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Abstract

Computational Thinking (CT) and Agile Values (AV) focus respectively on

the individual capability to think algorithmically, and on the principles of col-

laborative software development. Although these two dimensions of software

engineering education complement each other, very few studies explored their

interaction. In this paper, we use an exploratory Structural Equation Modeling

technique to introduce and analyze Cooperative Thinking (CooT), a model of

team-based computational problem-solving. We ground our model on the exist-

ing literature and validate it through Partial Least Square modelling. Coopera-

tive Thinking is new competence which aim is to support cooperative problem

solving of technical contents suitable to deal with complex software engineering

problems. This article suggests tackling the CooT construct as an education

goal, to train students of software development to improve both their individual

and teaming performances.
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Cooperative Thinking, Statistical analysis.

1. Introduction

According to the World Economic Forum, current technological trends -

like mobile Internet and cloud technology, advances in Big Data, advanced

robotics and autonomous transport, artificial intelligence and machine learning,

advanced manufacturing and 3D printing and High Performance Computing,5

new materials, biotechnology and genomics, just to cite a few, propose novel

problems to both users and developers [1]. According to this vision, work-

ers will need to think differently, to solve their working problems in a context

where software systems are becoming more complex day by day. Some problems

in the real world can be classified as wicked problems which can be considered as10

complex real-world problems [2]. In other words, these problems outline trade-

off situations, where a selection of alternatives is needed: each option is first

assessed, and then a subset of those options is identified, with the property that

no other option can outperform any of the chosen options.

Accordingly, the education system needs to train students on such new chal-15

lenges. Novel initiatives were promoted by institutions in several countries,

like for instance the US “21st-century skills” [3] and “Europe’s Key skills for

Lifelong Learning” [4] initiatives, that prompted the redefinition of computer

science curricula:

[...] to empower all [...] students to learn Computer Science and20

be equipped with the computational thinking skills they need to be

creators in the digital economy, not just consumers, and to be ac-

tive citizens in our technology-driven world. Our economy is rapidly

shifting, and both educators and business leaders increasingly rec-

ognize that Computer Science is a “new basic” skill necessary for25

economic opportunity and social mobility. 1

1https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all. Accessed
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The idea of a “new basic skill”, according to this view, derives from the fact

that computational proficiency became a traversal skill for all domains, comple-

menting the soft skill areas. Modern education theories, such as Construction-

ism [5], promote critical thinking as opposed to mere memorization; teaching30

practices such as Cooperative Learning [6] and Problem-based learning [7] also

introduce organizational and social skills in the educational process. These the-

ories are becoming spread, although some scholars have mixed-feelings about

them, suggesting that, e.g., memorization is a prerequisite for critical thinking

[8, 9].35

Single constructs were presented, like Computational Thinking [10] for the

computer science domain, in general, and Agile Values [11] for the software en-

gineering one in particular. With regard to the pedagogical perspective, also,

consistent efforts to support collaboration in Computational Thinking, like the

4C paradigm (Critical thinking and problem solving, Communication, Collabo-40

ration, and Creativity and innovation) [12] have been made. Similarly, tools like

Scratch [13], which “primary goal is not to prepare people for careers as pro-

fessional programmers [...]”[14, p. 60], have been developed to trigger relevant

constructs, like Computational Thinking, in schools.

Computational Thinking (CT) and Agile Values (AV) represent complemen-45

tary skills of computer science education for software development [15]: re-

spectively, the individual ability to produce computationally efficient code, and

the social ability to interact with both peers and stakeholders to deliver valu-

able software. Nevertheless, CT and AV have also practical implications in the

broader computer science domain. The rise of complexity (and wicked problems)50

is not only a problem of software engineering but engages all computer science

areas. The interdisciplinary interaction between different hardware and software

components, along with a context-dependent knowledge is a common scenario

for most areas. As an illustrative example, IoT is moving to new paradigms

due to the rising complexity of computing (e.g., fog computing, context-aware55

on 22.01.2018.
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computing) [16]. Here, the role of teams is crucial to address these topics, since

they are both interdisciplinary and complex.

We argue that these two core skills are part of the higher level competence

of Cooperative Thinking (CooT), which is, in our view, the ability to describe,

recognize, decompose problems and computationally solve them in teams in a so-60

cially sustainable way [15]. Computational Thinking is the skill of understand-

ing problems and applying, assessing, and producing a solution in the form of

an algorithm. It is a fundamental skill that comes to the meaning of problem-

solving and points out that it is necessary to understand what the problem is

before developing a solution while solving a problem according to a specific point65

of view [17]. However, an individual who masters the Computational Thinking

skill is not necessarily able to cooperate with other individuals to solve complex

problems [18]. Accordingly, we worked on the concept of Cooperative Thinking

working with teams of students in high schools and in university courses. Our

initial idea was to exploit an agile approach to let the teams solve problems70

requiring Computational Thinking [19]. We started with teams composed of

pairs, then scaled to self-organizing groups of up to six students. We realized

that when working in a team on complex problem solving, social sustainability

is essential: in particular, we found that heterogeneous groups are more effective

than homogeneous groups [19]. We noticed that such groups were able to handle75

complex problems more effectively due to their ability to team up through peer

education and communication. Especially for software developers, communica-

tion structures are essential to understand the way they design software: this is

called the Conway law [20]. Since communication impacts the way they design

software systems, it is necessary to educate developers to properly manage their80

social organization of work (i.e., dealing with customers, rely upon fellow devel-

opers, be able to discuss algorithms, etc.). It should be socially sustainable since

a developer should be able not only to deliver her specific task (e.g., developing

some piece of code), she should also interact effectively with her social context

(e.g., internal and external project’s stakeholders, laws and regulations). Ed-85

ucating students to deal responsibly with their social context means to make
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them aware that a socially sustainable work organization is vital to solving com-

plex problems. We are less interested in educating solo developers who provide

fast algorithmic solutions, regardless of their social communication structures.

