\ \ ! h
&1\7\\\) Za ‘M@ L‘% “ﬁ\

Title On leveraging machine and deep learning for Throughput
Prediction in cellular networks: Design, performance, and
challenges

Authors Raca, Darijo;Zahran, Ahmed H.;Sreenan, Cormac J.;Sinha, Rakesh

K.;Halepovic, Emir;Jana, Rittwik;Gopalakrishnan, Vijay

Publication date

2020-03-18

Original Citation

Raca, D., Zahran, A. H., Sreenan, C. J., Sinha, R. K., Halepovic, E.,
Jana, R. and Gopalakrishnan, V. (2020) 'On leveraging machine
and deep learning for Throughput Prediction in cellular networks:

Design, performance, and challenges’, [IEEE Communications
Magazine, 58(3), pp. 11-17. doi: 10.1109/MCOM.001.1900394

Type of publication

Article (peer-reviewed)

Link to publisher’s
version

10.1109/MCOM.001.19003%94

Rights

© 2020, IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Download date

2025-02-07 17:39:28

[tem downloaded
from

https://hdl.handle.net/10468/9865

University College Cork, Ireland
Colaiste na hOllscoile Corcaigh

https://hdl.handle.net/10468/9865

JOURNAL OF IATgX CLASS FILES, VOL. 14, NO. 8, AUGUST 2019

On Leveraging Machine and Deep Learning for
Throughput Prediction in Cellular Networks:
Design, Performance, and Challenges

Darijo Raca, Ahmed H. Zahran, Cormac J. Sreenan, Rakesh K. Sinha, Emir Halepovic, Rittwik Jana,
Vijay Gopalakrishnan

Abstract— The highly dynamic wireless communication envi-
ronment poses a challenge for many applications (e.g., adaptive
multimedia streaming services). Providing accurate Throughput
Prediction (TP) can significantly improve performance of these
applications. The scheduling algorithms in cellular networks
consider various physical (PHY) metrics, (e.g., Channel Qual-
ity Indicator (CQI)), and throughput history when assigning
resources for each user. This paper explains how Artificial
Intelligence (AI) can be leveraged for accurate TP in cellular
networks using PHY and application layer metrics. We present
key architectural components and implementation options, illus-
trating their advantages and limitations. We also highlight key
design choices and investigate their impact on prediction accuracy
using real data. We believe this is the first study that examines
the impact of integrating network-level data and applying a deep
learning technique (on PHY and application data) for TP in
cellular systems. Using video streaming as a use case, we illustrate
how accurate TP improves the end user’s Quality of Experience
(QoE). Furthermore, we identify open questions and research
challenges in the area of Al-driven TP. Finally, we report on
lessons learned and provide conclusions which we believe will be
useful to network practitioners seeking to apply Al

Index Terms—throughput prediction, artificial intelligence,
machine learning, deep learning, HTTP adaptive video streaming,
HAS, QoE

I. INTRODUCTION

The availability of accurate TP has the potential to improve
performance of many applications. For example, adaptive
multimedia streaming services can improve user experience
through timely quality adaptation decisions [1} [2]]. Similarly,
massive-scale downloads (e.g., firmware updates over the air
to self-driving cars) can benefit from accurate TP by efficiently
scheduling these updates without congesting the network [3]].
Commonly used bandwidth estimators (e.g., exponential mov-
ing average, harmonic mean, and arithmetic mean) produce
low TP accuracy, motivating the need for more advanced
techniques [2].

The achievable throughput in cellular networks rapidly
fluctuates due to many factors. The wireless channel features
highly random characteristics. Additionally, user activity and

Darijo Raca, Ahmed H. Zahran, and Cormac J. Sreenan are with the
Department of Computer Science, University College Cork, Cork, Ireland.
E-mail: {d.raca,a.zahran,cjs}@cs.ucc.ie

Darijo Raca is with the Faculty of Electrical Engineering, University of
Sarajevo, Bosnia and Herzegovina. E-mail: draca@etf.unsa.ba

Rakesh K. Sinha, Emir Halepovic, Rittwik Jana, and Vijay Gopalakrishnan
are with AT&T Labs — Research, New Jersey, USA.

E-mail: {sinha,emir,rjana,gvijay } @research.att.com

the shared nature of the wireless medium influences the
achievable throughput. Resource scheduling typically com-
bines all these factors to trade off fair and efficient resource al-
location [4] leading to throughput oscillations. Hence, the user
throughput depends on various factors that are too complex to
capture using traditional models (e.g., [5]]). This paper focuses
on using Machine and Deep Learning (ML/DL) for accurate
TP in cellular networks illustrating design, performance, and
challenges of this approach.

