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Abstract

The analysis of energy detector systems is a well studied topic in the literature: numer-

ous models have been derived describing the behaviour of single and multiple antenna

architectures operating in a variety of radio environments. However, in many cases

of interest, these models are not in a closed form and so their evaluation requires the

use of numerical methods. In general, these are computationally expensive, which can

cause difficulties in certain scenarios, such as in the optimisation of device parameters

on low cost hardware. The problem becomes acute in situations where the signal to

noise ratio is small and reliable detection is to be ensured or where the number of

samples of the received signal is large. Furthermore, due to the analytic complexity of

the models, further insight into the behaviour of various system parameters of interest

is not readily apparent.

In this thesis, an approximation based approach is taken towards the analysis of such

systems. By focusing on the situations where exact analyses become complicated,

and making a small number of astute simplifications to the underlying mathematical

models, it is possible to derive novel, accurate and compact descriptions of system

behaviour. Approximations are derived for the analysis of energy detectors with sin-

gle and multiple antennae operating on additive white Gaussian noise (AWGN) and

independent and identically distributed Rayleigh, Nakagami-m and Rice channels; in

the multiple antenna case, approximations are derived for systems with maximal ratio

combiner (MRC), equal gain combiner (EGC) and square law combiner (SLC) diver-

sity. In each case, error bounds are derived describing the maximum error resulting

from the use of the approximations. In addition, it is demonstrated that the derived

approximations require fewer computations of simple functions than any of the exact

models available in the literature. Consequently, the regions of applicability of the

approximations directly complement the regions of applicability of the available exact

models. Further novel approximations for other system parameters of interest, such

as sample complexity, minimum detectable signal to noise ratio and diversity gain, are

also derived.

In the course of the analysis, a novel theorem describing the convergence of the chi

square, noncentral chi square and gamma distributions towards the normal distribution

is derived. The theorem describes a tight upper bound on the error resulting from the

application of the central limit theorem to random variables of the aforementioned

distributions and gives a much better description of the resulting error than existing

Berry-Esseen type bounds. A second novel theorem, providing an upper bound on the

maximum error resulting from the use of the central limit theorem to approximate the

noncentral chi square distribution where the noncentrality parameter is a multiple of

the number of degrees of freedom, is also derived.
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“That’s another thing we’ve learned from your Nation,” said Mein Herr,
“map-making. But we’ve carried it much further than you. What do you
consider the largest map that would be really useful?”

“About six inches to the mile.”
“Only six inches!” exclaimed Mein Herr. “We very soon got to six yards

to the mile. Then we tried a hundred yards to the mile. And then came the
grandest idea of all! We actually made a map of the country, on the scale
of a mile to the mile!”

“Have you used it much?” I enquired.
“It has never been spread out, yet,” said Mein Herr: “the farmers objected:

they said it would cover the whole country, and shut out the sunlight! So we
now use the country itself, as its own map, and I assure you it does nearly
as well.”

(An excerpt from Sylvie and Bruno, by Lewis Carroll)
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Chapter 1

Introduction

1.1 The electromagnetic spectrum: a valuable natural re-

source

The electromagnetic spectrum is a valuable natural resource: without it, there could

be no radio stations, no mobile phones, no wireless hotspots, no air traffic control, no

GPS navigation and no emergency communications for police or rescue coordinators.

In short, the world would be a very different and less convenient place to live in. It is

fortunate, then, that there is an electromagnetic spectrum and that, to date, there has

been enough of it to house all of these technologies and many more.

However, not all spectra are equal: signals transmitted at higher frequencies require

more power than signals transmitted at lower frequencies to have the same broadcast

range. A typical example of this is shown in Figure 1.1, where the range of a digital

television (DTV) transmitter is contrasted with that of a Wi-Fi hotspot. The DTV

transmitter broadcasts at a lower frequency than the Wi-Fi hotspot, which means that

its signal has a larger physical range for a given transmit power. In this case, the

choices of frequencies are appropriate as Wi-Fi users typically do not require a large

transmission range. However, it is clear that the range of frequencies that can reach

large geographic areas, within reasonable power constraints, is finite.

With the explosion of wireless technology in recent years, regulators have licensed more

and more of this desirable range (a rough illustration is shown in Figure 1.2(a)), leaving

an ever-decreasing allocation for new applications. In the United States, the Federal

Communications Commission (FCC) and the National Telecommunications and Infor-

mation Administration (NTIA) have reported that the majority of this range has been

licensed [1–3]. In Europe, a similar survey by the European Regulators Group (ERG)

found that four European Union member countries did not have the frequency resources

available for additional 2G/3G mobile networks [4]. If unchecked, this spectrum short-

age could have a severe negative impact on innovation, growth and competition.
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Figure 1.1: An illustration of the degradation in received signal power as a function
of the receiver’s distance from the transmitter. For simplicity, it is assumed that the
signals are transmitted through free space.

Fortunately, the problem is not intractable: spectrum surveys have shown significant

underusage of licensed bandwidth, depending on location and the time of day. In 2005,

a forty six hour study conducted in Chicago, USA [5] found that the average spectrum

occupancy — that is, the average amount of time a given channel is in use — varied

from 0% to 70.9%, as can be seen in Figure 1.2(b). In 2007, a forty two hour survey

[6] found that the average spectrum occupancy in Dublin, Ireland varied from 0.2% to

38.5%, as shown in Figure 1.2(c). A further study, conducted at a more rural location

in Virginia in the United States in 2004 [7], found that the average spectrum occupancy

there varied from 0% to 26.6%, as shown in Figure 1.2(d).

This widespread underuse has motivated the development of dynamic spectrum access

(DSA) technologies which aim to identify spatially or temporally unused channels and

exploit them for new applications, while preserving the quality of service (QoS) in

existing wireless systems [8]. Consider the DTV transmission network shown in Figure

1.3(a). The range of the transmitter is shown in blue and the television indicates the

physical location of a typical receiver. As everything lying beyond the range of the

transmitter is spatially unoccupied spectrum, it can potentially be exploited for other

uses by a DSA device, as shown in Figure 1.3(b).

However, there are many challenges to be met before spectrum can be liberated in

this manner. If a DSA device is present within the range of the DTV transmitter,

and determines that a transmission is present, it can identify the channel as being

occupied and switch to a different, hopefully unoccupied, channel. However, mistakes

can happen. For instance, if the DSA device were to determine that the channel was

unoccupied, its subsequent transmissions might interfere with the reception of the DTV

user, as shown in Figure 1.3(c). This is clearly an unacceptable outcome and poses a

major technological and legal roadblock to the liberation of unused spectrum in general.
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(a) Licensed bandwidth between 30 MHz and
2.5 GHz, according to the FCC [1]. For simplic-
ity, only a few major services are illustrated:
television, FM radio, aeronautical and mar-
itime radio, mobile telephony, GPS and Wi-Fi.
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(b) Average spectrum occupancy in licensed
bands between 30 MHz and 2.5 GHz, as mea-
sured in Chicago, USA in 2005 [5].
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(c) Average spectrum occupancy in licensed
bands between 30 MHz and 2.5 GHz, as mea-
sured in Dublin, Ireland in 2007 [6].
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(d) Average spectrum occupancy in licensed
bands between 30 MHz and 2.5 GHz, as mea-
sured in Virginia, USA in 2004 [7].

Figure 1.2: Various spectrum sensing and dynamic spectrum access scenarios.

Therefore, it must be ensured that the process by which unused channels are identified,

known as spectrum sensing, is as reliable as possible.

Yet, there is a natural trade off between the reliability of the spectrum sensing process

and the cost or power consumption of the device implementing it. Spectrum sensors

operate by observing channels for a period of time, after which their observations are

analysed for certain statistical properties from which the presence or absence of an

existing user can be inferred. Ideally, spectrum sensors should always correctly identify

whether a channel is occupied. However, this is usually quite difficult to guarantee

due to time varying noise interference, which can obscure the presence of weak signals,

and environmental factors such as ionospheric scattering and shadowing, which can

attenuate the received signal power. Generally, if reliability is to be ensured in such

cases, then either the channel must be observed for a long period of time, a large

3
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(a) A typical DTV transmission network. (b) Dynamic access of spatially unoccupied
spectrum.

(c) Interference with licensed transmissions. (d) Cooperative spectrum sensing.

Figure 1.3: Spectrum licensing and occupancy measurements from various locations.

number of computations must be carried out, or both. Consequently, constraints on

device cost, power consumption and sensing time directly affect the reliability of the

sensing process.

The work in this thesis concerns a particular sensing technique, known as energy de-

tection, which is typically not computationally intensive [9] but is also less reliable [10]

than other sensing techniques. However, it has been shown that, if the energy detector

is equipped with multiple antennae, then its reliability can be improved significantly

using various signal processing techniques [11]. The multiple antenna energy detection

paradigm also lends itself well to cooperative spectrum sensing, where neighbouring

DSA devices share sensing information to ensure a lower overall probability of inter-

ference, as shown in Figure 1.3(d). Conveniently, this approach lowers the cost of the

individual sensors involved as each does not need to perform as well as a single sensor

would to achieve the same degree of reliability.

However, the mathematical models describing the behaviour of single and multiple an-

tenna energy detector devices can become complicated in many situations, especially

in everyday scenarios such as the sensing of channels in urban or rural environments.

As a result, further insights into their behaviour are not readily apparent and com-

plicated numerical computations are necessary to evaluate their reliability in even the

simplest of circumstances. In later chapters, this problem is addressed by replacing

these complicated behavioural descriptions with simpler ones, enabling new insights

into the behaviour of energy detector systems and the fast and accurate computation

of reliability measures.

4



1. Introduction 1.2 Thesis outline

1.2 Thesis outline

The remainder of this document is organised as follows:

• Chapter 2 gives a broad overview of the spectrum sensing process, radio channel

models, various spectrum sensing and multiple antenna techniques.

• Chapter 3 addresses some issues specific to energy detection, such as signal

quantisation and parameter uncertainty, summarises related work and discusses

the advantages and disadvantages of the mathematical models available in the

literature.

• Chapter 4 discusses existing approximations for the analysis of energy detectors

operating on channels with constant signal power (e.g. AWGN channels) and

proposes novel approximations for the analysis of energy detectors with multiple

antennae operating in such environments. A novel bound on the convergence of

the chi square and noncentral chi square distributions to the normal distribution

is also derived.

• Chapter 5 develops novel closed form approximations for the analysis of energy

detectors operating on indoor and outdoor mobile channels and ionospheric links

(e.g. Nakagami-m and Rayleigh channels). The bound on the convergence of the

chi square distribution to the normal distribution, developed in Chapter 4, is

extended to the case of the convergence of the gamma distribution to the normal

distribution.

• Chapter 6 develops novel approximations for the analysis of energy detectors

operating in urban and suburban radio environments (e.g. Rice and Rayleigh

channels). A novel bound on the convergence of the noncentral chi square distri-

bution to the normal distribution, where the noncentrality parameter is a multiple

of the number of degrees of freedom, is also provided.

• Chapter 7 concludes the thesis, summarising the contributions made and sug-

gesting future research directions.

• Appendix A contains proofs of the theorems and lemmas stated in Chapters 4,

5 and 6.

• After Appendix A, there is some further information about the notation, abbre-

viations and references used throughout this work.

1.3 List of basic assumptions

Later in this work, a number of assumptions are made in order to simplify the math-

ematical analysis. In most cases, the effects of these assumptions will be accounted

5



1. Introduction 1.3 List of basic assumptions

for by error bounds, which can be used to determine the maximum effect of a given

assumption on the outcome of the calculation in question. However, a number of as-

sumptions are also made without an effort to quantify their effects. These assumptions

are basic assumptions, necessary so that attention can be focused on the problem at

hand, and therefore define the scope of this work.

One example is the effect of signal quantisation: all digital systems require that ana-

logue signals be quantised before being processed, and the difference between the quan-

tised signal and its analogue original may be substantial or negligible, depending on

the design of the quantiser. However, such effects can generally be accounted for at a

later point in time, through an appropriate modification of the underlying model.

The following is a list of assumptions, accompanied by justifying arguments, that will

be relied upon throughout this thesis:

• Interference: Typically, spectrum sensors operate on channels where only li-

censed transmissions may occur. However, it is possible that other transmissions

might also be present, resulting from leakage from adjacent channels or from ma-

licious users. In this thesis, only the scenario where the spectrum sensor operates

on a channel which is either unoccupied or is occupied solely by a licensed user

and is unaffected by spectral leakage from adjacent channels is considered.

• Correlated noise: In practice, when analogue signals are sampled at the re-

ceiver, they are filtered, which can lead to correlation between samples of the sig-

nal which are separated in time. However, the effect of this correlation is related

to the transfer function of the filter, which can usually be measured [12]. Conse-

quently, pre-whitening techniques, such as that proposed by Zeng and Liang [12,

Appendix A], can be used to decorrelate the samples. Therefore, in this thesis, it

is assumed that samples of white noise signals are either naturally uncorrelated

or can be decorrelated using an appropriate pre-whitening technique.

• Flat and frequency selective fading: The work in this thesis primarily con-

cerns spectrum sensing with energy detectors, which are typically used for the

detection of signals in relatively narrowband channels [13], and so are unaffected

by frequency selective fading [14, p. 18]. Consequently, only the effects of flat

fading will be considered in this thesis.

• Slow and fast fading: Depending on the coherence time of the channel, the

amount of fading can either be constant or fluctuate significantly throughout the

observation period [14, p. 18]. If the fading is constant, then it can be described

using a standard slow fading model while, if it fluctuates, then a fast fading model,

which describes the correlation between samples taken at different times, may be

more appropriate. In this thesis, approximations are derived which describe the

performance of energy detectors in a simpler manner than specific exact expres-
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sions available in the literature. As these expressions assume a slow fading model,

a similar assumption is made throughout the course of this work. If necessary,

the approximation based method may be extended to the case of fast fading at a

later time through a suitable generalisation.

• Signal quantisation: For simplicity of analysis, it is assumed that the quantisa-

tion of the received signal has a sufficiently large resolution so that the resulting

quantisation errors are negligible.

• Parameter uncertainty: In practice, the calculation of performance metrics

depends on prior knowledge of certain parameters, such as the magnitude of the

noise power and, if appropriate, the value of the fading parameter. In all cases,

it is assumed that the receiver has perfect knowledge of these parameters or, at

worst, relies on an estimator which guarantees an arbitrarily good approximation

given sufficient observation time. Further justification for this assumption in the

case of noise power estimation is given in Section 3.1.2.

• Antenna correlation: In multiple antenna systems, it is usually assumed that

the signals observed on each antenna are independent of one another. However, in

certain circumstances, this assumption is not true and the correlation between the

observed signals must be taken into account. This mostly occurs under frequency

selective fading and in scenarios where there is insufficient spacing between the

antennae [14, p. 389]. As the effects of frequency selective fading are not con-

sidered this thesis, this leaves just the latter scenario. However, Brennan [15]

found that an antenna separation of thirty to fifty wavelengths is sufficient to

guarantee a small correlation coefficient and Aalo [16] concludes that this can be

sufficiently small so that it can be ignored in certain cases (these are discussed in

more detail in Section 2.4.1). Consequently, for the remainder of this thesis, it is

assumed that either the signals observed on different antennae are uncorrelated

or, at worst, if they are correlated, the effect of this correlation on the overall

performance of the system is negligible.

• Signal corruption: In cooperative systems, observations from individual sen-

sors are transmitted either to neighbouring nodes or to a master node. As these

observations are transmitted through wireless channels, they are prone to cor-

ruption due to various channel effects. However, it has been shown that such

corruption typically does not affect the transmission of uncompressed decisions

very severely and that, where it does, optimised channel aware coding can be

use to mitigate the effect [17]. Consequently, for the remainder of this thesis, it

is assumed that the effect of corruption is negligible, either due to the perfect

transmission of the decision or the use of optimised coding schemes.
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Chapter 2

Background material

In the later chapters of this thesis, specific aspects of a particular spectrum

sensor — namely, the energy detector — are explored. However, without a broad dis-

cussion of its merits and demerits, and comparisons with various competing technolo-

gies, this focus may seem unjustified, and so the primary intention of this chapter is to

provide some context for the work that follows it.

A secondary intention is to provide a brief introduction to the notions of cooperative

spectrum sensing and diversity reception, which will be built on in later chapters. In

particular, aspects related to information sharing, such as compression, corruption and

correlation, are discussed and further justification is provided for some of the assump-

tions stated in Chapter 1.

2.1 Mathematical models and spectrum sensing

Rosenblueth and Wiener [23] wrote that no substantial part of the universe is so simple

that it can be grasped and controlled without abstraction. Indeed, they stated that the

ideal abstraction is one which agrees with the universe in its entirety, but noted that

there is an inherent contradiction in this idea: that any one capable of creating such a

model would immediately find it of no use, because they would have already grasped

the nature of the entire universe. The notion is a philosophical one, but has far-

reaching implications. The perfect model, which describes the problem precisely, is

so complex — as complex, in fact, as the original problem — that, in all likelihood, it

cannot be realised.

We are left, then, with partial models, imperfect descriptions of the universe; but this

is by no means a negative outcome. Partial models are, by definition, simpler than

the ideal model, and simpler models are easier to comprehend and easier to use. As

complex a system as an aeroplane may seem, it is necessarily a series of simplified
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Observation Analysis Decision

Figure 2.1: An illustration of an abstract decision making process.

abstractions of reality which, through the application of engineering methods, result in

a flying machine.

The notion of simplified and complex models will become a recurring theme throughout

this thesis: reality is modelled with mathematics, complicated models are replaced with

simpler ones and, in many situations, it will be shown that, what at first may appear

to be complex, fundamentally is not. However, it must be ensured that the generality

lost through such simplifications is accounted for. While an overly complex model may

be difficult to use, an overly simplified one is of no use at all, and so it is important to

strike the right balance.

2.1.1 Observation, analysis, decision

The relationship between the physical task of spectrum sensing and the abstract math-

ematical models which feature throughout this work may not seem obvious at first, but

is not difficult to understand. A spectrum sensor works by first observing some property

of a channel and, then, deciding whether this channel is occupied or not. Abstractly,

this can be thought of as a decision making process: data is observed, analysed and,

then, a decision is made. An illustration of this kind of abstract system is shown in

Figure 2.1.

Logically, the form of analysis that is used must depend on the kind of observation

that is made. For instance, one might choose to observe a property which is constant,

regardless of the occupancy of the channel, but this does not make sense: if the observed

property does not change with the channel occupancy, how can the system make an

accurate decision? Therefore, a property which varies with the occupancy of the channel

must be chosen.

Often, such properties can vary with time, but are distributed according to a probability

distribution, which itself does not vary with time. For instance, if the instantaneous

power content of an unoccupied channel is measured, as in Figure 2.2, one might expect

to see moderate variations in the measurements, from one moment to the next, because

the noise interference is time-varying. However, if the distribution of the power of the

noise interference were examined, it would be found that its mean value does not vary

with time, and that its higher order moments, such as variance, behave similarly. As

a result, the average power content of the channel is constant, but the instantaneous
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Figure 2.2: A plot of the instantaneous (blue) and average (red) noise power in an
unoccupied channel.

power content is not. Observed properties that demonstrate this kind of statistical

invariance are known as stationary processes.

Strictly speaking, a process is stationary only if the joint distribution of any set of its

samples does not depend on time [24, p. 518]. However, such strict requirements do not

need to be imposed on the observation. Instead, it is only required that the observed

property is wide sense stationary, which is to say that its mean value and autocorrela-

tion do not vary with time. By definition, then, any process that is stationary is also

wide sense stationary. In the example given in Figure 2.2, the time-varying noise is a

wide sense stationary process because its mean value is zero, and its average power,

which is given by its autocorrelation function evaluated at zero time offset, is constant

with respect to time.

Thus, if a property of the channel is observed, which varies with its occupancy and is

wide sense stationary with respect to time, then the observations of this property will

follow a certain probability distribution when the channel is occupied and a different

probability distribution when it is unoccupied. Therefore, it can be determined whether

the channel is occupied or not by checking to see if the observation belongs to one

distribution or the other. To do this, one can use a hypothesis test or, in particular,

because the decision making model has just two outcomes — either the channel is

occupied, or it is not — a binary hypothesis test.

2.1.2 The binary hypothesis test

The binary hypothesis test works by determining which of two hypotheses are true:

initially, the null hypothesis is assumed to be true, and the test then decides whether

to accept this assumption, or reject it in favour of the alternative hypothesis. By

convention, the null hypothesis is associated with the channel being unoccupied and
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the alternative hypothesis with the channel being occupied [24, p. 444].

Each hypothesis can be viewed as a collection of events, where each event corresponds

to a possible observation from the channel. By this definition, each collection is the set

of all possible observations under a given hypothesis. Therefore, the set of all possible

observations, known as the observation space, is given by

Ω = H0 ∪ H1, (2.1)

where, by convention, H0 denotes the set of events corresponding to the null hypothesis,

H1 denotes the set of events corresponding to the alternative hypothesis, and Ω denotes

the observation space and is the complement of the empty set, ∅, that is Ωc = ∅. An

example of an observation space can be seen in Figure 2.3.

The test itself is performed by deciding whether an observation is significantly different

from the null hypothesis. To specify a decision rule, the observation space is parti-

tioned into an acceptance region and a rejection region. If the observed event lies in

the acceptance region, then the null hypothesis is accepted; otherwise, it is rejected.

Therefore, the decision rule is

D =

{

H0, if x ∈ Rc,

H1, if x ∈ R,
(2.2)

where D denotes the outcome of the test and represents the accepted hypothesis, x

denotes the observed event, R denotes the set of events in the rejection region, and Rc

denotes the complement of R and is equivalent to the set of events in the acceptance

region.

In the example of a partitioned observation space shown in Figure 2.3, the null hypoth-

esis and the alternative hypothesis overlap, so that H0 ∩ H1 6= ∅ . This means that an

event observed from H0 ∩ H1 could be a member of either H0 or H1. Thus, depending

on the position of the decision boundary, it is possible to reject the null hypothesis

when it is true, or to accept it when it is false. These are known as Type I and Type II

errors, respectively.

In spectrum sensing, a Type I error is called a false alarm event, and corresponds

to the case where a channel is incorrectly identified as occupied; Type II errors are

known as missed detection events, and correspond to situations where the channel is

mistakenly labelled as unoccupied. False alarm events cause DSA devices to ignore

unused spectrum, while missed detection events can lead to interference with licensed

transmissions. Therefore, the reliability of the decision making model can be specified

by its probabilities of false alarm and missed detection.

Calculating the values of these probabilities is not difficult. By the previous definition,

false alarms occur when the null hypothesis is incorrectly rejected. Mathematically,
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H0 ∩ H1

Figure 2.3: An example of an observation space, Ω. The null hypothesis is represented
by the green area, while the alternative hypothesis is represented by the blue area, and
their intersection is shown in red. The decision boundary is represented by the dashed
line, with the rejection region, R, to its right and the acceptance region, Rc, to its left.

this can be expressed as

Pf = P [D = H1|H0], (2.3)

where Pf denotes the probability of a false alarm. Assuming that the observation, x,

follows a certain probability distribution when the channel is unoccupied, as in Figure

2.4, the probability of false alarm can be written as

Pf = P [x ≥ λ|H0]

=
∫ ∞

λ
f(x|H0)dx, (2.4)

where λ is the decision threshold and represents the decision boundary in Figure 2.3,

and f(x|H0) is the probability density function (PDF) of the distribution of x when the

null hypothesis is true, as shown in Figure 2.4.

The probability of identifying an unoccupied channel, known as the probability of ac-

quisition, is closely related to the probability of false alarm, as

Pa = P [D = H0|H0]

= P [x < λ|H0]

=
∫ λ

−∞
f(x|H0)dx

= 1 − Pf , (2.5)

where Pa denotes the probability of acquisition, and the simplification follows from the

fact that, because f(x|H0) is a probability density function,
∫∞

−∞ f(x|H0)dx = 1.

13



2. Background material 2.1 Mathematical models and spectrum sensing

9500 10 000 10 500 11 000
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

f(x|H0) f(x|H1)

λ

x

M
ag

ni
tu

de

Figure 2.4: A plot of the probability density functions of an observed property, x, in an
unoccupied channel (green) and in an occupied channel (blue). The decision threshold,
λ, is given by the dashed line, and the areas corresponding to the probabilities of false
alarm and missed detection are highlighted in orange and red, respectively.

Similarly, the probability of a missed detection can be calculated by

Pm = P [D = H0 | H1]

= P [x < λ|H1]

=
∫ λ

−∞
f(x|H1)dx, (2.6)

where Pm denotes the probability of a missed detection and f(x|H1) is the PDF of the

distribution of x when the null hypothesis is false.

Finally, the probability of identifying an occupied channel, known as the probability of

detection, can be calculated as

Pd = P [D = H1|H1]

= P [x ≥ λ|H1]

=
∫ ∞

λ
f(x|H1)dx

= 1 − Pm, (2.7)

where Pd denotes the probability of detection, and the simplification follows from the

fact that
∫∞

−∞ f(x|H1)dx = 1.

2.1.3 How to make a good decision

From Figure 2.4, it is easy to see how the position of the decision threshold affects

the probabilities of false alarm and missed detection. However, without any criteria

to inform the choice, the value of λ is arbitrary, and may lead to unacceptably large

probabilities of error. It is important, then, that there is some method for controlling
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the error of the decision making process.

Fortunately, this is a well known problem and has a simple solution. According to the

Neyman-Pearson lemma, the likelihood ratio test (LRT) given by

D =

{

H0, if Λ(x) < κ,

H1, if Λ(x) ≥ κ,
(2.8)

where κ represents the decision threshold and Λ(x) =
f(x|H1)
f(x|H0)

is the likelihood ratio,

chosen so that

Pf =
∫

Λ(x)≥κ
f(x|H0)dx , α, (2.9)

where Λ(x) ≥ κ denotes the set of values in the rejection region, i.e. R = {x : Λ(x) ≥ κ},

is the most powerful binary hypothesis test of size α [24, p. 446].

Put more simply, for some 0 ≤ α ≤ 1, letting Pf = α and using (2.4) and (2.9) to

calculate λ, then the resulting probability of missed detection1 will a minimum for that

particular value of Pf . This ensures some control over the reliability of the decision

making system.

2.2 Channel models

The task of spectrum sensing has now been related to an abstract mathematical model,

which allows the reliability of the sensing process to be calculated. Before considering

particular detector architectures, though, some consideration must first be given to the

representation of radio signals in the model. As signals propagate through free space,

they can be affected by a number of environmental factors, such as the Doppler shift,

and thermal noise at the front end of the receiver. These effects, which can diminish the

ability of spectrum sensors to detect signals in occupied channels, are often accounted

for through the use of mathematical models of the propagation environment, commonly

referred to as channel models. In their seminal book on the subject, Simon and Alouini

list fifteen channel models alone [14], and there are a great many more, describing the

large variety of phenomena that can affect a signal during its propagation.

In this brief review, three particular classes of channel model are considered: the first

describes the effects of time-varying noise interference on the received signal; the second

describes the fluctuation in received signal power due to the constructive and destructive

interference of delayed, reflected, scattered and diffracted signal components, the effects

of which are collectively known as multipath fading; and the last is used to model

1On a practical note, if the resulting probability of missed detection is too large, then α can be
increased until the desired value is given by (2.6).

15



2. Background material 2.2 Channel models
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Figure 2.5: A generalised model of a transmission channel.

physical obstacles to signal propagation, such as buildings and mountains, the effects

of which are known as shadowing or shadow fading.

Each of these channel models can be described using the generalised channel model

shown in Figure 2.5, where the transmitted signal is denoted by s(t) and the received

signal by r(t). As can be seen, the relationship between the transmitted and received

signals is

r(t) = hs(t) + n(t), (2.10)

where the channel gain, h, modulates the amplitude and phase of the transmitted

signal, and the noise interference, n(t), is additive.

It is also assumed that the generalised transmission channel is frequency non-selective

or, in other words, that the channel response is constant with respect to frequency,

so that each spectral component of the transmitted signal is affected by the same

amplitude gain and phase delay. This is always the case in narrowband systems [14,

p. 19] and is consistent with the assumption stated in Section 1.3 earlier.

2.2.1 The additive white Gaussian noise channel model

The additive white Gaussian noise (AWGN) channel is a basic mathematical model for

communication channels in which the transmitted signal is affected by a random time-

varying noise signal. The AWGN channel is a good model for thermal noise generated

by receiver front ends [25, p. 106] and, while it does not take into account the effects

of multipath fading or shadowing, it is useful for analysing the basic operation of a

communications system before taking these other effects into account2.

In the case of the AWGN channel, the noise interference is modelled as a time-varying

quantity, n(t), with amplitude distributed according to a Gaussian distribution with

2In this sense, the AWGN channel can be thought of as a very simplified abstraction of signal
propagation, while the models discussed later are more sophisticated abstractions of the same physical
process.
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zero mean and variance, σ2, that is

n(t) ∼ N (0, σ2). (2.11)

The power spectral density of the noise interference, Sn(f), is constant3, so that the

noise power, Pn, is given [24, p. 580] by

Pn = σ2 = E[n2(t)]

=
∫ W

−W
Sn(f)df

=
∫ W

−W

N0

2
df

= N0W, (2.12)

where Sn(f) = N0
2 , 2W is the bandwidth of the filter at the receiver front end and N0 is

the one-sided power spectral density of the noise interference which, for thermal noise,

is usually calculated as

N0 = k
B

Tsys, (2.13)

where k
B

≈ 1.381 × 10−23 J K−1 is the Boltzmann constant and Tsys is the temperature

of the system, measured in Kelvin [26, p. 69].

The signal to noise ratio (SNR) at the receiver, γ, is given by

γ = h2 Ps

Pn
, (2.14)

where Ps represents the power of the transmitted signal, and h is constant [14, p. 20].

2.2.2 The Rayleigh channel model

The Rayleigh channel model is a fading channel model, which is often used to describe

propagation where there is no line of sight (LOS) from the receiver to the transmitter,

such as in mobile links, ionospheric and tropospheric scattering, and ship to ship radio

links [14, p. 22].

Like the AWGN channel, the Rayleigh channel is affected by additive white Gaus-

sian noise, and so the noise interference is modelled as in (2.11). Unlike the AWGN

channel, however, the channel response of the Rayleigh model varies with time. The

Rayleigh channel model accounts for this fluctuation by modelling the channel response

as a Rayleigh distributed random variable. Consequently, the signal to noise ratio at

3A constant power spectral density is often referred to as being white because it contains all fre-
quencies in equal measure, just as white light does. This, along with the additive effect of n(t) on r(t),
and the Gaussian distribution of its amplitude, is what gives the model its name.
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Figure 2.6: A plot of the PDFs of the signal to noise ratio for different fading channel
models. In each case, the average signal to noise ratio is −12 dB.

the receiver, given by (2.14), follows an exponential distribution [14, p. 22], and its

probability density function is given by

f
Ray

(x) =











0, x < 0,
1
γ̄

e
− x

γ̄ , x ≥ 0,
(2.15)

where f
Ray

(x) is the PDF of the signal to noise ratio under Rayleigh fading and γ̄ is

the average signal to noise ratio at the receiver, given by

γ̄ =E[h2]
Ps

Pn
. (2.16)

An illustration of the probability density function of the signal to noise ratio under

Rayleigh fading is shown in Figure 2.6.

2.2.3 The Nakagami-m channel model

The Nakagami-m channel model is a general multipath fading model, and is often

used to describe fading in both indoor and outdoor mobile radio links as well as in

ionospheric radio links [14, p. 25]. It includes both the AWGN channel model and the

Rayleigh channel model as special cases.

Like the AWGN and Rayleigh channels, the Nakagami-m channel models the time-

varying noise interference as additive, white and Gaussian-distributed, and so n(t) is

given by (2.11). However, the channel response is modelled as a Nakagami-m dis-

tributed random variable. Consequently, the signal to noise ratio follows a gamma
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distribution, with shape parameter, m, and scale parameter, m
γ̄ , that is

f
Nak

(x) =











0, x < 0,
(

m

γ̄

)m xm−1

Γ(m)
e

− mx
γ̄ , x ≥ 0,

(2.17)

where f
Nak

(x) is the probability density function of the signal to noise ratio under

Nakagami-m fading, γ̄ is given by (2.16), and m is called the fading parameter and

measures the severity of the effect of the multipath fading [14, p. 24].

Smaller values of m indicate more severe fading, while larger values indicate less severe

fading. By definition, m ∈ [1
2 , ∞), and so the worst case fading occurs when m = 1

2 ,

and the best case occurs as m → ∞ and is equivalent to the AWGN channel. When

m = 1, (2.17) reduces to (2.15), and the Nakagami-m channel is equivalent to the

Rayleigh channel [14, p. 25].

An illustration of the probability density function of the signal to noise ratio under

Nakagami-m fading, with m = 1
2 , is shown in Figure 2.6.

2.2.4 The Rice channel model

The Rice channel, also known as the Ricean, Rician or Nakagami-n channel, is a further

general model describing the effects of multipath fading. Typically, the Rice channel

model is used to describe scenarios where one line of sight signal component dominates

over many weaker components, and finds most use in the analysis of urban and suburban

mobile radio links, pico-cellular indoor radio links, satellite links and ship to ship radio

links [14, p. 24]. Like the Nakagami-m channel, the Rice channel includes the AWGN

channel and the Rayleigh channel as special cases.

As before, the Rice channel incorporates an AWGN model for n(t), as in (2.11). How-

ever, its channel response is modelled as a Rice distributed random variable, and so

the signal to noise ratio follows a scaled noncentral chi square distribution with two

degrees of freedom and noncentrality parameter equal to 2K, that is

f
Rice

(x) =















0, x < 0,
(

K + 1

γ̄

)

e
−K− (K+1)x

γ̄ I0

(

2

√

K(K + 1)x

γ̄

)

, x ≥ 0,
(2.18)

where f
Rice

(x) is the probability density function of the signal to noise ratio under Rice

fading, γ̄ is again given by (2.16), I0(z) represents the zeroth order modified Bessel

function of the first kind, and K is known as the Rice factor and measures the severity

of the effect of the multipath fading [14, p. 23].

The Rice factor is defined in a similar manner to the Nakagami-m fading parameter:

smaller values of K indicate more severe fading, while larger values indicate less severe
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Figure 2.7: An abstract model of the spectrum sensing process.

fading. By definition, K ∈ [0, ∞), and so the most severe fading occurs when K = 0

and the least severe fading occurs as K → ∞. When K = 0, (2.18) reduces to (2.15),

and so is equivalent to the Rayleigh channel; as K → ∞, f
Rice

(x) tends to an impulse,

and so is equivalent to the AWGN channel.

An illustration of the probability density function of the signal to noise ratio under

Rice fading, with K = 2, is shown in Figure 2.6.

2.2.5 The log-normal channel model

The last model to be considered is the log-normal channel model, which is generally

considered to be the best model for describing shadow fading [14, p. 32]. As before,

the log-normal channel incorporates an AWGN model for n(t), as in (2.11); its channel

response is such that the signal to noise ratio is distributed according to

f
LN

(x) =











0, x < 0,

ξ√
2πσx

exp

[

−(10 log10 x − µ)2

2σ2

]

, x ≥ 0,
(2.19)

where f
LN

(x) is the probability density function of the signal to noise ratio under log-

normal fading, ξ = 10
ln 10 , and µ and σ are the mean and standard deviation of 10 log10 x,

respectively [14, p. 32].

An illustration of the probability density function of the signal to noise ratio under

log-normal fading, with σ = 3, is shown in Figure 2.6.

2.3 Spectrum sensing techniques

In Section 2.1, an abstract model, describing the spectrum sensing process, was in-

troduced, a more developed version of which is shown in Figure 2.7. So far, two

components of the model have been discussed: the observation, which depends on the

channel model used, and the decision, which is the outcome of a likelihood ratio test.
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Figure 2.8: A matched filter detector.

The final component of the model, which translates the observations into decisions, is

the sensing architecture.

In Section 2.2, it was discussed how different channel models can be used to model

different signal propagation environments. In the same way, different sensing archi-

tectures are appropriate for use in different scenarios. Accordingly, in this section,

several different sensing architectures are reviewed and where and how they are best

used is discussed. In the following subsections, the sensing architectures are referred

to using the general term detector, as both the analysis and decision components are

implemented in the same system.

2.3.1 The matched filter detector

If the values of transmission parameters such as bandwidth, modulation type and phase

delay are available, then it is well known that the optimum receiver for signals trans-

mitted through AWGN channels is the matched filter detector, in the sense that it
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(a) The output of a matched filter detector
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(b) The output of a matched filter detector
(blue) when the channel is unoccupied. The
decision threshold, λ, is shown in red.

Figure 2.9: Matched filter outputs and decision thresholds for occupied and unoccupied
channel scenarios.

minimises the probability of making an incorrect decision about the occupancy of the

channel. Figure 2.8 shows a matched filter detector for a transmission system with n

possible signals, where the signals h1(t), h2(t), . . . hn(t) are matched to the transmitted

signal set, s1(t), s2(t) . . . sn(t), as

hi(t) = si(T − t), 1 ≤ i ≤ n, (2.20)

where T is the length of the symbol period of the transmitted signal.

As can be seen, the test statistics, x1, x2, . . . xn, are formed by convolving the received

signal, r(t), with each of the matched signals and sampling the output at t = T . Using

the probability of false alarm to set the threshold, as in (2.4), a likelihood ratio test

is then performed to determine whether the channel is occupied or not. If any or,

equivalently, if the largest of the test statistics exceed the threshold, the channel is

declared occupied. Therefore, the decision rule is

D =

{

H0, X < λ,

H1, X ≥ λ,
(2.21)

where X = max(x1, x2, . . . xn).

Figure 2.9(a) illustrates some typical matched filter detector outputs for an occupied

channel. Seven distinct observation periods are illustrated. In each case, it is clear that

the matched filter detector outputs exceed the decision threshold and so, using (2.21),

the detector correctly decides that the channel is occupied. Similarly, in Figure 2.9(b),

the outputs of the matched filter detector are illustrated for an unoccupied channel.

As can be seen, in each of the observation periods, the maximum test statistic does not

exceed the decision threshold, and so the detector correctly concludes that the channel

is unoccupied.
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Figure 2.10: A spectral correlation function generator.

While the matched filter detector may appear to be an effective spectrum sensor, it

requires full knowledge of the structure of any possible transmission as well as accurate

estimates of various transmission parameters, such as phase delay, and so it cannot be

used in situations where signals with unknown parameters must be detected. Conse-

quently, it is not a suitable candidate technology for spectrum sensing. Furthermore,

if such parameters are known, the matched filter detector requires local copies of each

possible transmission in order to generate the test statistics. Therefore, in situations

where the number of signals is large, or where many different types of signals must be

detected, the matched filter detector requires a large amount of memory, high process-

ing power, or both. This motivates the consideration of other technologies for spectrum

sensing.

2.3.2 The cyclostationary feature detector

One popular alternative to the matched filter detector is the cyclostationary feature de-

tector, first introduced by William A. Gardner in 1988 [27]. The cyclostationary feature

detector does not require local copies of the transmitted signal and works well in situ-

ations where the signal to noise ratio is low. Consequently, it requires less information

about transmitted signals than the matched filter detector, but can offer similar levels

of performance. However, it too requires knowledge of certain transmission parameters

which may not be available in practice (e.g. phase delay or the location of individual

cyclostationary features) in order to operate effectively.

The concept behind the cyclostationary feature detector is relatively simple: in general,

transmitted signals are embedded with periodic features such as pulse trains (e.g. pulse

width modulation (PWM) signals), cyclic prefixes (e.g. orthogonal frequency-division

multiplexing (OFDM) signals) and frequency hopping sequences (e.g. Bluetooth sig-

nals) in order for the receiver to estimate certain transmission parameters, to avoid

inter-symbol interference or to prevent eavesdropping [28]. The cyclostationary feature

detector works by exploiting such features in order to determine whether the channel

is occupied or not.
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In the frequency domain, the periodic features of the received signal are referred to as

its cyclic features, and are represented using the spectral correlation function, Sα(f),

of the received signal, defined as

Sα(f) = R(f + α
2 )R∗(f − α

2 ), (2.22)

where R(f) is the Fourier transform of the received signal, f is the frequency of the

received signal, and α is the cyclic frequency offset4, a discrete quantity which refers to

the location of a periodic feature. An example implementation, where R(f) is calculated

using a fast Fourier transform (FFT), is shown in Figure 2.10.

Being a function of both f and α, the spectral correlation function is a two dimensional

quantity. When α = 0, it reduces to the power spectral density of the signal:

S0(f) = R(f)R∗(f)

= |R(f)|2

= S(f), (2.23)

where S(f) is the power spectral density — that is, the power per unit frequency — of

the received signal. When α 6= 0, then the spectral correlation function represents

the cyclic spectral density of the received signal at offsets of ±α
2 Hz from the carrier

frequency. The advantage of computing the cyclic spectral density is that cyclic features

of the transmitted signal, which do not appear in the power spectral density, are readily

observed at certain offset frequencies in the cyclic spectral density. If present, these

features are a good indicator that a channel may be occupied.

Figures 2.11(a) and 2.11(c) illustrate the power spectral density and spectral correlation

function, respectively, of binary phase shift keying (BPSK) data transmitted through an

AWGN channel. As the signal to noise ratio is large, the periodic feature at ( f
fs

, α
fs

) =

(0.5, 0.8), and the peaks of the real and imaginary components of the power spectral

density at ( f
fs

, α
fs

) = (0.1, 0) and ( f
fs

, α
fs

) = (0.9, 0), respectively, are not difficult to see.

When the signal to noise ratio is smaller, as illustrated in Figures 2.11(b) and 2.11(d),

then the magnitudes of these features become smaller, but it is still possible to use the

information to make a decision about the state of the channel.

The cyclostationary feature detector does this by computing a test statistic equal to

the sum of the energy contained in each cyclic spectral density:

x =

∫ ∞

−∞

(

∑

α

Sα(f)

)

df. (2.24)

4This α, representing the cyclic frequency offset, should not be confused with the α which represents
the target probability of false alarm in the likelihood ratio test, defined in (2.9). This potentially
confusing notation is adopted out of necessity, as both quantities are commonly denoted as α. Future
references to α will make explicit which of the two meanings is intended.
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(a) Power spectral density of a BPSK signal in
AWGN, with a signal to noise ratio of 10 dB.
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(b) Power spectral density of a BPSK signal in
AWGN, with a signal to noise ratio of −10 dB.
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Figure 2.11: Power spectral densities and spectral correlation functions of BPSK signals
in AWGN with different signal to noise ratios.

The likelihood ratio test is then used to determine the state of the channel. An illus-

tration of such a detector is shown in Figure 2.12.

Unfortunately, the design has several drawbacks. For instance, when the signal to

noise ratio is small, as in Figure 2.11(d), the discretisation of the frequency and cyclic

frequency — necessary to compute the spectral correlation function — can often lead

to quantisation noise. If such noise is present, it becomes much more difficult to reliably

determine whether the channel is occupied or not. High resolution sampling is often

required to overcome the effect. Derakhshani et al. found that the computation of the

test statistic in such situations is both time consuming and computationally expensive

[29]. Similarly, Turunen et al. found that the large number of points required by the

FFT operation was to blame for the high power consumption of their field programmable

gate array (FPGA) implementation of the detector. Derakhshani et al. also presented

a simplified implementation of the detector, which offered reduced complexity, but

required knowledge of the cyclic frequency offsets of the features for each of the signal
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Figure 2.12: A cyclostationary feature detector.

types to be detected.

