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Abstract  

In this paper, an accurate, large range, two-axis compliant positioning system is described and the 

performance of the implemented control system is analysed. The characteristics of two 

independently controlled axes are designed to be nominally identical and orthogonal. Both the 

kinematic and the kinetostatic cross-coupling interactions between the axes are statically analysed. 

The movement of each system axis can be modelled with linear equations when assuming a small 

motion range, upper bounded by about 0.2 mm. To achieve high-performance over the full 

permissible motion range (i.e., for movements up to ± 1 mm), the non-linearity due to stiffness has 

been considered and modelled to implement the controller.  The control system is based on both a 

PID feedback controller and a force feed-forward controller based on a non-linear model. For 

sinusoidal or triangular reference signals, a repetitive controller (RC) based on a linear system model 

is added in parallel to improve system performances. Various dynamic tests have been performed, 

and the obtained simulation and experimental results are discussed.  A suitable application of the 

designed RC is shown to significantly improve the accuracy of the system especially at the higher 

frequencies selected, thus allowing the accurate tracking of movements up to 50 Hz.   The adopted 

encoder (with a resolution of 5 nm) allows the relative accuracy of the system to be of the order of 

a few percent for displacements of up to ±1 mm from the null position.  

Keywords: positioning system, compliant mechanism, hybrid control, repetitive control  

 

1. Introduction 

Micropositioning and nanopositioning systems are mechatronic motion systems capable of 

micrometric or nanometric motion quality, in terms of precision, accuracy and resolution. 

Consequently, both the component choice and the manipulator design require very careful 

consideration. Flexure structures, such as compliant mechanisms, are utilized in most state-of-the-

art high-performance positioners. In a compliant mechanism, at least part of the movement is 



performed by exploiting the deflection of its flexible components. Compared to traditional rigid-

body mechanisms, compliant mechanisms have several advantages, among which are [1]: reduced 

number of components (with reduced manufacturing and assembly time, and reduced cost), less 

movable joints or jointless structures (with consequent reduction of both wear and need of 

lubrication). Moreover, the mechanism precision is increased because backlash is reduced or 

eliminated. In addition, compliant mechanisms are easily miniaturized and they usually weigh less 

than their rigid-body counterparts. 

 

Applications of micro-/nano-positioners include super-resolution microscopes, micromanipulation, 

lithography, scanning probes microscopes, biological cell manipulation and surface profilometry  

[2]-[7]. A critical application is the scanning probe microscope, in particular the Atomic Force 

Microscope (AFM) [8]-[12], where periodic reference signals (e.g. triangular signal in AFM) are used 

to drive an axis of the system. 

 

Reference [13] reported a multi-axis, decoupled compliant parallel manipulator with a compact and 

symmetric configuration, which is suitable for micro-/nano-positioning applications with a range of 

travel of ±1 mm from the null position. Its kinetostatic analytical and experimental models have 

been described in detail. However, its multi-axis dynamic precision remains unknown, which is 

therefore the focus of this paper. This paper contributes to the system-level integration of such a 

multi-axis positioning system, including the control system hardware set-up, control methods, and 

dynamic tests. 

 

Many high-performance positioning systems are actuated using piezo-electric actuators [12], [14]-

[17]. However, the main drawback of such actuators is their limited motion range. To guarantee a 

large motion range (for example of the order of millimeters) actuation is performed using 

electromagnetic actuators [2],[18],[19] or voice coil (VC) actuators [3]-[6],[20]-[23]. In this paper, 

the latter approach is employed, because of both the large range of motion and the linear relation 

between input current and output force, thereby simplifying the control design. Moreover, voice 

coils actuators are frictionless, hysteresis-free and cog-free.  

 

Various techniques have been implemented to control high-performance positioning systems. Most 

proposals reported in the literature are based on the flexure mechanisms. For example, in [6] and 



[20] a Sliding Mode Control (SMC) with a PID controller is used, while in [21] a PID controller with a 

cross-coupled control and an Iterative Learning Control (ILC) based on zero-phase filtering, are 

proposed. A discrete time adaptive extended observer with exponential forgetting factor is adopted 

in [16], while an Enhanced Model-Predictive Control (EMPC) is implemented in [23]. Various papers 

adopt a control system based on a PI or a PID controller [3]-[5]. In some systems, the feedback 

control is implemented, together with a feed-forward controller. For example, a lead-lag type 

feedforward compensator is used in [18], while an inverse Preisach-model-based feedforward 

sliding-mode controller is proposed in [2].  