ML/DL have been very successful in tackling complex
problems [6]] that: (1) reflect a pattern, (2) cannot be solved
mathematically or described structurally, and (3) have large
amounts of example data available. The TP problem described
above matches these requirements. Cellular networks provide
data in abundance. Each mobile device measures and collects
a wide range of control and data information, some of which
are reported to the base station (BS). Additionally, cellular
resource scheduling involves multitudinous parameters. While
BS schedulers are vendor-specific black boxes, the scheduling
algorithms represent a collection of predefined steps and
actions and thus exhibit consistent behavior (i.e., for the
same inputs, it will produce the same output). Hence, ML/DL
represents an attractive methodology to extract underlying
information and correlations in resource scheduling and make
accurate TP.

II. BACKGROUND

Machine and Deep Learning. ML/DL offers algorithmic
methods to learn from data by extracting patterns to classify
an object or predict a value. While many problems can be
solved by processing raw data, extracting problem-specific
features is a practical process, known as feature engineering.
In an image recognition task, features, such as edges, corners,
and ridges, are typically extracted from the image pixels. An
ML algorithm then processes these features to identify the
object. Defining these features for complex tasks is not trivial,
and often incurs significant time and effort. To overcome this
shortcoming, DL evolved as a branch of ML. A DL-based
image recognition solution would take raw pixels as input and
form a hierarchical structure of learning layers that extract
relevant features and identify the object. Hence, DL simplifies
the solution design at the cost of additional computing needs.

Throughput Prediction. Traditional TP methods rely
on past throughput measurements [5]. These methods in-

JOURNAL OF IXTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2019

clude well-known linear predictors such as Moving Aver-
age (MA), Exponential Weighted Moving Average (EWMA),
and more complex Autoregressive-Integrated-Moving-Average
(ARIMA). The inability to detect sudden changes in through-
put values is a key limitation for this type of predictors.
There are also methods employing more direct expression for
throughput prediction. For example, a model for estimating
TCP Reno throughput uses maximum segment size, round-
trip-time (RTT) and packet-loss rate. However, such model is
sensitive to errors in input parameters (RTT and perceived
packet loss) and usually have high prediction errors, espe-
cially in highly dynamic environments, such as cellular [J5]].
In contrast to traditional TP models, ML/DL can combine
multidimensional input from lower and upper layers of the
communication stack to provide accurate TP.

Cellular Resource Scheduling. Each cellular BS schedules
transmission to its connected devices by allocating radio
resources (e.g., physical resource blocks in 4G). Scheduling
algorithms consider various factors in resource allocation de-
cisions, such as reported channel quality and recently allocated
resources. These schedulers are typically designed to trade-off
resource fairness and efficiency [4]]. Hence, combining PHY
with throughput measurements can significantly improve TP
accuracy. Traditional TP methods only use one metric (i.e.,
throughput) while the power of ML/DL is in the ability to
exploit a multi-feature space for accurate TP.

III. TP SYSTEM OVERVIEW

There are three main logical components of a TP system:
the Collector, Predictor and Trainer, as depicted in
Fig.|l} The Collector gathers a combination of device-level
and network-level data through existing interfaces and prepares
them for the Trainer and Predictor. The Trainer cre-
ates and updates the prediction models using training records
that include both data and ground truth (actual throughput
values for model training). The Predictor translates data
records collected online to a throughput estimate (in the
remainder of the text, TP refers to downlink TP).

Figure [I] also illustrates different architectural options for
each of these components. These details are discussed in the
following sections.

A. Collector

The Collector gathers various metrics that can be clas-
sified as channel-specific (e.g., CQI), network-specific (e.g.,
cell load), application-specific (e.g., application throughput),
and context-specific (e.g., mobility mode). These metrics can
also be classified as device-level and network-level data.