Furthermore, depending on the signal type, the spectral correlation may not be strong.

In order to reduce the computational complexity of the detector, Fehske et al. pro-

posed a neural network-based solution but found that the detector performance was

poor for signals with low cyclic spectral correlations, such as quadrature phase shift

keying (QPSK) [31]. Cyclic features are also known to be diminished by multipath

fading. This has implications for both existing and new transmission technologies be-

cause the only way to compensate for the effects of the fading is to alter the profile

of the transmitted signals [32]. However, this is generally not an option in the case of

existing technologies, where international standards have been set and are not easily

changed. For new systems, where standards are still in development, such changes may

be contemplated, but the cost of altering the signal profile must also be considered.

For instance, Sutton et al. [32] compensated for the effect of Rayleigh fading by em-

bedding additional cyclic features in the transmitted signal but concluded that, while

their method is an effective way to overcome multipath fading, the additional features

required increased transmission bandwidth.

In summary, then, the cyclostationary feature detector, in the form presented in Figure

2.12, is a flexible spectrum sensing solution, capable of robust detection, even at low

signal to noise ratios, but only if certain transmission parameters are known or can be

estimated accurately. Consequently, it is not feasible as a generally applicable spectrum

sensing solution. Even if such parameters could be estimated, the high performance

of the cyclostationary feature detector comes at the cost of high power consumption,

increased computational requirements and longer processing times. While simplified

implementations are available, in general, they require some additional knowledge of

the transmitted signal, and so are even less generally applicable than the standard

cyclostationary feature detector. Furthermore, the detector is not suited to sensing

signals with low spectral correlations, or legacy transmissions affected by multipath

fading. Thus, a more generally applicable, and computationally inexpensive, technique

must be considered.
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Figure 2.13: An energy detector.

2.3.3 The energy detector

The energy detector, also known as the radiometer, is a popular sensing technology

which has been in use since the 1950s, but was most comprehensively analysed by

Urkowitz in 1967 [13]. Like the cyclostationary feature detector, the energy detector

does not require local copies of the transmitted signal set, instead forming its test

statistic entirely from samples of the received signal. However, as will be shown, this

simplicity comes at the cost of performance.

Figure 2.13 shows an illustration of a typical energy detector. As can be seen, the test

statistic is computed as

x =

∫ T

0
|r(t)|2dt, (2.25)

where T is the length of the observed signal, measured in seconds. Clearly, the test

statistic is equal to the energy of the received signal5; it is this property that gives the

detector its name.

Some typical energy detector outputs are shown in Figures 2.14(a) and 2.14(b). As can

be seen, when the channel is occupied, the test statistic exceeds the threshold at the

end of the observation period, and so the detector correctly deduces the state of the

channel. Similarly, when the channel is unoccupied, the test statistic does not exceed

the threshold and so the detector correctly concludes that the channel is not in use.

However, in this case, had an observation period of 50 µs, rather than 700 µs, been

used, the test statistic would have exceeded the threshold and the channel would have

incorrectly been identified as being occupied — a false alarm event.

Like the previous sensing technologies, the energy detector has some drawbacks. For

5As an aside, from the definition in (2.24), the test statistic of the energy detector is equal to the
test statistic of the cyclostationary feature detector when only α = 0 is considered, that is

x =

∫ ∞

−∞

S0(f)df. (2.26)

Therefore, the energy detector can be viewed as a specialisation of the cyclostationary feature detector
which, unlike the simplified implementation by Derakhshani et al., does not require any additional
information about the transmitted signals.
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Figure 2.14: Typical energy detector outputs and decision thresholds for occupied and
unoccupied channels.

instance, it cannot be used for the detection of spread spectrum or frequency hopping

signals [28]. Perhaps its greatest deficiency, however, is its detection time in comparison

to the matched filter. Tang showed that the energy detector requires O( 1
γ2 ) samples

of the received signal for given probabilities of false alarm and missed detection, while

the matched filter detector requires just O( 1
γ ) samples for the same error probabilities

[10]. Essentially, this means that the energy detector requires much more time to detect

signals with low signal to noise ratios than the matched filter, assuming equal sampling

rates. An illustration of the problem is given in Figure 2.15.

2.3.4 Other sensing techniques

The detailed descriptions of the sensing techniques in the previous subsections

were motivated by their widespread appearance in spectrum sensing literature. In

fact, in their popular 2004 review, Cabric et al. describe only these techniques [28].

Yücek and Arslan, however, take a more balanced approach, also giving consideration

to several other, less popular techniques [9]. While a fully exhaustive list would be

a digression, for balance, some alternatives to the previously discussed techniques are

listed here:

• Waveform sensing has been proposed as an alternative to matched filter detec-

tion. Fundamentally, the two are very similar. However, instead of using filters

matched to the whole of the transmitted signal, the waveform sensor uses filters

matched only to a portion of the transmitted signal, usually a preamble, pilot

signal or synchronisation code [9]. Consequently, waveform processing requires

less knowledge of the transmitted signal than matched filter detection, but still

requires some knowledge of the transmitted signal, and so has limited applicabil-

ity.
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Figure 2.15: A log-linear plot of the number of samples required to ensure that Pf =
Pm = 0.1 at different signal to noise ratios.

• The multi-taper method has been proposed as a possible alternative to energy

detection [33]. This technique involves the use of filters to window different sub-

bands of the channel under investigation in order to compute an accurate estimate

of its power spectral density. However, this accuracy comes at the cost of increased

processing power as each additional window function requires a Fourier transform

operation.

• Wavelet-based sensing has also been investigated [34], but is generally considered

useful for wideband sensing problems only, and requires large numbers of samples

to be accurate.

2.4 Cooperative sensing and diversity reception

In a given situation, the question of which spectrum sensing technique is best is a trade

off between cost and performance: if detection time is a priority, then the matched

filter or waveform detectors may be an appropriate choice, but only if the transmitted

signal structure is known, at least in part; if the only information known about the

signal is that it has periodic features, then the cyclostationary feature detector may be

a better choice, but only if the signal is not affected by fading, and then at the cost of

increased processing power; or, if no information is known, then the energy detector or

the multi-taper method may be best, but at the cost of increased detection time, and

of increased processing requirements in the latter case. In short, there is no one right

answer.

However, some conclusions can be drawn. The energy detector is by far the least com-

putationally expensive solution and, while it cannot be used to detect spread spectrum

or frequency hopping signals (for these, the cyclostationary feature detector appears
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to be the most appropriate), it can detect any other type of deterministic signal [13],

and so it is the most generally applicable of the sensing techniques discussed previ-

ously. The biggest drawback of the energy detector appears to be the large detection

time it requires to ensure that low power transmissions are not present in the channel.

However, as will be seen, this is not as big a problem as it seems and so, for the remain-

der of this review, the discussion is limited to energy detection, specifically to certain

techniques which can be used decrease its sensing time. Broadly speaking, this can be

achieved in one of two ways: using cooperative sensing6, or through diversity reception.

Accordingly, these concepts are briefly reviewed next.

2.4.1 Cooperative sensing

Cooperative sensing is a popular approach for increasing the performance of geographi-

cally distributed sensor networks. The key idea is to combine independent observations

from different sensors in order to improve their overall performance. Cooperative sens-

ing was first used in the 1980s to improve distributed radar detection [35] but, more

recently, it has developed a following in the spectrum sensing community as a simple,

but effective, way of increasing the performance of spectrum sensors [9, 21, 28].

Cooperative sensing comes in two flavours: centralised and decentralised. In centralised

cooperation, a base station or master node, known as the fusion centre, coordinates the

operation of the network. Instead of making a local decision, each node transmits its

observation to the fusion centre, where the observations are combined, and an overall

decision about the state of the channel is made, as in Figure 2.16. The overall decision is

then transmitted to the individual sensors and, if the channel is unoccupied, the fusion

centre allocates transmit slots and data rates to maximise usage of the free channel.

Figure 2.17 illustrates a typical centralised network scenario, where the total sensing

time is reduced by increasing the number of cooperating energy detectors.

However, this level of coordination can lead to a prohibitive communication overhead,

particularly when the number of participating nodes is large [20]. In decentralised

cooperation, individual nodes still share observations, but directly with neighbouring

nodes instead of through a fusion centre. Individual nodes then make their own decision

about the state of the channel, as in Figure 2.18. While decentralised cooperation

requires less communication between nodes, and therefore less bandwidth, it is also

6To be fair, cooperative sensing can be applied to other technologies, but the benefits are limited.
For instance, Derakhshani et al. [29] reduced the high computational cost of their cyclostationary fea-
ture detector by distributing the generation of the spectral correlation function across a network of
sensors: each sensor generated the spectral correlation function for a specific value of α, and the results
were then combined and further processed at a master node to reach an overall decision about the state
of the channel. However, Derakhshani et al. found that, for given probabilities of error, the detection
time in their distributed implementation was slightly greater than in their single node implementation,
due to the simplifications required to adapt the algorithm to work in a distributed fashion. In the fol-
lowing discussion, it will be shown that cooperative energy detection requires no such simplifications,
and always decreases the required detection time.
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Figure 2.16: A centralised cooperative energy detector network.

known to achieve lower capacity on average [28]. For the remainder of this work, only

the centralised form of cooperation is considered.

In both centralised and decentralised cooperation, a control channel is required to

share information between nodes. However, it is a matter of debate how such channels

should be implemented [28]. It has been proposed that the control channels could

be ultra wideband (UWB) spread spectrum channels, in order to minimise interference

with primary users, or that dedicated control bands could be established, but the latter

proposal seems somewhat defeatist given the aim of dynamic spectrum access. In any

case, control channels will almost certainly have limited bandwidth which, in turn, will

impose restrictions on the level of cooperation between nodes.

One solution is for each node to compress its observation before transmission, at the

cost of increased error probabilities. However, if large numbers of nodes cooperate, then

the compression loss can be mitigated somewhat [20]. Another solution is to censor

observations from specific nodes. For instance, in a network with ten cooperating nodes,

just five nodes might transmit their observation to the fusion centre, with the criteria

for choosing which nodes self-censor, and which transmit, linked to the confidence each

node has in its observation [36]. It is also worth noting that compression and censoring

are not mutually exclusive, and can be combined to further reduce communication

overhead [22].
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Figure 2.17: A log-log plot of sensing time as a function of network size for an idealised
network of cooperating energy detectors operating on an AWGN channel.

Another important aspect of cooperative sensing is the independence, or otherwise, of

the observations at each node. If the cooperating nodes are far enough apart, then it

might be expected that their observations will be uncorrelated. However, if the nodes

are close, then the correlation between their decisions must be taken into account when

calculating performance metrics. For instance, Drakopoulos and Lee considered the

effect of correlation on centralised cooperative networks where each node compresses

its observation to just 1 bit, and found that the performance of a network of any size

tends towards that of a single detector when the value of the average correlation between

nodes tends towards unity [37].

Brennan [15] provides some insight into the level of correlation that might be found

in multipath fading environments, stating that an antenna separation of thirty to fifty

wavelengths is sufficient to reduce the correlation coefficient to less than 0.3, and a

separation of ten to fifteen wavelengths is sufficient to reduce the correlation coefficient

to less than 0.6. Grisdale et al. [38] analysed the effect of correlation on the performance

of receivers operating on Rayleigh channels, showing that its effects are negligible in

the case where the average correlation between nodes is less than 0.6. Aalo [16] is

more conservative, stating that the effect of correlation on dual antenna devices should

only be disregarded when the average correlation is less than a third. Still, as Brennan

showed, this can be achieved through moderately spaced antennae.

Ghasemi and Sousa, in their analysis of the effects of correlation in log-normal shad-

owed environments, define a model for the average correlation between nodes, ρ, as

ρ = e−ad, (2.27)

where d is the average distance between neighbouring nodes, and a ∈ R
+ and is

a constant whose value depends on the environment [39]. Using experimental data,

Gudmundson found that a ≈ 0.12 in urban environments and a ≈ 0.002 is rural envi-
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Figure 2.18: A decentralised cooperative energy detector network.

ronments [40]. The model is illustrated in Figure 2.19. As can be seen, the distance

between nodes required for small values of ρ in the urban model are not large, although

this distance increases significantly in the suburban model.

Thus, in multipath fading environments, an antenna separation on the order of tens of

times the signal wavelength can mitigate the effects of correlation while, in shadowed

environments, the spacing between nodes required to mitigate correlation effects is

greater. As the later work in this thesis concerns multipath fading only, the effects

of correlation are not considered further, and it is instead assumed that either all

observations are uncorrelated or that the effect of any correlation present is negligible

or can be mitigated through appropriate antenna separation.

The final aspect of cooperative sensing to be discussed is the imperfect nature of the

control channel. Chaudhari et al. have showed that errors from the corruption of signals

transmitted through control channels can have a significant effect of the performance

of cooperative networks using both compressed and uncompressed observations [17].

The authors demonstrate that compressed observations are much more sensitive to

the effects of corruption than uncompressed observations, but conclude that optimised

channel aware coding can be used to mitigate these effects in both cases. As the work

in this thesis relates to the transmission of uncompressed observations only, for the

remainder of this work, it is assumed that observations transmitted between nodes are

free from corruption and that, otherwise, optimised channel aware coding is used and
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Figure 2.19: A log-linear plot of the shadowed correlation model proposed by
Ghasemi and Sousa.

entirely mitigates the effects.

2.4.2 Diversity reception

Diversity reception is a technique, similar to cooperative sensing, used to improve the

performance of spectrum sensors. The aim of diversity reception is to combine two

or more versions of the same information-bearing signal, each of which is known as a

branch, in order to increase the signal to noise ratio at the receiver. While generally

used to model individual detectors with multiple antennae, diversity reception can also

be used to model cooperative sensing networks.

There are many forms of diversity reception, of varying complexity, and even hybrid

forms. Simon and Alouini list eight different forms [14], while Stüber lists an additional

three [41]. In this work, three specific varieties are considered: the maximal ratio

combiner (MRC), the equal gain combiner (EGC) and the square law combiner (SLC),

which are the most commonly used, and most generally applicable, models found in

the spectrum sensing literature.

2.4.2.1 The maximal ratio combiner

The maximal ratio combiner is a diversity receiver architecture which finds most use

in situations where the channel gain and phase delay are known or can be measured,

or estimated, accurately [14]. Typically, this information is not available in spectrum

sensing scenarios and so the maximal ratio combiner is, in general, an infeasible spec-

trum sensing solution. Nevertheless, it is known to be the optimum diversity receiver,

in the sense that it maximises the signal to noise ratio at its output [14, p. 317]. Con-

sequently, the performance of the maximal ratio combiner is an upper bound on the
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Figure 2.20: A maximal ratio combiner / equal gain combiner.

performance of any diversity reception scheme, and so the technique is worthy of further

consideration for theoretical purposes.

An illustration of a maximal ratio combiner architecture with n branches is given in

Figure 2.20. As can be seen, the received signals on each branch, r1(t), r2(t), . . . rn(t),

are weighted according the functions w1, w2, . . . wn and summed together to produce a

combined received signal, r(t), which is then processed by the energy detector in the

usual way.

For the maximal ratio combiner, the weight functions are given by

wi = hi, (2.28)

where hi is the channel response of the signal received on the ith branch.

2.4.2.2 The equal gain combiner

While the maximal ratio combiner is the optimum diversity receiver, it is not a feasible

solution for spectrum sensing. However, the equal gain combiner requires no infor-

mation about the channel gains and phase delays on each branch and so is a more

feasible sensing solution. The equal gain combiner has a similar architecture to the

maximal ratio combiner, as shown in Figure 2.20, with the exception that all of its

weight functions are equal to one, that is

w1 = w2 = . . . = wn = 1. (2.29)
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Figure 2.21: A square law combiner.

2.4.2.3 The square law combiner

The maximal ratio combiner and equal gain combiner architectures are intended to be

used when the detector has direct access to the received signal on each of the branches.

However, this is not always the case. For instance, in the centralised cooperative sensing

system in Figure 2.16, the fusion centre has access to the test statistics generated at

each node, but not the received signals themselves. In this case, bandwidth constraints

prevent each node from forwarding an exact copy of its received signal to the fusion

centre, and so a different form of diversity architecture must be considered: the square

law combiner.

A typical square law combiner is illustrated in Figure 2.21. As can be seen, the square

law combiner simply sums together the received test statistics, that is

x =
n
∑

i=1

xi, (2.30)

where x is the test statistic at the output of the combiner.

Like the equal gain combiner, the square law combiner requires no knowledge of the

phase delays on each branch, making it a feasible technology for spectrum sensing.

In fact, the square law combiner is quite similar to the equal gain combiner, the key

difference being that, in the case of the square law combiner, the combining operation

is performed after the test statistics have been generated7. Consequently, the square

law combiner can perform worse than the maximal ratio combiner and the equal gain

combiner. However, as will be seen later, in many cases, the difference is not very large.

Indeed, Ma et al. [42] found that the square law combiner is near-optimum when the

signal to noise ratio is high.

7The square law combiner is sometimes referred to as the post-detection equal gain combiner.
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2.5 Summary

This chapter began by relating a literal description of the spectrum sensing process to

an abstract decision making model. Then, under the assumptions that:

1. The property under observation changes with the occupancy of the channel, and

2. The property under observation is a wide sense stationary process,

the binary hypothesis was applied to characterise its performance, and the Neyman-

Pearson lemma was used to show that the probability of making an incorrect decision

can be controlled using the likelihood ratio test.

Five different mathematical models for describing the propagation of transmitted sig-

nals through real world environments were considered: the AWGN model, which is

used to describe time-varying noise interference; the Rayleigh, Nakagami-m and Rice

models, which are used to describe multipath fading; and the log-normal model, which

is used to describe shadow fading. While the log-normal model was discussed for the

sake of completeness, from this point forward, only the other four channel models will

be considered and, of those, mainly just the three multipath fading models.

Several spectrum sensing architectures were also reviewed, and it was found that which

technique is best very much depends on the intended application: if detection time is

critical, then the matched filter detector is best, but requires knowledge of the trans-

mitted signal scheme; if only limited knowledge is available, then the cyclostationary

feature detector is an appropriate choice, but requires high processing power; if cost is

critical, then the energy detector is best.

Of all the technologies considered in this chapter, the energy detector is by far the

simplest and the most generally applicable. Its main drawback is the detection time re-

quired to sense the channel reliably. However, as discussed earlier, this can be overcome

through the use of cooperative sensing and diversity reception techniques. A more in

depth review of material relating specifically to the energy detector is given in the next

chapter.
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Chapter 3

A survey of related work

While the previous chapter gave a broad overview of various spectrum sensing tech-

niques, the intention of this chapter is to provide a rigorous survey of material relating

specifically to the energy detector. In particular, exact formulations for the decision

probabilities of energy detector diversity receivers operating on AWGN channels are de-

rived, and approaches taken by other researchers to extend this analysis to multipath

fading channels are reviewed. The chapter concludes with a critical assessment of these

approaches, which motivates the decision to consider approximation based approaches

in the coming chapters.

3.1 Some brief notes on model non-idealities

The previous chapter presented material relating to detector architectures in a very

general way. However, in doing so, some details, which affect all the architectures

considered previously, were omitted. Thus, before discussing energy detector diversity

receivers in more detail, some non-idealities, which have not yet been accounted for in

the system model, must be addressed.

3.1.1 Signal sampling

The idealised detectors presented in the last chapter assumed that the received signal,

r(t), is an analogue quantity. However, in reality, the system processing the received

signal will be digital, and so the signal must be sampled at discrete time intervals.

Urkowitz first considered the effect of sampling on the energy detector, and showed

that its test statistic, defined in (2.25), has the discrete time approximation

x ≈ 1

2W

M−1
∑

j=0

∣

∣

∣r
(

j
2W

)∣

∣

∣

2
, (3.1)
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where M is the total number of samples of the received signal and is equal to the time

bandwidth product, that is

M = 2T W, (3.2)

and r
(

j
2W

)

refers to the jth discrete sample of the received signal, so that the first

sample occurs at time t = 0 and the last sample occurs at time t = T − 1
2W [13].

Urkowitz also showed that the error resulting from the approximation in (3.1) becomes

negligible as M becomes large. Thus, the digital system becomes equivalent to its

analogue counterpart as the number of samples increases.

3.1.2 Noise power uncertainty

In the last chapter, the average noise power, σ2, was related to the system temperature,

Tsys, using (2.13). However, this relation does not take into account the change in the

average value, also known as the drift, of the noise power that can occur as Tsys varies

over time. If the drift is significant, estimates of the noise power may become inaccurate

and so any decision made based on them will become less reliable. Noise power drift

can also occur as a result of time-varying antenna gain, initial calibration errors and

radio frequency (RF) interference from other users [43].

Sonnenschein and Fishman first considered the theoretical implications of noise power

uncertainty and demonstrated that it severely reduced the reliability of the energy

detector [44, 45]. More recently, Tandra and Sahai showed that matched filter detectors

[46] and cyclostationary feature detectors [47] also become less reliable when the noise

power estimate is inaccurate, although the effect is not quite as severe as in the case

of the energy detector. Specifically, Tandra and Sahai state that, for a given level of

noise power uncertainty, there is a minimum value of signal to noise ratio below which

detection cannot occur for all three detector types. In the case of the energy detector,

the minimum detectable signal to noise ratio, γmin, known as the SNR wall, is given

by

γmin =
ρ2 − 1

ρ
, (3.3)

where ρ is the measure of uncertainty in the noise power estimate, such that the es-

timated noise power, σ̂2, is contained in the interval [ 1
ρσ2, ρσ2]. By this definition,

1 < ρ < ∞.

For given probabilities of false alarm and missed detection, this kind of noise uncertainty

increases the number of samples required so that M → ∞ as γ → γmin, as can be seen

in Figure 3.1, where the initialism ENP denotes estimated noise power and is discussed

later. Thus, for γ < γmin an infinitely large number of samples is required and reliable
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Figure 3.1: A logarithmic plot of the number of samples required to guarantee that
Pf = Pm = 0.1 as a function of the average signal to noise ratio at the receiver for
different noise power uncertainty scenarios.

detection is impossible.

However, there are a number of problems with this model. Firstly, Tandra and Sahai

assume that the value of ρ can be arbitrarily large, which is not the case in practice.

In laboratory tests, Hill and Felstead [48] found that σ2 varied on the order of ±0.05%

over the course of two minutes, typically a relatively long period of time in signal

detection terms, which suggests that ρ may actually be bounded as 1 < ρ < 1.0005.

Furthermore, Mariani et al. found that Tandra and Sahai’s model for noise uncertainty

is overly pessimistic, because it does not take into account the consistency1 of the noise

power estimation process [43]. Specifically, they demonstrated that the SNR wall for

energy detectors employing consistent noise power estimators is, at worst, that given

in (3.3), and is more generally described by

γmin =
1 − Q−1(Pf )

√
φ

1 − Q−1(Pd)
√

φ
− 1, (3.4)

where Q−1(z) is the inverse of the Gaussian Q function [49, Equation 26.2.3], so that

x = Q−1(Q(x)), and φ measures the consistency of the noise power estimator technique.

Mariani et al. propose a modified energy detector, the estimated noise power (ENP)

energy detector, which generates an estimate of the noise power, σ̂2, as

σ̂2 =
1

M0

M0−1
∑

j=0

∣

∣

∣n
(

j
2W

)∣

∣

∣

2
, (3.5)

where M0 is the number of samples used to generate the noise power estimate, and is

related to the time bandwidth product in a similar fashion to (3.2), and n
(

j
2W

)

refers

1A consistent estimator is one whose estimated value converges towards the true value over time
such that, as the estimation time tends to infinity, the estimate becomes arbitrarily accurate.
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to the jth discrete sample of n(t).

As (3.5) is a consistent estimator of σ2, φ = 1
M0

in (3.4), and so the SNR wall can

be overcome by increasing the number of samples used in estimating the noise power

[43]. Figure 3.1 shows two examples where such estimates can overcome moderate to

severe values of ρ. Consequently, for the remainder of this thesis, it is assumed that

such an estimation technique is used to generate an accurate value of σ̂2, so that there

is a negligible difference between the estimated and actual values of noise power, that

is

σ̂2 ≈ σ2. (3.6)

3.2 Energy detection in AWGN channels

A slight change in notation is now adopted to distinguish between the decision prob-

abilities of different diversity architectures: henceforth, PfX
, PaX

, PdX
and PmX

will

be used to denote the probabilities of false alarm, acquisition, detection and missed

detection, respectively, for a diversity receiver of type X. As before, the following

relationships hold

PaX
= 1 − PfX

, (3.7)

PmX
= 1 − PdX

, (3.8)

and, for consistency, X = ND will be used to denote the no diversity (ND) case.

Also, for convenience, a normalised test statistic, x̂, is defined as

x̂ =
1

σ2

M−1
∑

j=0

∣

∣

∣r
(

j
2W

)∣

∣

∣

2
. (3.9)

3.2.1 Receivers with no diversity

For energy detectors with no diversity, Urkowitz showed that x̂ follows a chi square

distribution with M degrees of freedom, when the channel is unoccupied, and a non-

central chi square distribution with M degrees of freedom and non-centrality parameter

Mγ
ND

, when a signal is present; that is

x̂ ∼
{

χ2
M , H0,

χ2
M (Mγ

ND
), H1,

(3.10)
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where χ2
k represents the chi square distribution with k degrees of freedom, and χ2

k(s)

represents the noncentral chi square distribution with k degrees of freedom and non-

centrality parameter s [13], and γ
ND

denotes the signal to noise ratio at the input to

the energy detector, and is given by (2.14).

Thus, the probabilities of false alarm and detection are given [50] by

PfND
=

Γ
(

u, λ
2

)

Γ(u)
, (3.11)

PdND
(γ

ND
) = Qu

(
√

Mγ
ND

,
√

λ
)

, (3.12)

where Γ(a, b) is the upper incomplete Gamma function, Γ(a) is the Gamma function,

Qm(a, b) is the Marcum Qm function [51, Equation 1], u = M
2 , and the relationship

between the probability of detection and the signal to noise ratio has been emphasised

for later convenience.

3.2.2 Receivers with MRC diversity

In maximal ratio combiner systems, the received signals on each branch are weighted

and combined, as in Figure 2.20, to form a new received signal, r(t), which is given by

r(t) =
n
∑

i=1

wiri(t)

=
n
∑

i=1

hi(his(t) + ni(t))

=
n
∑

i=1

h2
i s(t) +

n
∑

i=1

hini(t), (3.13)

where the weight functions, w1, w2 . . . wn, are those specified in (2.28).

The received signal can be thought of as having been transmitted through a channel,

that is

r(t) = gs(t) + n(t) (3.14)

where g =
∑n

i=1 h2
i represents the channel gain and n(t) =

∑n
i=1 hini(t) represents the

time-varying noise interference.
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Noting that E[n(t)] = 0, the power contained in n(t) is given by

E[n2(t)] = E





(

n
∑

i=1

hini(t)

)2




= E[h2
1n2

1(t) + h1h2n1(t)n2(t) + . . . + h2
nn2

n(t)]

= E[h2
1n2

1(t)] + E[h1h2n1(t)n2(t)] + . . . + E[h2
nn2

n(t)]

= h2
1 E[n2

1(t)] + h2
2 E[n2

2(t)] + . . . + h2
n E[n2

n(t)]

=
n
∑

i=1

h2
i E[n2

i (t)]

= gσ2. (3.15)

Thus, the signal to noise ratio at the output of the MRC combiner, γ
MRC

, is given by

γ
MRC

=
g2Ps

E[n2(t)]

=
gPs

σ2
. (3.16)

Using (2.14), (3.16) can be further simplified as

γ
MRC

=
n
∑

i=1

γi, (3.17)

where γi is the signal to noise ratio on the ith branch of the receiver [52].

Thus, if r(t) is sampled and input into an energy detector, as in (3.9), then the resulting

normalised test statistic will be distributed according to

x̂ ∼
{

χ2
M , H0,

χ2
M (Mγ

MRC
), H1.

(3.18)

Consequently, the decision probabilities will be as in (3.11) and (3.12), with γ
MRC

replacing γ
ND

in the latter case, as shown in Table 3.1 [52].
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Table 3.1: Decision probabilities for various diversity receiver architectures operating
on AWGN channels.

X PfX
PdX

(γ
X

)

ND
Γ
(

u, λ
2

)

Γ(u)
Qu

(√

Mγ
ND

,
√

λ
)

MRC
Γ
(

u, λ
2

)

Γ(u)
Qu

(
√

Mγ
MRC

,
√

λ
)

EGC
Γ
(

u, λ
2

)

Γ(u)
Qu

(√

Mγ
EGC

,
√

λ
)

SLC
Γ
(

nu, λ
2

)

Γ(nu)
Qnu

(√

Mγ
SLC

,
√

λ
)

3.2.3 Receivers with EGC diversity

In equal gain combiner systems, the received signals on each branch are once again

combined, as in Figure 2.20, so that the signal at the combiner output is given by

r(t) =
n
∑

i=1

wiri(t)

=
n
∑

i=1

(his(t) + ni(t))

= gs(t) + n(t), (3.19)

where g =
∑n

i=1 hi represents the channel gain, n(t) =
∑n

i=1 ni(t) is the time-varying

noise interference at the output of the combiner, and the weight functions are specified

in (2.29).
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Again, noting that E[n(t)] = 0, the average power of n(t) is given by

E[n2(t)] = E





(

n
∑

i=1

ni(t)

)2




= E[n2
1(t) + n1(t)n2(t) + . . . + n2

n(t)]

=
n
∑

i=1

E[n2
i (t)]

= nσ2, (3.20)

and so the signal to noise ratio at the output of the combiner, γ
EGC

, is given by

γ
EGC

=
g2Ps

E[n2(t)]

=

(

1√
n

n
∑

i=1

hi

)2
Ps

σ2
. (3.21)

Thus, if r(t) is then sampled and input to an energy detector, the normalised test

statistic is distributed [53] according to

x̂ ∼
{

χ2
M , H0,

χ2
M(Mγ

EGC
), H1.

(3.22)

Consequently, the decision probabilities are again as in (3.11) and (3.12), with γ
EGC

replacing γ
ND

in the latter case, as shown in Table 3.1.

3.2.4 Receivers with SLC diversity

In square law combiner systems, the test statistics from each branch are combined as

in Figure 2.21. If the test statistics on each branch are normalised, as in (3.9), then

the test statistic at the combiner output is given by

x̂ =
n
∑

i=1

x̂i, (3.23)

where x̂i is the normalised test statistic on the ith branch and is distributed according

to

x̂i ∼
{

χ2
M , H0,

χ2
M (Mγi), H1,

(3.24)

where γi is the signal to noise ratio on the ith branch [13].

Therefore, x̂ is the sum of n chi square distributed random variables when the channel
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environments

is unoccupied, and n noncentral chi square random variables when it is occupied, and

so is distributed according to

x̂ ∼
{

χ2
Mn, H0,

χ2
Mn(Mγ

SLC
), H1,

(3.25)

where γ
SLC

is the signal to noise ratio at the output of the combiner [50], and is given

by

γ
SLC

=
n
∑

i=1

γi. (3.26)

The resulting decision probabilities are given in Table 3.1.

3.3 Energy detection in multipath fading environments

3.3.1 A brief history of the state of the art

While Urkowitz presented a thorough analysis of the operation of the energy detector in

AWGN channels in 1967, it wasn’t until 2002, and the work of Kostylev, that attention

turned to its analysis under other channel models. In fact, research interest in the

topic appears to be directly related to a widespread increase in interest in dynamic

spectrum access, as can be seen in Figure 3.2. As energy detection has emerged as a

key enabling technology for spectrum sensing, this may not be very surprising, but it

does serve to illustrate that the research area is relatively new, and that the community

of researchers involved in it produce a relatively small number of publications each year.

In fact, many of the contributions in this thesis rely on the advances made by these

researchers. Thus, a concise history of the research in the area over the past decade is

not only feasible, but critical to the understanding of the work in later chapters.

Kostylev [54] first derived exact expressions for the probability of detection of energy

detectors operating in Rayleigh, Rice and Nakagami-m channels. However, many of his

results required numerical integration or infinite summation to evaluate, and he did not

consider diversity receivers. Digham et al. [11] later pointed out that there were both

typographical and mathematical errors in Kostylev’s work, and provided corrections,

so it is not considered further, and is only mentioned as a matter of historical interest.

Digham et al. extended Kostylev’s analysis to SLC systems with independent and iden-

tically distributed (i.i.d.) Rayleigh-faded branches [11], later refining their results and

extending their analysis to include the effect of correlation between different branches

[50]. However, the scope of their work was also limited. For instance, while the perfor-

mance of SLC systems in Rayleigh faded channels was considered, the analysis was not

extended to Nakagami-m and Rice channels. Furthermore, in the case of Rice fading
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Figure 3.2: A logarithmic plot of the number of publications per year as a function of
time, for the search phrases indicated in the legend. The figures were generated using
IEEE Xplore, smoothed using a three year moving average filter, and are accurate as
of September 29th 2013.

with no diversity, Digham et al. were only able to provide a closed form solution for

the trivial case where M = 2.

Herath [55] extended Digham et al.’s work on SLC systems for the more general case

of i.i.d. Nakagami-m fading, while Herath et al. [52] presented alternative formula-

tions for the probability of detection of energy detectors with no diversity in Rayleigh,

Nakagami-m and Rice channels. Herath et al. [52] were also the first to publish on the

effect of i.i.d. Rayleigh and Nakagami-m fading on systems with MRC diversity, while

Herath and Rajatheva [56] first considered the analysis of energy detectors with EGC

diversity on i.i.d. Rayleigh and Nakagami-m channels.

In 2011, Annamalai et al. [57] developed new representations for the probability of

detection of energy detectors with no diversity, MRC diversity and SLC diversity, in

AWGN channels, and then derived new expressions for the probability of detection

of these systems in independent and identically distributed Rayleigh, Nakagami-m

and Rice channels. Olabiyi and Annamalai presented refinements of the work in later

publications, providing alternative infinite series expressions [58, 59] and extending

their analysis for composite Nakagami-m / log-normal channels [60].

Independently, Sun et al. considered the effects of i.i.d. Nakagami-m fading on energy

detectors with no diversity, MRC diversity and SLC diversity [61], developing infinite

series based expressions similar to Annamalai et al., while Sun supplemented these

results with an analysis of the effect of Rice fading on energy detectors with no diversity

in his Ph.D. thesis [62].

Several authors have also considered the case of independent and non-identically dis-

tributed (i.n.d.) and correlated channels. Annamalai et al. [57] considered the effect of

i.n.d. Rayleigh, Nakagami-m and Rice fading on energy detectors with MRC and SLC
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diversity, deriving further infinite series based expressions for the detection probabilities

in each case. Similarly, Banjade et al. [63] consider the effects of correlated Rayleigh

and Nakagami-m fading. However, while their analysis considers several different cor-

relation models, it is limited to the analysis of energy detectors with SLC diversity

only and requires the computation of high order residues, which may not be practical

in many circumstances.

Finally, several authors have derived approximations for the decision probabilities in

Rayleigh and Nakagami-m fading channels. Ghasemi and Sousa [64] first considered

an approximation based technique for energy detectors with no diversity operating in

Rayleigh faded channels, while López-Benítez and Casadevall [65] derived an alterna-

tive expression to Ghasemi and Sousa using an approximation they developed for the

error function. Atapattu et al. derived a similar result, and extended the analysis to

include Nakagami-m channels and SLC systems [66, 67]. The idea of approximation

based techniques is returned to in later chapters; for now, consideration is given to

exact expressions for the decision probabilities only.

3.3.2 General expressions for the decision probabilities

In Sections 2.2.3 and 2.2.4, it was discussed how the Rayleigh channel is a special case of

both the Nakagami-m channel and the Rice channel. Consequently, to avoid repetition,

henceforth, only formulations relating to the Nakagami-m and Rice channels will be

presented. These can then be specialised to the Rayleigh channel using the appropriate

simplification. Furthermore, henceforth, the notation f
X,Y

(x) shall be used to denote

the probability density function of the signal to noise ratio at the input to the energy

detector with diversity type X operating on a channel of type Y .

For the diversity type X, the probability of detection for an energy detector in a fading

channel Y , PdX,Y
, is given [11, 52] by its probability of detection in an AWGN channel

averaged with respect to the probability density function of the signal to noise ratio at

the input to the energy detector, that is

PdX,Y
= E[PdX

(γ
X

)]

=

∫ ∞

−∞
PdX

(x)f
X,Y

(x)dx. (3.27)

Expressions for the probabilities of false alarm of diversity receivers operating on fading

channels can be arrived at in a similar manner. However, regardless of the diversity

type, the probability of false alarm does not depend on the signal to noise ratio (see

Table 3.1), and so there is no variation under Nakagami-m and Rice fading, that is

PfX,Y
= PfX

, (3.28)
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where PfX,Y
denotes the probability of false alarm for an energy detector of diversity

type X operating on a fading channel Y .

3.3.3 Receivers with no diversity

For receivers with no diversity, f
ND,Nak

(x) and f
ND,Rice

(x) are given by (2.17) and

(2.18), respectively, that is

f
ND,Nak

(x) =











0, x < 0,
(

m

γ̄

)m xm−1

Γ(m)
e

− mx
γ̄ , x ≥ 0,

(3.29)

f
ND,Rice

(x) =















0, x < 0,
(

K + 1

γ̄

)

e
−K− (K+1)x

γ̄ I0

(

2

√

K(K + 1)x

γ̄

)

, x ≥ 0.
(3.30)

Thus, PdND,Nak
can be evaluated by substituting (3.12) and (3.29) into (3.27) and

letting γ
ND

= x, while PdND,Rice
can be evaluated by substituting (3.12) and (3.30) into

(3.27) and letting γ
ND

= x.

A list of different formulations for PdND,Nak
and PdND,Rice

, derived by the authors2

discussed in Section 3.3.1, is given in Table 3.2, where 1F1(a; b; z) denotes the confluent

hypergeometric function [68, Equation 13.2.2], Ln(z) denotes the Laguerre polynomial

of degree n [69, Equation 8.970], and the variables

β =
m

m + uγ̄
, (3.31)

Ω =
K + 1

K + 1 + uγ̄
, (3.32)

have been used to simplify the notation somewhat. Although there is some variation

in the formulations, the equations listed in Table 3.2 are all equivalent methods for

calculating PdND,Nak
or PdND,Rice

, respectively.

3.3.4 Receivers with MRC diversity

For maximal ratio combiner systems, the signal to noise ratio at the output of the

combiner is the sum of the signal to noise ratio on each branch, as in (3.17). Under
2While it is not usual to reproduce the work of others in this way, there are good reasons for doing

so: firstly, because the later work in this thesis will draw comparisons with the exact formulations
presented here, and so the tables will serve as a convenient reference; and also, because each of the
authors discussed in Section 3.3.1 adopts a unique notation, and so a reproduction of their results here,
in a standard notation, will help the reader to understand the key differences between the different
formulations and facilitate the reproduction of results presented later in this thesis.
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ts Source PdND,Nak
PdND,Rice

Annamalai et al.
[57–59]

1 − βm
∞
∑

k=0

Γ(k + m)

Γ(m)k!

(

1 − Γ(k + u, λ
2 )

Γ(k + u)

)

(1 − β)k
1 − e−K(1−Ω) Ω

∞
∑

k=0

k!

(

1 − Γ(k + u, λ
2 )

Γ(k + u)

)

(1 − Ω)k
k
∑

i=0

(

1

(i!)2(k − i)!

)

(KΩ)i

Digham et al.
[11, 50]

e− λβ

2m βm−1Lm−1

(

−λ
2 (1 − β)

)

+ e− λβ
2m (1 − β)

m−2
∑

k=0

βkLi

(

−λ
2 (1 − β)

)

+ e− λ
2 βm

u−1
∑

k=1

(

λ
2

)k

k!
1F1

(

m; k + 1; λ
2 (1 − β)

)

Q1

(

√

2K(1 − Ω),
√

λΩ

)

, for two samples (i.e. M = 2) only

Herath et al.
[52, 55]

1 − e− λ
2 βm

∞
∑

k=u

(

λ
2

)k

k!
1F1

(

m; k + 1; λ
2 (1 − β)

)

e−K(1−Ω)− λ
2 Ω

∞
∑

k=1

(K(1 − Ω)Ω)k−1

(k − 1)!

(

1

(k − 1)!

dk−1

dzk−1

[

e
λ
2

z

(1 − z)zu−1

]∣

∣

∣

∣

∣

z=1−Ω

+
1

(u − 2)!

du−2

dzu−2

[

e
λ
2

z

(1 − z)(z − (1 − Ω))k

]∣

∣

∣

∣

∣

z=0

)

Sun et al.
[61, 62]

1 − e− λ
2 βm

∞
∑

k=u

(

λ
2

)k

k!

k−u
∑

l=0

Γ(l + m)

Γ(m)l!
(1 − β)l 1 − e−K− λ

2 Ω
∞
∑

k=u

(

λ
2

)k

k!

k−u
∑

l=0

(1 − Ω)l
1F1 (l + 1; 1; KΩ)

Table 3.2: Probabilities of detection for energy detectors with no diversity operating on Nakagami-m and Rice channels. The equations can
be specialised to Rayleigh fading by letting m = 1 in PdND,Nak

or K = 0 in PdND,Rice
.
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i.i.d. Nakagami-m fading, the signal to noise ratio on each branch follows a gamma

distribution with shape parameter, m, and scale parameter, γ̄
m , as in (3.29). Thus, the

signal to noise ratio at the combiner output is the sum of n such gamma distributed

random variables, and so follows a gamma distribution [70] with shape parameter, mn,

and scale parameter, γ̄
m . Consequently, its probability density function, f

MRC,Nak
(x),

is given by

f
MRC,Nak

(x) =











0, x < 0,
(

m

γ̄

)mn xmn−1

Γ(mn)
e

− mx
γ̄ , x ≥ 0.

(3.33)

The probability density function of the signal to noise ratio at the output of the com-

biner under i.i.d. Rice fading is derived in a different manner. Recalling (3.16), the

signal to noise ratio at the combiner output is related to the sum of the squares of the

channel responses on each branch. As discussed in Section 2.2.4, these responses are

modelled as Rice distributed random variables. Thus, the signal to noise ratio at the

output of the combiner depends on the sum of the squares of n i.i.d. Rice distributed

random variables, and so follows a scaled noncentral chi square distribution with 2n

degrees of freedom and noncentrality parameter equal to 2Kn [71]. Consequently, its

probability density function, f
MRC,Rice

(x), is given by

f
MRC,Rice

(x) =











0, x < 0,
(

K+1
γ̄

)
n+1

2 (

x
Kn

)
n−1

2 e
−Kn− (K+1)x

γ̄ In−1

(

2
√

Kn(K+1)x
γ̄

)

, x ≥ 0.
(3.34)

A list of different formulations for PdMRC,Nak
and PdMRC,Rice

, derived by the authors

discussed in Section 3.3.1, is given in Table 3.3.