Indeed, social sustainability is a new element which is complementary to both90

Computational Thinking and Agile Values.

It focuses on cooperative problem solving of technical contents. So, this

competence is derived from both CT and AV and can address complex problem-

solving skills. However, CooT is not just the sum of two constructs, but it is an

autonomous educational construct which builds on Complex Negotiation, Con-95

tinuous Learning, Group Awareness, Group Organization, and Social Adapt-

ability, as will be explained in Section 6.1. To evaluate this assumption, we

validated CooT through Partial Least Squares Structural Equation Modeling

(PLS-SEM), a method that has also been used to analyze the relation between

Computational Thinking skills and different work and school-specific variables100

such as IT usage experience or IT academic success [21]. This research method

enables researchers to assess if the relationships among different theoretical con-

structs are statistically significant in the surveyed population.

This paper is organized as follows. In Section 2 we present the related

literature. Subsequently, in Section 3, we discuss our research model with the105

underlying hypothesis. Then, we describe our research methodology in Section

4, along with a brief explanation of PLS. Afterwards, we validate the results

obtained with PLS in Section 5. The analysis of our findings with the study

limitations is in Section 6. Finally, we outline future works and our conclusions

in Section 7.110

2. Background and Related Work

There is a growing belief that complex problem solving, critical thinking,

creativity, people management, and coordinating with others will become the

most critical job skills by 2020 [1]. According to the World Economic Forum

(WEF), future companies will actively search for employees who can master115
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“capacities used to solve novel, ill-defined problems in complex, real-world set-

tings” and “motivate, develop and direct people as they work, identifying the

best people for the job, also adjusting actions in relation to others’ actions” [1].

So, skills to think in a computational friendly way and to solve them socially

and sustainably are both required. CT and AV skills are strictly connected for120

companies, as suggested by [1].

Since 1945, several scholars have been theorizing ante litteram about Com-

putational Thinking, most notably by [22], and [23]. The idea of “algorithm” be-

came popular after 1960 when Katz suggested that automated processes would

spread well beyond the computer science domain and would influence all fields125

[24].

In 2006, Jeannette Wing’s paper popularized the concept of Computational

Thinking [10], portrayed as a fundamental skill in all fields, not only in com-

puter science. It is a way to approach complex problems, breaking them down

in smaller problems (decomposition), taking into account how similar problems130

have been solved (pattern recognition), ignoring irrelevant information (abstrac-

tion), and producing a general, deterministic solution (algorithm). Today, gov-

ernments realize its importance, and update school programs worldwide (like

the US initiative “21st-century skills” [3]).

However, more and more scholars argue whether the CT concept is too vague135

to have a real effect [25]. Denning claims that CT is too vaguely defined and,

most important in an educational context, its evaluation is very difficult to

have practical effects [25]. This same idea can be found in the CS Teaching

community. [26] and [27], for example, try to decompose the CT idea itself,

in order to have an operative definition. Henderson [28] notes that computing140

education has been too slow-moving from the computing programming model

to a more general one. Blackwell [29] even wonders if the CT concept is at

all useful in computer science since it puts too much importance on abstract

ideas. We also noted that apart from some works, [30, 31, 32], there is not much

research on CT and learning styles.145

Though Agile development is eventually going mainstream in the profes-
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sional world, teaching the Agile methodology is still relatively uncommon, es-

pecially at the K-12 level; there are a few exceptions [33, 34]. Indeed, university

curricula typically focus on Waterfall-like development models [35]. Often, es-

pecially experienced practitioners, learn Agile “in the field”, or after attending150

ad hoc seminars, since they did not have the chance to learn it while in edu-

cation. Interest in Agile is however rising, and curricula are being updated to

reflect such trend [33, 34]. A comprehensive proposal has been advanced by

[36], where the “Agile Constructionist Mentoring Methodology” and its year-

long implementation in high school is presented. It considers all aspects of155

software development, with strong pedagogical support.

In the last years, we gathered several insights along our research journey on

computer science education [19, 37, 38]. From our experience, we realized that

computer science skills, like programming, are typically taught at an individual

level. There are several reasons why this is the case. Probably, the main rea-160

son is the students’ assessment. Since it is much harder to trace the acquired

knowledge of every single student while working in a group, the most straight-

forward option is to consider the class as a set of individuals. Indeed, there

are also other reasons, like the necessity to tailor Individual Learning Plans,

especially for students with special needs [39], although recent research showed165

that heterogeneous groups outperform homogeneous ones (also those composed

by outstanding students) [19].

Surprisingly, educational approaches to convey computer science students

with a broader set of skills (both of social and technical nature) are not rather

uncommon in our community with few exceptions, such as [40, 41]. Notably,170

Burden et al. [41] provided insightful evidence, suggesting that Agile methods

in project-based classes are an opportunity to experience entrepreneurial skills

during software engineering classes. The authors suggest that using Agile ap-

proaches in project-based courses stimulates opportunities for entrepreneurial

experiences in software engineering courses, since they can be implemented in175

student projects to lead ideas into action.

Generally speaking, the traditional educational paradigm is not well-tailored
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to educate people to handle complex issues or wicked problems [42]. PISA-like

evaluations are meaningless to determine the educational system’s efficiency in

this respect since they consider the individual performance of students. So,180

the gap between students’ formal educational background and real-life wicked

problems and the related complex task becomes more significant as the level of

predictability decreases, and uncertainty increases [43].

Some studies tackled the idea that hard skills expertise should be comple-

mented with soft skills, possibly introducing active and cooperative learning to185

CS [6]. For example, in Rivera [44], a long list of so-called soft skills expertise

are paired with various developer’s roles. In Carter [40] the problem is well

analyzed, but arguably, the proposed solution is not comprehensive. Meier [45]

presents an example of how to promote cooperation within a software project;

however, generalizing the proposed scheme seems complicated. Notably, team-190

based learning [46] has been applied to computer science courses [47], as also

project-based learning [48] although they are mainly concentrated in Scandina-

vian countries.