Device-level data represents individual device environment
and can be collected at the mobile device using its Operating
System (OS) Application Programming Interface (API) (e.g.,
Android telephony). Hence, the time granularity relies
on OS implementation and typically has a medium time
resolution (e.g., one second). It is worth noting that PHY
metrics can be collected at finer granularity using specialized
software or hardware equipment. Architecturally, device-based
collection is distributed, and hence scalable, but only offers

2
Channel
Implemen ion Network RF
plementatio Application SVM
options Context LST™
—_— —— PREDICTED
DATA . MODEL R THROUGHPUT
TP Components | Collector Trainer Predictor r—
! . ONLINE DATA B
Architectural ((.’)
options A
= scalable Hardware capabilities Low dela
. elay
Architectural mm Lower accuracy " versonalized models - H:!,'WW capabilities
examples
(co)) (/\) (”\)
At = =
® = Higher accuracy Hardware capabilities -— Higher Delay
+ Personalized models Communication Overhead

mm Scalability

Figure 1. Components, implementation, architectural options and examples
of Al-driven TP system

a local view of the operating context. Network-level data
offers a comprehensive view of metrics for multiple users
served by one or more BSs. Hence, TP systems that combine
network-level and device-level data would have higher TP
accuracy. However, lacking a unified mechanism for measuring
and reporting various network-level metrics represents a key
challenge in current networks (e.g., 4G). Different vendors
use various approaches to collect and report relevant metrics,
requiring immense effort to consolidate data from various
sources.

B. Trainer & Predictor

The Trainer and Predictor are tied through the
selection of the ML/DL algorithm. This design decision is
affected by multiple factors, including accuracy, training time,
prediction model size, and time complexity.

We select the following three algorithms as they are com-
monly used for TP tasks in literature [6} |2, (7, |8, 9} [10]:

« Random Forest (RF) - RF represents an ensemble learn-
ing method [7]. RF operates by constructing a set of
decision trees, each trained on a random subset of training
data that does not necessarily contain all the features.
Hence, all decision trees see similar but different data,
reducing the correlation between trees, helping avoid
over-fitting. The final prediction is calculated as the mean
value of all trees.

o Support Vector Machines (SVM) - SVM is similar to
linear regression where output value is a linear function of
input features. One of the key characteristics of SVM al-
gorithm is the usage of kernel functions. Kernel functions
enable learning non-linear interactions as a function of
input features by mapping input feature space into a new
transformed space. This higher-dimensional space allows
fitting with the linear model [8].

o Long Short-Term Memory (LSTM) - LSTM represents
a family of Recurrent Neural Networks (RNN), more
specifically gated RNN. RNN is a type of DL networks
design to process sequences of data and represents a
suitable choice over other neural networks for time-based
tasks, such as TP [6].

JOURNAL OF IXTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2019

Typical ML algorithms heavily depend on feature engi-
neering and model tuning. Section [IV] illustrates how feature
engineering affects the accuracy of TP. Additionally, we
compare the DL algorithm (LSTM) to ML algorithms. We
find that DL models can be significantly smaller than the ML
model (several Megabytes versus hundreds of Megabytes). The
smaller footprint is a big advantage, especially for device-
based TP systems. We perform additional measurements,
implementing our DL model on an off-the-shelf smartphone
(Samsung J5). The average initialization and running times
of the model are 10ms and 22ms, respectively. As a result,
the impact on energy consumption is negligible, making it
applicable in practice. The main drawback of DL algorithms
is that they require longer training times compared to ML
algorithms. Therefore, training typically occurs in datacenters
and it is performed only when needed.

A network-based Trainer can leverage the processing
power of datacenters resulting in more robust prediction
models. Alternatively, a device-based Trainer may be lim-
ited by computing and power capacities of end-devices. The
Predictor can also run at the device or in-network. A
device-based predictor would be usually limited to device-level
information but facilitates low prediction delays for end-device
applications. Alternatively, a network-based Predictor in-
volves both delay and communication overhead but can have
access to network-level data. Hence, TP systems have various
architectural choices featuring different advantages and disad-
vantages.

Figure [T illustrates two examples for the architecture of the
TP systems. The first features a device-based Collector and
Predictor with an in-network Trainer. The second uti-
lizes a full network view with a network-based Collector,
Trainer, and Predictor components.

IV. KEY DESIGN CHOICES AND OPERATIONAL ASPECTS

The accuracy of an ML-based TP depends on both ML-
specific and system-specific design aspects. The former covers
data (source, granularity, feature engineering) and algorithm
choice, while the latter represents system architecture and
practical implementation requirements. This section investi-
gates the impact of key design choices on the prediction
accuracy.

Our key metrics include CQI, Signal to Noise Ratio (SNR),
Reference Signal Received Power (RSRP), Reference Signal
Received Quality (RSRQ), device velocity and application
throughput [2]. Unless mentioned otherwise, these metrics are
collected using Android APIs at one second granularity. All
metrics are scaled to [0,1] range as such normalization is
known to improve the accuracy especially when features have
different ranges.