3.3.5 Receivers with EGC diversity

In equal gain combiner systems, the signal to noise ratio at the combiner output is

given by (3.21), and depends on the sum of the channel gains, hi. Thus, under i.i.d.

Nakagami-m or Rice fading, the signal to noise ratio at the output of the combiner

depends on the sum of n i.i.d. Nakagami-m or Rice distributed random variables,

respectively. However, the distributions of the sums of such variables are known to be

difficult to evaluate [14, 41, 71–73].

Dharmawansa et al. [74] and Rahman and Harada [75] derived exact expressions for

the probability density function of γ
EGC

under Nakagami-m fading but in forms which,

in practice, require truncation and are difficult to evaluate when n > 2. Herath used

Dharmawansa et al.’s formulation to derive a formulation for PdEGC,Nak
, but noted that

the complexity of his solution increased sharply with the number of diversity branches,
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Source PdMRC,Nak
PdMRC,Rice

Annamalai et al.
[57–59]

1 − βmn
∞
∑

k=0

Γ(k + mn)

Γ(mn)k!

(

1 − Γ(k + u, λ
2 )

Γ(k + u)

)

(1 − β)k

1 − e−Kn(1−Ω) Ωn
∞
∑

k=0

(

1 − Γ(k + u, λ
2 )

Γ(k + u)

)

(1 − Ω)k

×
k
∑

i=0

Γ(k + n)

i!(k − i)!Γ(n + i)
(KnΩ)i

Herath et al.
[52, 55]

1 − e− λ
2 βmn

∞
∑

k=u

(

λ
2

)k

k!
1F1

(

mn; k + 1; λ
2 (1 − β)

)

e−Kn(1−Ω)− λ
2 Ωn

∞
∑

k=1

(Kn(1 − Ω)Ω)k−1

(k − 1)!

×
(

1

(k + n − 2)!

dk+n−2

dzk+n−2

[

e
λ
2

z

(1 − z)zu−n

]∣

∣

∣

∣

∣

z=1−Ω

+
1

(u − n − 1)!

du−n−1

dzu−n−1

[

e
λ
2

z

(1 − z)(z − (1 − Ω))k+n−1

]∣

∣

∣

∣

∣

z=0

)

Sun et al.
[61, 62]

1 − βmn
∞
∑

k=0

Γ(k + mn)

Γ(mn)k!

(

1 − Γ(k + u, λ
2 )

Γ(k + u)

)

(1 − β)k -

Table 3.3: Decision probabilities for energy detectors with MRC diversity operating on Nakagami-m and Rice channels. The equations can
be specialised to Rayleigh fading by letting m = 1 in PdMRC,Nak

or K = 0 in PdMRC,Rice
. As Digham et al. did not consider MRC systems

under Nakagami-m and Rice fading, and Sun et al. did not consider MRC systems under Rice fading, no results are listed in these cases.
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and that computing the truncation points for n > 3 is a difficult problem [55]. Herath’s

formulations for n = 2 and n = 3 are reproduced in Table 3.4.

However, the problem is not intractable. Nakagami [72] proposed an approximation for

the sum of i.i.d. Nakagami-m random variables, which models the signal to noise ratio at

the EGC output as a gamma distributed random variable, with shape parameter, mn,

and scale parameter, ωγ̄
mn , so that the exact probability density function, f

EGC,Nak
(x),

can be closely approximated as

f
EGC,Nak

(x) ≈ f̂
EGC,Nak

(x) =











0, x < 0,
(

mn

ωγ̄

)mn xmn−1

Γ(mn)
e

− mnx
ωγ̄ , x ≥ 0,

(3.35)

where

ω = 1 +
n − 1

m

(

Γ(m + 1
2)

Γ(m)

)2

. (3.36)

Plots of the exact and approximate probability density functions for different param-

eter sets are shown in Figure 3.3(a). As can be seen, the proposed approximation is

quite accurate in many scenarios of interest. Dharmawansa et al. have also found that

Nakagami’s approximation is quite accurate across a wide range of values [74].

To the best of the author’s knowledge at the time of writing, no exact closed form rep-

resentation for the probability density function of the sum of i.i.d. Rice distributed ran-

dom variables is available in the literature. Abu-Dayya and Beaulieu derived an exact

infinite series representation [76], but Hu and Beaulieu note that its computation is dif-

ficult due to its inherent complexity [71]. However, Hu and Beaulieu and López-Salcedo

[73] have derived approximations which were found to be accurate across a wide range

of values. Both approximations rely on look up tables of fitted constants, which must

be calculated in advance using a numerical method. Of these, Hu and Beaulieu’s ap-

proximation depends on the smallest number of fitted constants and is particularly

suited to the method of integration used in later chapters, proposing that the probabil-

ity density function of the signal to noise ratio at the combiner output can be closely

approximated by a scaled noncentral chi square distribution with 2n degrees of freedom

and a noncentrality parameter equal to 2Kn
a . Thus, the PDF of the signal to noise ratio

at the output of an equal gain combiner, f
EGC,Rice

(x), can be approximated as

f̂
EGC,Rice

(x) =











0, x < 0,
(

K+1
bγ̄

)
n+1

2
(

ax
Kn

)
n−1

2 e
− Kn

a
− (K+1)x

bγ̄ In−1

(

2
√

Kn(K+1)x
abγ̄

)

, x ≥ 0,
(3.37)

where a and b are constants and are given in Table 3.5. Plots of the exact and approx-

imate probability density functions for different parameter sets are shown in Figure
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Source PdEGC,Nak

Herath et al.
[56]

1 − e− λ
2

∞
∑

k=u

(

λ
2

)k

k!

∞
∑

l=0

(

2m

2m + γ̄

)2m+l ( 1

24m+l−2

)

(

Γ(1
2 )Γ2(2m + l)

Γ(l + 1)Γ2(m)Γ(2m + l + 1
2)

)

× 1F1

(

2m + l; k + 1;
λ

2

(

γ̄

2m + γ̄

))

, for n = 2 only

1 − e− λ
2

∞
∑

k=u

(

λ
2

)k

k!

∞
∑

l=0

∞
∑

p=0

(

3m

3m + γ̄

)3m+l+p ( 1

24m+l+p−3

)

(

Γ(1
2 )Γ(2m + l)Γ(2m + p)Γ(3m + l)Γ(3m + l + 1

2)Γ(4m + 2l + p)

Γ(l + 1)Γ(p + 1)Γ3(m)Γ(2m + l + 1
2)Γ(3m + l + p + 1

2)Γ(6m + 2l)

)

× 1F1

(

3m + l + p; k + 1;
λ

2

(

γ̄

3m + γ̄

))

, for n = 3 only

Table 3.4: Decision probabilities for energy detectors with EGC diversity operating on Nakagami-m channels. The equations can be specialised
to Rayleigh fading by letting m = 1.
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Table 3.5: Values of the constants a and b.

n

2 3 4 5 6 7 8

K = 1 dB
a 1.32278 1.37013 1.41124 1.43405 1.45500 1.46733 1.46425

b 1.02794 1.02880 1.03355 1.03485 1.03701 1.03788 1.03528

K = 3 dB
a 1.22281 1.25660 1.27920 1.29307 1.30535 1.31207 1.30927

b 1.03172 1.03520 1.03919 1.04069 1.04269 1.04319 1.04019

K = 5 dB
a 1.15570 1.17752 1.19070 1.19954 1.20586 1.21157 1.21857

b 1.03379 1.03731 1.03967 1.04143 1.04261 1.04379 1.04556

K = 7 dB
a 1.10170 1.11704 1.12438 1.13027 1.13544 1.13766 1.13470

b 1.02660 1.03082 1.03293 1.03434 1.03575 1.03646 1.03575

3.3(b). As can be seen, the approximation is quite accurate in many cases, although it

becomes less accurate outside the range of values of K for which a and b are available.

In such cases, the values of the constants must be extrapolated from the available data

points, which can lead to less accurate results. Still, the approximation is a convenient

one and will be useful in Chapter 6.

3.3.6 Receivers with SLC diversity

In square law combiner systems, the signal to noise ratio at the output of the combiner

is simply the sum of the signal to noise ratios on each branch, as in (3.26). Thus,

the signal to noise ratio at the combiner output in SLC systems follows the same

distribution as the signal to noise ratio at the combiner output in MRC systems, and

so f
SLC,Nak

(x) and f
SLC,Rice

(x) are given by (3.33) and (3.34), respectively.

A list of different formulations for PdSLC,Nak
and PdSLC,Rice

, derived by the authors

discussed in Section 3.3.1, is given in Table 3.6.

3.4 Discussion

In this chapter, the operation of the energy detector in AWGN and multipath fading

channels was discussed. In the AWGN case, Urkowitz’s analysis was used to derive

expressions for the decision probabilities of different diversity receivers; in the case

of multipath fading channels, expressions for the probability density function of the

signal to noise ratio at the combiner output for each diversity and fading channel

type were derived and alternative expressions for the decision probabilities available in

the literature were tabulated. It is worth giving some further consideration to these

expressions.
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Figure 3.3: Plots of the exact and approximate probability density functions of the
signal to noise ratio at the output of an equal gain combiner in Nakagami-m and Rice
channels.
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The motivation for deriving exact expressions for the decision probabilities in multi-

path fading channels is two-fold: firstly, to avoid having to use expensive numerical

integration techniques to evaluate the general integral in (3.27) and, secondly, to pro-

vide some deeper insight into the operation of diversity systems under multipath fading

conditions. Indeed, Digham et al.’s primary criticism of Kostylev’s work was that it

lacked closed form results [11].

However, most of the expressions discussed in this chapter are not closed form results.

For instance, in Table 3.2, six of the formulations involve the summation of infinite

series. In these cases, the probability of detection must be computed either by numerical

summation or by truncating the infinite series and summing the remainder. However, if

the series is truncated, then the position of the truncation point itself must be calculated

using a numerical method [55, 57, 62].

Furthermore, while Digham et al.’s expression for PdND,Nak
is not in the form of an

infinite series, it does feature a series requiring u − 2 terms to be computed. Recalling

that u = M
2 , and that M is often large, as in Figure 2.15, this formulation potentially

requires tens of thousands of terms to be evaluated.

The truncated infinite series approach has the same drawback. Figure 3.4(a) shows the

values of the truncation point required to give a maximum absolute error of 10−6 when

calculating PdND,Nak
, that is

ǫT
X,Y

= | PdX,Y
− P T

dX,Y
|

≤ 10−6, (3.38)

where ǫT
X,Y

denotes the absolute truncation error3 for diversity type X and channel type

Y , and P T
dX,Y

is the truncated version of the infinite series formulation PdX,Y
. As can

be seen, for small numbers of samples, the truncation point is quite small, but increases

rapidly as M becomes larger. The truncation points for PdMRC,Nak
demonstrate similar

behaviour, as can be seen in Figure 3.4(b), while the problem becomes worse for SLC

systems, as shown in Figure 3.4(c). Figure 3.4(d) demonstrates that a similar trend

exists for Annamalai et al.’s formulations for PdND,Rice
, PdMRC,Rice

and PdSLC,Rice
. In

short, for the values of M likely to be encountered in real world scenarios, all these

infinite series require large numbers of terms to be computed.

3Ideally, the truncation error should describe the difference between the precise value of the infinite
series and its truncated counterpart. However, computational limitations prevent this and so the
infinite series itself is subject to some truncation. Using numerical methods, it is possible to ensure
that the error resulting from this truncation is very small, allowing the accurate calculation of (3.38).
Consequently, throughout the remainder of this work, wherever the precise value of a fading channel
detection probability is specified, it should be taken to be its true value within a tolerance of 10−10.
The tolerance of other numerical calculations used in this work (e.g. infinite series, infinite integrals
and root finding methods) is subject to a similar warning. Unless otherwise specified, such calculations
should be understood to have been computed using Mathematica 9, with a $MachinePrecision value
of 53 log10 2 and default AccuracyGoal and PrecisionGoal values.
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Source PdSLC,Nak
PdSLC,Rice

Annamalai et al.
[57–59]

1 − βmn
∞
∑

k=0

Γ(k + mn)

Γ(mn)k!

(

1 − Γ(k + nu, λ
2 )

Γ(k + nu)

)

(1 − β)k

1 − e−Kn(1−Ω) Ωn
∞
∑

k=0

(

1 − Γ(k + nu, λ
2 )

Γ(k + nu)

)

(1 − Ω)k

×
k
∑

i=0

Γ(k + n)

i!(k − i)!Γ(n + i)
(KnΩ)i

Herath et al.
[52, 55]

1 − e− λ
2 βmn

∞
∑

k=nu

(

λ
2

)k

k!
1F1

(

mn; k + 1; λ
2 (1 − β)

)

-

Sun et al.
[61, 62]

1 − βmn
∞
∑

k=0

Γ(k + mn)

Γ(mn)k!

(

1 − Γ(k + nu, λ
2 )

Γ(k + nu)

)

(1 − β)k -

Table 3.6: Decision probabilities for energy detectors with SLC diversity operating on Nakagami-m and Rice channels. The equations can be
specialised to Rayleigh fading by letting m = 1 in PdSLC,Nak

or K = 0 in PdSLC,Rice
. As Digham et al. did not consider SLC systems under

Nakagami-m and Rice fading, and Herath et al. and Sun et al. did not consider SLC systems under Rice fading, no results are listed in these
cases.
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(a) A log-log plot of the truncation point
required for Annamalai et al.’s (blue),
Sun et al.’s (red) and Herath et al.’s (green)
formulations for PdND,Nak

with m = 2 and
γ̄ = −10 dB.
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(b) A log-log plot of the truncation point
required for Annamalai et al.’s (blue),
Sun et al.’s (red circles) and Herath et al.’s
(green) formulations for PdMRC,Nak

with
m = 1, n = 3 and γ̄ = −18 dB.
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(c) A log-log plot of the truncation point
required for Annamalai et al.’s (blue),
Sun et al.’s (red circles) and Herath et al.’s
(green) formulations for PdSLC,Nak

with m = 1,
n = 5 and γ̄ = −15 dB.

1 10 100 1000 104

5

10

50

100

500

M

T
ru

n
ca

ti
o
n

p
o
in

t
N

(d) A log-log plot of the truncation point
required for Annamalai et al.’s formulations
for PdND,Rice

(blue), PdMRC,Rice
(red) and

PdSLC,Rice
(green) with K = 5, n = 2 and

γ̄ = −16 dB.

Figure 3.4: Log-log plots of the truncation point required to give ǫT
X,Y

≤ 10−6 as
functions of the number of samples, M . In each case, PfX

= 0.1. From Tables
3.3 and 3.6, Sun et al.’s formulations for PdMRC,Nak

and PdSLC,Nak
are equivalent to

Annamalai et al.’s, and so the truncation points are the same in these cases.

Furthermore, Herath’s formulations for PdND,Rice
and PdMRC,Rice

require high order dif-

ferentiation, on the order of u − 1 and u − n − 1, respectively. These can be computed

either numerically or symbolically. However, high order numerical derivatives can be

susceptible to error due to floating point arithmetic [77, p. 226], and symbolic compu-

tation is only possible on computers with large amounts of memory [78, p. 10]. For the

large values of u likely to be encountered in practice, neither method appears practical

at present.

As a further drawback, most of the formulations considered in this chapter are so

complicated that they do not readily enable astute system designs. For instance, if
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the number of samples required to meet a specified probability of detection is to be

calculated, in the manner of Figure 2.15, currently, this can only be done using a

numerical method. Similarly, if the minimum signal to noise ratio detectable by the

system is to be calculated, once again, a numerical method is required. In short, the lack

of closed forms prevents the equations from being inverted easily and, thus, prevents

tractable analysis of the behaviour of the system.

In fact, in many cases, the formulations are just restatements of the integral average

given in (3.27). Consider the probability mass function (PMF) of the negative binomial

distribution, f(s; r, p), given by

f(s; r, p) =
Γ(s + r)

Γ(r)s!
(1 − p)rps. (3.39)

It can be shown that Annamalai et al.’s formulation for PdND,Nak
is simply a discrete

average over f(k; m, 1 − β), while their formulation for PdND,Rice
is simply a discrete

average over f(1; k, Ω). As the formulations for each channel type are equivalent, it

is not surprising to see elements of the same negative binomial PMFs in the other

formulations for PdND,Nak
, and that a similar pattern holds for the MRC and SLC

formulations in Tables 3.3 and 3.6.

Yet, none of this should be surprising. Analysing the effects of signal propagation is a

complicated problem, and complicated problems often have complicated solutions. As

Rosenblueth and Wiener [23] wrote: the best material model for a cat is another, or

preferably the same, cat. If the exact values of the decision probabilities of diversity

receivers in fading channels must be calculated, then there is an associated cost which

must be accepted. The choice of numerical integration, numerical summation or series

truncation is arbitrary, but a choice must be made.

However, Rosenblueth and Wiener also wrote that no substantial part of the universe

is so simple that it can be grasped and controlled without abstraction. Thus, if a deep

understanding of a particular aspect of a complicated system is to be gained, the model

of that system must first be simplified appropriately.

These two points cannot be overstated. There is a fundamental trade off between sim-

plicity and generality, and it is often misunderstood. Digham et al. criticised Kostylev

for the lack of simplicity in his results, but subsequent efforts have been similarly flawed.

While simple, exact and closed form representations may exist, if so, they have eluded

discovery thus far, and may continue to do so for quite some time. Consequently, the

remainder of this thesis concentrates on reducing the complexity of the exact math-

ematical models described in this chapter in an effort to derive simple yet accurate

approximate representations for the decision probabilities of energy detector diversity

receivers.
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Chapter 4

AWGN channel analysis: an

approximation-based approach

In this chapter, central limit theorem approximations for the distribution functions

of chi square and noncentral chi square random variables are discussed. In order to

quantify the resulting error, Berry-Esseen type bounds are considered, but are found

to be too loose for many practical applications. Consequently, a novel method for

the quantification of the error resulting from the use of the central limit theorem is

proposed. Novel approximations for the decision probabilities of energy detector di-

versity receivers are then derived and the resulting error is quantified. Subsequently,

some example uses of these approximations are given and it is shown that further sim-

ple and useful approximations for the analysis of other system parameters are readily

obtainable.

4.1 Motivation

Energy detection is a broad topic, and has many applications. In the context of this the-

sis, however, its intended use is spectrum sensing, and so there is a particular emphasis

on reliability at low signal to noise ratios. In fact, for digital television signals, the IEEE

802.22 standard for cognitive radio-based wireless regional area networks (WRANs)

[79, 80] specifies a sensor sensitivity of −116 dBm which, for a receiver with a noise

figure of 11 dB, operating on a 6 MHz channel1, is equivalent to an absolute signal to

noise ratio of −21 dB. At such low signal to noise ratios, large numbers of samples are

required in order to make reliable decisions (see, for example, Figure 2.15). Thus, the

question naturally suggests itself: in the context of dynamic spectrum access, can the

usual model of energy detection be simplified in a way that enables further tractable

analysis, but sacrifices little in the way of accuracy?

1As digital television broadcasting allows for channel bandwidths of up to 8 MHz, it is possible that
even smaller signal to noise ratios may need to be detected.
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4.2 Sums of i.i.d. chi square and noncentral chi

square random variables

In short, the answer is yes. In 1967, Urkowitz proposed central limit theorem approxi-

mations for the decision probabilities of energy detectors with no diversity [13]. There

are two advantages to using such approximations. Firstly, the Gaussian Q function can

be used to calculate both decision probabilities, and so one can avoid having to calcu-

late the regularised incomplete gamma function, which is known to be more difficult

to compute than the Gaussian Q function [81], and the Marcum Qm function, which

is known to be difficult to evaluate in general [82–85]. The second advantage lies in

the form of the Gaussian Q function, which lends itself well to further manipulation,

allowing the analysis of other system parameters of interest [see, for instance, 46].

However, Urkowitz never published a quantification of the error resulting from his

approximations and, to the best of the author’s knowledge at the time of writing,

no such quantification is available in the literature. As noted in Chapter 2, overly

complicated models are difficult to use, but overly simplified models are of no use at

all. Thus, before Urkowitz’s approximations can be relied upon, the resulting error

must be quantified.

Therefore, the aims of this chapter are threefold:

1. To quantify the error resulting from Urkowitz’s approximations for the decision

probabilities of energy detectors with no diversity.

2. To extend Urkowitz’s approximations to energy detectors with MRC, EGC and

SLC diversity.

3. To derive further simple approximations for the analysis of other system param-

eters of interest.

4.2 Sums of i.i.d. chi square and noncentral chi square

random variables

Urkowitz’s approximations for the decision probabilities of energy detectors with no

diversity rely on central limit theorem [24, p. 370] approximations for the distribution

of the test statistic under the null and alternative hypotheses. Consequently, the error

resulting from their use depends on the error resulting from the use of the central limit

theorem. Recalling (3.9), the test statistic for energy detectors with no diversity follows

a chi square distribution when the channel is unoccupied and a noncentral chi square

distribution otherwise. Thus, in this section, central limit theorem approximations for

these distributions are discussed.

Central limit theorem: Let Y1, Y2, . . . be a sequence of i.i.d. random variables

with finite mean, µ, and finite variance, σ2. Now, let Sn be the sum of n such
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square random variables

random variables, that is

Sn =
n
∑

i=1

Yi. (4.1)

If Zn is a zero mean, unit variance random variable defined by

Zn =
Sn − nµ

σ
√

n
, (4.2)

then

lim
n→∞

P [Zn > z] = Q (z) , (4.3)

where Q(x) is the Gaussian Q function [49, Equation 26.2.3].

Consider a noncentral chi square distributed random variable, χ2
k(s), with k degrees of

freedom and noncentrality parameter s. It is well known that χ2
k(s) has the form

χ2
k(s) =

k
∑

i=1

X2
i , (4.4)

where X1, X2, . . . Xk are i.i.d. Gaussian distributed random variables with finite com-

mon mean, µ =
√

s
k , and unit variance [26, p. 45-46]. As (4.4) is in the same form as

(4.1), the central limit theorem can be applied to show that

lim
k→∞

P





χ2
k(s) − k E[X2

i ]
√

k Var[X2
i ]

> x



 = Q (x) , (4.5)

where Var[X] denotes the variance of the random variable X.

The expected value and variance of X2
i are given [26, p. 48], respectively, by

E[X2
i ] = 1 +

s

k
, (4.6)

Var[X2
i ] = 2

(

1 + 2
s

k

)

, (4.7)

and so (4.5) can be simplified to

lim
k→∞

P

[

χ2
k(s) − (k + s)
√

2(k + 2s)
> x

]

= Q (x) . (4.8)

In many scenarios, the number of degrees of freedom is finite, but (4.8) can still be
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used to approximate the distribution of χ2
k(s) as k becomes large, that is

P

[

χ2
k(s) − (k + s)
√

2(k + 2s)
> x

]

≈ Q (x)

=⇒ P [χ2
k(s) > z] ≈ Q

(

z − (k + s)
√

2(k + 2s)

)

, (4.9)

where z ,
√

2(k + 2s)x + k + s. It should be noted that, for finite k and s, it is always

possible to choose a value of x so that z = z0 for some z0 ∈ R
+
0 . Consequently, the

value of z in (4.9) is arbitrary as long as k and s are finite.

As the complementary cumulative distribution function (CDF) of the noncentral chi

square distribution is given [26, p. 47] by

P [χ2
k(s) > x] =

{

1, x ≤ 0,

Qν(
√

s,
√

x), x > 0,
(4.10)

the error resulting from the use of (4.9), ǫ
CLT

(k, s, x), can be written as

ǫ
CLT

(k, s, x) =















1 − Q

(

x−(k+s)√
2(k+2s)

)

, x ≤ 0,

Qν(
√

s,
√

x) − Q

(

x−(k+s)√
2(k+2s)

)

, x > 0,
(4.11)

where, for convenience, ν = k
2 .

While (4.11) precisely describes the error2 resulting from the use of the central limit

theorem, both the exact and approximate probabilities must be calculated in order to

evaluate it, and deeper insight into the behaviour of the error with varying k, s and x

is not readily apparent. However, a more intuitive result can be obtained.

Berry [86] and Esseen [87] derived a bound for the error resulting from the application

of the central limit theorem to sums of i.i.d. random variables of any distribution, often

referred to as the Berry-Esseen theorem. As the theorem is quite general, it can often

overestimate the error by a large amount. However, it has recently been much improved

upon by Korolev and Shevtsova [88]. Thus, to the best of the author’s knowledge at the

time of writing, the tightest Berry-Esseen type bound for the sum of the i.i.d. random

variables Y1, Y2, . . . , Yn is given by

∣

∣

∣

∣

∣

P

[

n
∑

i=1

Yi > z

]

− Q

(

z − nE[Yi]
√

n Var[Yi]

)∣

∣

∣

∣

∣

≤ 0.33477(β + 0.429)√
n

, (4.12)

2In practice, x will not be less than zero and so (4.11) could be simplified further. However, for
completeness, both cases are considered here.
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where β is a function of the distribution of Y1, Y2, . . . , Yn, and is given by

β = E





∣

∣

∣

∣

∣

Yi − E[Yi]
√

Var[Yi]

∣

∣

∣

∣

∣

3


 . (4.13)

In the case of noncentral chi square random variables, using (4.6) and (4.7), β can be

written as

β = E







∣

∣

∣

∣

∣

∣

Yi − (

1 + s
k

)

√

2
(

1 + 2 s
k

)

∣

∣

∣

∣

∣

∣

3





. (4.14)

To the best of the author’s knowledge at the time of writing, the expectation in (4.14)

has no closed form and so must be calculated using a numerical method.

The maximum absolute error, max
x

|ǫ
CLT

(k, s, x)|, and the Berry-Esseen bound given

by (4.12), are illustrated for different values of s in Figure 4.1. While the Berry-Esseen

bounds describe the rate of decrease quite well, they consistently overestimate the

magnitude of the error by a large amount. This is a consequence of the generality

of the Berry-Esseen theorem, which applies to sums of i.i.d. random variables of any

distribution. Once again, abstraction has come at the cost of accuracy: the model

oversimplifies the problem and important detail is lost. However, if noncentral chi

square distributed random variables are considered in isolation, rather than random

variables of any distribution, then it is possible to derive a novel tighter bound, which

is stated here as a theorem and is proved in Appendix A.1.

Theorem 4.1: For chi square and noncentral chi square random variables, the

maximum absolute error resulting from the use of the central limit theorem,

max
s,x

|ǫ
CLT

(k, s, x)|, with respect to both the noncentrality parameter, s, and the

location parameter, x, is given by

max
s,x

|ǫ
CLT

(k, s, x)| = max

(

Q

(

√

k
2

)

, ǫ∞(k)

)

, (4.15)

where

ǫ∞(k) ≈ 1√
9πk

, (4.16)

as k becomes large.

The bound given in (4.15) is also shown in Figure 4.1. As can be seen, the bound is

quite accurate over the entire range of values of k and is a much more accurate estimate

of the actual error than any of the Berry-Esseen bounds. Consequently, from this point

forward, (4.15) is used to model the maximum error resulting from the use of the central

limit theorem to approximate the distribution of chi square and noncentral chi square
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Figure 4.1: A log-log plot of the maximum absolute error, Berry-Esseen bounds and
the bound given in Theorem 4.1, as functions of k, for different values of s. The
maximum absolute error and Berry-Esseen bounds were calculated using numerical
method based implementations of (4.11) and (4.12), respectively, while the proposed
bound was computed directly using (4.15).

random variables.

It is interesting to note that, provided k ≥ 4, (4.15) can be simplified to

max
s,x

|ǫ
CLT

(k, s, x)| ≈ 1√
9πk

, (4.17)

as 1√
9πk

≥ Q

(

√

k
2

)

for k ≥ 4. Thus, in many scenarios of interest, (4.17) can be used

instead of (4.15) to model the error resulting from the application of the central limit

theorem.

4.3 Novel approximations for the decision probabilities

Using (4.9), and the values of k and s given in (3.10), (3.18), (3.22) and (3.25), the

decision probabilities of energy detector diversity receivers can be approximated as

shown3 in Table 4.1, where the notations P̂fX
and P̂dX

(γ
X

) denote the approximate

probabilities of false alarm and detection, respectively, for the diversity type X.

The associated approximation error, ǫ
CLT,X

(γ
X

), is given by

ǫ
CLT,X

(γ
X

) = PdX
(γ

X
) − P̂dX

(γ
X

), (4.18)

3The approximations for receivers with no diversity are equivalent to those proposed by Urkowitz.
However, the error bound is novel.
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Table 4.1: Approximate decision probabilities, and their associated error bounds, for
energy detector diversity receivers operating on AWGN channels.

X P̂fX
P̂dX

(γ
X

) max |ǫ
CLT,X

|

ND Q

(

λ − M√
2M

)

Q





λ − M(1 + γ
ND

)
√

2M(1 + 2γ
ND

)





1√
9πM

MRC Q

(

λ − M√
2M

)

Q





λ − M(1 + γ
MRC

)
√

2M(1 + 2γ
MRC

)





1√
9πM

EGC Q

(

λ − M√
2M

)

Q





λ − M(1 + γ
EGC

)
√

2M(1 + 2γ
EGC

)





1√
9πM

SLC Q

(

λ − Mn√
2Mn

)

Q





λ − M(n + γ
SLC

)
√

2M(n + 2γ
SLC

)





1√
9πMn

for the approximation for the probability of detection, and

ǫ
CLT,X

(0) = PfX
− P̂fX

, (4.19)

for the approximation for the probability of false alarm, as PfX
= PdX

(0) and P̂fX
=

P̂dX
(0).

As (4.18) and (4.19) are in the same form as (4.11), the error resulting from their use

can be bounded using Theorem 4.1. However, in most spectrum sensing scenarios,

M ≫ 4, as channels must be sensed at very small signal to noise ratios (recall Figure

2.15). In such situations, the error can be more simply bounded using (4.17), as shown

in Table 4.1, where

max |ǫ
CLT,X

| ≥ |ǫ
CLT,X

(γ
X

)|, ∀ γ
X

≥ 0, M ≥ 4. (4.20)

The bounds in Table 4.1 are useful in many scenarios. For instance, they can be used

to show that 354 samples are required to ensure that max |ǫ
CLT,ND

| ≤ 0.01. This can

clearly be seen in Figures 4.2(a) and 4.2(b), where the exact and approximate decision

probabilities, and the resulting approximation error, have been plotted for M = 354

and P̂fND
= 0.2. Similar results, also illustrated in Figures 4.2(a) and 4.2(b), can be
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| = 0.01.

Figure 4.2: Plots of the exact and approximate probabilities of detection, and the
resulting approximation errors, for different diversity systems. The blue trends corre-
spond to the case where M = 354 and P̂fND

= 0.2, the red trends to n = 3, M = 354

and P̂fMRC
= 0.1, the green trends to n = 3, M = 354 and P̂fEGC

= 0.02, and the
orange trends to n = 6, M = 59 and P̂fSLC

= 0.01.
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Figure 4.3: Two dimensional error resulting from the use of approximations for both
decision probabilities.

shown for the other diversity types.

While the error resulting from the use of either P̂fX
or P̂dX

(γ
X

) is easy to quantify

using the bounds in Table 4.1, extra care must be taken if both approximate decision

probabilities are used simultaneously. Figure 4.3 illustrates the problem in more detail:

given a decision probability pair, (PfX
, PdX

), and an approximate decision probability

pair, (P̂fX
, P̂dX

), the Euclidean distance between the two, ǫ
ROC

(γ
X

), is given by

ǫ
ROC,X

(γ
X

) =
√

ǫ2
CLT,X

(γ
X

) + ǫ2
CLT,X

(0). (4.21)

Typically, ǫ
ROC

(γ
X

) must be calculated numerically. However, using Theorem 4.1, it is

not difficult to show that

max |ǫ
ROC,X

| ≤
√

2 max |ǫ
CLT,X

|, (4.22)

where max |ǫ
ROC,X

| ≥ ǫ
ROC,X

(γ
X

) ∀ γ
X

. Consequently, if both approximate decision

probabilities are used, then larger numbers of samples are required in order to guarantee

the same maximum approximation error.

For instance, using the formulae given in Table 4.1, the receiver operating characteristics

of the systems specified in Figure 4.2 can be plotted as shown in Figures 4.4(a) and

4.4(b). However, as can be seen, the resulting two dimensional error, ǫ
ROC,X

(γ
X

), is

greater than 0.01 in each case. Using (4.22), it can be shown that the numbers of
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samples required to ensure that max |ǫ
ROC,X

| ≤ ǫ0 = 0.01 is given by

max |ǫ
ROC,ND

| ≤ max |ǫ
ROC,MRC

| = max |ǫ
ROC,EGC

|

≤
√

2

9πM
≤ ǫ0

=⇒ M ≥ 2

9π(ǫ0)2

≥ 707.34

∴ M = 708,

max |ǫ
ROC,SLC

| ≤
√

2

9πMn
≤ ǫ0

=⇒ M ≥ 2

9πn(ǫ0)2

≥ 117.89

∴ M = 118.

Using these numbers of samples and plotting the receiver operating characteristics and

the approximation errors for each diversity type, as in Figures 4.5(a) and 4.5(b), it can

seen that the maximum error does not exceed 0.01 in each case.

4.4 Novel approximations for other system parameters

While the approximations given in Table 4.1 are useful in their own right, they also

enable the tractable analysis of other system parameters, if the approximation error

resulting from the use of the central limit theorem is not large. Thus, the compli-

cated interaction between varying decision probabilities, numbers of samples, diversity

branches and signal to noise ratio can be better understood and more easily manipu-

lated.

4.4.1 Sample complexity

Consider the approximations for the decision probabilities for SLC diversity systems

given in Table 4.1: inverting the Gaussian Q function and rearranging, it can be shown

that

λ =
√

2MnQ−1(P̂fSLC
) + Mn, (4.23)
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(b) A log-linear plot of the two dimensional approximation error, and its bound, for the trends
shown in Figure 4.4(a). In each case, max |ǫ

ROC,X
| = 0.014.

Figure 4.4: Receiver operating characteristics and approximation errors for different
energy detector systems. The blue trends correspond to the case where M = 354 and
γ

ND
= −7.5dB, the red trends to n = 3, M = 354 and γ

MRC
= −9dB, the green trends

to n = 3, M = 354 and γ
EGC

= −10.5dB, and the orange trends to n = 6, M = 59 and
γ

SLC
= −5dB.
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(b) A log-linear plot of the two dimensional approximation error, and its bound, for the trends
shown in Figure 4.5(a). In each case, max |ǫ

ROC,X
| = 0.01.

Figure 4.5: Receiver operating characteristics and approximation errors for different
energy detector systems. The blue trends correspond to M = 708 and γ

ND
= −9dB,

the red trends to n = 3, M = 708 and γ
MRC

= −10.5dB, the green trends to n = 3,
M = 708 and γ

EGC
= −12dB, and the orange trends to n = 6, M = 118 and γ

SLC
=

−6.5dB.

72



4. AWGN channel analysis: an

approximation-based approach

4.4 Novel approximations for other system

parameters

and

λ =
√

2M(n + 2γ
SLC

)Q−1(P̂dSLC
) + M(n + γ

SLC
). (4.24)

Equating (4.23) and (4.24) gives an equation independent of the decision threshold, λ,

that is

√
2MnQ−1(P̂fSLC

) + Mn =
√

2M(n + 2γ
SLC

)Q−1(P̂dSLC
) + M(n + γ

SLC
), (4.25)

which can itself be rearranged to give the number of samples, M , as a function of the

other system variables:

M =
2

n





Q−1(P̂fSLC
) −

√

1 + 2
nγ

SLC
Q−1(P̂dSLC

)

1
nγ

SLC





2

. (4.26)

Noting the definition of γ
SLC

in (3.26), it can be shown that

1

n
γ

SLC
=

1

n

n
∑

i=1

γi

= γ∗
SLC

, (4.27)

where γ∗
SLC

is the average signal to noise ratio per diversity branch4.

Using (4.27), (4.26) can be simplified to

M =
2

n

(

Q−1(P̂fSLC
) −√

1 + 2γ∗
SLC

Q−1(P̂dSLC
)

γ∗
SLC

)2

, M̂
SLC

≈ M
SLC

, (4.28)

where M
SLC

denotes the sample complexity for SLC diversity, that is the number of

samples required to meet the specified decision probabilities at a given signal to noise

ratio, and the change in notation is intended to emphasise that, in this case, the number

of samples is a function of the other system variables rather than an arbitrary value,

as before. It should be noted that the approximation in (4.28) is only accurate if the

associated approximation error, given in Table 4.1, is not large as

PfX
− max |ǫ

CLT,X
| ≤ P̂fX

≤ PfX
+ max |ǫ

CLT,X
|, (4.29)

PdX
(γ

X
) − max |ǫ

CLT,X
| ≤ P̂dX

(γ
X

) ≤ PdX
(γ

X
) + max |ǫ

CLT,X
|. (4.30)

4The use of the superscript star notation here is intended to avoid confusion with the earlier overbar
notation, which is used to denote the average signal to noise ratio with respect to both the number of
branches and the random fluctuation of the channel gain with time (i.e. multipath fading).
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Table 4.2: Sample complexities of various diversity receiver architectures operating on
AWGN channels. These equations are accurate only if the approximation errors, given
in Table 4.1, are not large.

X M̂
X

ND 2

(

Q−1(P̂fND
) − √

1 + 2γ
ND

Q−1(P̂dND
)

γ∗
ND

)2

MRC 2

n2

(

Q−1(P̂fMRC
) −√

1 + 2nγ∗
MRC

Q−1(P̂dMRC
)

γ∗
MRC

)2

EGC 2

n2

(

Q−1(P̂fEGC
) −√

1 + 2nγ∗
EGC

Q−1(P̂dEGC
)

γ∗
EGC

)2

SLC 2

n

(

Q−1(P̂fSLC
) −√

1 + 2γ∗
SLC

Q−1(P̂dSLC
)

γ∗
SLC

)2

The sample complexities for the other diversity types5 can be derived in a similar

manner and are given in Table 4.2, where M̂
X

denotes the sample complexity for the

diversity type X, γ∗
ND

= γ
ND

for convenience, γ∗
MRC

denotes the average signal to noise

ratio per branch in an MRC system and is given by

γ∗
MRC

=
1

n
γ

MRC

=
1

n

n
∑

i=1

γi, (4.31)

and γ∗
EGC

is defined as

γ∗
EGC

=
1

n
γ

EGC

=

(

1

n

n
∑

i=1

hi

)2
Ps

σ2

= h̄2 Ps

σ2
, (4.32)

where h̄ is the average value of the channel gain per diversity branch. Figure 4.6 illus-

5The approximation for the sample complexity in the no diversity case is equivalent to that derived
by Tandra and Sahai [46, Equation 5]. However, the sample complexities for the other diversity types
are, to the best of the author’s knowledge at the time of writing, novel contributions.

74



4. AWGN channel analysis: an

approximation-based approach

4.4 Novel approximations for other system

parameters

-20 -15 -10 -5 0

10

100

1000

104

105
ND, exact

ND, approximate

MRC, exact

MRC, approximate

EGC, exact

EGC, approximate

SLC, exact

SLC, approximate

γ∗
X

(dB)

M
X

Figure 4.6: A log-linear plot of the sample complexity for different energy detector
architectures as a function of the signal to noise ratio per branch, γ∗

X
. For MRC

diversity, n = 4; for EGC diversity, n = 3; and, for SLC diversity, n = 5. In each case
PfX

= PmX
= 0.05.

trates the exact (calculated numerically) and approximate (calculated using Table 4.2)

sample complexities for each diversity type. As can be seen, the derived approximations

are quite accurate in each case.

The approximations in Table 4.2 have some interesting properties. For instance, the

sample complexity of MRC and EGC systems is inversely proportional to the square

of the number of diversity branches, while in the case of SLC diversity, the sample

complexity is inversely proportional to just the number of diversity branches. Thus,

the rate at which the sample complexity decreases with increasing numbers of diversity

branches is much greater for MRC and EGC systems than for SLC systems.

It is also interesting to note that, for each diversity type, the sample complexity

is approximately inversely proportional to the square of the signal to noise ratio.

For instance, in the case of receivers with MRC diversity, if γ∗
MRC

is small, then
√

1 + 2nγ∗
MRC

≈ 1, and so

M̂
MRC

≈ k

(γ∗
MRC

)2

10 log10 M̂
MRC

≈ − 20 log10 γ∗
MRC

+ 10 log10 k

M̂
MRC,dB

≈ − 2γ∗
MRC,dB

+ 10 log10 k, (4.33)

where k = 2

(

Q−1(P̂fMRC
)−Q−1(P̂dMRC

)

n

)2

, and is constant for given values of P̂fMRC
,

P̂dMRC
and n, M̂

MRC,dB
= 10 log10 M̂

MRC
and γ∗

MRC,dB
= 10 log10 γ∗

MRC
. Thus, the

relationship between M̂
MRC,dB

and γ∗
MRC,dB

is an approximately linear one, and the

effect of fluctuating signal to noise ratio becomes trivial to visualise and quantify.

Similar relations can be shown to hold for systems with EGC, SLC and no diversity.
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Figure 4.7: A log-linear plot of the exact and approximate sample complexities of an
energy detector with three branch MRC diversity.

Using (4.33), and letting M1 and M2 represent the sample complexities at the signal

to noise ratios γ1,dB and γ2,dB , measured in decibels, respectively, it can be shown that

10 log10 M2 ≈ −2γ2,dB + 10 log10 k

10 log10 M1 ≈ −2γ1,dB + 10 log10 k

=⇒ 10 log10 M2−10 log10 M1 ≈ 2(γ1,dB − γ2,dB),

∴ M2 ≈ M1 × 10

(

γ1,dB−γ2,dB

5

)

. (4.34)

Figure 4.7 illustrates the accuracy and usefulness of (4.34) in approximating the sample

complexity over a wide range of signal to noise ratios without the use of complicated

numerical methods. If a single data point, (M1, γ1,dB), is known, then the sample

complexity at different signal to noise ratios can be extrapolated from it. In the case

of the data shown in Figure 4.7, the fact 500 samples are required in order to ensure

certain probabilities of false alarm and missed detection when γ∗
MRC

= −10 dB was

used.

4.4.2 Minimum signal to noise ratio

A further quantity of interest is the minimum signal to noise ratio detectable by the

system. For a given diversity type, this can be found by rearranging the appropriate

formula in Table 4.2 and solving for γ
X

. However, the resulting expressions can be

complicated, and simpler, yet accurate, approximations are obtainable, if the minimum

to noise ratio is sufficiently small.

For instance, in the no diversity case, letting
√

1 + 2γ
ND

≈ 1, the sample complexity
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Table 4.3: Approximations for the minimum signal to noise ratios of various diversity
receiver architectures operating on AWGN channels. These equations are accurate only
if the approximation errors, given in Table 4.1, are not large and γ

min,X
is small.

X γ̂
min,X

ND
√

2

M

(

Q−1(P̂fND
) − Q−1(P̂dND

)
)

MRC

√

2

M

(

Q−1(P̂fMRC
) − Q−1(P̂dMRC

)

n

)

EGC

√

2

M

(

Q−1(P̂fEGC
) − Q−1(P̂dEGC

)

n

)

SLC
√

2

Mn

(

Q−1(P̂fSLC
) − Q−1(P̂dSLC

)
)

can be rearranged to give

γ
ND

≈
√

2

M

(

Q−1(P̂fND
) − Q−1(P̂dND

)
)

, γ̂
min,ND

≈ γ
min,ND

, (4.35)

where, for emphasis, the notation γ
min,X

denotes the minimum signal to noise ratio

for the diversity type X. Again, (4.35) is valid only if the signal to noise ratio at the

combiner output is small and the approximation error, given in Table 4.1, is not large.