The scholarly debate made substantial contributions to our understanding

of Computational Thinking and Agile Values. However, emergent educational195

practices, like Cooperative Thinking [15], requires a more in-depth analysis.

Therefore, we have recently designed a research model to investigate Cooper-

ative Thinking [49]. In Russo et al., we defined a conceptual model for Coop-

erative Thinking, providing theoretical support to the construct hypothesized

in Missiroli et al., [15]. In concrete terms, we discussed the relevant theoretical200

hypotheses related to the Cooperative Thinking construct. Therefore, we used

a multivariate analysis technique to test our hypotheses, to provide the commu-

nity with a first theory of the observed phenomenon, also named by Russo &

Stol (2019) soft theory [50].

This stream of research is based on several experiments [19, 37, 38]. sug-205

gesting that effective coding teamwork in educational environments leads to

improved learning outcomes and even to a software of better quality. Never-

theless, good teamwork is not sufficient, per se, to solve complex tasks - indi-
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vidual problem-solving competencies are also needed. In previous works, we

found that the best outcomes were provided in cases where both such compe-210

tences (i.e., teamwork and problem-solving skills) were effectively implemented

[19]. Recently, these problems have been addressed by theoretical contributions

[15, 49], but they have never been validated. Still, substantial questions remain

open in literature, like what is the best way to educate CS students to manage

both teaming and software development skills or the best educational practices215

to use in this regard. Therefore, we aim to address this gap.

3. Research Model and Hypotheses

Based on the prior discussion, we forward our fundamental thesis. Future

workers will need a new set of skills to be competitive in tomorrow’s job market.

Ad hoc educational curricula need to be developed to prevent skill shortage. CT220

and AV alone are not sufficient to educate students to solve wicked problems

[51]. The development of a new overarching competence may lead students

to describe, recognize, decompose problems and computationally solve them

in teams in a socially sustainable way. This competence, which we named

Cooperative Thinking, is not just the sum of the two underlying constructs of225

CT and AV. We propose to consider it as a social dimension of computer science

education.

For the sake of this paper, we used the definition of Complex Problem Solving

to identify the most relevant skills, as suggested by the WEF [1].

This is an exploratory study to assess if the formalized constructs have a230

significant relationship with each other. From an operational perspective, con-

structs are phenomena which can only be measured through latent variables

(like project success, complexity, commitment, or values [52]), which are not

directly observable but inferred from other directly observed variables. As a

Structural Equation Model-based study, constructs are grounded in literature235

or experience [53]. Therefore, we are hypothesizing relationships which have a

theoretical explanation but were never assessed, which is a crucial novel contri-
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bution of this paper.

In the next subsections, we are motivating our hypotheses, supported by

[49].240

3.1. Effect of Computational Thinking on Cooperative Thinking

As explained in Section 2, to enhance the new construct Cooperative Think-

ing, some individual Computational Thinking skills need to be developed to

interact constructively within the group, to suggest useful insights. Following

Wing [10], several frameworks have been proposed to operationalize Compu-245

tational Thinking in an educational system [54, 55, 56]. The general idea is

to train students to think in a computational-friendly way to improve their

problem-solving skills. As such, it is a pivotal individual skill-set that any fu-

ture professional will bring to its team. Team performance is strictly related to

the quality of its individual members [57]. Therefore, the quality of the devel-250

oped CT skills will affect the performance of the team in the future positively.

According to this background, we formulate our first hypothesis:

H1: Computational Thinking positively influences Cooperative Thinking

3.2. Effect of Agile Values on Cooperative Thinking

While Computational Thinking is the specific skill useful to individuals to255

solve problems, Agile Values educate people to work together. Agile Values offer

a variety of points of view useful to solve difficult or wicked problems. Usually,

there is no single “best solution” to such problems, but several ones, whose

value moreover may change over time — as is the case in the field of Science

and Business [58].260

With particular regard to software engineering, the design of a complex sys-

tem whose requirements are unstable is a typical wicked problem [59]. Satisfying

unpredictable customer’s expectations and ephemeral requirements are beyond

the limit of solvability for any single programmer.
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Delivering valuable software on time has been one of the major efforts of265

software development methodologies in the last years [60]. Although the defini-

tion of “on-time” may look clear (since it is related to a deadline), it is strictly

correlated to “valuable”, which is a more vague definition. Concerning the ISO

25010:2011 standard on software quality, the customer may perceive as valu-

able aspects related to the Quality in Use dimension. Nevertheless, a software270

with high Quality in Use but a low, e.g., maintainability (which is related to the

Product Quality) could not be defined “valuable”. The aspect of maintainability

may be related to poor refactoring due to time constraints.

In this (trivial) example, it is clear that value and time are two sides of one

coin. Mastering such challenges requires a specific skill-set.275

The Agile Manifesto proposed a new perspective on software development,

based on values that clashed with the traditional culture of the time, based on

multi-level hierarchies, top-down decision making and, in general, accepting the

given methods without voicing dissent or criticism [61]. The most significant

change invoked by the Agile movement is the paramount relevance assigned to280

communication and social interaction, superseding any internal organizational

rigidity, documentation, contracts, roles, and more.

This led to the formalization of essential concepts (such as changing re-

quirements, self-organizing teams, personal responsibility, . . . ) and program-

ming practices (pair programming, test-first development, continuous integra-285

tion, . . . ). The Agile approach has proven in several contexts its usefulness, and

it is now an established development model, and its adoption is steadily growing

[62].