The predictor estimates the average throughput over a future
time horizon of x seconds by processing the data observed over
the past y seconds. Therefore, notation PyFx is used, where
Py is the Past history length and Fx is the Future prediction
horizon, to illustrate the impact of history-horizon combina-
tions on the prediction accuracy. The prediction accuracy is
measured using absolute value of relative error (ARE). ARE

is expressed as ratio of the absolute prediction error to the
actual throughput value. Other relevant prediction accuracy
metrics are also calculated and confirm our observations based
on ARE. These include root-mean-square error (RMSE), mean
absolute prediction error (MAPE), coefficient of correlation
and coefficient of determination. However, they are not shared
due to space limitations.

A. Feature Engineering and Machine Learning Algorithms

We show the impact of feature engineering on prediction
performance by comparing two different training approaches.
The first trains on raw data [7] while the second trains on
statistical measures of raw data [2], including inter-quartile
range (25", 75", 50'"), average and the 90" percentile.
The second approach is denoted as quantile. Note that such
abstraction reduces the number of input features leading to
smaller model storage requirements and shorter runtime.

Figure 2] shows the boxplot of ARE for the raw input and
quantile summarization technique for different ML algorithms
for P20F20.

= o 20.0

3\,120 175

S 15.0

(0 100 12,5

= 10.0

=}

3 80 7.5

@ 5.0

8]

%5 60 0.0 L —T—

g SVM RF LSTM

T 40

>

g

S 20

: 0=

2 L T —

W A\ ENALTE -\ gt
W - oW a\e - e W -\
Ra Q\)a(\"\ Q\)a“ ?\a

Figure 2. Comparison between different data representation approaches and
ML algorithms for 1-second data granularity

The figure shows significant improvement in TP accuracy
for both RF and SVM when quantile summarization is used.
Additionally, LSTM achieves similar results operating directly
on raw input. Furthermore, LSTM achieves the lowest 90"
percentile of ARE among all algorithms, indicating better
learning ability for rare patterns.

B. Data granularity and history duration

There are two dimensions to how much data we use for
high-level feature calculation: history duration and sampling
interval. Longer history produces more samples (with fixed
sampling interval) for each measurement metric, and hence
improves distribution approximation. For the same prediction
horizon, extending data history reduces ARE, as depicted in
Fig. |3 However, in our previous work, we show that history
duration beyond 20 seconds does not have a significant impact

JOURNAL OF IXTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2019

on prediction accuracy [2]. Similarly, increasing prediction
horizon improves the prediction accuracy (Fig. [3). This may
appear counter-intuitive at first, but instantaneous throughput
fluctuations are averaged out when the mean throughput over
the horizon is calculated. Hence, increasing the horizon makes
it easier for a ML algorithm to predict.

= = =
o N D

o
—

Absolute Value of Residual Error (%)

1

PAF4 PAF8 P4F12 P8F4 P8F8 P8F12 P12F4 P12F8P12F12
History and Horizon Combination (s)

Figure 3. High granularity scenario (250ms, RF)

Finally, our results confirm that finer data granularity signif-
icantly reduces the prediction error. With 250ms data granular-
ity (Fig.[3), which is possible using Qualcomm QXDM, ARE
drops to 20-36 percent of ARE based on 1-second granularity
(Device-based in Fig. @) across all PxFy configurations.

C. Data Sources

Here we discuss the impact of integrating network-level
metrics on TP accuracy. Network-level metrics are collected by
monitoring logs of a group of BSs and the mobile device. The
collection of these metrics involves many challenges, including
scale (collecting large amounts of data), timeliness (latency),
and metric reporting frequency. For example, CQI is often
reported for the entire active radio session. To collect CQI, a
device needs to stop using radio resources, which is achieved
by stopping the device’s download activity. This results in on-
off measurement cycle consisting of download activity for a
certain amount of time followed by the off period. We analyze
TP accuracy using experiments with periodic data downloads
while collecting corresponding network data. However, we did
not want to make the on periods too long. To train and test
prediction horizon of length x seconds in duration requires that
we collect throughput measurements from contiguous intervals
of at least x seconds. As a compromise, we used active periods
of 16 seconds.

For network-level metrics, we consider following measure-
ments:

o Competing throughput - average throughput of devices

connected to a given cell

o Competing CQI, RSRP, RSRQ and SNR - average per-

metric value for all devices connected to the same cell.

« Load - number of devices connected to the same cell and
Physical Resource Block (PRB) utilization.

Since the number of users per cell dynamically varies with
system load, we use the average value across all devices to
represent competing device metrics.