Similar formulations can be shown to hold for the other diversity types. A complete

list is given in Table 4.3.

The approximation in (4.35) is useful because it avoids the need for complicated nu-

merical methods. For instance, using (4.35), it is not difficult to show that the mini-

mum signal to noise ratio required to ensure that the probabilities of false alarm and

missed detection are no greater than 0.01 when 4000 samples are used is approximately

−9.83 dB. Using a numerical root finding method, it can be shown that the exact

requirement is −9.61 dB — a difference of just 0.22 dB.

4.4.3 Diversity gain

The final quantity of interest is the number of diversity branches or cooperative nodes

required to ensure certain performance criteria are met, which shall henceforth be

referred to as the diversity gain. Again, for a given diversity type (with the exception
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Table 4.4: Approximations for the diversity gain of different receivers operating on
AWGN channels. These equations are only accurate if the approximation errors, given
in Table 4.1, are not large and γ∗

X
is small.

X n̂
X

MRC

⌈

√

2

M

(

Q−1(P̂fMRC
) − Q−1(P̂dMRC

)

γ∗
MRC

)⌉

EGC

⌈

√

2

M

(

Q−1(P̂fEGC
) − Q−1(P̂dEGC

)

γ∗
EGC

)⌉

SLC









2

M

(

Q−1(P̂fSLC
) − Q−1(P̂dSLC

)

γ∗
SLC

)2








of the no diversity case: here, n = 1), this may be found by solving the relevant formula

in Table 4.2 for n, but the resulting expressions, while accurate, can be complicated.

However, as before, if the signal to noise ratio is small, then simple, yet accurate,

approximations can be obtained. These can be derived through direct manipulation of

the formulae in Table 4.3, applying the ceiling function to ensure the specified criteria

are met, and are listed in Table 4.4, where n
X

denotes the diversity gain for the diversity

type X and n̂
X

≈ n
X

.

Again, the approximations in Table 4.4 are useful because they avoid the need for

numerical routines. For instance, using numerical methods, it can be shown that six

SLC branches are required to ensure probabilities of false alarm and missed detection

of 0.1 at a signal to noise ratio of −21 dB when 40000 samples are used. Using the

approximation in Table 4.4, however, it can be shown that n̂
SLC

= 6, which agrees with

the exact answer but does not require the use of numerical methods.

4.5 Discussion

In this chapter, a novel and accurate method for the quantification of the error result-

ing from the use of the central limit theorem to approximate the distribution functions

of chi square and noncentral chi square random variables was proposed. Using this

method, the error resulting from the use of Urkowitz’s approximations for the decision

probabilities of energy detectors with no diversity was quantified. Subsequently, ap-

proximations for the decision probabilities of energy detectors with MRC, EGC and

SLC diversity were derived, and the resulting error was also quantified. Using the de-
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rived error bounds, it is possible to quickly and accurately determine the regions of

applicability of the derived approximations.

In addition to the approximations for the decision probabilities, simple and useful

approximations for the analysis of sample complexity, minimum signal to noise ratio and

diversity gain were also derived. The approximations for the sample complexities of the

different diversity receivers were shown to be accurate provided the error resulting from

the use of the central limit theorem in each case is not large, while the approximations

for the minimum signal to noise ratio and diversity gain were shown to be accurate

under the further condition that the signal to noise ratio at the combiner output is

small. Such approximations are likely to be of significant use in both the design and

analysis of spectrum sensing systems, and avoid the use of computationally expensive

numerical methods in order to determine basic information about the operation of the

systems.

For reliable spectrum sensing at low signal to noise ratios, the number of samples

required is often large enough so that both max |ǫ
CLT,X

| and max |ǫ
ROC,X

| are small

enough to be considered negligible for many applications, and so the approximations

in this chapter can be used without risking large errors. For instance, if the required

minimum SNR at the receiver is −21 dB, as in the IEEE 802.22 specification discussed

in Section 4.1, then approximately 2 × 105 samples are required to ensure that the

probabilities of false alarm and missed detection do not exceed 0.1. At such large

numbers of samples, max |ǫ
CLT,ND

| ≈ 4 × 10−4 and max |ǫ
ROC,ND

| ≈ 6 × 10−4 which, for

many applications, are acceptably small.

However, while the assumption of large numbers of samples may be justified in the case

of spectrum sensing, it is not true in general. For instance, if the required minimum

SNR is 0 dB, then just ten samples are required to ensure that the probabilities of

false alarm and missed detection do not exceed 0.1. In this case, max |ǫ
CLT,ND

| ≈
6 × 10−2 and max |ǫ

ROC,ND
| ≈ 9 × 10−2, which are approximately 150 times greater

than in the previous example. Of course, whether these errors are acceptable or not

depends on the application, but system designers should exercise caution before relying

on such approximations in general. The bounds given in Table 4.1 facilitate exactly

this purpose.

Yet, many researchers do not quantify the approximation error resulting from the use of

the central limit theorem [see, for example, 10, 13, 19–21, 43, 46, 64–67, 89–97], instead

assuming that it is negligible for “large” numbers of samples, but without stating which

numbers of samples should be considered large and which should be considered small.

In the energy detection literature, the assumption can be traced back to Urkowitz,

who stated that M ≥ 250 is sufficient for the approximation error to be negligible for

energy detectors with no diversity6. However, Quan et al. [91] and Kim et al. [93] go

6Using the relevant formula in Table 4.1, it is easy to show that max |ǫ
CLT,ND

| ≈ 0.012 when
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further, stating that M ≥ 10 is sufficient to give good accuracy7 in many cases. These

are clearly matters of opinion rather than fact: individual applications determine one’s

willingness or ability to tolerate error. The analysis in this chapter now enables system

designers to make more informed decisions about whether such approximations are

appropriate or not on a case by case basis.

The use of approximations has enabled more astute system design by replacing compli-

cated descriptions of behaviour with simpler ones. Previously hidden, simple relation-

ships, such as the one between the sample complexity and signal to noise ratio given

in (4.33), have become apparent. Furthermore, by avoiding the use of complicated,

multi-variable functions, such as the regularised incomplete gamma and Marcum Qm

functions, and instead relying on well known, single variable functions, such as the

Gaussian Q function, real time optimisation and calibration of sensing systems is pos-

sible, either by inexpensive direct computation or using one dimensional look up tables.

Given this level of success, it is worth considering whether approximations can be ap-

plied to similar effect in other situations. In particular, the analysis of energy detector

systems operating on multipath fading channels is known to be complicated in general,

requiring the use of computationally expensive numerical methods in order to evaluate

basic reliability and performance measures. Consequently, in the remaining discus-

sion, approximations are considered for the analysis of energy detector systems in such

situations.

M = 250. Depending on the application, this may or may not be an acceptable degree of error.
7When M = 10, max |ǫ

CLT,ND
| ≈ 0.06.
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Chapter 5

Multipath fading channel

analysis I: Nakagami-m channels

In this chapter, approximations for the detection probabilities of energy detector di-

versity receivers operating on Nakagami-m channels are considered, with the aim of

finding simpler yet accurate alternatives to the exact methods outlined in Chapter 3.

In each case, error bounds are provided so that the regions of applicability of the ap-

proximations are well defined. Furthermore, as a central limit theorem approximation

for sums of i.i.d. gamma random variables is used in the course of the analysis, a bound

for the resulting error is derived.

The relationships between system parameters of interest are also explored and it is

demonstrated that a very simple relationship exists between the sample complexity

and average signal to noise ratio per branch, regardless of the type of diversity in use.

Closed form approximations for the sample complexity and minimum signal to noise

ratio are also derived, under the constraint that the product of the fading parameter

and the number of diversity branches, mn, is large (e.g. mn ≥ 20). An approximation

for the diversity gain of SLC systems is derived under similar constraints.

5.1 Motivation

In Chapter 3, it was discussed how the exact expressions for the decision probabilities

of energy detector diversity receivers operating on multipath fading channels currently

available in the literature are problematic due to the large number of terms that must

be computed in order to evaluate them. Now, a further problem emerges: using these

exact expressions, is it possible to derive further expressions for the sample complexity,

minimum signal to noise ratio or diversity gain in the manner of Section 4.4? Given
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that the decision probabilities in Tables 3.2–3.6 are in the form of infinite series1, this

seems unlikely. However, the problem is not intractable.

In the previous chapter, it was shown that the use of approximations allowed the sim-

ple and accurate computation of the decision probabilities of energy detector diversity

receivers operating on AWGN channels and enabled the derivation of further approxi-

mations for the sample complexity, minimum signal to noise ratio and diversity gain.

This naturally begs the question: can approximate representations be used in a sim-

ilar way to simplify the design and analysis of energy detector diversity receivers in

multipath fading channels? Previous research on the matter certainly suggests so.

Ghasemi and Sousa [64, 98] derived approximate expressions for the sample complexity

and minimum signal to noise ratio of receivers with no diversity operating on Rayleigh

channels, where each receiver transmits a compressed decision to the fusion centre after

performing the binary hypothesis test locally. Atapattu et al. [66, 67] derived approx-

imations for the detection probabilities of energy detectors with no diversity and SLC

diversity operating on Nakagami-m channels, for scenarios where the signal to noise

ratio is small while, under similar constraints, and using a further approximation for

the error function, López-Benítez and Casadevall derived an alternative approxima-

tion for the probability of detection of an energy detector with no diversity operating

on a Rayleigh channel [65]. However, in all of these cases, the approximation error

was not quantified and so the region of applicability of each approximation is unclear.

Furthermore, Ghasemi and Sousa’s approximations apply to a very specific form of

cooperative spectrum sensing, while Atapattu et al.’s approximations require the com-

putation of high order derivatives and so introduce numerical computation issues in

practice. Finally, in all cases, the analysis applies only to receivers with no diversity or

SLC diversity, and so is incomplete.

Therefore, the aims of this chapter are:

1. To derive accurate and computationally inexpensive approximations for the prob-

ability of detection of receivers with the diversity types considered so far.

2. To derive bounds on the error resulting from the use of these approximations, so

that their regions of applicability are well defined.

3. To derive further approximations for the sample complexity, minimum signal

to noise ratio and diversity gain, enabling a complete description of the sensor

system.

1With the exception, of course, of Digham et al.’s expression for PdND,Rice
, but this is valid for

M = 2 only.
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5.2 Novel approximations for small signal to noise ratios

In a similar fashion to (3.27), the approximate probability of detection for a diversity

receiver of type X operating in a multipath fading channel Y , P̂dX,Y
, can be calculated

as

P̂dX,Y
= E[P̂dX

(γ
X

)]

=

∫ ∞

−∞
P̂dX

(x) f
X,Y

(x) dx. (5.1)

As the approximate probabilities of false alarm in Table 4.1 do not depend on the signal

to noise ratio, the approximate probability of false alarm for a diversity receiver of type

X operating in a multipath fading channel Y , P̂fX,Y
, is given by

P̂fX,Y
= P̂fX

. (5.2)

It is convenient to write P̂dX
(γ

X
) in the general form

P̂dX
(γ

X
) = Q





λ − M(N
X

+ γ
X

)
√

2M(N
X

+ 2γ
X

)



 , (5.3)

where

N
X

=

{

n, X = SLC,

1, otherwise.
(5.4)

Thus, the probability of detection for receivers with each of the diversity types consid-

ered so far can be represented using a single expression.

Using (5.3), (5.1) can be written as

P̂dX,Y
=

∫ ∞

−∞
Q





λ − M(N
X

+ x)
√

2M(N
X

+ 2x)



 f
X,Y

(x) dx. (5.5)

However, to the best of the author’s knowledge at the time of writing, for the diversity

receivers and channel types considered in this work, (5.5) must be evaluated numerically,

as the presence of the 2x term in the denominator of the argument to the Gaussian

Q function makes symbolic evaluation difficult. However, the following approximation

can be made:

P̂dX
(γ

X
) ≈ P̃dX

(γ
X

) = Q

(

λ − M(N
X

+ γ
X

)
√

2MN
X

)

. (5.6)

As (5.6) is arrived at by letting N
X

+ 2γ
X

≈ N
X

in (5.3), it shall henceforth be

referred to as the low SNR approximation. This is the same simplification used by
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Atapattu et al. [66, 67] and López-Benítez and Casadevall [65, 95–97] in the derivation

of their approximations, and so the error bounds derived later will equally apply to

their work.

The error resulting from the use of the low SNR approximation, ǫ
SNR,X

(γ
X

), can be

written as

ǫ
SNR,X

(γ
X

) = P̂dX
(γ

X
) − P̃dX

(γ
X

). (5.7)

Substituting (5.6) into (5.1) leads to the further approximation

P̂dX,Y
≈ P̃dX,Y

= E[P̃dX
(γ

X
)]

=

∫ ∞

−∞
P̃dX

(x) f
X,Y

(x) dx, (5.8)

which will be useful throughout the remainder of this chapter.

The error resulting from the use of (5.8), ǫ
SNR,X,Y

, can be written as

ǫ
SNR,X,Y

= P̂dX,Y
− P̃dX,Y

=

∫ ∞

−∞

(

P̂dX
(x) − P̃dX

(x)
)

f
X,Y

(x) dx

=

∫ ∞

−∞
ǫ

SNR,X
(x) f

X,Y
(x) dx. (5.9)

Conveniently, for the channel types considered in this work, f
X,Y

(x) is often left skewed

and so ǫ
SNR,X,Y

is often small. In the following sections, error bounds for ǫ
SNR,X,Y

are

derived which show this more explicitly.

5.2.1 Receivers with no diversity

5.2.1.1 A novel approximation for the probability of detection

Using (5.8), and noting that f
ND,Nak

(x) = 0 for x < 0, the probability of detection

for an energy detector with no diversity operating on a Nakagami-m channel can be

approximated as

PdND,Nak
≈ P̃dND,Nak

=
1

Γ(m)

∫ ∞

0
Q

(

λ − M(1 + x)√
2M

)

e
− mx

γ̄

(

m

γ̄

)m

xm−1dx. (5.10)

In order to progress further, the following integral identity, which is proved in Appendix

A.2, is required.
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Lemma 5.1: Let

Fk(a, b, c) =
1

Γ(k)

∫ ∞

0
Q(a − bx) e−cxckxk−1dx. (5.11)

If c > 0, then for k ≥ 1, k ∈ N
+,

Fk(a, b, c) = Q(a) +
1

2
exp

[

−
√

2c

b

(

a − c
2b√

2

)

]

×
k−1
∑

p=0

(√
2c

b

)p

ip erfc

[

−
(

a − c
b√

2

)]

, (5.12)

where in erfc(z) is the nth repeated integral of the complementary error function

[68, Equation 7.18.2], and has the simple recursive relation [68, Equations 7.18.1

and 7.18.7]

in erfc(z) =















2√
π

e−z2
, n = −1,

erfc(z), n = 0,

− z
n in−1 erfc(z) + 1

2n in−2 erfc(z), n ≥ 1.

(5.13)

Using Lemma 5.1, (5.10) can be written as

P̃dND,Nak
= Fm





λ − M√
2M

,

√

M

2
,
m

γ̄





= Q

(

λ − M√
2M

)

+
1

2
exp

[

−
2m
γ̄√
M

(

λ − M − m
γ̄

2
√

M

)]

×
m−1
∑

p=0

( 2m
γ̄√
M

)p

ip erfc

[

−
(

λ − M − 2m
γ̄

2
√

M

)]

. (5.14)

Noting the definition of P̂fND
in Table 4.1, (5.14) can be further simplified to

P̃dND,Nak
= P̂fND

+
1

2
exp

[

−
2m
γ̄√
M

(

λ − M − m
γ̄

2
√

M

)]

×
m−1
∑

p=0

( 2m
γ̄√
M

)p

ip erfc

[

−
(

λ − M − 2m
γ̄

2
√

M

)]

, (5.15)

which, as will be discussed in more detail later, requires a significantly smaller com-

putational effort to evaluate than any of the formulations given in Table 3.2. As a

consequence of Lemma 5.1, (5.15) is valid for m ∈ N
+ only2.

While the approximation given in (5.15) agrees numerically with the expression derived

by Atapattu et al. [66, 67] (both formulations follow from (5.10)), there is a key differ-

2Approximations valid for m ∈ R
+ are discussed in Section 5.3.
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Figure 5.1: A plot of the exact and approximate probabilities of detection of an energy
detector with no diversity operating on a Rayleigh faded channel. In each case, M =
354.

ence: the form presented by Atapattu et al. is similar to (A.40) and so differentiation

(numeric or symbolic) must be performed in order to evaluate the result. This is a

particular problem for large values of m, and even more so if numerical methods are

employed. However, as the approximation given in (5.15) relies on the simple recursive

relation in (5.13), no differentiation is required and the desired result is usually not

difficult to compute (although the resulting symbolic expression may be verbose, if m

is large). Thus, from a computational perspective, (5.15) is preferable to the method

proposed by Atapattu et al., though the error resulting from the use of either is the

same.

Using (5.15) and noting that, when m = 1, Nakagami-m fading is equivalent to Rayleigh

fading, it can be shown that

P̃dND,Ray
= P̂fND

+ exp

[

−
2
γ̄√
M

(

λ − M − 1
γ̄

2
√

M

)][

−
(

λ − M − 2
γ̄√

2M

)]

, (5.16)

where, in the usual notation, P̃dND,Ray
represents the approximate probability of detec-

tion for an energy detector with no diversity operating on a Rayleigh fading channel.

Figure 5.1 illustrates the accuracy of (5.16), with M = 354, for different values of γ̄

and PfND
.

It is interesting to note that the approximation in (5.16) is more concise than that

derived by López-Benítez and Casadevall [65, Equation 21], though both rely on the

central limit theorem and low SNR approximations. Furthermore, as (5.16) is ar-

rived at without the use of the approximation for the error function employed by

López-Benítez and Casadevall, it is also a more generally applicable approximation.

Finally, Atapattu et al. and López-Benítez and Casadevall did not quantify the sources
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of error in their approximations. While the authors state that their approximations are

valid for small signal to noise ratios, it is unclear exactly which signal to noise ratios

should be considered small and which should be considered large, and so there is some

ambiguity as to their regions of applicability.

5.2.1.2 Quantifying the approximation error

The total error resulting from the use of P̃dX,Y
to approximate PdX,Y

, ǫ
tot,X,Y

, can be

written as

ǫ
tot,X,Y

= PdX,Y
− P̃dX,Y

. (5.17)

The absolute value of the total error can be bounded as

|ǫ
tot,X,Y

| = |PdX,Y
− P̃dX,Y

|
= |PdX,Y

− P̂dX,Y
+ P̂dX,Y

− P̃dX,Y
|

≤ |PdX,Y
− P̂dX,Y

| + |P̂dX,Y
− P̃dX,Y

|
≤ |PdX,Y

− P̂dX,Y
| + |ǫ

SNR,X,Y
|, (5.18)

where the definition of ǫ
SNR,X,Y

, given in (5.9), has been used to simplify the result.

Using (3.27) and (5.1), |PdX,Y
− P̂dX,Y

| can expanded and bound as

|PdX,Y
− P̂dX,Y

| =

∣

∣

∣

∣

∫ ∞

−∞
(PdX

(x) − P̂dX
(x)) f

X,Y
(x) dx

∣

∣

∣

∣

≤
∫ ∞

−∞
|PdX

(x) − P̂dX
(x)| f

X,Y
(x) dx

≤
∫ ∞

−∞
|ǫ

CLT,X
(x)| f

X,Y
(x) dx

≤ max |ǫ
CLT,X

|
∫ ∞

−∞
f

X,Y
(x) dx

≤ max |ǫ
CLT,X

|, (5.19)

where (4.20) has been used to simplify the result. Consequently, (5.18) simplifies to

|ǫ
tot,X,Y

| ≤ max |ǫ
CLT,X

| + |ǫ
SNR,X,Y

|. (5.20)

Thus, the magnitude of the total approximation error is bounded by the sum of the

maximum absolute error resulting from the use of the central limit theorem and the

absolute error resulting from the use of the low SNR approximation. As the former

quantity has already been bounded (recall Table 4.1), the following discussion concen-

trates on bounds for the latter.
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Figure 5.2: A log-linear plot of the error resulting from the low SNR approximation
and the bound given in (5.22) for different values of m. In each case, M = 508 and
PfND

= 0.1.

An asymptotic bound for small values of γ̄

Before progressing, the following lemma, which is proved in Appendix A.3, is required.

Lemma 5.2: For the diversity type X and channel type Y , the absolute value of

the low SNR approximation error is bounded as

|ǫ
SNR,X,Y

| ≤ 1√
2πe

· 1

N
X

∫ ∞

−∞
x f

X,Y
(x) dx. (5.21)

It is interesting to note that the integral in (5.21) is equivalent to the expected value

of a random variable, Z. Accordingly, the integral in (5.21) will simplify to the mean

of the distribution specified by f
X,Y

(x).

Therefore, for energy detectors with no diversity, the absolute value of the error result-

ing from the use of the low SNR approximation can be bounded as

|ǫ
SNR,ND,Nak

| ≤ γ̄√
2πe

, (5.22)

where the fact that the mean of the gamma distribution defined by f
ND,Nak

(x) is γ̄

has been used to simplify the result. Thus, as γ̄ → 0, ǫ
SNR,ND,Nak

→ 0. This can be

seen quite clearly in Figure 5.2, where |ǫ
SNR,ND,Nak

| has been calculated numerically for

different values of m. Unfortunately, as can also be seen, the bound does not describe

the error well when the signal to noise ratio is large. Thus, there is some motivation to

consider bounds more suited to such situations.
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A bound for the maximum error resulting from the low SNR approximation

Before progressing, the following lemma, which is proved in Appendix A.4, is required.

Lemma 5.3: For the diversity type X and fading channel type Y , the absolute

value of the low SNR approximation error is bounded as

|ǫ
SNR,X,Y

| / 1
√

MN
X

π
max

x

(

x f
X,Y

(x)
)

, (5.23)

where the symbol / indicates that the left hand side of the equation is less than,

or approximately equal to, the right hand side.

Using Lemma 5.3, |ǫ
SNR,ND,Nak

| can be bounded as

|ǫ
SNR,ND,Nak

| / 1√
Mπ

max
x

(

x f
ND,Nak

(x)
)

. (5.24)

From (3.29), it can be seen that f
ND,Nak

(x) = 0 for x ≤ 0 and f
ND,Nak

(x) ≥ 0 for

x > 0. Consequently, x f
ND,Nak

(x) is maximised when x > 0. Under this condition,

x f
ND,Nak

(x) can be written as

x f
ND,Nak

(x) = x

(

m

γ̄

)m xm−1

Γ(m)
e

− mx
γ̄

= γ̄

[

(

m

γ̄

)m+1 xm

Γ(m + 1)
e

− mx
γ̄

]

. (5.25)

The term in the square brackets in (5.25) is equivalent to the probability density func-

tion of a gamma distributed random variable, with a shape parameter equal to m + 1

and a scale parameter equal to γ̄
m . As the gamma distribution is a unimodal distribu-

tion, its maximum value occurs at its mode, in this case when x = γ̄. Using this, it is

not difficult to show that

max
x

(

x f
ND,Nak

(x)
)

= γ̄

[

(

m

γ̄

)m+1 xm

Γ(m + 1)
e

− mx
γ̄

]∣

∣

∣

∣

∣

x=γ̄

=

(

m
e

)m

Γ(m)
, (5.26)

and so (5.24) can be simplified to

|ǫ
SNR,ND,Nak

| /
(m

e

)m

√
Mπ Γ(m)

. (5.27)

While (5.27) is a useful result, it is not particularly intuitive. However, Stirling’s
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Figure 5.3: A log-linear plot of the error resulting from the use of the low SNR approx-
imation and the bound given in (5.29) for different values of m. In each case, M = 508
and PfND

= 0.1.

approximation, in its inequality form [49, Equation 6.1.37], can be used to show that

(

n
e

)n

Γ(n)
<

√

n

2π
, (5.28)

to further simplify (5.27) to

|ǫ
SNR,ND,Nak

| / 1

π

√

m

2M
, (5.29)

the behaviour of which is more immediately clear than the bound given in (5.27). Figure

5.3 illustrates the bound given in (5.29) for different values of m.

One interesting feature of (5.29) is that the maximum error resulting from the low SNR

approximation behaves similarly to the maximum error resulting from the use of the

central limit theorem, in that it is inversely proportional to
√

M . Thus, for sufficiently

large numbers of samples, the low SNR approximation error can be made arbitrarily

small. Less conveniently, however, (5.29) also states that, as m becomes larger, the

maximum value of the error increases, which can also be seen in Figure 5.3. Still, it

should be noted that while such an increase can occur, its effect is not unbounded:

recall from (A.79) that |ǫ
SNR,ND,Nak

| / 1√
2πe

and so, at worst, |ǫ
SNR,ND,Nak

| → 1√
2πe

as

m → ∞.

The derived bounds can be summarised using

max |ǫ
SNR,ND,Nak

| = min

(

γ̄√
2πe

,
1

π

√

m

2M

)

, (5.30)
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Figure 5.4: A log-linear plot of the approximation error resulting from the use of (5.16)
for the conditions used to generate Figure 5.1. The value of the bound changes at
approximately γ̄ = −13 dB because the value given by (5.22) becomes smaller than the
value given by (5.29).

where, by definition, max |ǫ
SNR,ND,Nak

| ≥ |ǫ
SNR,ND,Nak

|. Consequently,

max |ǫ
tot,ND,Nak

| ≤ max |ǫ
CLT,ND

| + max |ǫ
SNR,ND,Nak

|, (5.31)

where max |ǫ
tot,ND,Nak

| ≥ |ǫ
tot,ND,Nak

|.

Using (5.31) and the conditions used to generate Figure 5.1, it is not difficult to show

that the approximation error resulting from the use of (5.16) can be bound as shown in

Figure 5.4. As can be seen, the bound given by (5.31) describes the error well over the

entire range of signal to noise ratios, particularly as the signal to noise ratio becomes

small.

5.2.1.3 Novel approximations for other system parameters

While the approximation in (5.15) is a convenient way to calculate the probability of

detection, there does not appear to be a simple method by which it can be manipulated

to yield equations for quantities such as sample complexity or minimum signal to noise

ratio in the manner of Section 4.4. Essentially, this is because P̃dND,Nak
depends, in

part, on a series with a variable number of terms. Even in the simplest case, where

m = 1 and the series contains just one term, (5.15) gives an expression which is not

readily invertible (see (5.16)). However, that is not to say that new insights cannot be

gained.

Consider the formula for the probability of false alarm for energy detectors with no
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diversity given in Table 4.1. By inverting the Q function, it can be shown that

Q−1(P̂fND
) =

λ − M√
2M

. (5.32)

Using (5.32), (5.15) can be written as

P̃dND,Nak
= P̂fND

+
1

2
exp

[

− 2m
√

Mγ̄2

(

Q−1(P̂fND
)√

2
− m

2
√

Mγ̄2

)]

×
m−1
∑

p=0

(

2m
√

Mγ̄2

)p

ip erfc

[

−
(

Q−1(P̂fND
)√

2
− m
√

Mγ̄2

)]

. (5.33)

Thus, P̃dND,Nak
is a function of the parameters P̂fND

, m, M and γ̄ only.

Now, consider the case where P̃dND,Nak
, P̂fND

and m are constant. If M and γ̄ are

allowed to vary, then the product k = Mγ̄2 must also be constant for equality to hold

in (5.33). Therefore, if the sample complexity is known for a given value of γ̄, the

sample complexity at a different value of γ̄ can easily be deduced.

To see this more clearly, let M0 denote the number of samples required to meet some

arbitrary pair of decision probabilities in a Nakagami-m channel with average signal to

noise ratio γ̄0. Therefore,

k = M0γ̄2
0 . (5.34)

Now, let M1 denote the number of samples required to ensure that the same operating

conditions are met in a similar Nakagami-m channel with average signal to noise ratio

γ̄1. By the same logic as before,

k = M1γ̄2
1 , (5.35)

and so

M1 ≈ M0

(

γ̄0

γ̄1

)2

, (5.36)

where the approximation symbol is intended to emphasise that (5.36) is derived from

(5.15) and so is only accurate when ǫ
tot,ND,Nak

is small.

There are two noteworthy points regarding (5.36): firstly, that it describes precisely

the same behaviour as (4.34), and so the product of the sample complexity and the

square of the signal to noise ratio is approximately constant for AWGN, Rayleigh and

Nakagami-m channels; and secondly, that it is difficult to see how it could have been

deduced from any of the exact formulations available in the literature (see Table 3.2).

Furthermore, using (5.36) avoids the need for numerical methods when calculating the
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sample complexity while still yielding good accuracy. For instance, given that precisely

4795310 samples are required in order to ensure that the probability of detection of

an energy detector with no diversity, operating on a Rayleigh faded channel, is equal

to 0.9 when its probability of false alarm is 0.1 and the average signal to noise ratio

is −21 dB, (5.36) can be used to show that approximately 30257 samples are required

to ensure the same operating conditions at a single to noise ratio of −10 dB. Using a

more computationally intensive numerical root finding method, it can be shown that

the exact number of samples required is 30640 — a difference of just 383 samples.

A further consequence of (5.36) is that the minimum signal to noise ratio, for a given

number of samples, can easily be calculated if the minimum signal to noise ratio for

a different (also given) number of samples is already known. This can be shown by

rearranging (5.36) to give

γ̄1 ≈ γ̄0

√

M0

M1
. (5.37)

Again, it should be noted that (5.37) is only valid when the total approximation error

is small.

The approximation in (5.37) is useful in approximating the change in the minimum

signal to noise ratio of a receiver when the number of samples is adjusted. For instance,

given that precisely 180290 samples are required in order to ensure that the minimum

signal to noise ratio for an energy detector with no diversity operating on a Nakagami-

m faded channel with m = 3 is −14 dB, when the probability of missed detection is

0.01 and the probability of false alarm is 0.1, (5.37) can be used to show that doubling

the number of samples will increase the minimum signal to noise ratio to approximately

−15.51 dB. Using a more computationally intensive numerical method, it can be shown

that the exact answer is also −15.51 dB.

5.2.1.4 Summary

In this subsection, an approximate representation for the probability of detection of

an energy detector with no diversity operating on a Nakagami-m channel was derived

under the assumption that the signal to noise ratio is small. The approximation has

a novel, closed form and allows the accurate calculation of the probability of detection

in many scenarios of interest. Unfortunately, it is valid for m ∈ N
+ only, but some

restriction of applicability is to be expected as abstraction often comes at the cost of

generality. Despite this, the approximation was shown to be a useful, accurate and a

convenient way by which to compute the probability of detection, even in situations

where moderate to small numbers of samples are available (recall Figure 5.1).

It was shown that the total error resulting from the use of the approximation must be
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less than or equal to the sum of the error resulting from the use of the central limit

theorem and the error resulting from the use of the low SNR approximation. Two

simple bounds for the latter quantity were derived, each having a distinct region of

applicability. The first bound, given by (5.22), relates the low SNR approximation

error to the average signal to noise ratio at the combiner output. This is most likely to

be useful when dealing with practical spectrum sensing problems, where the required

minimum signal to noise ratio is very small. However, as the bound tends to significantly

overestimate the error as the signal to noise ratio increases, a second bound, given by

(5.29), was also provided. This bound relates the low SNR approximation error to the

fading parameter and number of samples, and so is likely to be of more general use than

the previous bound, although it tends to significantly overestimate the approximation

error when the signal to noise ratio is low and the number of samples is moderate.

Thus, each bound has its own region of applicability, and so it is possible that one may

employ either or both during the design or analysis of a sensor system.

As Atapattu et al.’s approximation for the detection probability of energy detectors

with no diversity operating on Nakagami-m channels is numerically equivalent to (5.15),

the bound given in (5.31) can also be used to quantify the error from its use. Similarly,

it can be used to describe the error resulting from the use of the central limit theorem

and low SNR approximation in López-Benítez and Casadevall’s approximation for the

probability of detection of an energy detector with no diversity operating on a Rayleigh

channel. However, in the latter case, the authors also use an approximation for the

Gaussian Q function, and so the total error resulting from the use of their approximation

for the detection probability cannot be entirely bounded using (5.31).

As a further point of interest, it is noteworthy that, as the average signal to noise ratio

becomes small, max |ǫ
tot,ND,Nak

| → max |ǫ
CLT,ND

|. Thus, for receivers with sufficiently

small sensitivities, the total approximation error is comparable in magnitude to the

error resulting from the use of the central limit theorem. Therefore, for spectrum

sensing type applications, where signals must be detected at low signal to noise ratios,

the approximation given in (5.15) performs no worse than the approximations in Table

4.1. As the latter approximations have seen widespread use in the literature (those

which apply to energy detection with no diversity, that is), it is reasonable to suggest

that the new approximation is equally applicable.

Further approximations, for the sample complexity and minimum signal to noise ratio,

were also considered. While it was found that the approximation in (5.15) is not well

suited to functional inversion, and so closed form expressions are difficult to derive,

it was possible to draw some novel insights into the behaviour of these quantities in

certain scenarios of interest which, it appears, are not readily inferred from the exact

expressions given in Table 3.2. In particular, it was shown that if the sample complexity

at a given signal to noise ratio is known, then the sample complexity at a different signal

to noise ratio can easily be inferred, or vice versa. This is likely to be of use in scenarios
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where parameter adjustments must be made on the spectrum sensor device itself, and so

computation time and/or power are constrained, or simply to save time when designing

or analysing such systems.

Finally, it is interesting to note that, as the average signal to noise ratio becomes very

large, the low SNR approximation error tends towards zero. This is to be expected

since, by definition,

lim
γ̄→∞

P̂dND,Nak
= lim

γ̄→∞
P̃dND,Nak

= 1

=⇒ lim
γ̄→∞

|ǫ
SNR,ND,Nak

| = 0. (5.38)

Yet, both derived bounds for the low SNR approximation error overestimate the actual

error by a significant amount when the average signal to noise ratio is large (see Fig-

ures 5.2 and 5.3). However, the aim of this thesis is not the general analysis of energy

detection (for this, the work discussed in Chapter 3 is more appropriate), but a sim-

plified analysis of energy detection suitable for use in spectrum sensing applications.

Therefore, the behaviour of energy detectors at large signal to noise ratios is not of

particular interest and, while it is possible to derive a bound more appropriate for use

when the average signal to noise ratio is large, to do so here would be a digression.

With this in mind, it is worth considering how the analysis in this subsection can be

extended to architectures employing MRC, EGC and SLC diversity.

5.2.2 Receivers with MRC diversity

For energy detectors employing a maximal ratio combiner, the probability of detection

in Nakagami-m channels can be approximated by substituting (3.33) into (5.8) to give

PdMRC,Nak
≈ P̃dMRC,Nak

= Fmn





λ − M√
2M

,

√

M

2
,

m

γ̄





= P̂fMRC
+

1

2
exp

[

−
2m
γ̄√
M

(

λ − M − m
γ̄

2
√

M

)]

×
mn−1
∑

p=0

( 2m
γ̄√
M

)p

ip erfc

[

−
(

λ − M − 2m
γ̄

2
√

M

)]

. (5.39)

As a consequence of Lemma 5.1, (5.39) is valid for mn ∈ N
+ only. Thus, in this case,

non integer values of m are allowed as long as their product with the number of diversity

branches, n, remains an integer.

In a similar manner to (5.31), the total approximation error, ǫ
tot,MRC,Nak

, can be
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bounded as

ǫ
tot,MRC,Nak

= PdMRC,Nak
− P̃dMRC,Nak

=⇒ max |ǫ
tot,MRC,Nak

| ≤ max |ǫ
CLT,MRC

| + max |ǫ
SNR,MRC,Nak

|. (5.40)

Using Lemma 5.2, it is possible to derive a bound for |ǫ
SNR,MRC,Nak

| as a function of

the average signal to noise ratio:

|ǫ
SNR,MRC,Nak

| ≤ nγ̄√
2πe

, (5.41)

where the fact that the mean of the gamma distribution defined by f
MRC,Nak

(x) is nγ̄

has been used to simplify the result.

Using Lemma 5.3, |ǫ
SNR,MRC,Nak

| can also be bound as

|ǫ
SNR,MRC,Nak

| / 1√
Mπ

max
x

(

x f
MRC,Nak

(x)
)

, (5.42)

where, in a similar fashion to (5.27), it can be shown that

max
x

(

x f
MRC,Nak

(x)
)

= nγ̄

[

(

m

γ̄

)mn+1 xmn

Γ(mn + 1)
e

− mx
γ̄

]∣

∣

∣

∣

∣

x=nγ̄

=

(mn
e

)mn

Γ(mn)

<

√

mn

2π
, (5.43)

and so (5.42) can be simplified to

|ǫ
SNR,MRC,Nak

| / 1

π

√

mn

2M
. (5.44)

As before, both bounds can be described using the single expression

max |ǫ
SNR,MRC,Nak

| = min

(

nγ̄√
2πe

,
1

π

√

mn

2M

)

. (5.45)

Figure 5.5(a) illustrates the exact (calculated numerically) and approximate (calculated

using (5.39)) probabilities of detection for a two branch MRC receiver operating on a

Nakagami-m channel with m = 1.5 (i.e. mn = 3). Measuring the difference between the

exact and approximate probabilities, it can easily be shown that the error is bounded

by (5.40) over the entire range of values of signal to noise ratio, as shown in Figure

5.5(b).

As in the no diversity case, deriving a closed form solution for the sample complexity

or minimum signal to noise ratio of the sensor system is a difficult problem. However,
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(b) A log-linear plot of the total approximation error, and its bound, for the trends shown in
Figure 5.5(a).

Figure 5.5: Plots of the exact and approximate probabilities of detection, and the
resulting approximation errors, for energy detectors with two branch MRC diversity
operating on a Nakagami-m channel with m = 1.5. The blue trends correspond to
M = 1000, the red trends to M = 10000 and the green trends to M = 100000. In each
case, PfMRC

= 1 × 10−3.
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Figure 5.6: A plot of exact and approximate sample complexities as functions of the
probability of false alarm.

in a similar fashion to (5.33), P̃dMRC,Nak
can be written in the form

P̃dMRC,Nak
= P̂fMRC

+
1

2
exp

[

− 2m
√

Mγ̄2

(

Q−1(P̂fMRC
)√

2
− m

2
√

Mγ̄2

)]

×
mn−1
∑

p=0

(

2m
√

Mγ̄2

)p

ip erfc

[

−
(

Q−1(P̂fMRC
)√

2
− m
√

Mγ̄2

)]

. (5.46)

Thus, it can be inferred that the sample complexity and minimum signal to noise ratio

behave as in (5.36) and (5.37), respectively. Again, this is useful in many practical

situations. For instance, if it is known that 10000 samples are required to ensure some

arbitrary pair of decision probabilities for an energy detector with two branch MRC

diversity in a Nakagami-m channel with m = 1.5 and an average signal to noise ratio

of −15 dB, then (5.36) can be used to show that approximately 25119 samples are

required to ensure the same decision probabilities are met for an energy detector with

three branch MRC diversity operating on a Rayleigh channel with an average signal to

noise ratio of −17 dB. This can be verified for arbitrary decision probabilities using a

numerical method, as in Figure 5.6.

Unfortunately, it is not possible to use a method similar to (5.36) to analyse the effect

of adding additional diversity branches to the sensor system. However, as can be seen

in (5.46), the only effect of increasing n is to increase the number of terms in the series

therein. This feature can be exploited to some advantage.

Consider an MRC sensor system with n0 branches and detection probability Pd0 oper-

ating on a Nakagami-m channel, where mn0 ∈ N
+. If the number of branches changes

to n1, where mn1 ∈ N
+, and all other parameters remain constant, so that the resulting

probability of detection is given by Pd1 , then, using (5.46), the resulting change in the
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detection probability, δPd = Pd1 − Pd0 , can be written as

δPd = sign(n1 − n0)
1

2
exp

[

− 2m
√

Mγ̄2

(

Q−1(P̂fMRC
)√

2
− m

2
√

Mγ̄2

)]

×
nmax
∑

p=nmin

(

2m
√

Mγ̄2

)p

ip erfc

[

−
(

Q−1(P̂fMRC
)√

2
− m
√

Mγ̄2

)]

, (5.47)

where sign(x) = x
|x| if x 6= 0 and is zero otherwise, nmin = min(mn0, mn1) and nmax =

max(mn0 − 1, mn1 − 1). Thus, while an expression for the diversity gain is not directly

available, the effect of modifying the number of branches in the system is not difficult to

quantify, and so the former quantity can easily be calculated using a simple numerical

method. It is again worth noting that it is difficult to see how (5.47) could have been

inferred from any of the exact expressions given in Table 3.3.

The approximation in (5.47) can be used to determine the number of branches required

to ensure certain operating conditions are met as different system parameters vary. For

instance, if an energy detector with two branch MRC diversity operates on a Nakagami-

m channel with m = 2, 29340 samples are sufficient to ensure that PfMRC
= 0.1 and

PdMRC,Nak
= 0.9 at a signal to noise ratio of −18 dB. However, if it is required that

PdMRC,Nak
≥ 0.99, then the number of additional branches required must be computed

using a numerical method. Using (5.47), it can easily be shown that

δPd|n0=2,n1=3 = 0.08,

δPd|n0=3,n1=4 = 0.015,

and so PdMRC,Nak
≈ 0.995 when n = 4, which satisfies the criteria and agrees with the

exact answer, which must be calculated numerically.