Consequently, Agile Values are an important skill-set for Cooperative Think-

ing, leading to our second hypothesis:290

H2: Agile Values positively influence Cooperative Thinking

3.3. Effect of Cooperative Thinking on Complex Problem Solving

As proposed with H1 & H2, the construct Cooperative Thinking is mainly

explainable with Computation Thinking and Agile Values. Nevertheless, we do
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not believe that it is just the sum of these constructs. Instead, it is a useful295

proxy to develop further fundamental skills.

The intuition is that some crucial future skills can not be taught with an old-

fashioned curriculum. The most significant skill for future workers in 2020 is,

according to the World Economic Forum, Complex Problem Solving [1]. Accord-

ing to its definition, it is “Developed capacities used to solve novel, ill-defined300

problems in complex, real-world settings”. In other words, it is another way to

solve wicked problems.

From a pedagogical perspective, we started questioning ourselves how to

train our best students to manage wicked problems. With regard to Compu-

tational Thinking and Agile Values, we realized that, separately, they are not305

sufficient. CT deals with individual capabilities and is deeply rooted in the tra-

ditional educational system of “solo” learners. On the other hand, AV per se is

not enough to deal with such problems. Good social interaction is a valuable

driver but not the asset to solve wicked issues.

The idea of Cooperative Thinking, as defined in Section 2, is that of a310

construct which is able to teach students to tackle Complex Problem Solving as

a proxy of wicked problems. Therefore, our last hypothesis is:

H3: Cooperative Thinking positively influences Complex Problem Solving

The relationships among our three hypotheses can be represented as in Fig-

ure1.315

Figure 1: Theoretical framework and hypotheses
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4. Research Design

Structural Equation Modeling (SEM) is strongly influenced by Popper’s

post-positivist view, according to which social observations should be treated

as entities like physical phenomena [63]. Using SEM, the researcher is detached

from the observed constructs, as social science inquiry should be objective and320

hypotheses should be empirically validated to justify them. Typically research

outcomes obtained with SEM are generalizable, independently from time and

context [64].

As this is an exploratory study, we are here interested in testing the sig-

nificance of the proposed model. For this reason, post-positivism is the best325

suited meta-theoretical stance, since we are dealing with the falsification (i.e.,

significance verification) of our hypotheses. As researchers, we have our epis-

temological bias, which usually remains hidden or implicit, even if they deeply

influence our research [65]. Therefore, empirical (i.e., statistical) procedures are

of most significant importance to mitigate researcher’s biases [63].330

4.1. Research Questions

We are interested in testing these two assumptions: a) is CooT grounded in

empirical evidence, and b) does it address key constructs, like Complex Problem

Solving? This leads us to our first research question:

RQ1: Is Cooperative Thinking grounded as a new overarching theoretical

construct in Computational Thinking and Agile Values?

Our second research question regards the “explanatory” power of our con-335

struct:

RQ2: Is Cooperative Thinking a significant construct to teach students

how to deal with wicked problems?
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During this research journey, some explicit dimensions which were initially

implicit emerged. Thus, beyond the proposal of a new construct which should

be considered for curricular purposes, we validate it through a well established

statistical method.340

4.2. Partial Least Square path modelling

The use of Partial Least Squares Structural Equation Modelling (PLS-SEM)

for the validation of latent unobserved variables with multiple observed indica-

tors [66] is an emerging research trend within the computer science education

domain [67, 68, 69, 70, 71]. Wold has developed it for the analysis of high dimen-345

sional data (i.e., with a high number of independent variables) in low structured

environments, typical of social science settings [72, 73]. SEM techniques, in gen-

eral, and PLS in particular, can answer a set of interrelated research questions

in one comprehensive analysis [74]. Other research communities have even a

long tradition with PLS-SEM and made several advances for theoretical model350

testing, in Management [75], Information Systems Research [76], and Organi-

zational Behavior [77]. “SEM has become de rigueur in validating instruments

and testing linkages between constructs” [74, p. 6], since it allows to distin-

guishes between measurement and structural models, also taking measurement

error into account.355

Practically speaking, any structural equation model is composed of two sub-

models: a structural model and a measurement model. The structural model

designs the relationships between the different constructs; while the measure-

ment model provides the measures for the different latent variables. In order

to have a reliable estimation of the hypothesized relations among the latent360

constructs (in the structural model), the measures which define the different

constructs has to be grounded on auxiliary theory (in the measurement model),

since “without this auxiliary theory, the mapping of theoretic constructs onto

empirical phenomena is ambiguous, and theories cannot be empirically tested”

[78, p.115].365

SEM distinguish itself between two families: the first one are covariance-
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based techniques (CB-SEM); the second one is variance-based techniques, among

which partial least squares (PLS) path modelling is the most used one [79]. CB-

SEM is considered a more conservative approach, designed for confirmatory and

theory-testing research; while PLS-SEM aim is to develop new theory or predic-370

tive applications [79]. This is because CB-SEM has stringent assumptions (e.g.,

normal distribution and high sample sizes), since it minimizes Type I and Type

II errors. This is not the case of the PLS-SEM algorithm, which has exploratory

purposes.

Operational research scholars consider PLS-SEM as a “silver bullet” for esti-375

mating causal models in many theoretical models and empirical data situations

[80]. Indeed, it is flexible in the construction of unobserved latent variables and

modelling relations among different predictor criteria and variables [81].

4.3. Scale Development

As any SEM study, the scale was developed with the highest care with the380

help of auxiliary theory [78]. Following the example of [67], latent variables (i.e.,

constructs) were measured through uni-dimensional items (in the form of state-

ments), which selected informants answered according to the statement’s level

of agreement on a 7-point Likert scale. Constructs and items are represented in

Table 1.385

All constructs in the model are “reflective”. Indeed, latent variables can

be measured in either reflective or formative ways [82, 83]. We use reflective

ones when items are caused by the latent variable (i.e., their covariance), or

in other words when they represent the effects of the underlying construct so

that causality is from the construct to its items. They can be considered as a390

representative sample of all the possible items available within the conceptual

domain of the construct [53].