Figure [] shows significant improvement in the ARE for
every PxFy combination when the TP model uses combined
network-level and device-level data in comparison to using
device-level data only.

@ [device [device+network
a0
-

[e]

b

NN]

'© 30
>

°

0

]

o

"6 20
(]

=

S

© 10
=
=)

[e]

(%)

Ko}

<

P4F4 P8F4 P4F8 P8F8 P4F12

History and Horizon Combination (s)

Figure 4. Comparison of ARE for device and device+network approach
(aperiodic sampling interval, real data, RF)

D. History and Horizon window

The accuracy of TP is a paramount consideration in select-
ing a history and horizon combination, but there are additional
considerations that come from application requirements and
system limitation. In general, HTTP adaptive streaming service
benefits more from longer horizons (dozen of seconds in fu-
ture) where TP-assisted algorithms manage to stream without
interruptions and with significantly fewer switches between
different bitrates (qualities) than in traditional settings [2].
Longer horizons become even more important in applications
needing large file download, e.g., connected cars, where size
of firmware updates ranges from a couple of Megabytes to
Gigabytes [3].

In any case, the choice of the horizon is driven by ap-
plication/service requirements. These requirements can limit
the effectiveness of the TP system if the selected horizon
does not meet the desired accuracy. One approach to solving
this problem is to collect more samples (either by increasing
history duration or sampling interval). Furthermore, processing
of large amounts of data (millions of devices) in a network
may pose serious scaling challenges and increases prediction
latency to a point where prediction is obsolete and unusable.
However, mobile edge computing could help alleviating this
challenge [6].

E. TP system in cellular networks

The implementation of device-based or network-based TP
implies a different set of challenges for every design choice.

JOURNAL OF IXTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2019

Device-based Predictor provides a timely and scalable
option as the metrics sampling and prediction are collocated
on the same device. However, loading and running large
ML models on mobile devices may become impractical due
to the limited memory and CPU power. The fast progress
in implementing DL in mobile devices, at both software
and hardware levels [6]], can help overcome the model size
obstacle. Alternatively, trading the model accuracy for smaller
ML models could be another solution [2].

Network-based Predictor may be designed for device-
level or combined device+network data. In both cases, the
system design should consider solutions that limit the impact
of communication overhead and delay, which could be critical
for time-sensitive applications. Additionally, current cellular
networks (4G) have limited support for deploying ML/DL
at scale. The lack of a standardized way for data collection
from eNodeBs across different vendors and restricted access
to eNodeBs represent key challenges [11]. Next-generation
cellular networks (5G) offer the opportunity for successful
in-network ML/DL deployment in Mobile Edge Cloud [11]]
with sub-ms network-based prediction delays. Additionally,
network controllers can be leveraged for data collection from
Next Generation Node Base Stations (gNodeBs). Noting that
network controllers govern multiple gNodeBs, they strike a
balance between distributed (e.g., 4G) and centralized archi-
tecture (e.g., one controller controlling all gNodeBs) allowing
5G architecture to scale for millions of devices.

The ample computing resources available for network-based
prediction can enable context-specific prediction models. To
illustrate, the variation of user mobility (static to high speed)
impacts throughput predictability with high mobility posing a
bigger challenge for TP. By training mobility-specific mod-
els, a Profiler can map the device to the right model.
Moreover, this classification can go beyond mobility patterns,
towards personalized models. Accordingly, Predictor and
Trainer would contain multiple models based on type of
classification.

V. USE CASE: HTTP ADAPTIVE VIDEO STREAMING

HTTP adaptive streaming (HAS) is the dominant approach
for video streaming [[12f]. The majority of streaming providers
(e.g., YouTube, Netflix) rely on HAS for content delivery. HAS
enables dynamic change of a stream’s video quality during
runtime by judiciously selecting the most suitable video bitrate
when requesting each video chunk, allowing adjustment to
changes in available bandwidth.