5.2.3 Receivers with EGC diversity

In equal gain combiner systems, the approximate probability of detection in Nakagami-

m channels, P̃dEGC,Nak
, can be calculated by substituting (3.35) into (5.8) to give

P̃dEGC,Nak
= Fmn





λ − M√
2M

,

√

M

2
,
mn

ωγ̄





= P̂fEGC
+

1

2
exp

[

−
2mn
ωγ̄√
M

(

λ − M − mn
ωγ̄

2
√

M

)]

×
mn−1
∑

p=0

( 2mn
ωγ̄√
M

)p

ip erfc

[

−
(

λ − M − 2mn
ωγ̄

2
√

M

)]

. (5.48)

which, again, as a consequence of Lemma 5.1, is valid for mn ∈ N
+ only.
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In deriving (5.48), Nakagami’s approximation for the probability density function of

the signal to noise ratio at the EGC output has been used (see (3.35)). Therefore,

the total approximation error, ǫ
tot,EGC,Nak

, cannot be bounded as in (5.20). Instead,

ǫ
tot,EGC,Nak

can be bounded as

ǫ
tot,EGC,Nak

=

∫ ∞

−∞
PdEGC

(x)f
EGC,Nak

(x) dx −
∫ ∞

−∞
P̃dEGC

(x)f̂
EGC,Nak

(x) dx

=⇒ |ǫ
tot,EGC,Nak

| =

∣

∣

∣

∣

∫ ∞

−∞

(

PdEGC
(x) − P̃dEGC

(x)
)

f̂
EGC,Nak

(x) dx

+

∫ ∞

−∞
PdEGC

(x)
(

f
EGC,Nak

(x) − f̂
EGC,Nak

(x)
)

dx

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ ∞

−∞

(

PdEGC
(x) − P̃dEGC

(x)
)

f̂
EGC,Nak

(x) dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ ∞

−∞
PdEGC

(x)
(

f
EGC,Nak

(x) − f̂
EGC,Nak

(x)
)

dx

∣

∣

∣

∣

≤ max |ǫ
CLT,EGC

| + |ǫ
SNR,EGC,Nak

| + |ǫ
P DF,EGC,Nak

|, (5.49)

where |ǫ
P DF,EGC,Nak

| is given by

|ǫ
P DF,EGC,Nak

| =

∣

∣

∣

∣

∫ ∞

−∞
PdEGC

(x)
(

f
EGC,Nak

(x) − f̂
EGC,Nak

(x)
)

dx

∣

∣

∣

∣

. (5.50)

As before, using Lemma 5.2, |ǫ
SNR,EGC,Nak

| can be bounded as

|ǫ
SNR,EGC,Nak

| ≤ ωγ̄√
2πe

, (5.51)

where the fact that the mean of the gamma distribution defined by f̂
EGC,Nak

(x) is ωγ̄

has been used to simplify the result. Similarly, using Lemma 5.3, it can be shown that

|ǫ
SNR,EGC,Nak

| / 1

π

√

mn

2M
, (5.52)

which, it is interesting to note, is equivalent to the bound for |ǫ
SNR,MRC,Nak

| given in

(5.44). Again, both bounds can be described using a single expression:

max |ǫ
SNR,EGC,Nak

| = min

(

ωγ̄√
2πe

,
1

π

√

mn

2M

)

. (5.53)

Finally, using the second mean value theorem for infinite integrals [69, Equation 12.114],

it can be shown that

|ǫ
P DF,EGC,Nak

| ≤ max |ǫ
P DF,EGC,Nak

| , max
ζ

∣

∣

∣

∣

∫ ∞

ζ

(

f
EGC,Nak

(x) − f̂
EGC,Nak

(x)
)

dx

∣

∣

∣

∣

. (5.54)

Consequently, it can be shown that

max |ǫ
tot,EGC,Nak

| ≤ max |ǫ
CLT,EGC

| + max |ǫ
SNR,EGC,Nak

| + max |ǫ
P DF,EGC,Nak

|, (5.55)
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Figure 5.7: Plots of the bound on the error resulting from the use of Nakagami’s
approximation for the probability density function of the signal to noise ratio at the
output of an equal gain combiner operating on a Nakagami-m channel. The trends
become less smooth as the error becomes smaller due to the numerical method used to
compute them.

where max |ǫ
tot,EGC,Nak

| ≥ |ǫ
tot,EGC,Nak

|.

As f
EGC,Nak

(x) is currently not available in closed form, (5.54) must be computed

numerically. Figure 5.7 illustrates the bound for some typical values of m, n and γ̄.

As can be seen, the error is typically not large, and decreases as m and n increase. In

particular, the worst case error occurs when m = 1
2 and n = 2, and is approximately

equal to 0.03 across the entire range of the signal to noise ratios considered. It is also

worth noting that, while it appears that the error bound is constant for varying γ̄, this

is difficult to verify due to the lack of a closed form expression for f
EGC,Nak

(x).

While the error resulting from the use of Nakagami’s approximation for the PDF of the

signal to noise ratio at the output of an EGC system may be unacceptably large in some

circumstances, it is worth noting that the only known exact method for the computation

of PdEGC,Nak
is that of Herath and Rajatheva (see Table 3.4 for their expressions for

n = 2 and n = 3). However, their method is a complicated one, and becomes even more

so as n increases. Dharmawansa et al. noted that this difficulty arises from the need to

compute nested infinite series, which are hard to evaluate in general, and whose number

increases linearly with n. Thus, (5.48) offers a significantly simpler and, in many cases

of interest, accurate alternative.

The accuracy of the approximation in (5.48) can be quantified using (5.49), as shown in

Figures 5.8(a) and 5.8(b), where the exact probability of detection has been calculated

using a numerical method. As can be seen, the derived approximation is quite accurate

in each of the given scenarios.
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(a) A plot of the exact and approximate probabilities of detection.
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(b) A log-linear plot of the total approximation error, and its bound, for the trends shown in
Figure 5.8(a). The numerical calculation of the exact detection probabilities has affected the
smoothness of the trends.

Figure 5.8: Plots of the exact and approximate probabilities of detection, and the
resulting approximation errors, for energy detectors with EGC diversity operating on
Nakagami-m channels. The blue trends correspond to m = 1

2 and n = 2, the red trends
to m = 1

2 and n = 4 and the green trends to m = 1, n = 4. In each case, M = 10000
and PfEGC

= 0.01.
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In a similar manner to (5.33), it can also be shown that

P̃dEGC,Nak
= P̂fEGC

+
1

2
exp

[

−
2mn

ω
√

Mγ̄2

(

Q−1(P̂fEGC
)√

2
−

mn
ω

2
√

Mγ̄2

)]

×
mn−1
∑

p=0

(

2mn
ω

√

Mγ̄2

)p

ip erfc

[

−
(

Q−1(P̂fEGC
)√

2
−

mn
ω

√

Mγ̄2

)]

, (5.56)

and so it can again be inferred that Mγ̄2 must remain constant for given values of

P̃dEGC,Nak
, P̂fEGC

, m and n (recall from (3.36) that ω is a function of both m and n).

Thus, (5.36) and (5.37) also hold for EGC diversity receivers, if the total approximation

error is not large.

It is also interesting to note that the sample complexity of MRC and EGC receivers can

be related using (5.46) and (5.56). To see this, consider the scenario where an energy

detector with MRC diversity uses M = M0 samples and an energy detector with EGC

diversity uses M = M1 samples. If P̃dMRC,Nak
= P̃dEGC,Nak

and P̂fMRC
= P̂fEGC

, it is

not difficult to show that

M̃
EGC,Nak

, M1 =

(

n

ω

)2

M0 ,
(

n

ω

)2

M̃
MRC,Nak

, (5.57)

where M
X,Y

denotes the sample complexity for an energy detector with diversity type

X operating on the channel type Y and M̃
X,Y

≈ M
X,Y

when the total approximation

errors, given by (5.40) and (5.55), are small.

The approximation in (5.57) is useful when comparing the number of samples required

to ensure certain decision probabilities are met for MRC and EGC architectures. For

instance, if an energy detector with two branch MRC diversity requires precisely 164828

samples to ensure that PdMRC,Nak
= 0.99 and PfMRC

= 0.01 in a Nakagami-m channel

with γ̄ = −15 dB and m = 1.5, (5.57) can be used to show that an EGC receiver, with

the same number of branches, operating on a similar channel, requires approximately

192886 samples to achieve the same decision probabilities. Using a numerical method,

it can be shown that the precise number of samples required is 192148 — a difference

of just 0.38%.

While the relationships between the number of samples and signal to noise ratio are not

difficult to establish, the effect of altering the number of diversity branches cannot be

quantified so simply as n affects both the number of terms, and their individual values,

in the series in (5.56). Still, for EGC diversity, the number of branches is typically not

large, and so it may be feasible to compute the quantity numerically through multiple

evaluations of (5.56).
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5.2.4 Receivers with SLC diversity

For square law combiner systems, the probability of detection in Nakagami-m channels

can be approximated by substituting (3.33) into (5.8), recalling from (5.4) that N
SLC

=

n, to give

PdSLC,Nak
≈ P̃dSLC,Nak

= Fmn





λ − Mn√
2Mn

,

√

M

2n
,
m

γ̄





= P̂fSLC
+

1

2
exp

[

−
2mn

γ̄√
Mn

(

λ − Mn − mn
γ̄

2
√

Mn

)]

×
mn−1
∑

p=0

( 2mn
γ̄√
Mn

)p

ip erfc

[

−
(

λ − Mn − 2mn
γ̄

2
√

Mn

)]

, (5.58)

which, once again, as a consequence of Lemma 5.1, is valid for mn ∈ N
+ only.

Atapattu et al. also derived an approximation for the detection probability of SLC

receivers operating on Nakagami-m channels [66, Equation 6] but, unfortunately, there

appears to be an error in their derivation (the authors average the detection probability

of an SLC receiver over the distribution of the signal to noise ratio of a receiver with

no diversity), and so the resulting expression is not meaningful. Correcting the mistake

leads to a form similar to their approximation for the detection probability of receivers

with no diversity operating on Nakagami-m channels [66, Equation 5], but requiring

differentiation on the order of mn − 1, which may cause difficulty in practice. As

the repeated integral of the complementary error function can be computed using the

simple recursive relation in (5.13), the evaluation of (5.58) requires no differentiation

and so is preferable from a computational perspective.

As f
SLC,Nak

(x) = f
MRC,Nak

(x), the total approximation error, ǫ
tot,SLC,Nak

, can be

bounded as

|ǫ
tot,SLC,Nak

| ≤ max |ǫ
CLT,SLC

| + |ǫ
SNR,SLC,Nak

|, (5.59)

where, using Lemma 5.2, and recalling that N
SLC

= n, |ǫ
SNR,SLC,Nak

| can be bound as

|ǫ
SNR,SLC,Nak

| ≤ γ̄√
2πe

, (5.60)

or, alternatively, using Lemma 5.3, as

|ǫ
SNR,SLC,Nak

| / 1

π

√

m

2M
. (5.61)
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Once again, both bounds can be summarised using the single expression

max |ǫ
SNR,SLC,Nak

| = min

(

γ̄√
2πe

,
1

π

√

m

2M

)

, (5.62)

where max |ǫ
SNR,SLC,Nak

| ≥ |ǫ
SNR,SLC,Nak

|, and so

max |ǫ
tot,SLC,Nak

| ≤ max |ǫ
CLT,SLC

| + max |ǫ
SNR,SLC,Nak

|, (5.63)

where max |ǫ
tot,SLC,Nak

| ≥ |ǫ
tot,SLC,Nak

|.

Figure 5.9(a) illustrates the exact (calculated using a numerical method) and approxi-

mate (calculated using (5.58)) probabilities of detection of energy detectors with SLC

diversity, operating on Nakagami-m channels, for some typical scenarios. The errors

resulting from the use of the approximations are shown in Figure 5.9(b). As can be

seen, the errors are bounded quite well by (5.63) across the entire range of average

signal to noise ratio values.

Noting the definition of P̂fSLC
in Table 4.1, it can be shown that

P̃dSLC,Nak
= P̂fSLC

+
1

2
exp

[

−2m

√

n

Mγ̄2

(

Q−1(P̂fSLC
)√

2
− m

2

√

n

Mγ̄2

)]

×
mn−1
∑

p=0

(

2m

√

n

Mγ̄2

)p

ip erfc

[

−
(

Q−1(P̂fSLC
)√

2
− m

√

n

Mγ̄2

)]

, (5.64)

from which it can, once again, be inferred that the sample complexity and minimum

signal to noise ratio of SLC systems again behave as in (5.36) and (5.37), respectively.

In a similar manner to (5.57), the sample complexity of energy detectors with SLC

diversity can be related to those of energy detectors with MRC and EGC diversity as

M̂
SLC,Nak

= nM̂
MRC,Nak

, (5.65)

M̂
SLC,Nak

=
ω2

n
M̂

EGC,Nak
. (5.66)

Thus, if the sample complexity is known for one architecture, the sample complexity

for the other two can be approximated quite simply, as long as the associated approxi-

mation errors are not large.

The approximations in (5.65) and (5.66) are useful when comparing the number of

samples required to ensure certain decision probabilities are met in MRC, EGC and

SLC receivers operating on similar Nakagami-m channels. For instance, if it is known

that an energy detector with two branch MRC diversity, operating on a Nakagami-m

channel with m = 0.5, requires 1200130 samples to ensure a probability of detection

of 0.9 and probability of false alarm of 0.1 at a signal to noise ratio of −21 dB, (5.36),
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(a) A plot of the exact and approximate probabilities of detection.
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(b) A log-linear plot of the total approximation error, and its bound, for the trends shown in
Figure 5.9(a).

Figure 5.9: Plots of the exact and approximate probabilities of detection, and the
resulting approximation errors, for energy detectors with ten branch SLC diversity
operating on a Nakagami-m channel with m = 0.5. The blue trends correspond to
M = 1000, the red trends to M = 10000 and the green trends to M = 100000. In each
case, PfSLC

= 0.001.
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Figure 5.10: A log-linear plot of the number of samples required to ensure that PfX
=

0.1 and PdX,Nak
= 0.9 for the specified diversity receivers. In each case, n = 2.

(5.65) and (5.66) can be used to quickly calculate the numbers of samples required to

ensure the same conditions are met across a wide range of signal to noise ratio values

for MRC, EGC and SLC receivers, without the use of numerical methods, as shown in

Figure 5.10. As can be seen, the approximations are quite accurate across the entire

range of signal to noise ratio values, particularly as the signal to noise ratio becomes

small.

As in the EGC case, the number of terms in the series in (5.64), as well as value of each

term in the series, depends on n, and so no additional insight into the behaviour of

the diversity gain of the system can be gained. Unlike EGC systems, however, square

law combiners can often have large numbers of diversity branches. Consequently, it

may not be convenient to calculate the diversity gain via multiple evaluations of (5.58).

Thus, there is some motivation to consider alternative methods of approximating the

diversity gain.

5.2.5 Discussion

5.2.5.1 Computational complexity

In Chapter 3, it was discussed how each of the exact expressions in Tables 3.2–3.6

contains an infinite series which must be truncated in order to be computed. However,

as the truncation points increase with the number of samples, the evaluation of these

exact expressions becomes complicated in many scenarios of interest. To address this

problem, approximate representations were derived which allow the accurate computa-

tion of the probability of detection of energy detector diversity receivers operating on

Nakagami-m channels in many situations and, in particular, when the number of sam-

ples is large. As each of the derived approximations involves the summation of a series
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with mn terms3, no truncation is required. Consequently, the derived approximations

appear to be significantly less complicated than the available exact methods, avoiding

the need to compute the truncation point as well as the computation of the truncated

infinite series itself.

Yet, the previous analysis may have been somewhat disingenuous. In Figures 3.4(a)–

3.4(c), the truncation points were calculated so that the error resulting from the trun-

cation of the infinite series in each case was less than 10−6. As the approximations

derived in this chapter are only accurate to such a degree when the number of samples

is very large, or the average signal to noise ratio is very small, a direct comparison may

not be fair. However, letting the truncation error equal the maximum total approxima-

tion error in each case, the comparison becomes somewhat more balanced4. Still, even

under these relaxed constraints, while the values of the required truncation points are

smaller in general, their growth with increasing numbers of samples is still significant,

as can be seen in Figures 5.11(a)–5.11(c), and large numbers of terms must still be

computed when M is large. In fact, the available exact methods only require fewer

terms to be summed than the derived approximate methods when the truncation error

is large or the number of samples is small, scenarios which are not particularly relevant

to spectrum sensing.

However, no concrete conclusions can be drawn from this: it has only been established

that, in general, the exact methods involve the computation of more terms, while the

approximate methods involve the computation of fewer. It is reasonable to suggest that,

if the exact methods involve a large number of simple terms, while the approximate

methods involve a small number of very complicated terms, then the exact methods

may be less complicated overall. However, this is not the case. As can be seen in Tables

3.2–3.6, each of the exact methods consists of a weighted sum of incomplete gamma or

confluent hypergeometric functions. Of these, the incomplete gamma function is known

to be easier to compute to p decimal digits of precision [99], having a computational

complexity on the order of O(p) [81]. On the other hand, the formulae for the exact

methods all involve weighted sums of the repeated integral of the complementary error

function, which can be computed using the simple recursive relation given in (5.13).

In fact, for an arbitrary integer order k, it is not difficult to see that ik erfc(z) has the

generic structure

ik erfc(z) = P (k − 1, z)e−z2
+ P (k, z) erfc(z), (5.67)

where P (n, x) represents some polynomial in x of order n. Therefore, weighted sums of

the repeated integral of the complementary error function involve the computation of

just one exponential function, one complementary error function and some polynomial

3This is a slight abuse of notation as n = 1 in the no diversity case.
4It is worth noting that the maximum total approximation error generally overestimates the actual

error, and so this comparison is actually skewed in favour of the exact methods.
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(a) Truncation points required for the same conditions as Figure 3.4(a).
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(b) Truncation points required for the same conditions as Figure 3.4(b).
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(c) Truncation points required for the same conditions as Figure 3.4(c).

Figure 5.11: Log-log plots of the truncation points required to give ǫT
X,Y

≤ max |ǫ
tot,X,Y

|
as functions of the number of samples.
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multiplications. Of these, the most computationally complex operation is the evalua-

tion of the complementary error function, which has a comparable, although slightly

smaller, computational complexity than the incomplete gamma function of O(p
2
3 ) [81].

Thus, for large M , the exact methods require, at best, the sum of a large number of

incomplete gamma functions, while the approximate methods require the computation

of just one complementary error function. Consequently, in many cases of interest,

the approximate methods are significantly faster to compute than the exact methods.

In fact, in CPU timing tests [19], the approximate methods were shown to be 100 to

100000 times faster than the exact methods while still yielding good accuracy.

Furthermore, on a practical note, if the decision probabilities are to be evaluated on

the device itself (e.g. for calibration or optimisation purposes), and look up tables

are used to reduce the number of computations required, then it is worth noting that

the incomplete gamma function is a two variable function, while the error function

is a single variable function, and so requires a smaller look up table. Therefore, if

the resulting errors (truncation and approximation) are comparable in size, then the

approximate methods derived in this chapter are preferable.

One caveat is that the approximations involve series with mn terms, and so the number

of computations required becomes larger as m and n become large. Furthermore, if mn

is large, then the repeated integral of the complementary error function of order mn

must be computed and the associated polynomial terms (recall (5.67)) may become

more computationally intensive to evaluate than the complementary error function.

For instance, in the limit of m → ∞, each expression should simplify to the probability

of detection in an AWGN channel5. However, in this case, mn → ∞, and the derived

approximations become difficult to evaluate, as the upper limits on the series involved

tend towards infinity. Thus, while the complexity of the approximate methods does not

vary with increasing numbers of samples, it can grow significantly with increasing m

and n, and so it must be concluded that their usefulness is limited to situations where

the magnitude of mn is small to moderate. Still, in many cases of interest, mn is small

to moderate, and so the derived approximations can usually be applied to quickly and

accurately compute the desired result.

5.2.5.2 Accuracy / region of applicability

While the approximations derived in Chapter 4 relied only on the use of the central limit

theorem, the approximations derived in this chapter required a further simplification:

that for small signal to noise ratios, the detection probability for each diversity type

could be approximated using (5.6). Two bounds for the error resulting from the use

of this approximation were derived: the first related the error to the average signal

5As the low SNR approximation has been applied, the approximations should simplify to (5.6)
rather than the formulae in Table 4.1.
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to noise ratio per branch, while the second related it to the number of samples, the

fading parameter and, in the case of MRC and EGC diversity, the number of diversity

branches. By deriving two different bounds, it was possible to show that the derived

approximations have a wide region of applicability: that is, that they are accurate for

small signal to noise ratios, a case which is of particular interest in spectrum sensing,

and that they are accurate when the number of samples is large, which is often the

case when dealing with multipath fading channels. In particular, when the low SNR

approximation error is small, the total approximation error is dominated by the error

resulting from the use of the central limit theorem, and so the approximations derived

in this chapter are comparable in accuracy to those derived in Chapter 4, of which

those relating to energy detection with no diversity have seen widespread use in the

literature. Thus, it seems reasonable to suggest that the approximations derived in this

chapter are equally applicable in such situations.

In the case of EGC diversity, it was shown that the total approximation error also

depended on the error resulting from the use of Nakagami’s PDF approximation. A

bound for this error was also derived, but it was found that numerical methods were

required in order to compute it. Using such methods, the bound was computed for

several parameter sets of interest (recall Figure 5.7), and it was shown that the resulting

error is usually not large, and tends to decrease as m and n become large. The bound

also appeared to be constant with respect to the average signal to noise ratio. However,

these behaviours are difficult to verify analytically because the derived bound is not in

a simple closed form. Still, as the only available exact method requires the computation

of nested infinite summations, the number of which increases with n, the derived EGC

approximation offers a simple, less computationally intensive and, in many cases of

interest, accurate alternative.

5.2.5.3 Approximations for other system parameters

While it was not possible to derive closed form expressions for the sample complexity,

minimum signal to noise ratio and diversity gain of diversity receivers operating on

Nakagami-m channels in the manner of Chapter 4, the derived approximations enabled

new insights into the behaviour of these quantities in certain situations of interest,

which would be difficult to infer from any of the available exact formulations.

In the case of sample complexity and minimum signal to noise ratio, it was found that,

when the number of samples is large and the signal to noise ratio is small, the product

of the number of samples and the square of the signal to noise ratio is approximately

constant. Thus, if the sample complexity for a given minimum signal to noise ratio

is known, it is possible to quickly approximate the sample complexity for a different

minimum signal to noise ratio, or vice-versa. Similarly, approximations were derived

relating the sample complexity (and also, therefore, the minimum signal to noise ratio)
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for each diversity type. Thus, if the sample complexity for a given diversity type, with

n branches, operating on a given Nakagami-m channel, is known, then the sample

complexity for a different diversity combiner, with n branches, operating on a similar

channel, can be approximated quite easily. Combining both approximations enables

the simple and accurate approximation of the sample complexity or minimum signal

to noise ratio for diversity receivers based on known pairs of sample complexity and

minimum signal to noise ratio (recall Figure 5.10). This is likely to be convenient

for system simulation and design and real time parameter optimisation, where power,

computation time and memory are limited.

Unfortunately, it was not possible to infer such simple relationships between the di-

versity gain and other system parameters. While, in the MRC case, it was possible to

derive a formula to quantify the change in detection probability resulting from a change

in the number of diversity branches in the system, similar relationships for EGC and

SLC systems could not be found. As the number of diversity branches in EGC sys-

tems is usually not large, numerical computation of the diversity gain may be feasible

in many cases. However, this is often not true of SLC systems, and so some further

analysis is required in this area, as follows.

5.3 Novel approximations for small signal to noise ratios

and large mn

From the discussion in Section 5.2.5, it is clear that, while the low SNR approximations

are useful in many scenarios of interest, they also have some drawbacks. In short, these

are:

1. They are only valid for mn ∈ N
+ (m ∈ N

+ in the no diversity case).

2. They become more computationally intensive to evaluate as mn becomes large.

3. The behaviours of the detection probabilities as m and n become large are not

clear.

4. The diversity gain of SLC systems is difficult to quantify, particularly for large n.

As most of these problems arise when either m or n becomes large, these scenarios are of

particular interest. However, central limit theorem approximations for the distribution

of sums of i.i.d. gamma random variables must first be considered.

5.3.1 Sums of i.i.d. gamma random variables

Consider the gamma distributed random variable Y , with shape parameter η and scale

parameter θ. It is well known that Y has the form of a sum of p i.i.d. gamma distributed
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random variables, Y1, Y2, . . . , Yp, that is

Y =
p
∑

i=1

Yi, (5.68)

where each of the Yi follows a gamma distribution6 with shape parameter η
p and scale

parameter θ. As (5.68) is in the same form as (4.1), the central limit theorem can be

used to approximate the complementary CDF of Y , P [Y > y], as

P [Y > y] ≈ Q

(

y − pE[Yi]
√

p Var[Yi]

)

= Q

(

y
θ − η
√

η

)

, (5.69)

where the fact that E[Yi] = ηθ
p and Var[Yi] = ηθ2

p has been used to simplify the result.

Like the noncentral chi square distribution, the complementary CDF of the gamma

distribution has a different representation when y ≤ 0 than for y > 0, that is

P [Y > y] =











1, y ≤ 0,

Γ(η, y
θ )

Γ(η)
, y > 0.

(5.70)

Thus, the error resulting from the use of (5.69), ǫ
Γ
(η, y

θ ), is given by

ǫ
Γ

(

η,
y

θ

)

=























1 − Q

(

y
θ − η
√

η

)

, y ≤ 0,

Γ(η, y
θ )

Γ(η)
− Q

(

y
θ − η
√

η

)

, y > 0.

(5.71)

As (5.71) is equivalent to (4.11) with k = 2η, s = 0 and x = 2y
θ , and θ > 0 by definition,

the error can be bounded, using Theorem 4.1, as

max
y

∣

∣

∣

∣

ǫ
Γ

(

η,
y

θ

)∣

∣

∣

∣

= max
z

|ǫ
Γ

(η, z)| = max
(

Q (
√

η) , ǫ
Γ,∞

(η)
)

, (5.72)

where

ǫ
Γ,∞

(η) ≈ 1√
18πη

, (5.73)

for large values of η. Figure 5.12 illustrates the maximum absolute error (calculated

numerically), the Berry-Esseen bound (calculated using (4.12)) and the bound given

in (5.72) for different values of η. As can be seen, the derived bound describes the

resulting error much more accurately than the Berry-Esseen bound. Consequently,

(5.72) can be used to quantify the error resulting from the use of central limit theorem

approximations for gamma distributed random variables.

6This can readily be shown by comparing the characteristic functions of Y and Yi [24, p. 164, 362].
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Figure 5.12: A log-log plot of the maximum absolute error, its Berry-Esseen bound and
the bound given in (5.72) for different values of η.

5.3.2 Receivers with no diversity

5.3.2.1 A new approximation for the probability of detection

Using (5.69), the PDF of gamma distributed random variables can be approximated as

f(y) ≈ f̌(y) =
1√

2πηθ
exp



−
(

y
θ − η√

2η

)2


 . (5.74)

As the signal to noise ratio for energy detectors with no diversity follows a gamma

distribution with shape parameter m and scale parameter γ̄
m (recall (3.29)), its PDF

can be approximated, using (5.74), as

f
ND,Nak

(x) ≈ f̌
ND,Nak

(x) =
1

γ̄

√

m

2π
exp






−




x − γ̄
√

2
m γ̄





2





. (5.75)

Substituting (5.75) into (5.1), a further approximation for the probability of detection

can be derived as

PdND,Nak
≈ P̌dND,Nak

= 1
γ̄

√

m
2π

∫∞
−∞ Q

(

λ−M(1+x)√
2M

)

exp

[

−
(

x−γ̄
√

2
m

γ̄

)2
]

dx. (5.76)

In order to evaluate (5.76), the following integral identity is required, which is stated

here in the form of a lemma and is proved in Appendix A.5.
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Lemma 5.4: Let G(q, r, s, t) define the integral

G(q, r, s, t) =

∫ ∞

−∞
Q(q − rx) exp

[

−
(

x − s

t

)2
]

dx. (5.77)

Then, G(q, r, s, t) has the closed form

G(q, r, s, t) = t
√

πQ





q − rs
√

1 + r2t2

2



 . (5.78)

It is not difficult to show that (5.76) can be written as

P̌dND,Nak
=

1

γ̄

√

m

2π
G





λ − M√
2M

,

√

M

2
, γ̄,

√

2

m
γ̄



 , (5.79)

and so Lemma 5.4 can be used to show that

P̌dND,Nak
= Q









λ − M(1 + γ̄)
√

2M
(

1 + Mγ̄2

2m

)









. (5.80)

As (5.80) is arrived at through the use of the central limit theorem approximation

in (5.75), it shall henceforth be referred to as the large mn approximation7. Unlike

the approximation given in (5.15), (5.80) is valid for m ∈ R
+ as the use of Lemma

5.4 imposes no restrictions on the possible values of m. Figure 5.13(a) illustrates the

exact (calculated numerically) and approximate (calculated using (5.80)) probabilities

of detection for some typical sensing scenarios. As can be seen, the approximation is

quite accurate over the entire range of signal to noise ratio values.

Finally, as discussed in Section 2.2.3, the Nakagami-m channel becomes an AWGN

channel in the limit of m → ∞. Therefore, one should expect that the detection prob-

ability in a Nakagami-m channel converges to the detection probability in an AWGN

channel under the same constraints. While this is difficult to show using the low SNR

approximation in (5.15), it is trivial to demonstrate using (5.80) as

lim
m→∞

P̌dND,Nak
= lim

m→∞
Q









λ − M(1 + γ̄)
√

2M
(

1 + Mγ̄2

2m

)









= Q

(

λ − M(1 + γ̄)√
2M

)

= P̃dND
(γ̄). (5.81)

7Again, this is a minor abuse of notation as n = 1 for receivers with no diversity.
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(a) A plot of the exact and approximate (large mn) probabilities of detection.
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(b) A log-linear plot of the total approximation error, and its bound, for the trends shown in
Figure 5.13(a).

Figure 5.13: Plots of the exact and approximate probabilities of detection, and the
resulting approximation errors, for energy detectors with no diversity operating on
Nakagami-m channels. The blue trends correspond to M = 5 × 105 and m = 11.48,
the red trends to M = 2.5 × 105 and m = 42.72, while the green trends correspond to
M = 1.25 × 105 and m = 161.30. In each case, PfND

= 0.01.
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5.3.2.2 Quantifying the approximation error

The total error resulting from the use of P̌dX,Y
to approximate PdX,Y

, ǫ
mn,X,Y

, can be

written as

ǫ
mn,X,Y

= PdX,Y
− P̌dX,Y

= PdX,Y
− P̃dX,Y

+ P̃dX,Y
− P̌dX,Y

= ǫ
tot,X,Y

+ P̃dX,Y
− P̌dX,Y

. (5.82)

Thus, the quantity P̃dND,Nak
− P̌dND,Nak

represents the additional error introduced

through the use of (5.80). This error, which henceforth shall be denoted by ǫ
Γ,X,Y

,

can be expanded as

ǫ
Γ,X,Y

= P̃dX,Y
− P̌dX,Y

=

∫ ∞

−∞
P̃dX

(x)(f
X,Y

(x) − f̌
X,Y

(x))dx. (5.83)

Using the second mean value theorem [69, Equation 12.114], it can be shown that

∫ ∞

−∞
P̃dX

(x)(f
X,Y

(x) − f̌
X,Y

(x))dx =

∫ ∞

ξ
(f

X,Y
(x) − f̌

X,Y
(x))dx, (5.84)

for some −∞ ≤ ξ ≤ ∞. Thus, |ǫ
Γ,X,Y

| can be bounded as

|ǫ
Γ,X,Y

| =

∣

∣

∣

∣

∫ ∞

ξ
(f

X,Y
(x) − f̌

X,Y
(x))dx

∣

∣

∣

∣

≤ max
ξ

∣

∣

∣

∣

∫ ∞

ξ
(f

X,Y
(x) − f̌

X,Y
(x))dx

∣

∣

∣

∣

. (5.85)

As, for each of the diversity types under consideration, f
X,Nak

(x) is the PDF of a gamma

distributed random variable and f̌
X,Nak

(x) is its central limit theorem approximation,

(5.85) can be further simplified to

|ǫ
Γ,X,Nak

| ≤ max

(

max
ξ≤0

∣

∣

∣

∣

∣

1 − Q

(

ξ
θ − η
√

η

)∣

∣

∣

∣

∣

, max
ξ>0

∣

∣

∣

∣

∣

Γ(η, ξ
θ )

Γ(η)
− Q

(

ξ
θ − η
√

η

)∣

∣

∣

∣

∣

)

≤ max
ξ

∣

∣

∣

∣

ǫ
Γ

(

η,
ξ

θ

)∣

∣

∣

∣

≤ max
(

Q (
√

η) , ǫ
Γ,∞

(η)
)

, (5.86)

where η is the shape parameter of the gamma distribution defined by f
X,Nak

(x).

Therefore, the additional error resulting from the use of (5.80) over (5.15) is upper
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bounded by

|ǫ
Γ,ND,Nak

| ≤ max |ǫ
Γ,ND,Nak

| , max
(

Q
(√

m
)

, ǫ
Γ,∞

(m)
)

, (5.87)

and so the total error, with respect to the exact method, is bounded as

max |ǫ
mn,ND,Nak

| ≤ max |ǫ
tot,ND,Nak

| + max |ǫ
Γ,ND,Nak

|
≤ max |ǫ

CLT,ND
| + max |ǫ

SNR,ND,Nak
| + max |ǫ

Γ,ND,Nak
|. (5.88)

Thus, the error resulting from the use of the approximation given in (5.80) can be

bounded as the sum of the maximum errors resulting from the use of the central limit

theorem, the low SNR approximation and the approximation in (5.74). Unfortunately,

this means that the large mn approximation in (5.80) is only accurate in situations

where all three errors are small. However, as such situations occur only when the

number of samples is large, the signal to noise ratio is small and the m parameter is

large, they correspond precisely to those situations where the low SNR approximation

in (5.15) becomes complicated to use. Thus, the region of applicability of the large mn

approximation naturally complements that of the low SNR approximation.

The bound in (5.88) is useful when bounding the maximum error resulting from the

use of (5.80). For instance, using (5.88), the errors resulting from the use of (5.80) in

approximating the detection probabilities in Figure 5.13(a) can be bounded as in Figure

5.13(b). As a consequence of (5.87) being a function of m only, the error bounds tend to

significantly overestimate the magnitude of the errors across the entire range of signal

to noise ratios.

5.3.3 Receivers with diversity

Large mn approximations for energy detectors with diversity reception can be derived

in a similar manner to (5.80) and are given8 in Table 5.1, along with their respective

approximate PDFs, which can be derived using (5.74). Again, unlike the low SNR

approximations in Section 5.2, each of the large mn approximations in Table 5.1 is

valid for mn ∈ R
+.

Noting that the shape parameter for each of the diversity types is equal to mn, it is

not difficult to show that

max |ǫ
Γ,X,Nak

| = max
(

Q(
√

mn), ǫ
Γ,∞

(mn)
)

, X ∈ {MRC, EGC, SLC}, (5.89)

8The results are not difficult to show and so, for brevity, their derivations are omitted. Noting
that η = mn and θ = γ̄

m
for MRC and SLC systems (recall from Section 3.3.6 that f

MRC,Nak
(x) =

f
SLC,Nak

(x)) and that η = mn and θ = ωγ̄

mn
for EGC systems, the approximate PDFs can be derived

using (5.74). The corresponding approximate detection probabilities then follow from Lemma 5.4.
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Table 5.1: Large mn approximations for energy detectors with diversity reception op-
erating on Nakagami-m channels.

X f̌
X,Nak

(x) P̌dX,Nak

MRC
1

γ̄

√

m

2πn
exp






−




x − nγ̄
√

2n
m γ̄





2






Q









λ − M(1 + nγ̄)
√

2M
(

1 + Mγ̄2n
2m

)









EGC
1

ωγ̄

√

mn

2π
exp






−




x − ωγ̄
√

2
mn ωγ̄





2






Q









λ − M(1 + ωγ̄)
√

2M
(

1 + Mγ̄2ω2

2mn

)









SLC
1

γ̄

√

m

2πn
exp






−




x − nγ̄
√

2n
m γ̄





2






Q









λ − Mn(1 + γ̄)
√

2Mn
(

1 + Mγ̄2

2m

)









and so the total approximation errors are bounded as

max |ǫ
mn,X,Nak

| ≤ max |ǫ
tot,X,Nak

| + max |ǫ
Γ,X,Nak

|, X ∈ {MRC, EGC, SLC}. (5.90)

Using the large mn approximations in Table 5.1, the exact and approximate detection

probabilities can be plotted as in Figure 5.14(a), while the bound in (5.90) can be used

to bound the resulting errors, as shown in Figure 5.14(b). As can be seen, the pro-

posed approximations are quite accurate across the entire range of signal to noise ratios

although, again, the error bounds tend to significantly overestimate the magnitude of

the errors.

The approximations can also be used to calculate the behaviour of the detection prob-

abilities of diversity receivers as mn becomes large. Noting the approximation

Γ(m + 1
2)

Γ(m)
≈ √

m, (5.91)

which becomes valid as m becomes large [68, Equation 5.11.12], (3.36) can be manip-

ulated to show that

ω ≈ n, (5.92)

as m becomes large. Using the appropriate formula from Table 5.1, it can then be
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(a) A plot of the exact and approximate (large mn) probabilities of detection.
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(b) A log-linear plot of the total approximation error, and its bound, for the trends shown in Fig-
ure 5.14(a). As the exact probability of detection in the EGC case was calculated numerically,
the resulting error is less smooth.

Figure 5.14: Plots of the exact and approximate probabilities of detection, and the
resulting approximation errors, for energy detectors with no diversity operating on
Nakagami-m channels. The blue trends correspond to an MRC receiver operating on a
Nakagami-m channel with m = 12.5, the red trends to an EGC receiver operating on
a Nakagami-m channel with m = 12.5, while the green trends correspond to an SLC
receiver operating on a Nakagami-m channel with m = 10. In each case, M = 105 and
the probability of false alarm is 10−4.
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Figure 5.15: A plot of the convergence of the probabilities of detection of energy de-
tectors with EGC and MRC diversity as the fading parameter increases. In each case,
M = 100000, PfX

= 10−3, γ̄ = −20 dB and n = 2. As m becomes very large, the de-
tection probabilities of both diversity receivers tend towards the detection probability
of an energy detector with MRC diversity operating on an AWGN channel.

shown that

P̌dEGC,Nak
≈ Q









λ − M(1 + nγ̄)
√

2M
(

1 + Mγ̄2n
2m

)









= P̌dMRC,Nak
. (5.93)

Thus, as m becomes large, the detection probability of energy detectors with EGC

diversity becomes approximately equal to that of energy detectors with MRC diversity9,

as can be seen in Figure 5.15. This is interesting to note as MRC systems require prior

(or estimated) knowledge of the channel coefficients, while EGC systems do not. Thus,

for sufficiently large values of m, EGC diversity performs similarly to MRC diversity,

and requires no additional information about the radio environment.

Using (5.93), the behaviour of both EGC and MRC systems as m → ∞ can be described

as

lim
m→∞ P̌dEGC,Nak

= lim
m→∞ P̌dMRC,Nak

= lim
m→∞ Q









λ − M(1 + nγ̄)
√

2M
(

1 + Mγ̄2n
2m

)









= Q

(

λ − M(1 + nγ̄)√
2M

)

= P̃dMRC
(γ̄). (5.94)

Thus, the performance of both diversity types tends towards the expected performance

9This can be demonstrated more generally by substituting (5.92) into (3.35) to give (3.33).
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of an MRC receiver operating on an AWGN channel. This behaviour can also be seen

in Figure 5.15.

5.3.4 Novel approximations for other system parameters

While the large mn approximations are useful for calculating the value of the detection

probability in situations where mn is large, they are also in a simple form, similar

to the approximations in Chapter 4. Consequently, it is possible to derive closed form

approximations for quantities such as sample complexity, minimum signal to noise ratio

and diversity gain, albeit with constrained regions of applicability.

5.3.4.1 Sample complexity

In a similar manner to Section 4.4.1, closed form approximations for the sample com-

plexity of each diversity type10 can be derived, as shown in Table 5.2. It is interesting

to note that, for each diversity type, the relationship Mγ̄2 = k is once again apparent.

As before, it should be noted that the approximations in Table 5.2 are only valid if the

total approximation error is not large. Consequently, they are of most use when the

signal to noise ratio is small, and the number of samples and the product of the fading

parameter and the number of branches, mn, are both large.

The formulae in Table 5.2 are useful in approximating the sample complexity when

the m parameter is large. For instance, if an energy detector with two branch MRC

diversity, operating on a Nakagami-m channel with m = 25, has a probability of false

alarm of 10−3 and a probability of missed detection of 10−2 at a signal to noise ratio of

−20 dB, using the appropriate formula from Table 5.2, it can be shown that M
MRC,Nak

≈
190938. Using more complex numerical methods, it can be shown that the precise

number of samples required is 187938.

5.3.4.2 Minimum signal to noise ratio

Large mn approximations for the minimum signal to noise ratio of each diversity system

can also be derived quite simply. For instance, given the sample complexity for SLC

10As the derivations of these are very similar to the derivation given in Section 4.4.1, they are
omitted to avoid repetition.
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Table 5.2: Large mn approximations for the sample complexity of energy detectors
operating on Nakagami-m channels.

X M̌
X,Nak

ND 2





















Q−1
(

P̂fND

)

−

√

1 +
Q−1(P̂fND )

2−Q−1

(

P̌dND,Nak

)2

m Q−1
(

P̌dND,Nak

)

γ̄






1 −

Q−1

(

P̌dND,Nak

)2

m



























2

MRC
2

n2





















Q−1
(

P̂fMRC

)

−

√

1 +
Q−1(P̂fMRC

)
2−Q−1

(

P̌dMRC,Nak

)2

mn Q−1
(

P̌dMRC,Nak

)

γ̄






1 −

Q−1

(

P̌dMRC,Nak

)2

mn



























2

EGC 2





















Q−1
(

P̂fEGC

)

−

√

1 +
Q−1(P̂fEGC )

2−Q−1

(

P̌dEGC,Nak

)2

mn Q−1
(

P̌dEGC,Nak

)

ωγ̄






1 −

Q−1

(

P̌dEGC,Nak

)2

mn



























2

SLC
2

n





















Q−1
(

P̂fSLC

)

−

√

1 +
Q−1(P̂fSLC

)
2−Q−1

(

P̌dSLC,Nak

)2

mn Q−1
(

P̌dSLC,Nak

)

γ̄






1 −

Q−1

(

P̌dSLC,Nak

)2

mn


























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systems in Table 5.2, it can be shown that

M =
2

n
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












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




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−
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)






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mn
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










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





, γ̌
min,SLC,Nak

, (5.95)

where γ̌
min,SLC,Nak

≈ γ
min,SLC,Nak

and γ
min,SLC,Nak

denotes the minimum signal to noise

ratio of energy detectors with SLC diversity operating on Nakagami-m channels. Ap-

proximations for the other diversity types may be derived in a similar manner, and so

are omitted for brevity.

The approximation is (5.95) can be quite useful in approximating the minimum signal

to noise ratio detectable by an SLC system. For instance, if an energy detector with

ten branch SLC diversity operates on a Nakagami-m channel with m = 5, M = 100000

and PfSLC
= PmSLC

= 10−3, (5.95) can be used to show that γ
min,SLC,Nak

≈ −19.66 dB,

while the use of a numerical method shows that the exact solution is −19.82 dB.

5.3.4.3 Diversity gain

It is also possible to derive approximations for the diversity gain of MRC, EGC and SLC

systems as mn becomes large. However, as the number of diversity branches in MRC

and EGC systems is usually not large, large mn approximations for these systems are

not of particular interest. In contrast, large numbers of branches are often required in

SLC systems, particularly when they are used to model cooperative sensing networks.

Thus, the discussion in this section focuses on SLC systems only.

Substituting (4.23) into P̌dSLC,Nak
, and solving for n, it can be shown that

n ≈











2

M





Q−1(P̂fSLC
) −

√

1 + Mγ̄2

2m Q−1(P̌dSLC,Nak
)

γ̄





2









, ň
SLC,Nak

, (5.96)

where ň
SLC,Nak

≈ n
SLC,Nak

, n
SLC,Nak

is the diversity gain for SLC systems operating on
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Figure 5.16: A plot of the exact (calculated numerically) and approximate (calculated
using (5.96)) numbers of nodes required to ensure the given probability of detection
when PfSLC

= 10−3 and M = 10000 in a Rayleigh fading channel with an average
signal to noise ratio of −20 dB .