We wanted to ground the definition of each construct to frameworks estab-

lished in the literature. As no universally accepted framework exists for any of

them, we had to pick the framework best suited to our needs. In particular,395

for Computational Thinking we used the framework proposed by Computing
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at School, a subdivision of the British Computer Society [84], enumerating six

basic elements of CT (Generalization, Decomposition to name a few). For Ag-

ile Values, Kent Beck formalized the construct in [11] and defined several key

factors needed inefficient software development — related to both the personal400

and social realm (for example, communication). Complex Problem Solving has

been defined by the World Economic Forum in his pivotal report of future skill

needs [1]; these skills are not tied to programming but rather to general per-

sonal abilities and attitudes. Finally, Cooperative Thinking is based on the

result of our studies about the education of Agile student developers to enhance405

their Computational Thinking capabilities [19, 37, 38, 15, 49], pointing out the

importance of social skills and self-organization in software development.

Items related to the constructs were developed independently by the authors

and refined iteratively until full consensus was reached. After that, a pre-test

with five potential target respondents (i.e., graduate students) was conducted410

to test the usability of the survey, its rationale, and also the wording. Usability

was assessed positively, while minor rationale and wording issues emerged and

were consequently fixed.

4.4. Data Collection

First, we ran a a priori power test [85], to define the minimum sample size415

for a linear multiple regression F-test, which is a good approximation for a PLS

analysis. With an effect size of 15%, and 10% significance, the minimum sample

is 82. Then, we used a stratified convenience sampling technique. The sample

had to represent future software developer professionals (e.g., technical High

School and computer science students).420

To validate the latent variable, grounded in the conceptual model of [49,

15], we used informants who had been already exposed to both Agile practices

and Computational Thinking training along with their studies. This procedure

supports the idea that Cooperative Thinking is derived from the combination

of AV and CT. According to that, we see the improvement of the reliability425

of our endogenous and reflective constructs. Strata were designed accordingly,
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Table 1: Items list
Construct [source] Labels Items Questions

Cooperative Thinking [15]

COOT 1 Complex negotiation During design, I like to discuss with people

who have different ideas, in order to develop

the best solution.

COOT 2 Continuous learning Programming in team-taught me something I

didn’t know.

COOT 3 Group awareness I like to be part of a software developing team.

COOT 4 Group organization When I work in a team, results are better than

when I work alone.

COOT 5 Social sensitivity During development, I work fine even with

teammates with whom I have personal diffi-

culties.

Agile Values [11]

AV 1 Timeboxing and estimation I can estimate precisely the time needed to

complete a developing task.

AV 2 Simple solution It is important to find a solution, regardless

how, also if not generally applicable.

AV 3 Programming practices I use Agile practices during software develop-

ment

AV 4 Agile SDLC I prefer Agile methods to traditional ones.

AV 5 On-site customer When I work in a team, I join fre-

quently conversations with teammates or

clients/stakeholders.

AV 6 Face-to-face communication I prefer direct, face-to-face, communication to

emails or messages.

AV 7 Courage During a discussion with teammates, I am able

to well defend my point of view.

Computational Thinking [84]

CT 1 Logical reasoning I get good results in logical-mathematical tests

and exercises.

CT 2 Algorithmic thinking I can usually decompose a problem in precise

and sequential steps.

CT 3 Generalization I discard details not essential to solving design

problems.

CT 4 Evaluation I like to modify a working solution to improve

it, even risking to waste a lot of time.

CT 5 Patterns I can easily identify and evaluate recurring

patterns or behaviors.

CT 6 Decomposition I can always decompose a complex Problem

into simpler ones.

Complex Problem Solving [1]

CPS 1 Curiosity I’m good at working on problems I never tack-

led before.

CPS 2 Creativity I can solve ill-defined problems.

CPS 3 Tenacity I like to solve real, complex problems.

focusing on undergraduate and graduate students of some European Universities

(Bologna, Modena, Limerick, and Chalmers). We also included significant strata
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of High School students, which were also exposed both to CT and AV during

their education. To any subgroup was assigned an ID code for strata definition.430

The respondents’ rate was 70%, since the survey was directly administered

during class by teaching personnel. To avoid random answers, the survey’s com-

pilation was voluntary, minimizing response biases and increasing our internal

validity. So, we were able to collect only committed students’ answers.

Finally, demographics variables relevant to the context and strata were con-435

trolled and represented in Table 2. Survey’s design is displayed in ?? for the sake

of reproducibility. Additionally, Table 3 shows the respondents’ breakdown both

per country and institution. In total, we had 116 respondents, well above the

minimum requirement. Undergraduate and Graduate students were 72 (62%),

while High School students were 44 (38%). We collected several factors, like440

the programming experience, completed software projects, Agile method expe-

rience, and broad team participation, to identify the sample’s skill-set.

5. Results

In this section, we describe our results, which consist of the structural equa-

tion model described in Figure 1, computed through our survey data. To mini-445

mize possible errors or misspecification and assess the significance of our model,

we strictly followed the state to the art evaluation protocol proposed by Hair et

al. [53] to make results consistent with our claims. Thus, to estimate the path

weighting scheme, we used Smart PLS 3.0 [86]. Our model converges after 10

iterations. We also applied non-parametric bootstrapping to obtain standard450

error’s estimates [87, 88]. Blindfolding was used to calculate Stone-Geisser’s

Q square value, which represents an evaluation criterion for the cross-validated

predictive relevance of the PLS path model [89, 90].