To illustrate the benefit of TP, we report on experiments
in which a HAS video client connects to a server using
a controlled link whose bandwidth is driven by a real 4G
trace [2]. TP values are calculated offline using LSTM model
(based on device-level data only) and are sent to the mobile
device every second. In a prediction-assisted case, the video
client implements ARBITER+ [13]] as an adaptation algorithm.
ARBITER+ uses EWMA for bandwidth estimation and scales
this estimate based on the buffer level and throughput vari-
ability. For prediction-assisted streaming, we replace EWMA
estimates with TP values with the rest of the algorithm’s

logic intact. To evaluate the video streaming performance,
we calculate the following performance metrics: Bitrate, the
average bitrate of selected video chunks; Number of switches,
the average count of bitrate switches; Number of stalls, the
average number of stall events, when the playback pauses
due to lack of buffered chunks; Stall duration, the average
duration of stall events. Streaming performance without pre-
diction represents the base case. Additionally, we consider two
prediction-assisted systems: the first uses the actual average
throughput for 20-second horizon from the trace file (ideal
prediction) while the second is based on TPs generated by
P20F20 model. We repeat such evaluation ten times and report
average values for each video performance metric.

Figure 5] plots the relative improvement in performance met-
rics of the prediction-assisted schemes relative to the base case.
Hence, a larger relative improvement in the streaming bitrate
implies a higher bitrate while a larger relative improvement
in the number of stalls implies fewer stalls. The performance
metrics of the base case for every scenario are shown in the
white boxes just above the x-axis. Integrating TP noticeably
improves QoE metrics. Ideal prediction eliminates stall events
while keeping average bitrate almost as high as in the base case
(insignificant 6 percent drop). Additionally, ideal prediction
allows ARBITER+ to improve switching stability by having
35 percent fewer switches. Real prediction generated from
ML model achieves almost the same improvement as the
ideal case. Furthermore, the player operates on a distinct set
of bitrates, limiting the impact of TP errors. To illustrate,
inaccurate TP values have little impact as long as both ideal
and real value lie in the same space between adjacent bitrates.
In both cases, the player will make the same quality selection.
Real prediction achieves slightly worse stall performance. Still,
rebuffering events improve by 99 percent. This result reflects
average bitrate as well, with real prediction achieving one
percent higher bitrate than ideal case. Finally, real prediction
improves switching stability by 34 percent compared to the
base case. Overall, our model manages to achieve almost the
same performance as ideal case with insignificant difference
(one percent).

+100
mss Real Ideal - -

N +80
X Higher the better - -
~ +60
-
s . .
.o E B
g +20 =
o
o ARBITER +
€
£ L,
)
=
S
o
]
o

2051
Bitrate

26.09 0.95]

Switchpym Stallspum
Performance Metrics

Stallsqur

Figure 5. Relative improvement of different QoE metrics for ARBITER+
algorithm (values are normalized to the base scenario with numbers in white
boxes representing the values for the base scenario)

JOURNAL OF IXTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2019

Deeper insight into how TP aids the player during streaming
is depicted in Fig. [6] The figure shows a timeline of one video
session, comparing selected bitrates and stalls in the base and
TP-assisted cases using the same bandwidth profile and video.
TP-assisted player makes future-aware quality decisions in
comparison to reactive decisions taken by the tradition player.
As a result, the TP-assisted player eradicates stall events by
swiftly switching to lower bitrate while the traditional player
fails to predict sudden drops in available bandwidth and selects
higher bitrates. Reducing quality switching is another benefit
of TP.

6000
5000 Avail. Throughput
Bitrate (with TP)
T,? —a— Bitrate (No TP)
Q.
0 4000
X
5
2 second stall
Q
b= 3000
(o)}
>
o
© 2000
=
4.55&111193"5 sm‘ds"""s
1000 'i
I
120 140 200
Time (s)

Figure 6. Timeline of video streaming sessions (with and without TP)

VI. OPEN QUESTIONS

Presented results indicate promising benefits from ML/DL-
based TP. The results also highlight potential limitations
and motivate additional research. Any ML-based TP system
requires availability of metrics data, which can be challenging
for various reasons. We illustrated the scalability challenge of
collecting network-level data in 4G systems. Our results indi-
cate that network data improves prediction accuracy. Hence,
designing scalable network-level data collectors is an essential
requirement for accurate TP. Alternatively, one can explore if
the accuracy of device-based TP systems can be improved
by leveraging additional PHY metrics. Also, exploring inter-
actions between the TP system, target application and real
environment is essential in order to successfully apply TP in
practice.

In our study, we illustrated the impact of feature sam-
pling granularity on the prediction accuracy. Although var-
ious metrics can be collected at different time granularities
(illustrated by network-level data collection in Section @[),
existing studies consider a homogeneous sampling interval
for various metrics. Using a summarization technique such
as quantiles can abstract this difference in sampling interval,
allowing ML models with a heterogeneous sampling of various
features. However, with the deep learning approach, samples
are fed directly, thus requiring more complex architectures,
e.g., multi-input deep learning architectures, in order to enable
TP systems with a heterogeneous sampling of features.