Nakagami-m channels and the ceiling function, ⌈·⌉, has been applied to ensure that the

value of ň
SLC,Nak

is sufficiently large to guarantee that the specified operating conditions

are met. Once again, (5.96) is only accurate if the total approximation error, given by

(5.90), is small.

Figure 5.16 illustrates the exact (calculated numerically) and approximate (calculated

using (5.96)) numbers of nodes required to ensure the given probability of detection is

met when PfSLC
= 10−3 and M = 10000 in a Rayleigh fading channel with an average

signal to noise ratio of −20 dB. As can be seen, the approximation in (5.96) is quite

accurate over the entire range of detection probabilities.

5.3.5 Discussion

In this section, simple, closed form approximations for the detection probabilities of

energy detector diversity receivers were derived. These approximations are well suited

to situations where the number of samples is large, the signal to noise ratio is small and

the product of the m parameter and the number of diversity branches, mn, is large.

Thus, they naturally complement the low SNR approximations presented in Section

5.2, which become more complicated to evaluate as mn becomes large. As a further

benefit, the approximations are also valid for mn ∈ R
+.

The accuracy of the large mn approximations was verified for certain situations of

interest using numerical simulations. In each case, it was shown that the maximum

total approximation error could be bounded as the sum of the maximum absolute

error resulting from the use of the central limit theorem to approximate the detection

probability in an AWGN channel, the maximum absolute error resulting from the use
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of the low SNR approximation and the maximum absolute error resulting from the use

of the central limit theorem approximation for the PDF of the signal to noise ratio

at the output of the combiner. In many cases of interest, the derived bounds are

useful. However, in some cases, the magnitude of the actual error can be significantly

overestimated (for example, see Figure 5.13(b)). This can mostly be attributed to the

bound for max |ǫ
Γ,X,Nak

|, which decreases slowly with increasing mn and does not vary

with γ̄. However, while a tighter bound may be possible (one depending on γ̄, say),

it might not demonstrate the decrease in error with increasing values of mn, without

which the large mn approximations would have no useful region of applicability.

The simple forms of the large mn approximations enabled the derivation of novel, closed

form approximations for the sample complexity, minimum signal to noise ratio and, for

SLC systems, the diversity gain in Nakagami-m channels. These approximations are

accurate for the same conditions as the large mn approximations, and so are of most

use in situations where the number of samples and the product of the m parameter

and number of branches, mn, is large, and the signal to noise ratio is low. Numerical

examples illustrated the usefulness of the approximations in several scenarios of interest.

In each case, the accuracy of the approximations was verified through comparisons

with exact results which, unlike the approximate results, had to be calculated using

numerical methods. The approximations for SLC systems are of particular interest, as

SLC diversity is often used to model cooperative spectrum sensing networks, where the

number of nodes is typically large.

A central limit theorem approximation for the sum of i.i.d. gamma random variables

was used in deriving the new approximations. It was subsequently found that the error

resulting from the use of the approximation could be bounded using Theorem 4.1 which,

to the best of the author’s knowledge at the time of writing, is a novel result and so

should have applications in much broader fields than just spectrum sensing.

5.4 Summary

In Section 5.1, several objectives for this chapter were outlined, namely: to derive ac-

curate and computationally inexpensive approximations for the detection probabilities

of energy detector diversity receivers operating on Nakagami-m channels; to derive er-

ror bounds for these approximations, so that their regions of applicability are clearly

defined; and, finally, to derive further approximations enabling the analysis of several

other parameters of interest.

To meet the first objective, two series of approximations for the detection probability in

Nakagami-m channels were derived. The first series of approximations is appropriate

for use in situations where the number of samples is large and the signal to noise ratio

is small. As such constraints are often imposed in spectrum sensing, these approxi-
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mations are particularly suited to the analysis of such systems. Furthermore, as the

approximations are substantially less complicated to evaluate than any of the exact

methods currently available in the literature, they are equally useful for both system

analysis and low cost parameter optimisation in real time. However, the approxima-

tions become more complicated to evaluate as the product of the fading parameter

and the number of diversity branches, mn, becomes large and, furthermore, they are

valid for mn ∈ N
+ only. Thus, a second series of approximations was derived, suited

to situations where mn ∈ R
+ and is large. As these approximations involve the com-

putation of just a single Gaussian Q function, they are even simpler to evaluate than

the low SNR approximations, although the resulting approximation error is, in general,

larger. The approximations for the detection probability of EGC systems are particu-

larly noteworthy as, previously, the only known way to evaluate this quantity involved

the computation of multiple nested infinite series, which are difficult to compute, in

general. However, it is now trivial to accurately approximate the detection probability

in many scenarios of interest, regardless of the number of diversity branches.

To meet the second objective, error bounds were derived for each of the approximations

for the detection probabilities. In particular, two bounds for the error resulting from

the use of the low SNR simplification were derived, one of which is useful in situations

where the signal to noise ratio is small, which is often the case in spectrum sensing, and

the other which is useful when the number of samples is large, which is often the case

when dealing with small signal to noise ratios and/or fading channels. Error bounds

for the large mn series of detection probability approximations were also provided,

and so the region of applicability of each is clear, although the bound can sometimes

overestimate the actual error by a large amount. In deriving these bounds, it was

necessary to derive a further bound for the error resulting from the application of the

central limit theorem to sums of i.i.d. gamma random variables. As this result is quite

general, it is likely to be of further use outside the area of spectrum sensing.

The relationships between other system parameters were also investigated. In a similar

manner to AWGN channels, it was found that the product of the number of samples

and the square of the average signal to noise ratio per branch is approximately constant

when the former quantity is large and the latter is small, regardless of the diversity

type. Thus, if the sample complexity is known for a given average signal to noise

ratio, then the sample complexity can be inferred at a different average signal to noise

ratio, or vice versa. The relationship between the sample complexities and sensitivities

of different diversity architectures was also considered, and simple expressions were

derived, enabling direct comparisons to be made between the operation of each. Under

the constraint that mn is large, closed form approximations for the sample complexity

and minimum signal to noise ratio were derived. While expressions were provided for

each diversity type, it is likely that those relating to SLC diversity will be of most

interest in practice, as the number of branches in these systems can often be large.
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A closed form approximation for the diversity gain of SLC systems, valid for large

mn, was also derived. In each case, the use of approximations led to the discovery of

novel and interesting relationships that would be difficult to infer from any of the exact

formulations available in the literature.

Box and Draper [100, p. 74] wrote that all models are wrong; the practical question is

how wrong do they have to be to not be useful. In this chapter, the proposed models

are wrong, in the sense that they are approximations, and so are generally inexact.

However, by bounding the maximum error resulting from their use, the question of how

wrong they are — essentially, how useful they are — is no longer difficult to answer.

Furthermore, as the mathematical tools developed in this chapter are quite generally

applicable, it is worth considering whether they can used to simplify other problems

in a similar manner. Consequently, the following chapter concerns the extension of the

approximation based approach to Rice fading channels.
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Chapter 6

Multipath fading channel

analysis II: Rice channels

This chapter focuses on approximations for the analysis of energy detector systems

operating on Rice channels. In particular, computationally inexpensive approximations

for the detection probabilities of such systems are derived under the constraint that

the signal to noise is low or the number of samples is large, or both. These enable

the further analysis of the behaviour of the sample complexity and minimum signal to

noise ratio under similar constraints.

Under the additional restriction that the product of the fading parameter and the

number of diversity branches is large, a second series of approximations for the detection

probabilities is derived. These approximations have simple closed forms and enable the

derivation of further closed form approximations for the sample complexity, minimum

signal to noise ratio and diversity gain, in a similar manner to Section 5.3. In each case,

error bounds are derived so that the region of applicability of the approximations is

well defined. In course of the analysis, a novel theorem, describing the maximum error

resulting from the use of the central limit theorem to approximate the distribution

of noncentral chi square random variables, is derived for the special case where the

noncentrality parameter is a multiple of the number of degrees of freedom.

6.1 Motivation

While the analysis of energy detector systems operating on Nakagami-m channels has

received much attention in the literature, the analysis of their operation on Rice chan-

nels has received a far less extensive treatment. In the brief review conducted in

Chapter 3 it was shown that, while four distinct, exact expressions for the detection

probability are available in the no diversity case, only two expressions describing MRC

systems are available, just one in the case of SLC systems, and none in case of EGC
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systems1. Furthermore, as Digham et al.’s expression [11] for the detection probability

in the no diversity case applies when M = 2 only, it is of limited use in practice. Of the

remaining expressions, those derived by Herath et al. [53, 55] require the evaluation of

derivatives on the order of u = M
2 , and so are complicated to evaluate when the number

of samples is large. Consequently, the only expressions likely to be of use in practice

are those of Annamalai et al. [57–59] and Sun [61, 62]. However, as in the Nakagami-

m channel case, these consist of infinite series, and require large numbers of terms to

be evaluated in order to give an accurate result (recall Figure 3.4(d)). Thus, there is

some motivation to consider less computationally intensive methods for evaluating the

detection probability.

In the previous chapter, a series of useful approximations for the analysis of energy de-

tector systems operating on Nakagami-m channels were derived. These approximations

are not computationally intensive to evaluate, and so provide a simple and accurate

alternative to the available exact methods. Furthermore, as the approximations have

novel forms, they enable the derivation and inference of certain behaviours of various

system parameters which, to the best of the author’s knowledge, could not have been

readily deduced from the available exact methods. It is natural, then, to ask whether

a similar approach might yield equally interesting results in the case of Rice channels.

As before, however, it must be ensured that the error resulting from the use of these

approximations can be described easily, so that the region of applicability of each is

clearly defined.

Therefore, the aims of this chapter are:

1. To derive accurate and computationally inexpensive approximations for the de-

tection probabilities of energy detector systems operating on Rice channels.

2. To derive bounds on the error resulting from the use of these approximations, so

that their regions of applicability are well defined.

3. To derive further approximations for the sample complexity, minimum signal

to noise ratio and diversity gain, enabling a complete description of the sensor

system.

As, to the best of the author’s knowledge at the time of writing, such an approach has

not been published before, the findings in this chapter are entirely novel.

6.2 Novel approximations for small signal to noise ratios

Approximations based on the low SNR approximation made in Section 5.2 shall be

considered first. The use of the low SNR approximation is necessary as, to the best of

1No exact PDF for the signal to noise ratio at the output of an equal gain combiner is currently
available.
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the author’s knowledge at the time of writing, the integral in (5.5) has no closed from

solution when f
X,Y

(x) is given by any of the Rice channel PDFs discussed in Section

3.3. Consequently, the following analysis will make use of Lemmas 5.1, 5.2 and 5.3 in

a similar manner to Chapter 5, but with some subtle differences, due to the variation

in the formulations of the PDFs involved.

6.2.1 Receivers with no diversity

6.2.1.1 A novel approximation for the probability of detection

The probability of detection of energy detectors with no diversity operating on Rice

channels may be approximated by substituting (3.30) into (5.8), that is

PdND,Rice
≈ P̃dND,Rice

=

∫ ∞

0
Q

(

λ − M(1 + x)√
2M

)(

K + 1

γ̄

)

e
−K− (K+1)x

γ̄

× I0

(

2

√

K(K + 1)x

γ̄

)

dx, (6.1)

where In(z) is the modified Bessel function of the first kind, and is given [68, Equation

10.25.2] by

In(z) =

(

z

2

)n ∞
∑

l=0

( z
2

)2l

l! Γ(n + l + 1)
. (6.2)

Substituting (6.2) into (6.1), it can be shown that

P̃dND,Rice
= e−K

∞
∑

l=0

K l

l!

1

Γ(l + 1)

∫ ∞

0
Q

(
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2M

)

e
− (K+1)x

γ̄

(

K + 1

γ̄

)l+1

xldx

= e−K
∞
∑

l=0

K l

l!
Fl+1





λ − M√
2M

,

√

M

2
,
K + 1

γ̄



 , (6.3)

where Fk(a, b, c) is as defined in (5.11), and so Lemma 5.1 can be used to show that

P̃dND,Rice
= P̂fND

+
1

2
exp



−
2(K+1)

γ̄√
M

(

λ − M − K+1
γ̄

2
√

M

)





× e−K
∞
∑

l=0

K l

l!

l
∑

p=0





2(K+1)
γ̄√
M





p

ip erfc



−




λ − M − 2(K+1)
γ̄

2
√

M







 . (6.4)

It interesting to note that, unlike (5.15), the approximation in (6.4) places no restriction

on the values of the fading parameter. Thus, (6.4) is valid for K ∈ R
+
0 .

Using (6.4), it is possible to derive an approximation for the detection probability of an

energy detector operating on a Rayleigh faded channel. As discussed in Section 2.2.4,
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the Rice channel is equivalent to the Rayleigh channel when the fading parameter

is equal to zero. Therefore, the detection probability in a Rayleigh channel can be

approximated as

PdND,Ray
≈ P̃dND,Rice

∣

∣

∣

K=0

≈ P̂fND
+

1

2
exp

[

−
2
γ̄√
M

(

λ − M − 1
γ̄

2
√

M

)]

erfc

[

−
(

λ − M − 2
γ̄

2
√

M

)]

, (6.5)

which agrees with the approximation given in (5.16), that is

PdND,Ray
≈ P̃dND,Rice

∣

∣

∣

K=0
= P̃dND,Nak

∣

∣

∣

m=1
= P̃dND,Ray

. (6.6)

Unfortunately, ∀ K > 0, (6.4) has the form of an infinite series, which must be truncated

in order for the detection probability to be computed. If the series is truncated at the

point l = N , then (6.4) can be written as

P̃dND,Rice
= P̂fND

+
1

2
exp



−
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+ ǫ
tr,ND

(N), (6.7)

where ǫ
tr,X

(N) represents the truncation error for the diversity type X and, in the no

diversity case, has the form

ǫ
tr,ND

(N) = e−K
∞
∑

l=N+1

K l

l!



Fl+1


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λ − M√
2M

,

√

M

2
,

K + 1

γ̄



− P̂fND



 , (6.8)

where, for convenience, the notation has reverted to that of (6.3), prior to the applica-

tion of Lemma 5.1.

Recalling the definition of Fk(a, b, c) in (5.11), the first mean value theorem for infinite

integrals [69, Equation 12.113] can be used to show that

Fk(a, b, c) = Q(a − bξ) × 1

Γ(k)

∫ ∞

0
e−cxckxk−1dx

= Q(a − bξ), (6.9)

for some 0 ≤ ξ ≤ ∞, if c > 0 and k ≥ 1. Consequently, if b > 0, Fk(a, b, c) can be

bounded as

Fk(a, b, c) ≤ max
ξ≥0

[Q(a − bξ)] = 1. (6.10)
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Substituting (6.10) into (6.8), the truncation error can be bounded as

ǫ
tr,ND

(N) ≤ e−K
∞
∑

l=N+1

K l

l!

(

1 − P̂fND

)

=

(

1 − Γ(N + 1, K)

Γ(N + 1)

)

(

1 − P̂fND

)

, (6.11)

where Γ(n,z)
Γ(n) denotes the regularised incomplete gamma function of order n.

The bound in (6.11) is useful in determining the maximum error resulting from the

truncation of (6.4) at a given point. Yet, determining the value of N required to ensure a

specified truncation error is complicated, as the regularised incomplete gamma function

has no known closed form inversion for its order parameter. However, the problem can

be simplified by noting that

1 − Γ(N + 1, K)

Γ(N + 1)
< 1 − Q

(

K − (N + 1)√
N + 1

)

, (6.12)

when Γ(N+1,K)
Γ(N+1) is large. Conveniently, this condition corresponds precisely to situations

where the truncation error is small, and so (6.11) can be approximated, for small values

of ǫ
tr,ND

(N), as

ǫ
tr,ND

(N) <

[

1 − Q

(

K − (N + 1)√
N + 1

)]

(

1 − P̂fND

)

. (6.13)

It is interesting to note that, as N becomes large,

Γ(N + 1, K)

Γ(N + 1)
≈ Q

(

K − (N + 1)√
N + 1

)

, (6.14)

and so (6.13) becomes equivalent to (6.11) under the same condition2.

Using (6.13), it is not difficult to show that the value of N required to ensure that

ǫ
tr,ND

(N) ≤ ǫ0(1 − P̂fND
) , max |ǫ

tr,ND
| is given by

N =









K − 1 − Q−1(1 − ǫ0)√
2





√

(

Q−1(1 − ǫ0)√
2

)2

+ 2K − Q−1(1 − ǫ0)√
2













. (6.15)

While the inverse of the Gaussian Q function does not have an exact closed form itself,

it is not difficult to accurately compute using a simple power series expansion [68,

Section 7.17]. Furthermore, as the Gaussian Q function is a single variable function,

while the regularised incomplete gamma function depends on two distinct parameters,

look up tables for the inverse of the former require fewer entries than for the inverse

of the latter. Thus, for certain applications, particularly where power or computation

time is limited, the use of (6.15) may be preferable to (6.11).

However, while (6.15) is useful when K > 0, it does not account for the K = 0 case,

2This can be verified by noting that the error resulting from the approximation in (6.14) is equivalent
to ǫ

CLT
(N + 1, 0, K). The result then follows from an application of Theorem 4.1.
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Figure 6.1: A log-log plot of the truncation point required to ensure that ǫ
tr,ND

(N) ≤
ǫ0(1 − P̂fND

). The exact results were calculated from (6.11) using a numerical root
finding method, while the approximate results were computed directly from (6.16).

where no truncation is required (recall (6.5)). Consequently, this special case will be

accounted for using the more general rule

N =











0, K = 0,
⌈

K − 1 − Q−1(1−ǫ0)√
2

[

√

(

Q−1(1−ǫ0)√
2

)2
+ 2K − Q−1(1−ǫ0)√

2

]⌉

, K > 0.
(6.16)

Figure 6.1 illustrates the exact and approximate number of terms required to ensure

that ǫ
tr,ND

(N) ≤ ǫ0(1 − P̂fND
), for different values of ǫ0. As can be seen, (6.16) bounds

the required number of terms over the entire range of values of K quite well. In

particular, for K > 1, the difference between the exact and the approximate methods

is small, and decreases as N increases, as expected; for K ≤ 1, the difference is larger,

but the total number of terms required is small, and so the overestimation resulting

from the use of (6.16) should not be problematic in practice.

Using, (6.16) it is possible to approximate the value of N required to ensure an arbitrary

truncation error. For instance, if ǫ
tr,ND

(N) ≤ max |ǫ
tr,ND

|, then ǫ0 can be calculated as

ǫ0 =
max |ǫ

tr,ND
|

1 − P̂fND

, (6.17)

and so, substituting (6.17) into (6.16), N can be calculated for arbitrary system pa-

rameters.
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6.2.1.2 Quantifying the approximation error

If the truncation error is sufficiently small, then (6.7) may be accurately approximated

as

P̃dND,Rice
≈ P̂fND

+
1

2
exp



−
2(K+1)

γ̄√
M

(

λ − M − K+1
γ̄

2
√

M

)





× e−K
N
∑

l=0

K l

l!

l
∑

p=0





2(K+1)
γ̄√
M





p

ip erfc



−




λ − M − 2(K+1)
γ̄

2
√

M







 . (6.18)

In a similar fashion to (5.20), it can be shown that the total error resulting from the

use of (6.18), ǫ
tot,ND,Rice

, is bounded as

|ǫ
tot,ND,Rice

| ≤ max |ǫ
CLT,ND

| + |ǫ
SNR,ND,Rice

| + ǫ
tr,ND

(N). (6.19)

Using Lemma 5.2, |ǫ
SNR,ND,Rice

| can be bounded as

|ǫ
SNR,ND,Rice

| ≤ 1√
2πe

∫ ∞

−∞
x f

ND,Rice
(x) dx

≤ 1√
2πe

∫ ∞

0
x

(

K + 1

γ̄

)

e
−K− (K+1)x

γ̄ I0

(

2

√

K(K + 1)x

γ̄

)

dx. (6.20)

Using the substitution u = 2(K+1)x
γ̄ , the right hand side of the inequality in (6.20) can

be simplified as

1√
2πe

∫ ∞

0
x

(

K + 1

γ̄

)

e
−K− (K+1)x

γ̄ I0

(

2

√

K(K + 1)x

γ̄

)

dx

=
1√
2πe

γ̄

2(K + 1)

∫ ∞

0

u

2
e−K− u

2 I0

(√
2Ku

)

du, (6.21)

As the integral on the right hand side of (6.21) is equivalent to the mean of the noncen-

tral chi square distribution with two degrees of freedom and noncentrality parameter

2K, (6.21) can be simplified to

|ǫ
SNR,ND,Rice

| ≤ γ̄√
2πe

, (6.22)

where the fact that the mean of the distribution is 2(K + 1) has been used to simplify

the result.

It is also possible to bound |ǫ
SNR,ND,Rice

| using Lemma 5.3 as

|ǫ
SNR,ND,Rice

| / 1√
Mπ

max
x

(

x f
ND,Rice

(x)
)

. (6.23)

Using (3.30), and expanding the modified Bessel function of the first kind therein using
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(6.2), the product x f
ND,Rice

(x) can be written as

x f
ND,Rice

(x) = e−K
∞
∑

l=0

K l

l!

(

(l + 1)γ̄

K + 1

)

[

1

Γ(l + 2)

(

K + 1

γ̄

)l+2

xl+1e
− (K+1)x

γ̄

]

. (6.24)

In (6.24), the term in the square brackets is equivalent to the probability density func-

tion of the gamma distribution, with shape parameter, l+2, and scale parameter, γ̄
K+1 .

As the gamma distribution PDF is maximised at its mode, in this case when x = (l+1)γ̄
K+1 ,

it is not difficult to show that

max
x

[

1

Γ(l + 2)

(

K + 1

γ̄

)l+2

xl+1e
− (K+1)x

γ̄

]

=

(

K + 1

γ̄

)

(

l+1
e

)l+1

Γ(l + 2)
. (6.25)

Using (6.25), it can be shown that

max
x

(

x f
ND,Rice

(x)
)

= e−K
∞
∑

l=0

K l

l!

(

(l + 1)γ̄

K + 1

)

× max
x

[

1

Γ(l + 2)

(

K + 1

γ̄

)l+2

xl+1e
− (K+1)x

γ̄

]

< e−K
∞
∑

l=0

K l

l!







(

l+1
e

)l+1

Γ(l + 1)







<
e−K

√
2π

∞
∑

l=0

K l

l!

√
l + 1, (6.26)

where Stirling’s inequality (recall (5.28)) has been used to simplify the result. Unfortu-

nately, to the best of the author’s knowledge at the time of writing, the series in (6.26)

has no closed form. However, Jensen’s inequality [101, Equation 3.8.2] can be used to

further bound the result.

Jensen’s inequality: If φ(x) is a concave function and
∑∞

i=0 pi = 1, then

∞
∑

i=0

piφ(xi) ≤ φ

( ∞
∑

i=0

pixi

)

. (6.27)

Noting that φ(x) =
√

x is a concave function and that, by definition,

e−x
∞
∑

i=0

xi

i!
= 1, ∀ x ≥ 0, (6.28)

Jensen’s inequality can be applied to (6.26) to show that

max
x

(

x f
ND,Rice

(x)
)

<
1√
2π

√

√

√

√e−K
∞
∑

l=0

K l

l!
(l + 1) =

√

K + 1

2π
, (6.29)
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and so (6.23) can be simplified to

|ǫ
SNR,ND,Rice

| / 1

π

√

K + 1

2M
. (6.30)

As before, both (6.22) and (6.30) can be summarised using the single expression

max |ǫ
SNR,ND,Rice

| = min





γ̄√
2πe

,
1

π

√

K + 1

2M



 , (6.31)

where max |ǫ
SNR,ND,Rice

| ≥ |ǫ
SNR,ND,Rice

|. Consequently, the total approximation error

can be bounded as

max |ǫ
tot,ND,Rice

| = max |ǫ
CLT,ND

| + max |ǫ
SNR,ND,Rice

| + max |ǫ
tr,ND

|, (6.32)

where max |ǫ
tot,ND,Rice

| ≥ |ǫ
tot,ND,Rice

|. Figure 6.2(a) illustrates the exact (calcu-

lated numerically) and approximate (calculated using (6.18) with N chosen so that

ǫ
tr,ND

(N) ≤ 10−6) probabilities of detection for some typical scenarios, while Figure

6.2(b) illustrates the resulting errors and their bounds, calculated using (6.32). As with

the approximations for Nakagami-m channels, the bound for the total error tends to

overestimate the actual total error by a greater amount when the signal to noise ratio is

large. However, as small numbers of samples are usually sufficient to guarantee reliable

sensing when the signal to noise is large, the exact expressions listed in Table 3.2 should

not be difficult to evaluate in such situations, and so the use of approximations can

be avoided altogether. Thus, while a further bound may better describe the behaviour

of the error when the signal to noise ratio is large, it is likely to be of limited use in

practice.

6.2.1.3 Novel approximations for other system parameters

Substituting (5.32) into (6.4), it can be shown that

P̃dND,Rice
= P̂fND

+
1

2
exp

[

−2(K + 1)
√

Mγ̄2

(

Q−1(P̂fND
)√

2
− K + 1

2
√

Mγ̄2

)]

e−K
∞
∑

l=0

K l

l!

×
l
∑

p=0

(

2(K + 1)
√

Mγ̄2

)p

ip erfc

[

−
(

Q−1(P̂fND
)√

2
− K + 1
√

Mγ̄2

)]

. (6.33)

Thus, for given values of P̃dND,Rice
, P̂fND

, and K, the product Mγ̄2 must be constant,

and so it can be inferred that the relationships given in (5.36) and (5.37) also hold

for energy detectors with no diversity operating on Rice channels, provided that the

approximation error is not large.

As in the AWGN and Nakagami-m cases, this relation can be quite useful in practice.

137



6. Multipath fading channel analysis II:

Rice channels

6.2 Novel approximations for small signal to

noise ratios

-30 -20 -10 0 10
0.0

0.2

0.4

0.6

0.8

1.0

Exact

Approximate

Exact

Approximate

Exact

Approximate

γ̄ (dB)

P
d

N
D

(a) A plot of the exact and approximate probabilities of detection.

-30 -20 -10 0 10
1´10-4

5´10-4

0.001

0.005

0.010

0.050

0.100

Exact

Bound

Exact

Bound

Exact

Bound

γ̄ (dB)

|ǫ t
o

t
,
N

D
,
N

a
k
|

(b) A log-linear plot of the total approximation error, and its bound, for the trends shown in
Figure 6.2(a).

Figure 6.2: Plots of the exact and approximate probabilities of detection, and the
resulting approximation errors, for energy detectors with no diversity operating on Rice
fading channels. The blue trends correspond to the scenario where K = 0, M = 1000
and P̂fND

= 0.1, the red trends to the scenario where K = 1.1, M = 10000 and
P̂fND

= 0.05, and the green trends to the scenario where K = 5, M = 100000 and
P̂fND

= 0.01.
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For instance, if an energy detector with no diversity, operating on a Rice faded channel

with K = 1.1, requires 10000 samples to ensure that P̃dND,Rice
= 0.9 and P̂fND

= 0.05 at

a signal to noise ratio of −7.78 dB, (5.36) can be used to show that, to ensure the same

reliability at a signal to noise ratio of −15.56 dB, 359895 samples are required. Using

a numerical method, it can be shown that the precise number of additional samples

required is 355210. Thus, the approximation overestimates the required number of

samples by just 1.32%.

6.2.2 Receivers with MRC diversity

For maximal ratio combiner systems, the probability of detection in Rice channels can

be approximated by substituting (3.34) into (5.8) to give

PdMRC,Rice
≈ P̃dMRC,Rice

=

∫ ∞

0
Q

(

λ − M(1 + x)√
2M

)(

K + 1

γ̄

)
n+1

2
(

x

Kn

)
n−1

2

× e
−Kn− (K+1)x

γ̄ In−1

(

2

√

Kn(K + 1)x

γ̄

)

dx. (6.34)

Expanding the modified Bessel function of the first kind using (6.2), it can be shown

that (6.34) simplifies to

P̃dMRC,Rice
= e−Kn

∞
∑

l=0

(Kn)l

l!
Fl+n





λ − M√
2M

,

√

M

2
,
K + 1

γ̄





= P̂fMRC
+

1

2
exp



−
2(K+1)

γ̄√
M

(

λ − M − K+1
γ̄

2
√

M

)



 e−Kn
∞
∑

l=0

(Kn)l

l!

×
l+n−1
∑

p=0





2(K+1)
γ̄√
M





p

ip erfc



−




λ − M − 2(K+1)
γ̄

2
√

M







 . (6.35)

As the use of Lemma 5.1 in this instance does not place restrictions on the value of K,

(6.35) is valid for K ∈ R
+
0 .

In a similar manner to (6.33), (6.35) can be used to show that the product Mγ̄2 is

constant for given values of P̃dMRC,Rice
, P̂fMRC

, K and n, and so it can once again be

inferred that the relationships in (5.36) and (5.37) hold, as long as the error resulting

from the use of (6.35) is not large.

However, as (6.35) is in the form of an infinite series, it must be truncated before
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computation. If the series is truncated at the point l = N , then the approximation

P̃dMRC,Rice
≈ P̂fMRC

+
1

2
exp



−
2(K+1)

γ̄√
M

(

λ − M − K+1
γ̄

2
√

M

)



 e−Kn
N
∑

l=0

(Kn)l

l!

×
l+n−1
∑

p=0





2(K+1)
γ̄√
M





p

ip erfc



−




λ − M − 2(K+1)
γ̄

2
√

M







 , (6.36)

can be made, provided that the truncation error, ǫ
tr,MRC

(N), is not large.

In a similar manner to (6.8), it can be shown that

ǫ
tr,MRC

(N) = e−Kn
∞
∑

l=N+1

(Kn)l

l!



Fl+n





λ − M√
2M

,

√

M

2
,
K + 1

γ̄



− P̂fMRC



 , (6.37)

and so it follows that

ǫ
tr,MRC

(N) ≤
(

1 − Γ(N + 1, Kn)

Γ(N + 1)

)

(1 − P̂fMRC
) , max |ǫ

tr,MRC
|. (6.38)

Again, while (6.38) is useful for evaluating the maximum truncation error, numerical

methods are required in order to solve for the number of terms necessary to ensure that

ǫ
tr,MRC

(N) ≤ ǫ0(1 − P̂fMRC
). However, in a similar manner to (6.16), the number of

terms required can be approximated as

N =











0, K = 0,
⌈

Kn − 1 − Q−1(1−ǫ0)√
2

[

√

(

Q−1(1−ǫ0)√
2

)2
+ 2Kn − Q−1(1−ǫ0)√

2

]⌉

, K > 0.
(6.39)

Again, it is not difficult to show that (6.39) becomes equivalent to the numerical solution

of (6.38) as N becomes large. Also, it is interesting to note that, where K > 0,

more terms are required in order to ensure the same truncation error as in the no

diversity case. This is a consequence of (6.38), which is equivalent to (6.11) only when

n = 1. Thus, (6.36) always requires a larger value of N than (6.18) to ensure the same

truncation error.

Figure 6.3(a) illustrates the exact (calculated numerically) and approximate (calculated

using (6.36) with N chosen so that ǫ
tr,MRC

(N) ≤ 10−5) probabilities of detection for a

typical two branch MRC receiver sensing scenario. As can be seen, the approximation

is quite accurate over the entire range of signal to noise ratio values.

Noting that the mean of the distribution specified by f
MRC,Rice

(x) is 2n(K + 1), the

absolute value of the low SNR approximation error can be bounded, in a similar manner

to (6.22), as

|ǫ
SNR,MRC,Rice

| ≤ nγ̄√
2πe

, (6.40)
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while Lemma 5.3 provides the alternative bound

|ǫ
SNR,MRC,Rice

| / 1√
Mπ

max
x

(

x f
MRC,Rice

(x)
)

. (6.41)

Recalling (6.29), it is not difficult to show that

max
x

(

x f
MRC,Rice

(x)
)

= e−Kn
∞
∑

l=0

(Kn)l

l!

(

(l + n)γ̄

K + 1

)

× max
x

[

xl+n

Γ(l + n + 1)

(

K + 1

γ̄

)l+n+1

e
− (K+1)x

γ̄

]

<
e−Kn

√
2π

∞
∑

l=0

(Kn)l

l!

√
l + n. (6.42)

Again, to the best of the author’s knowledge at the time of writing, the infinite series

in (6.42) has no closed form. However, Jensen’s inequality can be applied to show that

max
x

(

x f
MRC,Rice

(x)
)

<
1√
2π

√

√

√

√e−Kn
∞
∑

l=0

(Kn)l

l!
(l + n) =

√

(K + 1)n

2π
, (6.43)

and so (6.41) can be simplified to

|ǫ
SNR,MRC,Rice

| / 1

π

√

(K + 1)n

2M
. (6.44)

As before, both (6.40) and (6.44) can be described using a single expression, that is

max |ǫ
SNR,MRC,Rice

| = min





nγ̄√
2πe

,
1

π

√

(K + 1)n

2M



 , (6.45)

where max |ǫ
SNR,MRC,Rice

| ≥ |ǫ
SNR,MRC,Rice

|.

Consequently, the total error resulting from the use of (6.36) can be bounded as

max |ǫ
tot,MRC,Rice

| = max |ǫ
CLT,MRC

| + max |ǫ
SNR,MRC,Rice

| + max |ǫ
tr,MRC

|, (6.46)

where max |ǫ
tot,MRC,Rice

| ≥ |ǫ
tot,MRC,Rice

|. As can be seen in Figure 6.3(b), (6.46) de-

scribes the error quite well over the entire range of signal to noise ratios.
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(b) A log-linear plot of the total approximation error, and its bound, for the trends shown in
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Figure 6.3: Plots of the exact and approximate probabilities of detection, and the
resulting approximation errors, for energy detector diversity receivers operating on Rice
fading channels. The blue trends correspond to a two branch MRC receiver operating
on a Rice channel with K = 0.5, M = 1000 and P̂fMRC

= 0.1; the red trends to a
three branch EGC receiver operating on a Rice channel with K = 1.5, M = 10000 and
P̂fEGC

= 0.05; and the green trends to a five branch SLC receiver operating on a Rice
channel with K = 2, M = 100000 and P̂fSLC

= 0.1.
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6.2.3 Receivers with EGC diversity

For equal gain combiner systems, the probability of detection in Rice channels can be

approximated by substituting (3.37) into (5.8) to give

P̃dEGC,Rice
=

∫ ∞

0
Q

(

λ − M(1 + x)√
2M

)(

K + 1

bγ̄

)
n+1

2
(

ax

Kn

)
n−1

2

e
− Kn

a
− (K+1)x

bγ̄

× In−1

(

2

√

Kn(K + 1)x

abγ̄

)

dx

= e− Kn
a

∞
∑

l=0

(

Kn
a

)l

l!
Fl+n





λ − M√
2M

,

√

M

2
,
K + 1

bγ̄





≈ P̂fEGC
+

1

2
exp



−
2(K+1)

bγ̄√
M

(

λ − M − K+1
bγ̄

2
√

M

)



 e− Kn
a

N
∑

l=0

(

Kn
a

)l

l!

×
l+n−1
∑

p=0





2(K+1)
bγ̄√
M





p

ip erfc



−




λ − M − 2(K+1)
bγ̄

2
√

M







 , (6.47)

where the resulting infinite series has been truncated at the point l = N , in a similar

manner to (6.36). Again, as the use of Lemma 5.1 has not placed any restrictions on

the values of K, (6.47) is valid for K ∈ R
+
0 .

Using (6.47), it can be shown that (5.36) and (5.37) also hold in the case of EGC

systems operating on Rice channels, provided that the total approximation error is

not large. This is an interesting result because it holds regardless of the available

values of the constants a and b which, as can be seen in Table 3.5, are limited to

K ∈ {1 dB, 3 dB, 5 dB, 7 dB} and n ∈ [2, 8].

As before, it is not difficult to show that the error resulting from the truncation of the

series in (6.47) is bounded as

ǫ
tr,EGC

(N) ≤
(

1 − Γ(N + 1, Kn
a )

Γ(N + 1)

)

(1 − P̂fEGC
) , max |ǫ

tr,EGC
|, (6.48)

and so the number of terms required to ensure that ǫ
tr,EGC

(N) ≤ ǫ0(1 − P̂fEGC
) can be

approximated, for small ǫ0, as

N =











0, K = 0,
⌈

Kn
a − 1 − Q−1(1−ǫ0)√

2

[

√

(

Q−1(1−ǫ0)√
2

)2
+ 2Kn

a − Q−1(1−ǫ0)√
2

]⌉

, K > 0.
(6.49)

Again, as N becomes larger, the value given by (6.49) becomes closer to the value

resulting from the numerical solution of (6.48).
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Figure 6.3(a) illustrates the exact (calculated numerically) and approximate (calculated

using (6.47) with N chosen so that ǫ
tr,EGC

(N) ≤ 10−4) probabilities of detection for a

typical three branch EGC receiver sensing scenario. As K = 1.5, the constants a and

b are not given by Table 3.5. However, linear interpolation can be used to find the

appropriate values. As can be seen, the approximation is quite accurate over the entire

range of signal to noise ratio values, despite the use of interpolation to find appropriate

values for a and b.

In deriving (6.47), Hu and Beaulieu’s approximation for the probability density func-

tion of the signal to noise ratio at the equal gain combiner output [71] was used, and

so the total approximation error cannot be bounded as in (6.46). Recalling (5.49),

however, it is not difficult to show that

|ǫ
tot,EGC,Rice

| ≤ max |ǫ
CLT,EGC

| + |ǫ
SNR,EGC,Rice

| + |ǫ
P DF,EGC,Rice

| + ǫ
tr,EGC

(N), (6.50)

where |ǫ
P DF,EGC,Rice

| is given by

|ǫ
P DF,EGC,Rice

| =

∣

∣

∣

∣

∫ ∞

−∞
PdEGC

(x)
(

f
EGC,Rice

(x) − f̂
EGC,Rice

(x)
)

dx

∣

∣

∣

∣

. (6.51)

Noting that the mean of the distribution defined by f̂
EGC,Rice

(x) is 2n(K
a + 1), the

absolute value of the low SNR approximation error can be bounded as

|ǫ
SNR,EGC,Rice

| ≤
(

K
a + 1

K + 1

)

nbγ̄√
2πe

, (6.52)

and, in a similar manner to (6.42), it can be shown that

max
x

(

xf̂
EGC,Rice

(x)
)

<

√

(K
a + 1)n

2π
, (6.53)

and so an alternative bound for the low SNR approximation error can be derived, using

Lemma 5.3, as

|ǫ
SNR,EGC,Rice

| / 1

π

√

(K
a + 1)n

2M
. (6.54)

As before, both (6.52) and (6.54) can be described using the single expression

max |ǫ
SNR,EGC,Rice

| = min





(

K
a + 1

K + 1

)

nbγ̄√
2πe

,
1

π

√

(K
a + 1)n

2M



 , (6.55)

where max |ǫ
SNR,EGC,Rice

| ≥ |ǫ
SNR,EGC,Rice

|.

As in (5.54), the error resulting from the use of Hu and Beaulieu’s PDF approximation
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Figure 6.4: Plots of the error resulting from the use of Hu and Beaulieu’s approximation
for the probability density function of the signal to noise ratio at the output of an equal
gain combiner operating on a Rice channel.

can be bounded using the second mean value theorem for infinite integrals, that is

max |ǫ
P DF,EGC,Rice

| = max
ζ

∣

∣

∣

∣

∫ ∞

ζ

(

f
EGC,Rice

(x) − f̂
EGC,Rice

(x)
)

dx

∣

∣

∣

∣

, (6.56)

where max |ǫ
P DF,EGC,Rice

| ≥ |ǫ
P DF,EGC,Rice

|. However, as f
EGC,Rice

(x) is not available in

closed form, (6.56) must be computed numerically. Figure 6.4 illustrates the values of

max |ǫ
P DF,EGC,Rice

| for various combinations of K and n. As can be seen, the resulting

errors are quite small.

Using (6.50), (6.55) and (6.56), the total error resulting from the use of (6.47) can be

bounded as

max |ǫ
tot,EGC,Rice

| = max |ǫ
CLT,EGC

| + max |ǫ
SNR,EGC,Rice

|
+ max |ǫ

P DF,EGC,Rice
| + max |ǫ

tr,EGC
|, (6.57)

where max |ǫ
tot,EGC,Rice

| ≥ |ǫ
tot,EGC,Rice

|. Figure 6.3(b) illustrates the use of (6.57) in

bounding the error resulting from the use of approximations in Figure 6.3(a). In this

case, as (6.57) relies on the bound in (6.56), it must also be computed numerically.

Still, as can be seen, the bound describes the total error well across the entire range of

signal to noise ratio values.

As Table 3.5 defines the values of a and b for K ∈ {1 dB, 3 dB, 5 dB, 7 dB}, interpo-

lation is only possible when the value of the fading parameter falls within this range.

Consequently, if K < 1 dB or K > 7 dB, extrapolation must be relied upon, and there

can be significant variation in the magnitudes of the results. This can be seen quite

clearly in Figures 6.5(a) and 6.5(b), where the interpolated and extrapolated values of

the parameters have been plotted as functions of the fading parameter. The problem
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is less severe for K < 1 dB, as the possible range of values of the fading parameter

is limited to K ∈ [0, 1.25), and so the magnitudes of the extrapolated constants are

bounded3. However, for K > 7 dB, and particularly as K becomes large, extrapolation

can result in poor approximations for the values of the constants, and so ǫ
P DF,EGC,Rice

becomes large.

One might expect that the problem can be solved by fitting additional values of a and

b for K < 1 dB and K > 7 dB. However, such a look up table could only describe a

finite subset of the total range of possible values, as the fading parameter has no upper

bound. Furthermore, as Hu and Beaulieu only consider EGC systems with up to eight

diversity branches, extrapolation of the constants is also required for n > 8, with

similar consequences. While many EGC systems have fewer than eight branches, it is

possible that technological advances, decreasing implementation costs and/or demand

may result in systems with larger numbers of branches in the future, and so the total

number of points in any useful look up table would be very large.

The fitted parameters in Hu and Beaulieu’s approximation also hinder comparisons

between EGC and MRC systems in the manner of (5.57). Consider the scenario where

an energy detector with MRC diversity operates on a Rice channel with K = K
MRC

,

while an energy detector with EGC diversity operates on a Rice channel with K =

K
EGC

= aK
MRC

. Let the MRC system require M = M
MRC,Rice

samples to ensure

certain decision probabilities are met at an average signal to noise ratio of γ̄
MRC,Rice

, and

the EGC system require M = M
EGC,Rice

samples to meet the same decision probabilities

at an average signal to noise ratio of γ̄
EGC,Rice

. Equating (6.35) and (6.47), it is not

difficult to show that these conditions require that

M
EGC,Rice

γ̄2
EGC,Rice

≈
[

1

b

(

K
EGC

+ 1

K
MRC

+ 1

)]2

M
MRC,Rice

γ̄2
MRC,Rice

, (6.58)

provided that the total approximation errors resulting from the use of (6.35) and (6.47)

are not large. However, using (6.58), it is only possible to compare the sample com-

plexities of the architectures when they operate on Rice channels with differing fading

parameters, and only then when the fading parameters are related as K
EGC

= aK
MRC

.