5.1. Measurement Model

All item loadings above the cut-off value of 0.65 were considered, as in Table455

4, and were significant at p<0,001 (with the only exception of CPS with p<0,05,
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Table 2: Demographics

% #

Population

Grad. & Undergrad. students 62% 72

High School students 38% 44

Programming experience

Less than 1 year 9% 10

2-3 years 46% 53

4-6 years 27% 31

7-10 years 4% 5

11-20 years 9% 10

21-35 years 3% 4

More than 35 years 3% 3

Complete software projects

1 10% 12

2-4 43% 50

5-10 30% 35

11-20 5% 6

20+ 11% 13

Agile methods experience

Daily 10% 12

Used in some projects 44% 51

Did some experiment 19% 22

I studied it 27% 31

Largest team participated in

0-2 6% 7

3-5 37% 43

6-8 40% 46

9-12 8% 9

13+ 9% 11
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Table 3: Educational institutions breakdown

Educational Institution Country #

University of Bologna Italy 47

University of Modena and Reggio Emilia Italy 21

IIS Fermo Corni (HS) Italy 44

University of Limerick Ireland 6

Chalmers University of Technology Sweden 22

since it is the highest construct). Following Hair et al. [53], items below the

cut-off value were rejected (i.e., AV 1, AV 2, AV 6, AV 7, CT 3, CT 4, CooT

5). The good average of items loading and a narrower range of difference for

such an exploratory study provide an adequate base for the items in measuring460

the underlying construct [53]. Items are not redundant, since the outer variance

inflation factor (VIF) ranges between 1,165 and 1,832, well below the cut-off

value of 5 [53]. Thus, we conclude to have appropriate item reliability.

The construct reliability and validity is composed by the reliability of con-

structs, composite reliability and average variance extracted (AVE) [91]. To465

assess the construct reliability, we used Cronbach’s alpha, which measures the

homogeneity of items in a construct based on the assumption that each item

in the scale contributes equally to the latent construct. The composite reli-

ability depends on the item loadings estimated in the measurement model to

compute the measure of internal consistency [92]. According to Nunnally [93],470

both Cronbach’s alpha and composite reliability should have at least a value of

0,70 to be acceptable. Rhoa is another reliability measure developed by Dijkstra

et al. [94], according to which the most conservative critical value should be

above 0,7. For AVE, a value above 0,5 is desirable, since it reflects the variance

captured by indicators. If this is the case, it means that the variance captured475

by indicators is higher than the measurement errors.

We assess the discriminant validity to analyze the relationships between

latent variables with both Fornell-Lacker Criterion and Heterotrait-Monotrait
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Table 4: Outer Loadings

AV CPS CT CooT

AV 3 0,830

AV 4 0,884

AV 5 0,655

CooT 1 0,701

CooT 2 0,693

CooT 3 0,865

CooT 4 0,709

CPS 1 0,801

CPS 2 0,648

CPS 3 0,891

CT 1 0,745

CT 2 0,756

CT 5 0,756

CT 6 0,794
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Table 5: Fornell-Lacker Criterion

AV CPS CT CooT

AV 0,796

CPS 0,354 0,786

CT 0,331 0,612 0,763

CooT 0,570 0,285 0,397 0,745

Table 6: Heterotrait-Monotrait Ratio of Correlations (HTMT)

AV CPS CT CooT

AV

CPS 0,444

CT 0,456 0,803

CooT 0,764 0,340 0,513

Ratio of Correlations (HTMT) [95]. According to the Fornell-Lacker Criterion,

the square root of AVE must be higher than the correlation of the construct480

with all other constructs in the structural model [91]. In this way, we can

see if constructs do not share the same type of items and are so conceptually

different from each other. As shown in Table 5, the lowest square root of AVE is

0,745 (CooT-CooT), which is greater than the highest correlation value of 0,612

(CPS-CT). With regard to HTMT, all values are below the most conservative485

threshold of 0,85 [96], as shown in Table 6.

We conclude that the measurement model provides evidence of adequate

reliability and validity for the reflective constructs.

5.2. Structural Model

We assess the validity and exploratory power of the structural model.490

The first step is to test whenever the inner variance inflation factor values

(VIF) are below the threshold value of 5 to discard redundant inner–model

constructs [53]. We see that those values are between 1 and 1,23 so below the
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Table 7: Paths Coefficients

Paths Orig. Sample Mean St. Dev. T p

AV→CooT 0,492 0,498 0,066 7,474 0,000

CT→CooT 0,235 0,249 0,085 2,770 0,006

CooT→CPS 0,285 0,288 0,134 2,127 0,034

critical value.

We measure the path significance through bias-corrected and accelerated495

bootstrapping. Since this is an exploratory study, we assumed a two-tailed test

with a significance level of 10%, following [53]. As we can see from Table 7, all

indicators comply with their respective critical values. In particular T-statistics

are above 1,96 for all paths and the p-values are below the reference level of 0,1

(for 10% significance) and also below the more conservative value of 0,1 [53].500

Therefore, we conclude that all paths in the model are significant. This supports

all of our three hypotheses H1, H2, H3.

Passing now to the evaluation of the R-square values of the two endogenous

variables, we see that Computational Thinking and Agile Values explain very

well the construct Cooperative Thinking with a value of 0,374. Interestingly,505

Complex Problem Solving has a relatively low R-square value of 0,081 for two

reasons [53].

The first one is statistical. Since another endogenous construct derives CPS,

the statistical explanation power is mitigated by the mid-construct CooT. So,

it is reasonable to have a relatively lower value.510

The second reason is conceptual and regards the exploratory nature of this

study. Although CooT is a useful skill for complex (or wicked) problems, since

its p-value is significant, it may not be enough. With different words, there

might be other constructs which address better complex problems. As well,

there might also be more than just one construct which addresses complex515

problems. This remains an open issue, and future research should test new

constructs (such as CPS) grounded in literature, which could represent a better
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Figure 2: Structural model with Path coefficients and p values

fit in the model.