The implementation of ML-based solutions in real sys-
tems is known to bring new challenges that need further
exploration. “Dataset shift” [[14] is a common problem when
training and test data come from two different distributions.
This phenomenon may occur in “non-stationary environments”
where training environment is different from the test one.
Another possible cause is training ML model with data that
does not fully represent various operational contexts (e.g.,
training using only mobile users that may not fully capture
behavior of static users or using only a limited set of devices).
The evolving learning techniques, such as transfer and active
learning, can be leveraged to overcome this challenge [6].

The interplay between application traffic and metrics col-
lection poses another challenge. Specifically, the measured
throughput, which is used both as a model feature and ground
truth for training, is naturally affected by the application
traffic pattern. Existing studies rely on persistent traffic that
saturates the link (e.g., downloading a large file) to probe the
available bandwidth. However, many applications download
relatively small files that may not be sufficient to probe the
available system resources. An example is video streaming
where the player downloads low quality segments (a few
hundred Kilobytes) that may lead to lower throughput val-
ues [15]. Noting that physical-layer metrics are independent
of the application, the pattern offered to the predictor may
produce inaccurate predictions in such cases. Handling these
situations still requires further research. One possible approach
is to integrate application-specific behavior as part of the TP
model.

The application using TP would benefit from knowing how
much confidence to put in the prediction. For example, a
video application may act conservatively if buffer occupancy is
low and throughput prediction has low confidence. Identifying
these scenarios also gives us motivation to develop alternative
prediction techniques to handle these situations.

VII. CONCLUSION

ML/DL represents a promising approach for accurate TP
in cellular systems. The design of ML/DL-based TP systems
features a diverse set of architectural and implementation
choices that require operational and performance tradeoffs.
We presented a consolidated overview of these tradeoffs and
their impact on the prediction accuracy. Our results indicate
that suitable data representation can improve the achievable
accuracy of ML algorithms with DL enhancing the learning
of rare network scenarios. We also show that finer data gran-
ularity and integrating network data improve the prediction
accuracy. Using video streaming as an example, we illus-
trate that user experience of real applications is significantly
enhanced when assisted by ML/DL-based TP systems. We
further highlight key open research issues that require further
investigation toward the implementation of ML/DL-based TP
in real networks.

ACKNOWLEDGMENT

This research was supported by Science Foundation Ireland
(SFI) under Research Grant 13/1A/1892.

JOURNAL OF IXTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2019

REFERENCES

[1] T. Mangla, N. Theera-Ampornpunt, M. Ammar, E. Zegura, and
S. Bagchi, “Video through a crystal ball: Effect of bandwidth prediction
quality on adaptive streaming in mobile environments,” in MoVid ’16.
ACM, 2016, pp. 1:1-1:6.

[2] D. Raca, A. H. Zahran, C. J. Sreenan, R. K. Sinha, E. Halepovic,
R. Jana, V. Gopalakrishnan, B. Bathula, and M. Varvello, “Empowering
video players in cellular: Throughput prediction from radio network
measurements,” in MMSys ’'19. ACM, 2019, pp. 201-212.

[3] C. E. Andrade, S. D. Byers, V. Gopalakrishnan, E. Halepovic, M. Maj-
mundar, D. J. Poole, L. K. Tran, and C. T. Volinsky, “Managing massive
firmware-over-the-air updates for connected cars in cellular networks,”
in CarSys ’17. ACM, 2017, pp. 65-72.

[4] F. Capozzi, G. Piro, L. A. Grieco, G. Boggia, and P. Camarda, “Down-
link packet scheduling in Ite cellular networks: Key design issues and
a survey,” IEEE Communications Surveys Tutorials, vol. 15, no. 2, pp.
678-700, 2013.

[5]1 Q. He, C. Dovrolis, and M. Ammar, “On the predictability of large
transfer tcp throughput,” in SIGCOMM *05. ACM, 2005, pp. 145-156.

[6] C. Zhang, P. Patras, and H. Haddadi, “Deep learning in mobile and
wireless networking: A survey,” IEEE Communications Surveys Tutori-
als, vol. 21, no. 3, pp. 2224-2287, 2019.

[7]1 C. Yue, R. Jin, K. Suh, Y. Qin, B. Wang, and W. Wei, “Linkforecast:
Cellular link bandwidth prediction in lte networks,” IEEE Transactions
on Mobile Computing, vol. 17, no. 7, pp. 1582-1594, 2018.