Consequently, the result is likely to be of limited use in practice.

A preferable outcome, then, would be the development of a PDF approximation similar

to (3.35) or, better again, the development of an exact closed form PDF, either of

which would enable the derivation of an approximation for the detection probability

free from fitted parameters. However, to the best of the author’s knowledge at the

time of writing, only approximate PDFs based on fitted parameters are available in

the literature and, of these, Hu and Beaulieu’s relies on the fewest number of fitted

parameters. Furthermore, as an exact PDF has thus far eluded discovery in the simpler

3It is worth recalling that, when K = 0, the Rice channel becomes equivalent to a Rayleigh channel,
and so (5.48) can be used instead of (6.47) in this instance.
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Figure 6.5: Plots of the constants a and b, interpolated and extrapolated from the data
in Table 3.5 (the values of K shown have been converted from their decibel units). The
dashed lines indicate the range of values of K for which the data in in Table 3.5 is
defined, while the point markers indicate the value of each data point therein.
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case of the Nakagami-m channel (recall that Dharmawansa et al.’s expression for the

PDF relies on a complicated series of nested infinite summations), it may continue to

do so in the case of Rice channels for some time to come. Nevertheless, the approach

outlined here is, in many cases of interest, accurate and useful and, to the best of

the author’s knowledge, the only manner in which the detection probability of energy

detectors with EGC diversity operating on Rice channels can be computed without the

use of numerical methods.

6.2.4 Receivers with SLC diversity

Finally, substituting (3.34) into (5.8), the probability of detection of square law com-

biner systems operating on Rice channels can be approximated as

P̃dSLC,Rice
=

∫ ∞

0
Q

(

λ − M(n + x)√
2Mn

)(

K + 1

γ̄

)
n+1

2
(

x

Kn

)
n−1

2

× e
−Kn− (K+1)x

γ̄ In−1

(

2

√

Kn(K + 1)x

γ̄

)

dx

= e−Kn
∞
∑

l=0

(Kn)l

l!
Fn+l





λ − Mn√
2Mn

,

√

M

2n
,
K + 1

γ̄





≈ P̂fSLC
+

1

2
exp



−
2(K+1)n

γ̄√
Mn





λ − Mn − (K+1)n
γ̄

2
√

Mn







 e−Kn
N
∑

l=0

(Kn)l

l!

×
l+n−1
∑

p=0





2(K+1)n
γ̄√
Mn





p

ip erfc



−




λ − Mn − 2(K+1)n
γ̄

2
√

Mn







 , (6.59)

where, once again, the resulting infinite series has been truncated after N terms. It

should be noted that, as before, the use of Lemma 5.1 here places no restrictions on

the value of K, and so (6.59) is valid for K ∈ R
+
0 .

Again, in a similar manner to (6.11), it can be shown that

ǫ
tr,SLC

(N) ≤
(

1 − Γ(N + 1, Kn)

Γ(N + 1)

)

(1 − P̂fSLC
) , max |ǫ

tr,SLC
|. (6.60)

As (6.60) is equivalent to (6.38), the number of terms required to ensure that

ǫ
tr,SLC

(N) ≤ ǫ0(1 − P̂fSLC
) can be approximated using (6.39).

Figure 6.3(a) illustrates the exact (calculated numerically) and approximate (calculated

using (6.59) with N chosen so that ǫ
tr,SLC

(N) ≤ 10−6) probabilities of detection for a

typical five branch SLC receiver sensing scenario. As can be seen, the approximation

is quite accurate over the entire range of signal to noise ratio values.

Noting that f
SLC,Rice

(x) = f
MRC,Rice

(x), it is not difficult to show that the low SNR
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approximation error is bounded as

max |ǫ
SNR,SLC,Rice

| =





γ̄√
2πe

,
1

π

√

K + 1

2M



 , (6.61)

where max |ǫ
SNR,SLC,Rice

| ≥ |ǫ
SNR,SLC,Rice

|, and so the total error resulting from the use

of (6.59) can be bounded as

max |ǫ
tot,SLC,Rice

| = max |ǫ
CLT,SLC

| + max |ǫ
SNR,SLC,Rice

| + max |ǫ
tr,SLC

|, (6.62)

where max |ǫ
tot,SLC,Rice

| ≥ |ǫ
tot,SLC,Rice

|. Figure 6.3(b) illustrates the bound given in

(6.62). The exact approximation error, calculated using the data shown in Figure

6.3(a), is also shown for comparison, and it is clear that it is well described by the

derived bound across the entire range of signal to noise ratio values.

Provided that the error in (6.62) is not large, (6.59) can be used to show that the

relationships in (5.36) and (5.37) also hold for energy detectors with SLC diversity.

Consequently, they hold for each diversity type in AWGN, Rayleigh, Nakagami-m and

Rice channels.

Furthermore, (6.36) and (6.59) can be used to relate the sample complexity of MRC and

SLC systems, provided that both systems have the same number of diversity branches.

Consider the scenario where energy detectors with n branch MRC and SLC diver-

sity operate on Rice channels with fading parameter K. The MRC system requires

M
MRC,Rice

samples to ensure certain decision probabilities are met when the average

signal to noise ratio is given by γ̄
MRC,Rice

, while the SLC system requires M
SLC,Rice

samples to ensure the same decision probabilities at an average signal to noise ratio of

γ̄
SLC,Rice

. Equating (6.36) and (6.59), it is not difficult to show that

M
SLC,Rice

γ̄2
SLC,Rice

≈ nM
MRC,Rice

γ̄2
MRC,Rice

, (6.63)

provided that the total approximation errors resulting from the use of (6.36) and (6.59)

are not large. It is interesting to note that (6.63) is an equivalent result to (5.65), and

can also be shown to hold in AWGN channels, when the signal to noise ratio is small,

using the formulae in Table 4.1. Thus, again, the same behaviour can be observed in

AWGN, Rayleigh, Nakagami-m and Rice channels.

The approximation in (6.63) can be useful when comparing the performance of SLC

receivers to MRC receivers. For instance, if an energy detector with five branch MRC

diversity, operating on a Rice channel with K = 1
2 , requires 10000 samples to ensure

that PdMRC,Rice
= 0.999 and PfMRC

= 0.01 when the average signal to noise ratio is

−12.84 dB, (6.63) can be used to show that a five branch SLC receiver requires 40000

additional samples in order to achieve the same performance. Again, using an numerical

method, it can be shown that the precise number of additional samples required is 38608
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— a small difference.

Unfortunately, however, such useful insights into the relationship between EGC and

SLC systems are not readily apparent. Consider the scenario where an energy detector

with EGC diversity operates on a Rice channel with K = K
EGC

while an energy detector

with SLC diversity operates on a Rice channel with K = K
SLC

. If the EGC system

requires M
EGC,Rice

samples to ensure certain decision probabilities are met when the

average signal to noise ratio is given by γ̄
EGC,Rice

and the SLC system requires M
SLC,Rice

samples to ensure the same decision probabilities at an average signal to noise ratio of

γ̄
SLC,Rice

, it can be shown that

M
SLC,Rice

γ̄2
SLC,Rice

≈
[

b

(

K
SLC

+ 1

K
EGC

+ 1

)]2

nM
EGC,Rice

γ̄2
EGC,Rice

, (6.64)

provided that the total approximation errors resulting from the use of (6.47) and (6.59)

are not large. However, again, due to the fitted parameters in Hu and Beaulieu’s PDF

approximation, (6.64) only holds in the restrictive circumstance when K
EGC

= aK
SLC

,

and so is of limited use in practice.

6.2.5 Discussion

6.2.5.1 Computational complexity

Perhaps unsurprisingly, the low SNR approximations derived in this chapter are similar

in form to the low SNR approximations derived in Chapter 5. However, there is a key

difference between the two, as those relating to Rice channels consist of an infinite

series which must be truncated in order for the detection probability to be computed.

Consequently, the analysis of the complexity of these approximations is not as simple

as in Section 5.2.5.1.

However, the problem is not intractable. By letting the truncation error be pro-

portional to the sum of the errors resulting from the use of the central limit the-

orem and the low SNR approximation, it can be ensured that its value becomes

negligibly small with respect to the total approximation error, facilitating a com-

parison in the vein of Section 5.2.5.1. To see this, for X ∈ {ND, MRC, SLC}, let

max |ǫ
tr,X

| = ε
(

max |ǫ
CLT,X

| + max |ǫ
SNR,X,Rice

|
)

so that

max |ǫ
tot,X,Rice

| = (1 + ε)
(

max |ǫ
CLT,X

| + max |ǫ
SNR,X,Rice

|
)

. (6.65)

By choosing a suitably small value of ε, it can be ensured that the truncation error does

not dominate the value of the total error, and so the exact and approximate methods

can be compared directly, as in Section 5.2.5.1, by calculating the truncation point

required to give ǫT
X,Rice

≤ max |ǫ
tot,X,Rice

| for each diversity type.
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Some example results, for the case where ε = 0.001, are shown in Figures 6.6(a)–6.6(c).

As can be seen, when the number of samples is small, the exact methods require fewer

numbers of terms to be computed than the low SNR approximations while, for large

numbers of samples, the reverse is true. However, it is also clear that the truncation

points are much greater for the exact methods than for the approximate methods4,

and so the former require significantly more terms to be computed as the number of

samples becomes large.

Yet, as before, it is not simply the number of terms that must be computed that deter-

mines which method is more computationally demanding, but rather the combination

of the number of terms and the complexity of each. While the exact and approximate

expressions for the detection probabilities in Rice channels are more complicated than

in the Nakagami-m case, they again consist of weighted sums of regularised incomplete

gamma functions, in the case of the exact expressions, and weighted sums of the re-

peated integral of the complementary error function, in the case of the approximate

methods. However, using the recurrence relations in (5.13), the repeated integral of

the complementary error function can be expressed as in (5.67), and so the weighted

sums of the repeated integral of the complementary error function can be expressed

as weighted sums of the exponential and complementary error functions. As noted

previously, the regularised incomplete gamma function is known to be more difficult

to compute to a specified degree of precision than these functions. Consequently, in

situations where larger numbers of regularised incomplete gamma functions than com-

plementary error functions must be computed, the low SNR approximations presented

in this chapter are preferable to the exact methods given in Chapter 3, if the total

error resulting from their use is equal. As this is clearly the case when the number

of samples is large, from Figures 6.6(a)–6.6(c), it can be concluded that the derived

approximations are less computationally intensive to evaluate in such scenarios.

However, it should be noted that, for each diversity type, N increases with the product

of the fading parameter and the number of diversity branches, Kn, and so it may be

necessary to compute large numbers of terms in scenarios where this product is large,

in order to ensure that the truncation error is acceptably small. Consequently, the low

SNR approximations may only be useful in scenarios where the values of the fading

parameter and the number of diversity branches are small to moderate. However, this

is often the case in practice, and so the approximations derived here should be quite

generally applicable.

4The increase in the value of the required truncation point for the low SNR approximations is due
to the constraint imposed in (6.65), as max |ǫ

CLT,X
| and max |ǫ

SNR,X,Rice
| decrease with increasing

values of M .
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(a) Truncation points required for the analysis of systems with no diversity.
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(b) Truncation points required for the analysis of MRC systems.
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(c) Truncation points required for the analysis of SLC systems.

Figure 6.6: Log-log plots of the truncation points required to give ǫT
X,Rice

≤
max |ǫ

tot,X,Rice
| = 1.001

(

max |ǫ
CLT,X

| + max |ǫ
SNR,X,Rice

|
)

as functions of the number
of samples. The conditions in each case match those used to generate Figure 3.4(d).
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6.2.5.2 Accuracy / region of applicability

The low SNR approximations derived in this chapter principally depend on two as-

sumptions: that the detection probability for each diversity type can be approximated

as in Table 4.1 and that, when the signal to noise ratio is small, these approximations

can be further simplified using (5.6). Conveniently, these are the same assumptions

that the low SNR approximations for Nakagami-m channels depend upon, and so the

resulting error can be quantified in a similar way.

As in the Nakagami-m case, two bounds for the error resulting from the use of the low

SNR approximation were derived. The first bound demonstrates that the error is pro-

portional to the average signal to noise ratio per branch at the receiver. Thus, the low

SNR approximation error decreases as the signal to noise ratio becomes smaller. The

second bound demonstrates that the low SNR approximation error is inversely propor-

tional to the square root of the number of samples. Thus, the low SNR approximation

error decreases as the number of samples increases. Consequently, the derived approx-

imations for the detection probabilities are quite accurate when the signal to noise

ratio is small, which is often the case in spectrum sensing applications, or when the

number of samples is large, which is often the case if reliable detection is to be ensured

in multipath fading channels. In particular, when the signal to noise ratio is small,

the derived bounds demonstrate that the total approximation error is comparable in

size to the error resulting from the use of the central limit theorem to approximate the

decision probabilities, and so the derived approximations are comparable in accuracy

to the approximations given in Table 4.1 in such situations.

Unfortunately, the derived approximations for the detection probabilities consist of

infinite series, which must be truncated for computational purposes. However, it was

demonstrated that the number of terms necessary to ensure a given truncation error

is independent of both the signal to noise ratio and the number of samples, and only

varies with the fading parameter and number of diversity branches. Consequently, for

finite K, the truncation error can be made arbitrarily small by increasing the number

of terms to be computed. Of course, for large values of K, the number of terms required

may become quite large itself, and so there is some motivation to consider alternative

methods of approximation suitable for use in such situations.

Finally, while the approximation for the detection probability of energy detectors with

EGC diversity is useful in many scenarios of interest, its use is limited to situations

where K and n are such that the constants a and b are given by Table 3.5, or can be

accurately interpolated or extrapolated from the values therein. While additional values

of a and b may be fitted to extend the range of the approximation, the approach is, in

general, a limited one as the fading parameter and number of diversity branches are

unbounded. If an alternative approximation for the PDF of the signal to noise ratio at
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Table 6.1: Numbers of samples required to ensure that the specified decision probabil-
ities are met under the given channel conditions.

X n PmX,Rice
PfX

K γ̄ M

ND — 0.05 0.05 0.5 −10 dB 174285

MRC 3 0.001 0.001 1.2 −15 dB 318005

EGC 4 0.005 0.01 2.5 −20 dB 175934

SLC 5 0.001 0.001 3.4 −25 dB 5917287

the EGC output, free from fitted parameters, were available, it may be possible to derive

a more generally applicable approximation for the detection probability. However, to

the best of the author’s knowledge at the time of writing, no such approximations are

currently available, and so this may be of interest in future research.

6.2.5.3 Approximations for other system parameters

Using the derived approximations for the detection probabilities, it was possible to

infer certain behaviours of system parameters that were not clear from the available

exact expressions in Chapter 3. Of most general interest is the fact that, for given

decision probabilities, when the number of samples is large and the signal to noise

ratio is small, the product of the former with the square of the latter is approximately

constant. Interestingly, this is precisely the same behaviour that was observed in the

case of AWGN and Nakagami-m channels. Consequently, if the value of the number of

samples required to ensure given decision probabilities at a certain signal to noise ratio

is known, the number of samples required to ensure the same decision probabilities at

a different signal to noise ratio can easily, and accurately, be approximated for each of

the diversity architectures and channel types considered. As a corollary, the minimum

signal to noise ratio can be similarly approximated, for a given number of samples, if

the minimum signal to noise ratio at a different number of samples is known. Figure

6.7 illustrates the power of these approximations given just the data in Table 6.1. As

can be seen, the approximation in (5.36) is quite accurate across the entire range of

signal to noise ratios, even when the signal to noise ratio is large.

It was also possible to relate the sample complexities of energy detectors with MRC and

SLC diversity operating on Rice channels, again under the condition that the number

of samples is large and the signal to noise ratio is small. Specifically, it was shown that,

if both systems have n diversity branches, then the SLC system requires approximately

n times the number of samples than the MRC system in order to ensure the same

decision probabilities are met. Again, it is interesting to note that this is the same

behaviour that was observed in the case of AWGN and Nakagami-m channels. While

similar comparisons can be made between the sample complexities of EGC and MRC

and EGC and SLC systems, they are of limited use due to constraints imposed by the
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Figure 6.7: A log-log plot of the numbers of samples required to ensure the operating
conditions specified in Table 6.1 for the specified diversity types.

use of Hu and Beaulieu’s PDF approximation.

6.3 Novel approximations for small signal to noise ratios

and large Kn

While the low SNR approximations derived in Section 6.2 provide an accurate and, in

many cases of interest, convenient method by which to compute the detection prob-

abilities of energy detector systems operating on Rice channels, they require a larger

computational effort to evaluate when the product of the fading parameter and the

number of diversity branches, Kn, is large. Thus, there is some motivation to consider

alternative approximations, more suited to such situations, in the manner of Section

5.3.

6.3.1 New approximations for the detection probabilities

Using (4.9), it can be shown that the PDF of the noncentral chi square distribution

with k degrees of freedom and noncentrality parameter s, fχ2
k

(s)(x), has the central

limit theorem approximation

fχ2
k
(s)(x) =

d

dx

(

P [χ2
k(s) ≤ x]

)

≈ d

dx

[

1 − Q

(

x − (k + s)
√

2(k + 2s)

)]

, f̌χ2
k
(s)(x), (6.66)
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as k becomes large. Simplifying the right hand side of (6.66), it is not difficult to show

that the approximate noncentral chi square PDF can be written as

f̌χ2
k

(s)(x) =
1√
2π

1
√

2(k + 2s)
exp

[

−
(

x − (k + s)

2
√

k + 2s

)2
]

, ∀x. (6.67)

Thus, the PDFs of noncentral chi square distributed random variables can be approxi-

mated as k becomes large.

Consider the noncentral chi square random variable, Y , which has 2n degrees of freedom

and noncentrality parameter equal to 2Kn
a . The probability density function of Y [102,

Equation 2.44] can be written as

fχ2
k

(s)(y)
∣

∣

∣

k=2n,s= 2Kn
a

=











0, y < 0,

1
2

( ay
2Kn

)
n−1

2 e− Kn
a

− y
2 In−1

(

√

2Kny
a

)

, y ≥ 0.
(6.68)

Letting y = 2(K+1)x
bγ̄ in (6.68), and scaling appropriately, results in (3.37). Conse-

quently, the PDF of the signal to noise ratio at the equal gain combiner output can

be approximated by letting k = 2n and s = 2Kn
a in (6.67) and applying a similar

transform. Thus, it is not difficult to show that

f̌χ2
k

(s)(y)
∣

∣

∣

k=2n,s= 2Kn
a

=
1√
2π

1

2
√

n(1 + 2K
a )

exp






−




y − 2n(1 + K
a )

2
√

2n(1 + 2K
a )





2





. (6.69)

Letting y = 2(K+1)x
bγ̄ in (6.69), and again scaling the result appropriately, results in

f̌
EGC,Rice

(x), given in Table 6.2, where f̂
EGC,Rice

(x) ≈ f̌
EGC,Rice

(x) as n becomes large.

Noting that

f̂
EGC,Rice

(x)
∣

∣

∣

a=1,b=1
= f

MRC,Rice
(x) = f

SLC,Rice
(x), (6.70)

and

f
MRC,Rice

(x)
∣

∣

∣

n=1
= f

ND,Rice
(x), (6.71)

approximations for the PDFs of the other diversity types can be derived directly from

f̌
EGC,Rice

(x) and are also given in Table 6.2.

Using these approximate PDFs, it is possible to derive new approximations for the

detection probabilities of each diversity receiver in a similar manner to Section 5.3.

For instance, in the EGC case, the probability of detection can be approximated by
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K
n

X f̌
X,Rice

(x) P̌dX,Rice

ND
1√
2π





1
(

γ̄
K+1

)√
2K + 1



 exp






−




x − γ̄
(

γ̄
K+1

)

√

2(2K + 1)





2






Q













λ − M(1 + γ̄)
√

2M

(

1 + M
2

(

γ̄
K+1

)2
(2K + 1)

)













MRC
1√
2π





1
(

γ̄
K+1

)

√

n(2K + 1)



 exp






−




x − nγ̄
(

γ̄
K+1

)

√

2n(2K + 1)





2






Q













λ − M(1 + nγ̄)
√

2M

(

1 + Mn
2

(

γ̄
K+1

)2
(2K + 1)

)













EGC
1√
2π





1
(

bγ̄
K+1

)

√

n(2K + 1)



 exp











−









x − nbγ̄

(

K
a

+1

K+1

)

(

bγ̄
K+1

)
√

2n(2K
a + 1)









2










Q













λ − M

(

1 + nbγ̄

(

K
a

+1

K+1

))

√

2M

(

1 + Mn
2

(

bγ̄
K+1

)2 (
2K
a + 1

)

)













SLC
1√
2π





1
(

γ̄
K+1

)

√

n(2K + 1)



 exp






−




x − nγ̄
(

γ̄
K+1

)

√

2n(2K + 1)





2






Q













λ − Mn(1 + γ̄)
√

2Mn

(

1 + M
2

(

γ̄
K+1

)2
(2K + 1)

)













Table 6.2: Large Kn approximations for energy detector systems operating on Rice channels.
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substituting (5.6) and f̌
EGC,Rice

(x) into (5.1) to give

P̌dEGC,Rice
=

1√
2π







1
(

bγ̄
K+1

)
√

n(2K
a + 1)







×
∫ ∞

−∞
Q

(

λ − M(1 + x)√
2M

)

exp











−









x − nbγ̄

(

K
a

+1

K+1

)

(

bγ̄
K+1

)
√

2n(2K
a + 1)









2










dx.

= Q













λ − M

(

1 + nbγ̄

(

K
a

+1

K+1

))

√

2M

(

1 + Mn
2

(

bγ̄
K+1

)2 (
2K
a + 1

)

)













, (6.72)

where the result follows from an application of Lemma 5.4. Expressions for the detection

probabilities of the other diversity types can be derived similarly, and a complete listing

in given in Table 6.2.

The error resulting from the use of these approximations can be written as

P
X,Rice

− P̌dX,Rice
= P

X,Rice
− P̂

X,Rice
+ P̂

X,Rice
− P̌dX,Rice

= ǫ
tot,X,Rice

+ ǫ
Kn,X

, (6.73)

where ǫ
Kn,X

= P̂
X,Rice

− P̌dX,Rice
and represents the additional error, with respect to the

low SNR approximations, resulting from the use of the approximations in Table 6.2.

Using the second mean value theorem for infinite integrals [69, Equation 12.114], ǫ
Kn,X

can be expanded as

ǫ
Kn,X

=

∫ ∞

−∞
P̃dX

(x)
(

f
X,Rice

(x) − f̌
X,Rice

(x)
)

dx

=

∫ ∞

ξ

(

f
X,Rice

(x) − f̌
X,Rice

(x)
)

dx

=⇒ max |ǫ
Kn,X

| = max
ξ

∣

∣

∣

∣

∫ ∞

ξ

(

f
X,Rice

(x) − f̌
X,Rice

(x)
)

dx

∣

∣

∣

∣

, (6.74)

for some −∞ ≤ ξ ≤ ∞. As the PDFs of the signal to noise ratio for each diversity

type follow a noncentral chi square distribution, (6.74) can be further simplified using

Theorem 4.1. Given that the distribution has two degrees of freedom in the no diversity

case, and 2n degrees of freedom otherwise,

max |ǫ
Kn,X

| = max
(

Q
(√

n
)

, ǫ∞(2n)
)

, (6.75)

where n = 1 in the no diversity case. However, the bounds defined by (6.75) are

problematic as they are constant with respect to K and, therefore, cannot be used to
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Figure 6.8: A log-log plot of max
x

|ǫ
CLT

(k, kϑ, x)| and the bound given in Theorem 6.1
for different values of k.

demonstrate that max |ǫ
Kn,X

| decreases as K becomes larger.

While this is an inconvenient result, the problem is by no means intractable. Theorem

4.1 provides a bound which is a function of the number of degrees of freedom only.

Instead, a bound which is a function of the noncentrality parameter is required. This

can be realised through the use of Theorem 6.1, which is stated below and proved in

Appendix A.6.

Theorem 6.1: For the central limit theorem approximation in (4.9), if the number

of degrees of freedom is finite, and the noncentrality parameter is related to the

number of degrees of freedom as s = kϑ, where ϑ ∈ R
+, then the maximum

absolute error resulting from the use of the approximation, with respect to the

location parameter only, max
x

|ǫ
CLT

(k, kϑ, x)|, is given by

max
x

|ǫ
CLT

(k, kϑ, x)| = max

(

Q

(

k(1 + ϑ)
√

2k(1 + 2ϑ)

)

, ǫ∞,ϑ(k)

)

, (6.76)

where

ǫ∞,ϑ(k, ϑ) ≈ Q k
2

(√
kϑ,

√

k(1 + ϑ)

)

− 1

2
, (6.77)

as ϑ becomes large.

The bound given in Theorem 6.1 is illustrated in Figure 6.8, along with the actual

maximum error, which has been calculated numerically. As can be seen, in each case,

the derived bound describes the value of the actual error very well. Consequently,

Theorem 6.1 can be used to derive new bounds for |ǫ
Kn,X

|.

Using the values of k and s given in Section 3.3, and noting that the noncentrality
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parameter has the form s = kϑ, where ϑ is independent of k, in each case, it is not

difficult to show that

max |ǫ
Kn,ND

| = max

(

Q

(

1 + K√
1 + 2K

)

, ǫ∞,ϑ (2, K)

)

, (6.78)

max |ǫ
Kn,MRC

| = max |ǫ
Kn,SLC

| = max

(

Q

(

n(1 + K)
√

n(1 + 2K)

)

, ǫ∞,ϑ (2n, K)

)

, (6.79)

max |ǫ
Kn,EGC

| = max



Q





n(1 + K
a )

√

n(1 + 2K
a )



 , ǫ∞,ϑ

(

2n,
K

a

)



 . (6.80)

Using these new bounds, it is possible to demonstrate that the value of the error

decreases with increasing values of both K and n. Figure 6.9(a) illustrates the exact

and approximate detection probabilities in some typical scenarios. As can be seen,

while the approximations are not accurate for small values of K (e.g. K ≤ 10), they

become increasingly accurate as K becomes larger, a property which is demonstrated

quite well by the derived error bounds, as can be seen in Figure 6.9(b).

Unfortunately, the approximation for the detection probability of EGC receivers

given in Table 6.2 is of limited use as the values of a and b are defined for

K ∈ {1 dB, 3 dB, 5 dB, 7 dB} and n ∈ [2, 8] only. One solution would be to extend

Hu and Beaulieu’s approximation for larger values of K and n, but again the approach

is a limited one as K is unbounded and so any useful look up table would be very

large and, also, incomplete. Therefore, a preferable solution would be the development

of an exact PDF or, at the very least, an approximation free from fitted parameters.

However, it is known that the problem is a difficult one [70, 71, 73]. Nevertheless, it

may be of interest in future research.

6.3.2 Novel approximations for other system parameters

6.3.2.1 Sample complexity

Using a similar method to that in Section 4.4.1, it is not difficult to verify that the

approximations given in Table 6.3 are accurate when either the signal to noise ratio is

low or the number of samples is large and when the fading parameter and number of

nodes are large. Figure 6.10 illustrates a typical use case for these. As can be seen, the

exact sample complexities of MRC and SLC receivers operating on Rice channels can

be approximated quite well as n becomes larger (in this case, for n ≥ 4), without the

use of numerical methods.
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Figure 6.9: Plots of the exact and approximate probabilities of detection, and the
resulting approximation errors, for energy detectors operating on Rice channels. The
blue trends correspond to an energy detector with no diversity operating on a channel
with γ̄ = −14 dB; the red trends to an energy detector with two branch MRC diversity
operating on a channel with γ̄ = −17 dB; while the green trends correspond to an energy
detector with five branch SLC diversity operating on a channel with γ̄ = −17.5 dB. In
each case, M = 10000, PfX

= 0.01 and N is such that max |ǫ
tr,X

| = 10−6.
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6.3.2.2 Minimum signal to noise ratio

Closed form approximations for the minimum signal to noise ratio can be derived di-

rectly from the expressions in Table 6.3 by noting that M̌
X,Rice

is inversely proportional

to γ̄2 in each case. For instance, for receivers with SLC diversity, it can be shown that

γ̄
SLC,Rice

≈
√

2
Mn





















Q−1(P̂fSLC )−

√

√

√

√

1+

Q−1(P̂fSLC
)

2
−Q−1

(

P̌dSLC,Rice

)2

n(K+1)2

2K+1

Q−1
(

P̌dSLC,Rice

)







1−
Q−1

(

P̌dSLC,Rice

)2

n(K+1)2

2K+1



























. (6.81)

Similar approximations can be shown to hold for the other diversity types.

6.3.2.3 Diversity gain

Finally, using the expressions in Table 6.3, closed form approximations can also be

derived for the diversity gain. However, as the number of branches in EGC systems

and MRC systems is typically small, and the approximations in Table 6.3 are valid for

large Kn only, the diversity gain of SLC systems is likely to be of practical interest. It

is not difficult to show that

ň
SLC,Nak

=















2

M









Q−1(P̂fSLC
) −

√

1 + Mγ̄2

2(K+1)2

2K+1

Q−1(P̌dSLC,Nak
)

γ̄









2













, (6.82)

where the ceiling function has been used to ensure that the resulting number of nodes is

always sufficiently large so that the conditions specified in the right hand side of (6.82)

are met.

In a similar manner to (5.96), (6.82) can be used to accurately approximate the diversity

gain in many situations of interest. Figure 6.11 illustrates the exact (calculated numer-

ically) and approximate (evaluated directly using (6.82)) number of nodes required to

achieve the given probability of detection in a typical sensing scenario. As can be seen,

the approximation is quite accurate over the entire range of detection probabilities.

6.3.3 Discussion

The closed form approximations derived in this section enable the fast and accurate

evaluation of the detection probabilities of energy detector systems in scenarios where

the low SNR series of approximations, derived in Section 6.2, require large numbers

of terms to be computed. Consequently, their region of applicability, though limited,

naturally complements the region of applicability of the low SNR approximations.
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Table 6.3: Large mn approximations for the sample complexity of energy detectors
operating on Rice channels.

X M̌
X,Rice

ND 2













Q−1
(

P̂fND

)

−
√

1 +
Q−1(P̂fND

)
2−Q−1

(

P̌dND,Rice

)2

(K+1)2

2K+1

Q−1
(

P̌dND,Rice

)

γ̄

(

1 − Q−1
(

P̌dND,Rice

)2

(K+1)2

2K+1

)













2

MRC 2

n2






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The simple forms of the large Kn approximations enabled the derivation of further

closed form approximations for certain system parameters of interest, such as sample

complexity, minimum signal to noise ratio and diversity gain. Again, these approxi-

mations are valid for large Kn only, but in such situations allow the use of numerical

methods to be avoided. As in the Nakagami-m case, these approximations are likely

to be of much more use in the analysis of SLC diversity systems, where the number

of diversity branches may be large, than for systems with no diversity, where there is

just one diversity branch, or EGC or MRC diversity, where the number of diversity

branches is typically small. In particular, in the case of cooperative spectrum sensing,

where SLC diversity can be used to describe the operation of cooperative systems with

uncompressed decisions, the derived approximations could save a large computational

effort, if the size of the network is large.
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Figure 6.10: A log plot of the sample complexities of MRC and SLC receivers operating
on Rice channels with K = 5 and γ̄ = −15 dB. In both cases, Pf = 0.001 and
Pm = 0.001.

Finally, in deriving the large Kn approximations, it was necessary to derive a bound

on the error resulting from the use of the central limit theorem approximation for

noncentral chi square random variables, which is described in Theorem 6.1. To the

best of the author’s knowledge at the time of writing, this result is novel and, as it is

quite generally applicable, it is likely to have further uses beyond the analysis of energy

detection.

6.4 Summary

At the beginning of this chapter, several goals were listed, namely: to derive accu-

rate and computationally inexpensive approximations for the detection probabilities

of energy detector systems operating on Rice channels; to derive bounds for the er-

rors resulting from these approximations, so that their regions of applicability are well

defined; and finally, to derive further approximations for other system parameters of

interest, such as sample complexity, minimum signal to noise ratio and diversity gain.

As the low SNR approximation approach worked well in the analysis of Nakagami-m

channels, its use was extended for the case of Rice channels. While this resulted in

infinite series based approximations for the detection probabilities in each case, it was

possible to show that these series could be truncated with a very small loss in accuracy

when the product of the fading parameter and the number of diversity branches, Kn,

was small to moderate. Furthermore, unlike the low SNR approximations in Chapter

5, which are valid for m ∈ N
+ only, the approximations derived in this chapter are

valid for K ∈ R
+
0 . Consequently, in many practical scenarios of interest, if the resulting

approximation error is acceptable, the use of the low SNR approximations is preferable

to the exact methods given in Chapter 3 as the computational effort required to eval-
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Figure 6.11: Exact (calculated numerically) and approximate (calculated using (6.82))
number of nodes required to ensure the given probabilities of detection in a centralised
cooperative network operating on a Rice channel, with K = 1, γ̄ = −20 dB, PfSLC

=
10−3 and M = 20000.

uate them is, in general, smaller. When Kn is very large, it is possible that the low

SNR approximations may involve greater computational effort than the exact meth-

ods. However, in such circumstances, the large Kn series of approximations can be

used instead, as the additional error is likely to be very small. Consequently, in many

situations of interest, the derived approximations can be used to reduce the computa-

tional effort involved in evaluating the exact values of the detection probabilities, with

a very small decrease in accuracy.

Approximations for the detection probability of energy detectors with EGC diversity

were also derived. To the best of the author’s knowledge at the time of writing, these

are the only methods by which numerical evaluation of the detection probability can be

avoided. However, their regions of applicability are limited by the their dependence on

fitted parameters, which are defined only for a small number of scenarios. While it is

possible to fit additional parameters, and therefore extend the regions of applicability of

the approximations, the approach is, in general, a limited one as the fitted parameters

depend upon the fading parameter, which is unbounded. A preferable solution would be

the development of an exact PDF for the signal to noise ratio at the equal gain combiner

output, although this has thus far eluded discovery. Therefore, a more fruitful line of

inquiry may be the derivation of an approximate PDF, free from fitted parameters, and

accurate across the entire range of values of K and n. While this lies beyond the scope

of the work in this thesis, it may be of interest in future research.

Using the lemmas given in Chapter 5, it was not difficult to derive simple bounds on

the errors resulting from the use of the detection probability approximations. However,

in some cases, some additional effort was required. In particular, the use of Jensen’s

inequality enabled the derivation of a simple closed form expression for the maximum
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error resulting from the use of the low SNR approximation, while it was necessary to

derive a further bound on the error resulting from the use of central limit theorem

approximations to the noncentral chi square distribution (recall Theorem 6.1) in order

to verify the accuracy of the large Kn approximation. Using these error bounds, it was

possible to verify the accuracy of the derived approximations in many cases of interest.

Consequently, it was possible to verify that the product of the number of samples and

the square of the signal to noise ratio is approximately constant for each diversity type,

under the constraint that either the signal to noise ratio is low or that the number

of samples is large. Under the further constraint that Kn is large, it was possible

to derive closed form approximations for the sample complexity and diversity gain of

energy detector systems. An approximation for the diversity gain of SLC systems was

also derived, under similar constraints.

The application of approximations has simplified the analysis of energy detector sys-

tems operating on Rice channels quite significantly. Where, previously, computationally

intensive expressions had to be evaluated, there are now simple and accurate alterna-

tives. Similarly, in certain cases where numerical methods had to be relied upon (in the

calculation of sample complexity, for example), it is now possible to directly compute

the desired result.
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Chapter 7

Conclusions and future work

7.1 Summary of contributions

The aim of this thesis was to explore the use of approximations in the analysis of

energy detector systems, with a view to reducing the complexity involved in evaluating

their performance, specifically in relation to their potential use as spectrum sensing

devices. Four different hardware architectures were considered, consisting of single

antenna systems — that is, those with no diversity — and multiple antenna systems,

with MRC, EGC and SLC diversity. The operation of these systems was considered

for four different channel types — AWGN, Rayleigh, Nakagami-m and Rice — which

are of most widespread use in the literature. While previous research had uncovered

exact expressions describing the operation of energy detector systems in some of these

scenarios, the use of such formulae can be problematic due to the large number of

computations required to achieve acceptably small truncation errors when the number

of samples is large, which is often the case in spectrum sensing scenarios or when reliable

detection is to be ensured. To this end, a number of specific contributions were made:

1. Inspired by Urkowitz’s approximations for the decision probabilities of energy

detectors with no diversity operating on AWGN channels, simple, novel, closed

form approximations were derived for the decision probabilities of energy detec-

tors with diversity reception operating on AWGN channels.

The approximations are based on the Gaussian Q function, and so evaluation of

the regularised incomplete gamma function, which is known to be more difficult

to compute, and the Marcum Qm function, which is known to be difficult to com-

pute in general, can be avoided. Furthermore, as the Gaussian Q function is a

univariate function, while the regularised incomplete gamma function is a bivari-

ate function and the Marcum Qm function is a trivariate function, the derived

approximations are also attractive from an implementation perspective, requiring

a much smaller look up table than available exact methods.
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Error bounds were provided for the approximations (including Urkowitz’s original

approximations), so that the region of applicability of each is clearly defined. The

bounds are tight, simple to compute, and demonstrate that the derived approx-

imations are particularly suited to the analysis of spectrum sensing systems, as

the error resulting from their use is inversely proportional to the square root of

the number of samples, which is usually large in such scenarios. Consequently,

the widespread use of Urkowitz’s approximations in the literature [10, 13, 19–

21, 43, 46, 64–67, 89–97] can be validated for specific numbers of samples, and

clear guidelines for their future use have been established.

2. Novel, closed form approximations for the detection probabilities of energy detec-

tor systems operating on Rayleigh and Nakagami-m channels were derived, en-

abling the fast and accurate computation of the detection probabilities in many

situations of interest, and particularly in spectrum sensing scenarios. The ap-

proximations offer an attractive alternative to the existing exact methods, which

are not in a closed form, requiring the truncation of infinite series for their com-

putation. In particular, the approximation for the detection probability of energy

detectors with EGC diversity is, to the best of the author’s knowledge at the time

of writing, the only method by which this quantity can be computed without the

use of complicated numerical methods when the number of diversity branches is

greater than two.

In each case, the approximations consist of a summation of a finite number of

weighted repeated integrals of the complementary error function. As the number

of terms involved in the summation operation is equal to the product of the

fading parameter and the number of diversity branches, mn, and the repeated

integral of the complementary error function can be computed using a simple

recurrence relation (recall (5.13)), the approximations are simple to compute in

a wide variety of scenarios.

Again, bounds were provided in order to quantify the error resulting from the

use of the approximations, so that the region of applicability of each is clearly

defined. The bounds are tight, simple to compute and demonstrate that the

derived approximations are well suited to the analysis of spectrum sensing, as the

resulting error is proportional to the signal to noise ratio, which is often small

in such scenarios, and inversely proportional to the square root of the number of

samples, which is often large. The bounds can also be applied to quantify the

error resulting from similar approximations in the literature [65–67, 95–97].

3. Novel approximations for the detection probabilities of energy detector systems

operating on Rice channels were derived. These approximations enable the fast

and accurate calculation of the detection probabilities in many situations of inter-

est, particularly in spectrum sensing scenarios, where the existing exact methods
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become difficult to compute. To the best of the author’s knowledge at the time of

writing, the approximation for the detection probability of energy detectors with

EGC diversity, though of limited applicability, is the only method by which this

quantity can be computed without the use of numerical integration.

In each case, the approximations consist of a summation of weighted repeated

integrals of the complementary error function. As the summations involve in-

finitely many terms, truncations must be applied in order to compute the values

of the detection probabilities. However, it was demonstrated that the number of

terms required to ensure a given truncation error is independent of the number of

samples, signal to noise ratio and values of the decision probabilities, and depends

only on the product of the fading parameter and the number of diversity branches,

Kn. Consequently, the derived approximations often require fewer computations

than existing exact expressions, which also consist of infinite series, but require

an increasing number of terms to be evaluated as the number of samples becomes

large.

Once again, bounds were provided so that the error resulting from the use of the

approximations can easily be quantified and so that the region of applicability of

each is readily apparent. These bounds are tight, simple to compute and demon-

strate that the error is proportional to the signal to noise ratio and inversely

proportional to the square root of the number of samples, making the approxi-

mations particularly appropriate for use in spectrum sensing type applications.

4. Novel approximations for the detection probabilities of energy detector systems

operating on Rayleigh, Nakagami-m and Rice channels were also derived for the

scenarios where the product of the fading parameter and the number of diver-

sity branches is large. These approximations are less generally applicable than

the low SNR series of approximations, but naturally complement their region

of applicability. Again, simple bounds for the error resulting from the use of

these approximations were derived, so that their regions of applicability are well

defined.

5. Several novel approximations for other system parameters were also derived. Per-

haps the most generally applicable of these is the fact that, for given energy

detector system (ND, MRC, EGC or SLC) operating on a given channel model

(AWGN, Rayleigh, Nakagami-m or Rice) ensuring certain target decision prob-

abilities, the product of the number of samples and the square of the signal to

noise ratio is approximately constant, either when the former quantity is large

or the latter is small. Thus, if the number of samples required to ensure target

decision probabilities in a given channel type at a specific signal to noise ratio is

known, the number of samples required to ensure the same decision probabilities

at a different signal to noise ratio, given the same channel conditions, can easily
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be calculated. This enables the fast and accurate approximation of the sample

complexity for a given minimum signal to noise ratio based on prior knowledge

of the sample complexity for a different minimum signal to noise ratio and vice

versa (recall Figure 6.7).

Additionally, approximations for the sample complexity, minimum signal to noise

ratio and diversity gain of energy detectors operating on AWGN channels were

derived. An expression describing the effect of altering the number of branches on

the detection probability for an energy detector with MRC operating on Rayleigh

or Nakagami-m channels was also derived, and interesting and useful comparisons

between the sample complexities and receiver sensitivities of energy detectors with

MRC, EGC and SLC diversity, in the case of Nakagami-m channels, and energy

detectors with MRC and SLC diversity, in the case of Rice channels, were made.

Further approximations for the sample complexity, minimum signal to noise ratio

and diversity gain of energy detectors operating on Rayleigh, Nakagami-m and

Rice channels were also derived, under the constraint that the product of the

fading parameter and the number of diversity branches is large.

In addition, a number of more general contributions were made:

1. A novel bound on the error resulting from the application of the central limit theo-

rem to chi square, noncentral chi square and gamma distributed random variables

was derived. The bound describes the maximum distance between the cumulative

distribution functions of the given distributions and their normal approximations,

is in a simple, closed form and is much tighter than existing Berry-Esseen type

bounds.

2. A novel alternative bound on the error resulting from the application of the central

limit theorem to noncentral chi square random variables, where the noncentrality

parameter is a multiple of the number of degrees of freedom, was derived. This

bound describes the maximum distance between the cumulative distribution func-

tions of the noncentral chi square and normal distributions and is in a relatively

simple, closed form.