Going back to the validation of our findings, we look now at the f-square

values. These metrics indicate how well each exogenous construct explains the520

endogenous ones. Here we have that the relationship AV→CooT has the highest

value of 0,35, which suggests a very high effect, according to literature standards

[53]. The relationship CT→CooT has a moderate effect, but still significant

since it is above the threshold of 0,02 [53], with a value of 0,08. The same for

the relationship CooT→CPS with a value of 0,09.525

Now we to test the predictive validity of the model, to see if the exogenous

constructs explain the endogenous ones significantly [97]. To do so, we use

run blindfolding with an omission distance of 7 to measure the Stone-Geisser’s

Q-square through Construct Crossvalidated Redundancy [90, 89]. Here, the Q-

square should be bigger than 0 [53]. We have for both for CooT (Q2: 0,177)530

and CPS (Q2: 0,029) the match of this criterion.

We conclude that our structural model, represented in Figure 2, can predict

all tested constructs. Nevertheless, the low R2 of CPS indicates that the model

is not complete. Still, it is significant and is a solid ground to build a new theory

on. Therefore, we also conclude that CooT is a significant proxy to Complex535

Problem Solving. Significance and explanatory values of CooT suggest that AV

and CT are suitable constructs for this new competence.
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6. Discussion

Our structural model suggests a positive answer for both our Research Ques-

tions, according to these statistical considerations:540

• RQ1: the high R2 of CooT indicates a high explanatory power of the

new construct. This means that both CT and AV are significant compo-

nents of this new overarching construct. Moreover, path coefficients of H1

and H2 are highly significant. So, they influence the new construct in a

statistically significant way.545

• RQ2: CooT does explain in a significant way CPS, due to its path co-

efficient. Also, H3 is significant, considering the path’s p- and absolute

value. Since R2 is not a relevant indicator in this case for the reasons as

mentioned earlier, we can state that it does well explain CPS, and thus

wicked problems.550

From this evidence, we can conclude that both CT and AV are building

constructs of CooT, which can explain independently a new construct, namely

Complex Problem Solving.

Consistently with our research design, we outline now the educational im-

plications of this study and its limitations.555

6.1. Implications

Our findings support the idea that CT and AV reinforce each other to sustain

the new construct of Cooperative Thinking. Now we outline some educational

practices that we included in our courses to foster Cooperative Thinking.

Firstly, it is useful to position Cooperative Thinking.560

It is not a teaching method, like Project-Based Learning (PBL) [98]. How-

ever, it is enhanced by teaching approaches which are student-centred and

cooperative-based, like PBL or Problem-Based Learning [99]. At this stage of

our research, we do not provide specific recommendations on didactic aspects,

just content-wise.565
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Cooperative Thinking is competence, not a skill. Following the European

Union’s definition, competence is the “ability to use knowledge, skills and per-

sonal, social and/or methodological abilities, in work or study situations and

professional and personal development. It is not limited to cognitive elements

(involving the use of theory, concepts or tacit knowledge); it also encompasses570

functional aspects (including technical skills) as well as interpersonal attributes

(e.g. social or organisational skills) and ethical values” [100]. While, according

to the same taxonomy, a skill is the “ability to apply knowledge and use know-how

to complete tasks and solve problems” [100]. We stress this distinction (although

it is often used as a synonym) since Cooperative Thinking is not task-specific,575

but it is traversal, encompassing both technical and social skills. In particular,

to address CooT, we suggest developing specific skills and competencies of both

social and technical nature.

These activities are all linked to Cooperative Thinking [15], which has also

been used as a baseline for our scale development in Section 4.3. Most of580

the proposed practices are also grounded in pedagogical literature. Cooperative

Thinking can be operationalized through established educational practices. The

educational scope is to tackle key concepts of problem description, recognition,

decomposition, to solve them computationally in teams, stressing cooperation

and social sustainability. This reinforces the theoretical ground of this construct585

since it is both backed in literature and is empirically significant. We stress the

fact that using already mature practices is an effective way to support CooT,

spreading this new competence in daily classes.

Students experience in an incremental way complex problems to learn reusable

cooperation patterns. We propose (and have tested most of) the following cat-590

egories of practices to foster CooT in everyday activities:

• Complex Negotiation: when given a project problem, students are in-

vited to discuss and evaluate alternative ideas and solutions, considering

different viewpoints. Deriving from Agile negotiation [11] and negotiation

pedagogy [101], this aims to develop adequate capabilities to deal with595
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stratified issues and different opinions. Finding a group-wise sustainable

way to devise a solution to a problem, taking into consideration a variety

of useful or useless points of view is the aim of this practice. Key ac-

tivities include: structured brainstorming, architectural design and code

contests, Randoris and Code retreats [102]. For instance, we have devel-600

oped specific exercises to let our students develop and discuss the (mainly

non-functional) properties of a new product, explicitly asking them to

analyze the tradeoffs among the properties they believe that should be

satisfied by the product.

• Continuous Learning: this has to do with shaping a team to adapt605

to changes in the problem to solve. Both individuals and their groups

should be ready to find and gain the knowledge needed to solve a given

problem at hand. Education should be centred on enhancing the students’

ability related to “reflection-in-action” [103], practising continued learning

and problem solving throughout their entire career. Activities such as610

Peer Learning and Exploratory learning are well suited to this task. An

interesting exercise consists of working in pairs to a set of refactoring

exercises driven by tests: the students have to learn how to exploit the

different tests to evolve their code. An example we use is called Refactoring

Golf and is available on GitHub2.615

• Group Awareness: this indicates the capability to be part of a group.

It covers knowledge and perception of behavioural, cognitive, and social

context information within a group [104]. It requires reflective activities

(such as [105] Lego Serious Play, or Lego Scrum [33, 106, 107]) and group

games to develop a “team spirit” and promote the self-organizing skill620

of the team. For instance, we ask the students to keep a diary of both

individual and group activities and to relate such artefacts to the shared

board (or kanban) that is used by each group.

