parameter in the

proposed energy model. However, it would make the model very complex to be

built for all the possible ranges of data. A reasonable compromise is to provide
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Figure 6.9: LEON3 Processor Power Consumption For The Insertion Sort with
Input List Size = 4

the option to use the model for a few typical ranges of data. For this reason, the

parameters of the energy model (Ei) are measured for four different data input

range (8, 16, 24 and 32 bits). This creates the flexibilty to choose the right set of

parameters depending on the range of the input data for the specific application

to have a more precise estimation of the energy.

The LEON3 processor energy consumption for individual parts of the code is

measured to determine the Ei parameters in the model. The value for theses

parameters are given in Table 6.3 for 8-bit, 16-bit, 24-bit and 32-bit ranges of

data.

Table 6.3:
Data Range E1 (nJ) E2 (nJ) E3 (nJ) E4 (nJ) E5 (nJ) E6 (nJ)
8-bit 0.825 3.289 4.958 4.113 2.484 4.918
16-bit 0.828 3.301 4.974 4.127 2.492 4.934
24-bit 0.848 3.379 5.094 4.226 2.552 5.053
32-bit 0.859 3.425 5.163 4.283 2.587 5.121
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6.6.2 Validation of The Energy Model

To validate the proposed energy model, the average energy consumption of the

LEON3 processor is measured for the Insertion sort program for size 4, 8 and 16

of the input list. In Table 6.4, the results of these measurements are compared

with the energy estimated by the proposed model, and the percentage of the

estimation error is calculated. This error is not merely related to the accuracy

of the model, and it is partly due to the fact that measurements represent the

average energy values for a set of random numbers and permutations not all of

the possible input data.

The measurements for list size 4 has been performed for 10 different sets of input

numbers and for all the possible permutations of each set. For list size 8 and

16, 1000 permutations are chosen randomly as described in 6.4.1, and are used

with 10 sets of random data to perform the measurements. The range of the

input data in these experiments is between 0 to 255 (8-bit). Accordingly the Ei

parameters for 8-bit data range are used in the model to estimate the energy.

Table 6.5 shows the amount of time needed for running the power measurement

experiments for each size of the input list. As the table shows, the simulation-

Table 6.4: Measured Energy and Estimated Energy for LEON3 Processor for the
Insertion Sort Program

Input List Size Measured
Energy (µJ)

Estimated
Energy (µJ) Error (%)

4 0.087 0.092 8.31
8 0.277 0.313 10.56
16 0.939 1.047 11.45

Table 6.5: Input Data and Processor Power Measurement Time for The Insertion
Sort Program

Input List Size Input Data Power Measurement
Time

4 10 sets, 24 Permutations 6.5 hours
8 10 sets, 1000 Permutations 11 days
16 10 sets, 1000 Permutations 14 days

Average-Case Analysis of Power
Consumption in Embedded Systems

104 Nasim Zeinolabedini



6. Static Average-Case Power
Analysis of a Sorting Algorithm 6.7 Summary

Table 6.6: Percentage of The Energy Consumption in Each Submodule of The
LEON3 Processor

Processor Submodules
Percentage of
Energy Usage

(%)
Integer Unit, Multiply/Divide Units,

Cache Controller 4.05

Register File 5.09
Cache Memory 83.11
Trace Buffer 7.74

based power measurements are very time-consuming, and can take several days

to be performed for a reasonable number of input samples. The energy model

eliminates the need for these measurements, and makes it possible to estimate

the processor energy consumption in a fraction of a second.

The percentage of energy consumption of top-level submodules of the LEON3

processor are given in Table 6.6. These are the average values measured through

the experiments to give a view of the the amount of energy consumed by each part

of the processor core. As the results show, most of the energy in the processor

core is consumed in the cache memory.

6.7 Summary

In this chapter, a static model is proposed to estimate the average-case energy

consumption of the processor core during the execution of the Insertion sort pro-

gram. This energy model is built based on the average number of comparisons

carried out during the execution of the sorting algorithm. The number of com-

parisons is derived from the average-case timing analysis using MOQA (MOdular

Quantitative Analysis) methodology. MOQA is a new high level methodology

which enables the static prediction of the average number of basic steps per-

formed in the computation of the programs.
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The proposed energy model is general, and can be used for any processor, but the

parameters of the model in this work are determinded for the LEON3 processor

core. The model has been validated through the power measurement experiments.

Using this model enables the designers to statically estimate the energy usage of

the processor, and eliminates the need for time-consuming measurements.
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Chapter 7

Conclusion

In this thesis, two fast and high-level methods for the prediction of processor

power consumption have been presented. The first method is based on a design

methodology called Asynchronous Charge Sharing Logic (ACSL) and uses the

power predictability property of the circuits designed with this methodology.

The second method is based on the average number of basic steps during the

execution of a program, and the processor power consumption associated to each

step. In this method, the number of basic steps is generated using a high-level

methodology called MOdular Quantitative Analysis (MOQA). These methods

enable the software developers to have a fast and accurate power estimation for

their programs, and generate more power-efficient codes.

In the first part of the thesis, the Arithmetic Logic Unit (ALU) of 8051 micro-

controller is implemented using ACSL design style. The power consumption of

arithmetic and logical operations of this ALU is almost constant and independent

from the input patterns. This property makes it possible to estimate the ALU

power usage by knowing the number of times each operation is performed, and the

amount of power it consumes. An 8051 Instruction Set Simulator (ISS) is used to

generate the program instruction trace, and the ALU related instructions in the

107



7. Conclusion

trace are counted to find the number of times each ALU operation is activated

during the execution of the program. The total power is estimated using this

number and the power usage of each ALU operation which is measured through

the simulations. This method can estimate the ALU power with less than 1%

error, and over 100 times faster than the gate-level simulation and hundreds of

thousends times faster than the transistor-level simulation.

In the second part of the thesis, an average-case energy model for the Insertion

sort algorithm is developed. This model is based on the number of comparisons

that take place during the execution of the sorting algorithm. This number is

derived from analysing the Insertion sort algorithm using MOQA methodology.

The number of times each part of the program code is executed on the processor

is calculated, and the energy consumption associated to each part is measured.

Using this information the processor energy model for the sorting algorithm is

built. This model can predict the processor power usage for any given size of

the input list for the Insertion sort algorithm. The parameters of the model

are determind for LEON3 processor core, but the model is general and can be

used for any processor. The model is validated through the power measrement

experiments, and estimates the energy usage with high accuracy and orders of

magnitude faster than simulation-based methods.

7.0.1 Future Work

In this work, the ACSL design methodology is used to implement a power pre-

dictable ALU circuit. ALU is only one of the functional units inside the processor

core. The other functional units include the instruction decoder, fetch unit, mem-

ory interface, register file, etc. The next step toward a fully predictable processor

core is implementing these units using ACSL design style. The relationship be-

tween the instruction trace and the activation of each unit during the execution
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of the code needs to be determined, and the relevant power models get built.

The other potential future work is building the power models for the other algo-

rithms which can be developed using MOQA methodology. In fact, the meau-

rement of power consumption for the basic operations used in MOQA language

can extend this methodology to be used for power analysis of a wide range of

programs.
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