7.2 Recommendations for future work

The work in this thesis has the potential to be extended in a number of ways:

1. The low SNR series of approximations for energy detector systems operating on

Nakagami-m channels are only valid where mn ∈ N
+. As these approximations

are quite useful, one obvious generalisation is to the case where mn ∈ R
+. How-

ever, this would require an alternative integral identity to Lemma 5.1, which may

lead to more complicated, albeit general, forms.
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2. The derivation of an approximation for the PDF of the sum of i.i.d. Rice dis-

tributed random variables, free from fitted parameters, would not only enable the

derivation of more generally applicable approximations describing the behaviour

of energy detectors with EGC diversity operating on Rice faded channels, but also

facilitate the more general analysis of EGC diversity in Rice channels (the calcu-

lation of outage probability, for instance). To the best of the author’s knowledge

at the time of writing, only approximations which rely on fitted parameters are

available in the literature. However, an approach similar to Nakagami’s approx-

imation for the distribution of a sum of i.i.d. Nakagami-m distributed random

variables may yield some success.

3. The derivation of exact closed form PDFs for sums of i.i.d. Rayleigh, Nakagami-m

and Rice random variables would enable the tractable analysis of EGC diversity

in the context of energy detection and also in the broader context of digital

communications. Approaches in recent years have yielded some interesting but

verbose results, which are not attractive from a computational perspective, and

so do not facilitate tractable analysis in general. However, these are likely to be

difficult problems.

4. One of the primary assumptions made in this work is that the noise uncer-

tainty problem can be overcome via noise power estimation techniques. While

this may be a valid assumption in many cases, an extension of the derived ap-

proximations to include its effects will yield a more generally applicable model.

López-Benítez and Casadevall [103] have already considered low SNR type ap-

proximations for the case of uniformly distributed noise power uncertainty, to

which the error bounds given in Theorem 4.1 and Lemmas 5.2 and 5.3 could be

applied, but their model does not account for the noise power estimation tech-

nique proposed by Mariani et al. [43], and so some further analytical work would

be required in order to produce a satisfactorily general model.

5. A further assumption made in this work is that the received signals on each

diversity branch are independent, identically distributed and uncorrelated. Again,

while this assumption is valid in many cases (recall that, in many cases, the effects

of correlation can be mitigated through appropriate antenna spacing), it is not

true in general, and the extension of the approximation approach to include its

effects may yield interesting and useful new results. Furthermore, as the exact

formulations available in the literature suffer from similar drawbacks to those

discussed in Section 3.3, there is some motivation to consider such an approach.

For instance, Banjade et al. [63] derived exact expressions for energy detectors

with SLC diversity operating on Nakagami-m channels. However, their approach

is similar to that of Herath et al., and so their results also require the evaluation

of high order derivatives, which may not be practical in many circumstances.
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Similarly, Annamalai et al. [57] considered the effects of independent and non-

identically distributed Nakagami-m fading for energy detectors with MRC and

SLC diversity, but again their results consist of complicated infinite series, which

must be truncated in order to be computed.

Using the expression for the PDF of the sum of gamma random variables derived

by Ansari et al. [104], it should be possible to extend the low SNR series of

approximations derived here to the cases of i.n.d. and correlated Nakagami-m

fading. While the PDF derived by Ansari et al. depends on the Meijer G function,

which is difficult to evaluate in general, it can be manipulated into a significantly

simpler form in the case of i.n.d. Rayleigh fading [104, Equation 13], which allows

a direct application of Lemma 5.1. The resulting expression consists of a series

with n terms, each term being a weighted repeated integral of the complementary

error function, and so should be significantly easier to evaluate than the existing

exact methods. Some additional work would be required in order to extend

the analysis to the case of correlated Rayleigh fading (Ansari et al. outline how

this can be done), and further work again for the cases of i.n.d. and correlated

Nakagami-m fading, but the approach appears promising. Moschopoulos [105]

and Alouini et al. [106] also consider sums of i.n.d. and correlated gamma random

variables, respectively, although their formulations depend on infinite series, and

so may cause any resulting approximation to be difficult to evaluate.

6. The methods developed during the course of this work could also be applied to

simplify the analysis of energy detection under various other channel models,

such as the log-normal shadow fading channel, the Weibull fading channel or

composite multipath / shadowing models, which are more appropriate for use in

certain circumstances than the Rayleigh, Nakagami-m or Rice channel models

[14, p. 19–34]. More general models, such as the generalised κ-µ [107] or α-µ

[108] models may also be of interest.

As the theorems and lemmas derived in the course of this work are general (for

instance, Lemma 5.3 can be applied to any signal to noise ratio distribution),

the extension of the low SNR approximations to other channel models should not

prove too difficult, although some alteration of the integral identity in Lemma

5.1 will be required to account for the variations in the formulations of the PDFs

involved.

7.3 Concluding remarks

If Rosenblueth and Wiener’s assertion is correct — that no substantial part of the

universe is so simple that it can be understood without abstraction — then the use

of approximations in the modelling of any physical process is a necessity, if a deep
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level of understanding is to be attained. However, without defining their regions of

applicability, approximations cannot be relied upon in general. In this thesis, these

ideas were applied directly to the analysis of energy detector systems, and the results

have been fruitful: where complication once existed, there is now simplicity or, at the

very least, a reduced level of complication; however, every effort has been made to

ensure that, where abstractions have been used, the resulting loss in broad detail has

only served to focus on finer details which had, until now, been obscure. The trade off

between abstraction and generality is perhaps best summed up by Box and Draper, who

wrote that all models are wrong, but some are useful. It is hoped that the methodology

followed throughout the course of this work has been faithful to this proposition.
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Appendix A

Proofs of theorems and lemmas

A.1 Proof of Theorem 4.1

From (4.11), it can be seen that the error resulting from the use of the central limit the-

orem has differing representations1 for x ≤ 0 than for x > 0. Therefore, the maximum

value of |ǫ
CLT

(k, s, x)|, with respect to s and x, is given by

max
s,x

|ǫ
CLT

(k, s, x)| = max

(

max
s,x≤0

|ǫ
CLT

(k, s, x)|, max
s,x>0

|ǫ
CLT

(k, s, x)|
)

. (A.1)

Thus, in order to bound the maximum error ∀ x, the maximum values for x ≤ 0 and

x > 0 must be determined individually.

Maximum value for x ≤ 0

Using (4.11), it can be shown that
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s,x≤0

|ǫ
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s,x≤0
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s,x≤0

[

1 − Q
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x − (k + s)
√

2(k + 2s)

)]

, (A.2)

where the simplification comes from the fact that, by definition, Q(z) ≤ 1 ∀ z.

As the Gaussian Q function is a monotonically decreasing function, and x is constrained

to be less than or equal to zero, the maximisation of (A.2) with respect to x is satisfied

1Again, it should be noted that, in practice, x is never less than zero. The special treatment of this
case here is purely for mathematical completeness.
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when x = 0, and so

max
s,x≤0
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. (A.3)

Similarly, because the Gaussian Q function is a monotonically decreasing function,

the maximisation with respect to s in (A.3) is equivalent to the minimisation of the

argument to the Q function, that is
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s
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= Q
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It can easily be shown that k+s√
2(k+2s)

is minimised when s = 0, and so

max
s,x≤0
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(k, s, x)| = Q
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√

k
2

)

. (A.5)

Maximum value for x > 0

While the maximisation of |ǫ
CLT

(k, s, x)| is quite simple when x ≤ 0, it becomes sig-

nificantly more complicated when x > 0 as the Marcum Qm function must be used

to represent the complementary CDF of the noncentral chi square distribution. For a

given value of k, the critical points of ǫ
CLT

(k, s, x), (s0, x0), may be found using the

first partial derivative test [68, Equation 1.5.19], that is

δ

δs
[ǫ

CLT
(k, s, x)]

∣
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= 0. (A.7)

Letting k = 2ν in (4.11), it can be shown, without loss of generality, that

ǫ
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x) − Q
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The partial derivative of ǫ
CLT

(2ν, s, x) with respect to s is given by
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, (A.9)
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where In(z) is the modified Bessel function of the first kind [68, Equation 10.25.2].

Combining (A.9) with (A.6) gives the condition

e
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(

e− s0
2

− x0
2

(

x0

s0

) ν
2

Iν (
√

s0x0)

)

. (A.10)

Similarly, the partial derivative of ǫ
CLT

(2ν, s, x) with respect to x is given by

δ

δx
[ǫ

CLT
(2ν, s, x)] =

1

2







e
− (x−(2ν+s))2

8(ν+s)

√

2π(ν + s)
− e− s

2
− x

2

(

x

s

)
ν−1

2

Iν−1
(√

sx
)






, (A.11)

which, when combined with (A.7), can be shown to give the condition

e
− (x0−(2ν+s0))2

8(ν+s0) =
√

2π(ν + s0)

(

e− s0
2

− x0
2

(

x0

s0

)
ν−1

2

Iν−1 (
√

s0x0)

)

. (A.12)

Combining (A.10) and (A.12), and simplifying, leads to the condition

2(ν + s0)
√

x0 Iν(
√

s0x0) = (s0 + x0)
√

s0 Iν−1(
√

s0x0). (A.13)

Letting s0 = 0 is a satisfactory solution of (A.13), but is by no means guaranteed to

be the only solution2, and so may not always produce a maximum. However, for large

values of ν or, equivalently, for large values of k, the problem can be simplified.

For large orders, the modified Bessel function of the first kind may be approximated

[68, Equation 10.41.1] as

In(z) ≈ În(z) =
1√
2πn

(

ez

2n

)n

. (A.14)

The approximation is illustrated for different values of n and z in Figure A.1.

The following identity [68, Equation 4.4.17], which is valid for large n and is illustrated

in Figure A.2, is also useful:

(

n − 1

n

)n

≈ 1

e
. (A.15)

Using (A.14) and (A.15), (A.13) can be simplified to

(ν + s0)(
√

s0)ν(
√

x0)ν+1 =
√

ν(ν − 1)(s0 + x0)(
√

s0)ν(
√

x0)ν−1, (A.16)

for large values of ν. Thus, (A.16) is equivalent to (A.13) when ν is large.

Assuming that ν ≥ 2, (A.16) admits three unique solutions. Two of these are immedi-

2For instance, (A.13) is also satisfied when s0 → ∞ for arbitrary 0 ≤ x0 < ∞ and when x0 → ∞
for arbitrary 0 ≤ s0 < ∞. However these solutions are trivial as ǫ(k, s0, x0) = 0 in both cases.
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Figure A.1: A log-log plot of the absolute value of the error resulting from the approxi-
mation for the modified Bessel function of the first kind, defined in (A.14), for different
values of z.

ately clear: s0 = 0 and x0 = 0; the third can be found by cancelling the common terms

(which lead to the solutions s0 = 0 and x0 = 0) on both sides of (A.16) to give

x0 =

√

ν(ν − 1)s0

ν + s0 −
√

ν(ν − 1)
. (A.17)

For large values of ν, (A.17) simplifies to

x0 ≈ ν. (A.18)

Using (A.6), it can be shown that, for the solution x0 = 0, the only value of s0 that

satisfies both first partial derivative tests, as ν becomes large, is s0 → ∞ which, as

noted previously, is a trivial solution. Similarly, it can be shown that, if x0 = ν, then

(A.6) requires that s0 → ∞ when ν is large, and so x0 = ν is a further trivial solution.

The value of x0 corresponding to s0 = 0 can be found using the identity [68, Equation

10.30.1]

lim
s0→0

(

(

x0

s0

)
ν−1

2

Iν−1 (
√

s0x0)

)

=

(x0
2

)ν−1

Γ(ν)
, (A.19)

where Γ(n) represents the gamma function. Using (A.19), it can be shown that the

first partial derivative test, with respect to x, reduces to the condition

e− x0
2
(x0

2

)ν−1

Γ(ν)
=

e− (x0−2ν)2

8ν√
2πν

, (A.20)

which can be solved for x0 using a numerical method, but admits the solution x0 ≈ 2ν

for large values of ν. This can easily be shown by letting x0 ≈ 2ν in (A.20) to give the
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Figure A.2: A log-log plot of the absolute value of the error resulting from the approx-
imation for the reciprocal of the exponential function (blue) given in (A.15), Stirling’s
approximation (red) given in (A.22), and the regularised incomplete gamma function
approximation (green) given in (A.25).

condition

ν!√
2πν

(ν
e

)ν ≈ 1, (A.21)

which is guaranteed from the limit of Stirling’s approximation [68, Equation 5.11.3],

that is

lim
n→∞

n!√
2πn

(n
e

)n = 1, (A.22)

as illustrated in Figure A.2. Consequently, (A.21) is satisfied for large values of ν and

so the only non-trivial critical points for large ν are (s0, x0) = (0, 2ν).

Substituting (s, x) = (0, 2ν) into (A.8), it can be shown that

ǫ
CLT

(2ν, 0, 2ν) =
Γ(ν, ν)

Γ(ν)
− 1

2
. (A.23)

For large values of n, Γ(n,n)
Γ(n) can be approximated [68, Equation 8.11.12] as

Γ(n, n)

Γ(n)
≈
(n

e

)n √
2πn

n!

(

1

2
− 1√

18πn

)

, (A.24)

which can be simplified using (A.22) as

Γ(n, n)

Γ(n)
≈ 1

2
− 1√

18πn
, (A.25)

an illustration of which is shown in Figure A.2.
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Consequently, (A.23) can be written as

ǫ
CLT

(2ν, 0, 2ν) ≈ − 1√
18πν

, (A.26)

as ν becomes large, which suggests that the sign of the error with maximum magnitude

is negative and (s, x) = (0, 2ν) results in a minimum.

The second partial derivative test [68, Equations 1.5.20 and 1.5.21] can be used to show

that this intuition is correct. The test states that the critical points (s0, x0) result in a

local minimum if

D1(2ν, s0, x0) =
δ2

δx2
[ǫ

CLT
(2ν, s, x)]

∣

∣

∣

∣

∣

s=s0,x=x0

> 0, (A.27)

D2(2ν, s0, x0) =
δ2

δx2
[ǫ

CLT
(2ν, s, x)]

∣

∣

∣

∣

∣

s=s0,x=x0

δ2

δs2
[ǫ

CLT
(2ν, s, x)]

∣

∣

∣

∣

∣

s=s0,x=x0

−
(

δ2

δxδs
[ǫ

CLT
(2ν, s, x)]

)2
∣

∣

∣

∣

∣

∣

s=s0,x=x0

> 0. (A.28)

For (s0, x0) = (0, 2ν), the second order partial derivatives in (A.27) and (A.28) can

easily be derived from (A.9) and (A.11) to show that

D1(2ν, 0, 2ν) =
1

4ν

(ν
e

)ν

ν!
, (A.29)

D2(2ν, 0, 2ν) =
1

8ν2

(ν
e

)ν

ν!

(

1√
2πν

−
(ν

e

)ν

2(n + 1)Γ(ν)

)

− 1

32πν3
, (A.30)

both of which can be shown to be positive for ν ≥ 1. Figure A.3 illustrates the values

of D1(2ν, 0, 2ν) and D2(2ν, 0, 2ν) for increasing values of k = 2ν ≥ 2.

Furthermore, as (s0, x0) = (0, 2ν) and (s0, x0) = (∞, ν) are the only critical points as

ν becomes large, and because (s0, x0) = (∞, ν) results in ǫ
CLT

(2ν, s, x) = 0, the points

(s0, x0) = (0, 2ν) must produce a global minimum, and so, for large ν = k
2 ,

min
s,x>0

(ǫ
CLT

(2ν, s, x)) ≈ − 1√
18πν

, (A.31)

or, equivalently,

max
s,x>0

|ǫ
CLT

(k, s, x)| ≈ 1√
9πk

. (A.32)
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Figure A.3: A log-log plot of the second partial derivative tests specified in (A.27) and
(A.28), as functions of k = 2ν.

Finally, substituting (A.5) and (A.32) into (A.1) gives the desired result:

max
s,x

|ǫ
CLT

(k, s, x)| = max

(

Q

(

√

k
2

)

, ǫ∞(k)

)

, (A.33)

where, for convenience, ǫ∞(k) , max
s,x>0

|ǫ
CLT

(k, s, x)|.

A.2 Proof of Lemma 5.1

By definition [49, Equation 26.2.3], the Gaussian Q function is related to the error

function as

Q(x) =
1

2

[

1 − erf

(

x√
2

)]

, (A.34)

and so (5.11) can be written as

Fk(a, b, c) =
1

2 Γ(k)

∫ ∞

0

[

1 − erf

(

a − bx√
2

)]

e−cxckxk−1dx

=
1

2 Γ(k)

∫ ∞

0
e−cxckxk−1dx − 1

2 Γ(k)

∫ ∞

0
erf

(

a − bx√
2

)

e−cxckxk−1dx

=
1

2
− 1

2 Γ(k)

∫ ∞

0
erf

(

a − bx√
2

)

e−cxckxk−1dx, (A.35)

where the last line has been simplified using the identity [69, Equation 3.351-3]

1

Γ(k)

∫ ∞

0
e−cxckxk−1dx = 1, c > 0. (A.36)
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Changing the variable of integration in (A.35) to y = cx, Fk(a, b, c) can be written as

Fk(a, b, c) =
1

2
− 1

2 Γ(k)

∫ ∞

0
erf

(

a − by
c√

2

)

e−yyk−1dy

=
1

2
− (−1)k−1

2 Γ(k)

dk−1

dtk−1

[

∫ ∞

0
e−ty erf

(

a − by
c√

2

)

dy

]∣

∣

∣

∣

∣

t=1

. (A.37)

Now, letting z = y − ac
b , and changing limits appropriately, (A.37) can be written as

Fk(a, b, c) =
1

2
+

(−1)k−1

2 Γ(k)

dk−1

dtk−1

[

e− act
b

∫ ∞

− ac
b

e−tz erf

(

bz√
2c

)

dz

]∣

∣

∣

∣

∣

t=1

. (A.38)

Using the integral identity [49, Equation 7.4.36]

∫

e−tz erf

(

bz√
2c

)

dz =
1

t

[

e
(ct)2

2b2 erf

(

bz√
2c

+
ct√
2b

)

− e−tz erf

(

bz√
2c

)]

, (A.39)

it can be shown that (A.38) simplifies to

Fk(a, b, c) =
1

2
+

(−1)k−1

2 Γ(k)

dk−1

dtk−1













e− a2

2 e

(

a− ct
b√

2

)2
[

1 + erf

(

a− ct
b√

2

)]

t
−

erf
(

a√
2

)

t













∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

t=1

,

(A.40)

which is equivalent to the form given by Atapattu et al. [66].

However, this can be further simplified by noting that

dn

dtn

[

1

t

]∣

∣

∣

∣

t=1
=

n!

(−1)n
, (A.41)

and so (A.40) can be written as

Fk(a, b, c) =
1

2

[

1 − erf

(

a√
2

)]

+
e− a2

2

2

(−1)k−1

Γ(k)

k−1
∑

p=0

(

k − 1

p

)

dk−1−p

dtk−1−p

[

1

t

]∣

∣

∣

∣

t=1

× dp

dtp



e

(

a− ct
b√

2

)2 [

1 + erf

(

a − ct
b√

2

)]





∣

∣

∣

∣

∣

∣

t=1

= Q(a) +
e− a2

2

2

k−1
∑

p=0

(−1)p

p!

dp

dtp



e

(

a− ct
b√

2

)2 [

1 + erf

(

a − ct
b√

2

)]





∣

∣

∣

∣

∣

∣

t=1

, (A.42)

where Leibniz’s formula [68, Equation 1.4.12] has been used to expand the derivative

in the first line, and (A.34) and (A.41) to simplify the second line.
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Finally, using the identity [68, Equation 7.18.4]

dn

dzn

(

ez2
erfc(z)

)

= (−1)n 2n n! ez2
in erfc(z), (A.43)

and the composite function derivative rule [69, Equation 0.430-1], (A.42) can be sim-

plified to

Fk(a, b, c) = Q(a) +
e

c2

2b2 − ac
b

2

k−1
∑

p=0

(√
2c

b

)p

ip erfc

( c
b − a√

2

)

. (A.44)

A.3 Proof of Lemma 5.2

Using (5.9), |ǫ
SNR,X,Y

| can be written as

|ǫ
SNR,X,Y

| =

∣

∣

∣

∣

∫ ∞

−∞
ǫ

SNR,X
(x) f

X,Y
(x) dx

∣

∣

∣

∣

≤
∫ ∞

−∞
|ǫ

SNR,X
(x)||f

X,Y
(x)| dx

≤
∫ ∞

−∞
|ǫ

SNR,X
(x)| f

X,Y
(x) dx, (A.45)

where the fact that, because f
X,Y

(x) is a probability density function, f
X,Y

(x) ≥ 0 ∀ x,

has been used to simplify the notation.

The following identity, which is proved next in this appendix, is useful:

|ǫ
SNR,X

(γ
X

)| ≤ 1√
2πe

· γ
X

N
X

. (A.46)

Using (A.46), (A.45) can be simplified to

|ǫ
SNR,X,Y

| ≤ 1√
2πe

· 1

N
X

∫ ∞

−∞
x f

X,Y
(x) dx, (A.47)

which completes the proof.

Proof of (A.46)

Substituting (5.3) and (5.6) into (5.7), it can be shown that

ǫ
SNR,X

(γ
X

) = Q





λ − M(N
X

+ γ
X

)
√

2M(N
X

+ 2γ
X

)



− Q

(

λ − M(N
X

+ γ
X

)
√

2MN
X

)

. (A.48)
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For given values of M , N
X

and γ
X

, the critical points of ǫ
SNR,X

(γ
X

) may be found

using the first partial derivative test [68, Equation 1.5.19], that is

δ

δλ

[

ǫ
SNR,X

(γ
X

)

]∣

∣

∣

∣

λ=λ0

= 0. (A.49)

Differentiating ǫ
SNR,X

(γ
X

) with respect to λ, using (A.49), and simplifying, leads to

the condition

λ2
0 − 2M(N

X
+ γ

X
)λ0 + M2(N

X
+ γ

X
)2 − MN

X

γ
X

(N
X

+ 2γ
X

) log
(

1 +
2γ

X

N
X

)

= 0, (A.50)

which is in the form of a quadratic equation, and has the solutions

λ0 = M(N
X

+ γ
X

) ±
√

MN
X

γ
X

(N
X

+ 2γ
X

) log

(

1 +
2γ

X

N
X

)

. (A.51)

Using the second derivative test [68, Equation 1.5.20], it can be shown that the smaller

value of λ0 produces a minimum, while the larger value results in a maximum. However,

the absolute value of the error is the same using either solution. This can easily be

shown by substituting (A.51) into (A.48) and taking the absolute value of both sides

to give

|ǫ
SNR,X

(γ
X

)|
∣

∣

∣

λ=λ0

=

∣

∣

∣

∣

∣

∣

∣

Q







√

N
X

log

(

1+
2γ

X
N

X

)

2γ
X






− Q







√

(N
X

+2γ
X

) log

(

1+
2γ

X
N

X

)

2γ
X







∣

∣

∣

∣

∣

∣

∣

, (A.52)

and so it can be concluded that either value of λ0 maximises the absolute value of the

error.

Letting x =
2γ

X

N
X

, (A.52) can be written as

|g(x)| =

∣

∣

∣

∣

∣

∣

Q





√

log (1 + x)

x



− Q





√

(1 + x) log (1 + x)

x





∣

∣

∣

∣

∣

∣

, (A.53)

which is a concave function of x, as illustrated in Figure A.4, and so can be bounded

using a first order Taylor series approximation about x = 0.

The Taylor expansion [69, Equation 0.318-1] of g(x) about x = 0 can be written as

g(x) =
∞
∑

k=0

xk

k!
g(k)(0)

= g(0) + xg(1)(0) +
∞
∑

k=2

xk

k!
g(k)(0)

=
x√
8πe

+
∞
∑

k=2

xk

k!
g(k)(0), (A.54)
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Figure A.4: A log-log plot of the maximum error and the bound proposed in (A.55).

where the fact that limx→0 g(x) = 0 has been used to simplify the result.

Discarding the higher order terms in (A.54) and evaluating at the point x =
2γ

X

N
X

gives

the desired result:
∣

∣

∣

∣

g

(

2γ
X

N
X

)∣

∣

∣

∣

= |ǫ
SNR,X

(γ
X

)|
∣

∣

∣

λ=λ0

≤ γ
X√

2πe N
X

, γ
X

≥ 0, (A.55)

where equality holds as γ
X

→ 0, as shown in Figure A.4.

A.4 Proof of Lemma 5.3

Using (5.9), ǫ
SNR,X,Y

can be written as

ǫ
SNR,X,Y

=

∫ γ0

−∞
ǫ

SNR,X
(x) f

X,Y
(x) dx +

∫ ∞

γ0

ǫ
SNR,X

(x) f
X,Y

(x) dx

= ǫ+
SNR,X,Y

− ǫ−
SNR,X,Y

, (A.56)

where γ0 =
λ−MN

X

M , N
X

is as given in (5.4) and, for convenience, ǫ+
SNR,X,Y

=
∫ γ0

−∞ ǫ
SNR,X

(x) f
X,Y

(x) dx and ǫ−
SNR,X,Y

= − ∫∞
γ0

ǫ
SNR,X

(x) f
X,Y

(x) dx.

Using (5.3) and (5.6), it can be shown that ǫ
SNR,X

(γ
X

) has the property

ǫ
SNR,X

(γ
X

)















> 0 γ
X

< γ0

= 0 γ
X

= γ0

< 0 γ
X

> γ0,

(A.57)

and so ǫ+
SNR,X,Y

and ǫ−
SNR,X,Y

are strictly non-negative. Consequently, |ǫ
SNR,X,Y

| can be
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bounded as

|ǫ
SNR,X,Y

| =
∣

∣

∣ǫ+
SNR,X,Y

− ǫ−
SNR,X,Y

∣

∣

∣

≤ max
(

ǫ+
SNR,X,Y

, ǫ−
SNR,X,Y

)

. (A.58)

The following relation, which is proved later in this appendix, is useful:

|ǫ
SNR,X

(γ
X

)| ≤ |φ
X

(γ
X

)|√
2π

(

γ
X

N
X

)

exp



− φ2
X

(γ
X

)

2
(

1 +
2γ

X

N
X

)



 , (A.59)

where

φ
X

(γ
X

) =
λ − M(N

X
+ γ

X
)

√

2MN
X

. (A.60)

Using (A.59), and noting that φ(x) ≥ 0 for x ∈ (−∞, γ0], ǫ+
SNR,X,Y

can be bounded as

ǫ+
SNR,X,Y

≤ 1√
2π

· 1

N
X

∫ γ0

−∞
φ

X
(x) x exp



− φ2
X

(x)

2
(

1 + 2x
N

X

)



 f
X,Y

(x) dx

≤ max
x

(

x f
X,Y

(x)
) 1√

2π
· 1

N
X

∫ γ0

−∞
φ

X
(x) exp



− φ2
X

(x)

2
(

1 + 2x
N

X

)



 dx, (A.61)

where the first mean value theorem for infinite integrals [69, Equation 12.113] has been

used to simplify the result, and the notation max
x

(g(x)) indicates the maximum value

of the function g(x) for x ∈ (−∞, ∞).

To the best of the author’s knowledge at the time of writing, the integral in (A.61) can-

not be evaluated symbolically due to the 2x
N

X
term in the denominator of the argument

to the exponential function. Thus, the following simplification is made:

g
X

(x) = exp



− φ2
X

(x)

2
(

1 + 2x
N

X

)



 ≈ ĝ
X

(x) = exp

(

−φ2
X

(x)

2

)

. (A.62)

While (A.62) is valid near x = γ0 (recall that φ
X

(γ0) = 0), it is less accurate for

moderate deviations of x from γ0, as can be seen in Figure A.5. Still, the difference

is usually not large, and decreases as x → ±∞. Consequently, ĝ
X

(x) can be used to

approximate g
X

(x) in (A.61), and so ǫ+
SNR,X,Y

can be written as

ǫ+
SNR,X,Y

/ max
x

(

x f
X,Y

(x)
) 1√

2π
· 1

N
X

∫ γ0

−∞
φ

X
(x) exp

(

−φ2
X

(x)

2

)

dx, (A.63)

where / indicates that the left hand side of the equation is less than, or approximately

equal to, the right hand side, and is a consequence of the fact that ĝ
X

(x) ≤ g
X

(x),

which disagrees with the direction of the inequality in (A.61).
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ĝ
EGC

(x)

g
SLC

(x)

ĝ
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Figure A.5: A plot of the exact and approximate functions in (A.62), for some typical
system parameters. In the no diversity case, M = 100 and P̂fND

= 0.1; in the MRC
diversity case, n = 2, M = 500, and P̂fMRC

= 0.1; in the EGC diversity case, n = 3,
M = 2000, and P̂fEGC

= 0.01; and in the SLC diversity case, n = 5, M = 750, and
P̂fSLC

= 0.2.

Changing the variable of integration to u = φ
X

(x), and noting that φ
X

(γ0) = 0, the

integral in (A.63) can be written as

∫ γ0

−∞
φ

X
(x) exp

(

−φ2
X

(x)

2

)

dx =

√

2N
X

M

∫ ∞

0
ue− u2

2 du

=

√

2N
X

M
, (A.64)

where the integral identity
∫∞

0 xe− x2

2 dx = 1 [69, Equation 3.321-4] has been used to

simplify the result.

Using (A.64), (A.63) can be written as

ǫ+
SNR,X,Y

/
1

√

MN
X

π
max

x

(

x f
X,Y

(x)
)

. (A.65)

Similarly, noting that φ(x) ≤ 0 for x ∈ [γ0, ∞), ǫ−
SNR,X,Y

can be bounded as

ǫ−
SNR,X,Y

≤ − 1√
2π

· 1

N
X

∫ ∞

γ0

φ
X

(x) x exp



− φ2
X

(x)

2
(

1 + 2x
N

X

)



 f
X,Y

(x) dx

/ − max
x

(

x f
X,Y

(x)
) 1√

2π
· 1

N
X

∫ ∞

γ0

φ
X

(x) exp

(

−φ2
X

(x)

2

)

dx. (A.66)

Once again changing the variable of integration to u = φ
X

(x), the integral in (A.66)
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can be written as

∫ ∞

γ0

φ
X

(x) exp

(

−φ2
X

(x)

2

)

dx =

√

2N
X

M

∫ 0

−∞
ue− u2

2 du

= −
√

2N
X

M
, (A.67)

and so ǫ−
SNR,X,Y

can be bounded as

ǫ−
SNR,X,Y

/
1

√

MN
X

π
max

x

(

x f
X,Y

(x)
)

. (A.68)

As both ǫ+
SNR,X,Y

and ǫ−
SNR,X,Y

are approximately bounded by the same function, (A.58)

can be simplified to

|ǫ
SNR,X,Y

| / 1
√

MN
X

π
max

x

(

x f
X,Y

(x)
)

, (A.69)

which completes the proof.

Proof of (A.59)

The Taylor series expansion [69, Equation 0.318-1] of Q(x) about x = ϕ is given by

Q(x) =
∞
∑

k=0

(x − ϕ)k

k!

dk

dzk

[

Q(z)

]∣

∣

∣

∣

z=ϕ

. (A.70)

Using (A.70), it can be shown that, for c ≥ 0,

Q

(

ϕ√
1 + c

)

=
∞
∑

k=0

ϕk

k!

(

1√
1 + c

− 1

)k dk

dzk

[

Q(z)

]∣

∣

∣

∣

z=ϕ

.

= Q(ϕ) + R, (A.71)

where the remainder, R, can be written in Lagrange form [69, Equation 0.317-3], with

z0 = ϕ + θ
(

ϕ√
1+c

− ϕ
)

, as

R = ϕ

(

1√
1 + c

− 1

)

d

dz

[

Q(z)

]∣

∣

∣

∣

z=z0

=
ϕ√
2π

(

1 − 1√
1 + c

)

exp

[

−ϕ2

2

(

1 − θ

(

1 − 1√
1 + c

))2
]

, (A.72)

where equality holds for some θ ∈ (0, 1).

The argument to the exponential function in (A.72) can be written in the simplified

form −η (1 − θζ)2, where η = ϕ2

2 > 0, and ζ = 1 − 1√
1+c

. As c ≥ 0, 0 ≤ ζ ≤ 1, and

so the quantity 1 − θζ is minimised as θ → 1, as illustrated in Figure A.6. Thus, the
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Figure A.6: A plot of the quantity 1 − θζ, as a function of θ, for 0 ≤ ζ ≤ 1.

exponential function in (A.72) can be bounded as

exp
(

−η (1 − θζ)2
)

≤ exp
(

−η (1 − ζ)2
)

. (A.73)

Similarly, the quantity 1 − 1√
1+c

can be bounded as

1 − 1√
1 + c

≤ 1 − 1
√

1 + c + c2

4

≤ 1 − 1

1 + c
2

≤
c
2

1 + c
2

≤ c

2
. (A.74)

Using (A.72), (A.73) and (A.74), |R| can be bounded as

|R| =
|ϕ|√
2π

(

1 − 1√
1 + c

)

exp

[

−ϕ2

2

(

1 − θ

(

1 − 1√
1 + c

))2
]

≤ |ϕ|√
2π

(

c

2

)

exp

(

− ϕ2

2 (1 + c)

)

. (A.75)

Returning to (A.71), it can be shown that

Q

(

ϕ√
1 + c

)

= Q(ϕ) + R

∣

∣

∣

∣

Q

(

ϕ√
1 + c

)

− Q(ϕ)

∣

∣

∣

∣

= |R|

=⇒
∣

∣

∣

∣

Q

(

ϕ√
1 + c

)

− Q(ϕ)

∣

∣

∣

∣

≤ |ϕ|√
2π

(

c

2

)

exp

(

− ϕ2

2(1 + c)

)

. (A.76)
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Letting ϕ = φ
X

(γ
X

) and c =
2γ

X

N
X

in (A.76) completes the proof.

Additional remarks

Using (A.75) and noting that 1 − 1√
1+c

≤ 1, |R| can also be bounded as

|R| ≤ |ϕ|√
2π

exp

[

− ϕ2

2(1 + c)

]

/
|ϕ|√
2π

exp

[

−ϕ2

2

]

, (A.77)

which attains a maximum when ϕ = 1, and so (A.77) can be written as

|R| / 1√
2πe

. (A.78)

Using (5.9) and (A.78), ǫ
SNR,X,Y

can be written as

ǫ
SNR,X,Y

=

∫ ∞

−∞
ǫ

SNR,X
(x) f

X,Y
(x) dx

/
1√
2πe

∫ ∞

−∞
f

X,Y
(x) dx

/
1√
2πe

≈ 0.24, (A.79)

where the fact that f
X,Y

(x) is a probability density function, and so
∫∞

−∞ f
X,Y

(x) dx = 1,

has been used to simplify the result.

Equation A.79 is not particularly useful as a bound because of its large value, but it

does serve to illustrate that ǫ
SNR,X,Y

has a finite upper limit or, put more simply, that

there is no combination of system parameters that cause ǫ
SNR,X,Y

→ ∞. The bound

given by (A.69) does not imply such a constraint, and for particular combinations of

inputs may result in a value larger than 1√
2πe

.

A.5 Proof of Lemma 5.4

First, the substitution
√

py = x−s
t , p > 0, should be made in (5.77). Noting that the

change in the variable of integration does not affect the limits, but that dx = t
√

pdy,
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G(q, r, s, t) can be written as

G(q, r, s, t) = t
√

p

∫ ∞

−∞
Q (q − rs − rt

√
py) e−py2

dy

=
t
√

p

2

∫ ∞

−∞

[

1 − erf

(

q − rs − rt
√

py√
2

)]

e−py2
dy

=
t
√

p

2

∫ ∞

−∞
e−py2

dy − t
√

p

2

∫ ∞

−∞
erf

(

q − rs − rt
√

py√
2

)

e−py2
dy, (A.80)

where the definition of the Gaussian Q function has been used to simplify the result.

The first integral in (A.80) can be further simplified as

∫ ∞

−∞
e−py2

dy =

∫ 0

−∞
e−py2

dy +

∫ ∞

0
e−py2

dy

= −
∫ 0

∞
e−py2

dy +

∫ ∞

0
e−py2

dy

= 2

∫ ∞

0
e−py2

dy

= 2 × 1

2

√

π

p

=

√

π

p
, (A.81)

where the integral identity given in [69, Equation 3.3213] has been used to simplify the

result.

The second integral in (A.80) can be simplified, using [69, Equation 8.2591], as

∫ ∞

−∞
erf

(

q − rs − rt
√

py√
2

)

e−py2
dy =

√

π

p
erf

(

q − rs√
2 + r2t2

)

. (A.82)

Substituting (A.81) and (A.82) into (A.80), it is not difficult to show that

G(q, r, s, t) = t
√

π × 1

2

[

1 − erf

(

q − rs√
2 + r2t2

)]

= t
√

πQ





q − rs
√

1 + r2t2

2



 , (A.83)

where the definition of the Gaussian Q function has again been used to simplify the

result.

A.6 Proof of Theorem 6.1

Recalling (4.11), the error resulting from the use of (4.9) has differing representations

for x ≤ 0 and x > 0. Therefore, when s = kϑ, its maximum absolute value, with
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respect to x, is given by

max
x

|ǫ
CLT

(k, kϑ, x)| = max

(

max
x≤0

|ǫ
CLT

(k, kϑ, x)|, max
x>0

|ǫ
CLT

(k, kϑ, x)|
)

. (A.84)

While the formulation in (A.84) is similar to (A.1), the fact that k is large can no longer

be exploited, and so the maximum absolute error for the individual cases where x ≤ 0

and x > 0 must be determined before the absolute error over the entire range of values

of x can be bounded.

Maximum value for x ≤ 0

When x ≤ 0,

max
x≤0

|ǫ
CLT

(k, kϑ, x)| = max
x≤0

[

1 − Q

(

x − k(1 + ϑ)
√

2k(1 + 2ϑ)

)]

, (A.85)

as in (A.2). Noting that the Gaussian Q function is monotonically decreasing, the

maximisation in (A.85) is satisfied when the argument to the Q function is maximised.

As the range of values of x is constrained, this occurs when x = 0, and so

max
x≤0

|ǫ
CLT

(k, kϑ, x)| = 1 − Q

(

−k(1 + ϑ)
√

2k(1 + 2ϑ)

)

= Q

(

k(1 + ϑ)
√

2k(1 + 2ϑ)

)

. (A.86)

Maximum value for x > 0

The maximisation of ǫ
CLT

(k, kϑ, x) is more difficult when x > 0. As a first step, the

critical points of ǫ
CLT

(k, kϑ, x) can be determined using the first derivative test [68,

Section 1.4 (iii)], that is

d

dx
[ǫ

CLT
(k, kϑ, x)]

∣

∣

∣

∣

x=x0

= 0. (A.87)

In a similar fashion to (A.12), it is not difficult to show that (A.87) is satisfied by

e
− (x0−2ν(1+ϑ))2

8ν(1+2ϑ) =
√

2πν(1 + 2ϑ)e−ϑν− x0
2

(

x0

2ϑν

)
ν−1

2

Iν−1

(

√

2ϑνx0

)

, (A.88)

where, once again, ν = k
2 for convenience.

While (A.88) precisely describes the condition necessary to maximise ǫ
CLT

(2ν, 2ϑν, x)

when x > 0, determining the exact value of x0 required is complicated due to the

presence of the modified Bessel function of the first kind. However, it can be shown
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Figure A.7: A plot of the absolute relative error resulting from the use of the approxi-
mation given in (A.90).

that x0 ≈ 2ν(1 + ϑ) as ϑ becomes large. To see this, consider the approximation

In(z) ≈ Ĩn(z) =
ez

√
2πz

, (A.89)

which is valid when z becomes large relative to n [68, Equation 10.30.4]. Letting

n = ν − 1 and z = 2ν
√

ϑ(1 + ϑ) in (A.89) results in the further approximation

Iν−1

(

2ν
√

ϑ(1 + ϑ)

)

≈ e2ν
√

ϑ(1+ϑ)

√

4πν
√

ϑ(1 + ϑ)
, (A.90)

as ϑ becomes large relative to ν. Figure A.7 illustrates the relative error resulting from

the use of the approximation in (A.90) for various values of ν and ϑ.

Letting x0 = 2ν(1 + ϑ) in (A.88) gives the condition

1 =
√

2πν(1 + 2ϑ)e−ν(1+2ϑ)
(

1 + ϑ

ϑ

)
ν−1

2

Iν−1

(

2ν
√

ϑ(1 + ϑ)

)

. (A.91)

The approximation in (A.90) can be applied to simplify this condition to

1 =

(

1 + 4ϑ + 4ϑ2

4ϑ + 4ϑ2

) 1
4 (1 + ϑ

ϑ

)
ν−1

2

× exp



−ν
√

4ϑ + 4ϑ2





√

1 + 4ϑ + 4ϑ2

4ϑ + 4ϑ2
− 1







 , (A.92)
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which holds approximately, for large values of ϑ, as

lim
ϑ→∞

(

1 + 4ϑ + 4ϑ2

4ϑ + 4ϑ2

)

= 1, (A.93)

lim
ϑ→∞

(

1 + ϑ

ϑ

)

= 1. (A.94)

Consequently, it can be concluded that x0 ≈ 2ν(1 + ϑ) as ϑ becomes large. The second

derivative test can be applied to verify that this value of x0 produces a maximum, and

so

max
x>0

|ǫ
CLT

(k, kϑ, x)| , ǫ∞,ϑ(k) ≈ Qν

(√
kϑ,

√

k(1 + ϑ)

)

− 1

2
, (A.95)

as ϑ becomes large and so, using (A.84) and (A.86), it can be shown that

max |ǫ
CLT

(k, kϑ, x)| = max

(

Q

(

k(1 + ϑ)
√

2k(1 + 2ϑ)

)

, ǫ∞,ϑ(k)

)

. (A.96)
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Notation

∩ The set intersection operator.

∪ The set union operator.

quod erat demonstrandum (QED).

E[X] The expected value of the random variable X.

N
+ The set of positive integers.

P [A] The probability of the event A occurring.

P [A | B] The probability of the event A occurring, given that the event B has already

occurred.

R
+ The set of positive real numbers.

R
+
0 The set of non-negative real numbers.

Var[X] The variance of the random variable X.
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Abbreviations

AWGN additive white Gaussian noise

BPSK binary phase shift keying

CDF cumulative distribution function

DSA dynamic spectrum access

DTV digital television

EGC equal gain combiner

ENP estimated noise power

ERG European Regulators Group

FCC Federal Communications Commission

FFT fast Fourier transform

FPGA field programmable gate array

GPS Global Positioning System

IEEE Institute of Electrical and Electronics Engineers

i.i.d. independent and identically distributed

i.n.d. independent and non-identically distributed

IRCSET The Irish Research Council for Science, Education and Technology

LOS line of sight

LRT likelihood ratio test

MRC maximal ratio combiner

ND no diversity

NTIA National Telecommunications and Information Administration

OFDM orthogonal frequency-division multiplexing

PDF probability density function
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Abbreviations

PMF probability mass function

PWM pulse width modulation

QED quod erat demonstrandum

QoS quality of service

QPSK quadrature phase shift keying

RF radio frequency

ROC receiver operating characteristic

SLC square law combiner

SNR signal to noise ratio

UWB ultra wideband

WRAN wireless regional area network
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