2https://github.com/sf105/refactoring-golf
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• Group Organization: this refers to the ability to develop software as

a group, i.e. deliver a working product collaboratively. This goal can625

be achieved by regularly applying Group-oriented Project-based learn-

ing, starting with small, toy project and scaling to complex ones. It is

grounded within the domain of peer learning, to generate productive in-

structional dialogues for joint problem solving, relying on intrinsic rather

than extrinsic rewards, discouraging competition between students [108].630

• Social Adaptability: this refers to the groups’ internal and external

social dynamics. Especially for adolescents, this kind of competence is a

pivotal aspect of education; it will determine how future adults will be

oriented to express social sensitivity [109]. Activities include role play,

group exercises, project simulations, and even stress tests, as in [110]. A635

notable example here are entrepreneurial skills since students are moti-

vated to create value for stakeholders, being able to adapt themselves to

a changing context [41].

The novelty of the CooT construct does not lie in the advancement of new

skills, preferably in the combination of different skills, encompassed in a new640

computer science-related competence. The result is the proposal of a new com-

puter science competence whose aim is to support cooperative problem solving

of technical contents.

6.2. Limitations

As inherent in any scientific method [111], this study has several limitations.645

The first issue is about the use of cross-sectional data (i.e., observation of

the population through data collection from many subjects at the same point of

time) for the empirical assessment of the model. Hence, results may reflect asso-

ciations rather than causality between constructs. Moreover, it is not possible

to predict if the causal relationship will change over time. However, a longi-650

tudinal study might overcome this limitation. Generally speaking, we tackled
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these issues through a sound theoretical derivation, which is a correct way to

minimize these limitations [53].

Secondly, we measured our constructs from a subjective perspective through

a single-informant approach. So, constructs represent the students’ perspec-655

tive. Respondents may not have answered the question accurately or with some

biases. For this reason, the survey was anonymous, and no grades were as-

signed for the participation at this research. Moreover, a sample size of 116

observations through different European countries minimized the method bias

[112]. Third, we used perceptual measures, rather than objective ones, asking660

students to state their level of agreement on literature-derived items. So, the

measurements may not fully reflect the real world accurately due to potential

respondent bias and random errors. Therefore, items were adapted from pre-

vious studies and literature and subject to various examinations for ensuring

their quality. However, continuous item development and validation are needed665

to update the constructs.

Finally, the last limitation regards the sampling technique. We used a strat-

ified convenience sampling technique, where strata were defined accordingly to

the acquired skill-set. We selected students who already had acquired in their

curriculum both training and experience with CT and AV exogenous constructs.670

This enabled us to assess the level of endogeneity of CooT and CPS. In doing so,

we asked European partner Universities we already collaborate with to admin-

ister the survey. Those Universities adopted curricula that fostered CT and AV

and were therefore considered suitable targets for our strata definition. Our re-

search did not target non-European educational environments; this may weaken675

our results, since cultural factors may have also played a role, which we did not

consider in this study. Generally, non-responses may have lead to sample selec-

tion bias if a systematic and unobservable difference exists between respondents

and non-respondents [113].

All in all, we consider our limitations acceptable for this exploratory study,680

mainly because we took several precautions to minimize them. As discussed in

Section 5, all statistical indicators suggest the conceptual validity of the model.
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Still, we are aware that this is a starting point, not an ending one; further

research is needed to generalize the model and to define its sub-dimensions

better.685

7. Conclusions

With this paper, we validated the theoretical model of Cooperative Thinking

to train teams of students to manage software engineering problems. Accord-

ingly, we are advancing a new computer science competence which aim is to

support cooperative problem solving of technical contents to address complex690

software engineering problems. We defined Cooperative Thinking as a com-

petence encompassed by Complex Negotiation, Continuous Learning, Group

Awareness, and Group Organization and explained how we had used them in

class.

To validate the proposed educational model, we used Structural Equation695

Modeling with Partial Least Squares. Exploiting this technique, we were able

to test the statistical significance of the relationships between constructs as also

their explanatory power. Indeed, PLS-SEM has important potentials in software

engineering to test the significance of theoretical social constructs.

This study provided a model for our future empirical investigations on the700

new educational construct. Our future work will focus on both theoretical and

pedagogical aspects.

Some generalization efforts need to be undertaken to consider Cooperative

Thinking like a real universal competence. This study could also be admin-

istered in non-European countries. To uncover unobserved heterogeneity in705

the inner (structural) model, a Finite Mixture Partial Least Squares (FIMIX-

PLS) segmentation test should be run [114]. This will capture heterogeneity

by estimating the probabilities of segment memberships for each observation

and simultaneously estimate the path coefficients of all segments. Doing so, an

improved understanding of constructs performance on different segments (i.e.,710

groups of students) is possible. Thus, it is possible to tailor educational curric-
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ula, according to each segments’ sensibility, according to individual differences

(e.g., performance, culture, gender, age, students’ level). Moreover, this can

be supported by finer granular studies, based on students’ composition, to an-

alyze those pedagogical differences. Literature work is further needed to refine715

measurements and sub-dimensions of all constructs. We used Complex Prob-

lem Solving as a proxy of a wicked problem. However, this assumption needs

further insights to be validated. In a possible extension of the model, wicked

problems may be represented by other parent-constructs of CPS to make their

representation more trustworthy.720

From a pedagogical perspective, Cooperative Thinking practices and educa-

tional curricula need to be outlined in more depth concerning what we did in

this paper. Indeed, a ad hoc curriculum on Cooperative Thinking may help stu-

dents to improve model fitting. For instance, we are developing the proposed

constructs of Complex Negotiation, Continuous Learning, Group Awareness,725

and Group Organization.
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