[8] M. Mirza, J. Sommers, P. Barford, and X. Zhu, “A machine learning
approach to tcp throughput prediction,” IEEE/ACM Transactions on
Networking, vol. 18, no. 4, pp. 1026-1039, 2010.

[9]1 L. Mei, R. Hu, H. Cao, Y. Liu, Z. Han, F. Li, and J. Li, “Realtime

mobile bandwidth prediction using Istm neural network,” in PAM’I9.

Springer, 2019, pp. 34-47.

A. Samba, Y. Busnel, A. Blanc, P. Dooze, and G. Simon, “Predicting file

downloading time in cellular network: Large-scale analysis of machine

learning approaches,” Computer Networks, vol. 145, pp. 243-254, 2018.

M. Polese, R. Jana, V. Kounev, K. Zhang, S. Deb, and M. Zorzi,

“Machine Learning at the Edge: A Data-Driven Architecture with Appli-

cations to 5G Cellular Networks,” arXiv e-prints, p. arXiv:1808.07647,

Aug 2018.

A. Bentaleb, B. Taani, A. C. Begen, C. Timmerer, and R. Zimmermann,

“A survey on bitrate adaptation schemes for streaming media over http,”

IEEE Communications Surveys Tutorials, vol. 21, no. 1, pp. 562-585,

2019.

A. H. Zahran, D. Raca, and C. J. Sreenan, “Arbiter+: Adaptive rate-

based intelligent http streaming algorithm for mobile networks,” IEEE

Transactions on Mobile Computing, vol. 17, no. 12, pp. 2716-2728,

2018.

J. G. Moreno-Torres, T. Raeder, R. Alaiz-Rodriguez, N. V. Chawla, and

F. Herrera, “A unifying view on dataset shift in classification,” Pattern

Recognition, vol. 45, no. 1, pp. 521 — 530, 2012.

J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M. Mao, S. Sen, and

O. Spatscheck, “An in-depth study of Ite: Effect of network protocol and

application behavior on performance,” SIGCOMM Comput. Commun.

Rev., vol. 43, no. 4, pp. 363-374, 2013.

[10]

(11]

[12]

[13]

[14]

[15]

Darijo Raca is a teaching assistant at University of Sarajevo. He received his
Ph.D. from University College Cork in 2020. His current research interests
include multimedia networking, wireless and cellular systems, and data-driven
network designs.

Ahmed H. Zahran is a lecturer at the Department of Computer Science,
University College Cork. He received his Ph.D. from the University of Toronto
in 2007. His current research focuses on the design and optimization of
wireless networks and applications.

Cormac J. Sreenan is a professor of computer science at University College
Cork in Ireland, where he also serves as head of school. Previously he was on
the research staff at AT&T (Bell) Labs. He holds a Ph.D. in computer science
from the University of Cambridge.

Rakesh K. Sinha is a Lead Inventive Scientist at AT&T Labs—Research. He
received his B.Tech. from Indian Institute of Technology (I.I.T.), Kanpur, India
and his Ph.D. from University of Washington, Seattle. He has broad research
interests in the areas of network architecture, design, and optimization.

Emir Halepovic is a Principal Inventive Scientist at AT&T Labs—Research.
He received his Ph.D. from the University of Calgary, Canada. His interests
are in the areas of networking, wireless, content delivery, video streaming,
cross-layer interactions, quality of experience and data analytics.

Rittwik Jana is a Director of Inventive Science at AT&T Labs Research.
His research interests span architecting the disaggregated RAN intelligent
controller in O-RAN, video streaming and cellular networks and systems.
Rittwik earned a Ph.D. in Telecommunications Engineering from the Aus-
tralian National University, Canberra, Australia in 2000.

Vijay Gopalakrishnan is a Director at AT&T Labs—Research. He received
his Ph.D. in computer science from the University of Maryland, College Park,
MD, in 2006. Vijay leads a team of researchers focused on systems aspects
of networking, network management, and content delivery.

	Introduction
	Background
	TP System Overview
	Collector
	Trainer & Predictor

	Key Design Choices and Operational Aspects
	Feature Engineering and Machine Learning Algorithms
	Data granularity and history duration
	Data Sources
	History and Horizon window
	TP system in cellular networks

	Use Case: HTTP Adaptive Video Streaming
	Open questions
	Conclusion
	References
	Biographies
	Darijo Raca
	Ahmed H. Zahran
	Cormac J. Sreenan
	Rakesh K. Sinha
	Emir Halepovic
	Rittwik Jana
	Vijay Gopalakrishnan