 

The control algorithm proposed in this paper is based on a PID position feedback controller with 

added force feedforward. This latter component is based on a theoretical expression of the force 

required to perform a given movement, specified in terms of position, velocity and acceleration.  In 

this way, the feedback controller, whose action is slower than the feedforward one, is required to 

compensate only for the difference between the real system and the theoretical equation, thereby 

improving the system’s accuracy and dynamic performance. The compliant system shows a non-

linear stiffness. Specifically, the relationship between force and position shows a significant cubic 

term related to the deformation of the compliant mechanism, as described in [24].  In the system 

described in this paper, this can be neglected only when the movement is smaller than 0.2 mm. 

Significant non-linear stiffness has been already reported in the literature [7], [25]. The force 

equation used in the feedforward controller considers the stiffness non-linearity. Thus, it allows the 

compensation of the non-linear system behaviour over the full operational motion range, thereby 

simplifying the design of the feedback controller. To the best of the authors knowledge, the use of 

this non-linear stiffness model to control the feedforward force has not reported in the literature 

to-date. The experimental results show that this simple approach provides a good compensation of 

such system non-linearities.  

 

In multi-axis positioning systems, the cross-coupling interaction between the axes can negatively 

affect the system tracking. This effect requires analysis and, if necessary, compensation [6], [8], [21], 

[22], [26], [27]. The dynamic system performance is evaluated using periodic signals, such as 

sinusoidal or triangular signals [2], [18], [20], [25]. However, using technique specifically designed 

for periodic signals, such as repetitive control (RC) [9], [11], [15], [27], [28], or iterative learning 

control (ILC) [18], [21] can provide significant performance improvement. The designed RC is based 



on a second order linear model of the system, thus enabling a simple implementation. Despite its 

simplicity, it provides good performance improvement for the non-linear system analysed. 

Compared to the controllers for flexure mechanisms reported in those papers listed above, the 

control strategy applied in the proposed system facilitates high-bandwidth, periodic movements of 

high accuracy, over a wide motion range. 

 

The paper is organized as follows: in Section 2, the overall system is described, together with all its 

components, and the non-linear equation describing the system stiffness is reported. Moreover, 

both the kinematic and kinetostatic cross-coupling are statically analysed. The proposed control 

approach is described in Section 3. In Section 4, the simulated and experimental results obtained in 

dynamic operating condition are reported.  Finally, some concluding remarks are presented in 

Section 5 of this paper.  

 

2. System description 

 A two axes compliant positioning system, shown in Fig. 1, is considered. It is composed of two 

nominally identical orthogonal axes, each allowing a high-quality movement in a ±1 mm motion 

range. The mechanical structure is composed of three main parts: a compliant basic parallelogram 

mechanism (CBPM) for guiding the actuator in each axis (as described in [24]), the XYZ compliant 

parallel manipulator (CPM) shared between the axes (described in [13]), and a base frame.  

The XYZ CPM, the structure of which is shown in Fig. 2, was designed using distributed-compliance 

wire beams, with a fully-symmetric (but the least over-constraints), compact and decoupled 

structure, so that each axis can be controlled separately using the same control strategy [13]. The 

wire flexures used in Fig. 2 are subject to spatial deflections. X and Y axes of the XYZ CPM were 

actuated in this paper to demonstrate the two-axis control system and method. The XYZ CPM as 

described in [13] can provide actuation isolation for guiding relatively low-weight actuators. 

However, to use large-force (i.e. high-weight) VC actuators for universal utilization, two separate 

CBPMs were added to the XYZ CPM to enable a capable guiding of the two actuators. Indeed, the 

CBPM component has been added to further constrain the motion of the voice coil actuator in the 

non-axial/non-desired direction, so avoiding possible actuator damage. In addition, this component 

increases the system’s overall stiffness (i.e. natural frequency). As demonstrated in [13], the lost 

motion between the input and output in each axis of the XYZ CPM is trivial, and can be neglected in 

this paper, thus simplifying the system hardware design. Therefore, only a single-axis displacement 



sensor (i.e. linear encoder) is used to measure the input displacement of the VC actuator of a 

particular axis. As shown in Fig.1, the encoder is installed on the CBPM component. Because the 

stiffness between the CBPM and the XYZ CPM is much bigger than that of the compliant mechanism 

itself, the encoder output provides an accurate representation of component of the displacement 

of the XYZ CPM in the direction of the CBPM movement. Thus, the encoder acts as a feedback sensor 

of the positioning system. 

All these components utilize Aluminium 6061 (Young’s Modulus E = 69000MPa). Each axis includes 

a servo amplifier (B25A20 by Advanced Motion Control) in current-loop mode, a voice coil actuator 

VCA (model LA30-48-000A manufactured by BEI Technologies INC) and an optical linear encoder (SI-

HN-4000-01-0-FN-403-003-3, readhead number SRO15A, by Renishaw). The physical system is 

connected to a computer through a dSPACE DS1104 R&D Controller Board. The control program, 

implemented in Matlab/Simulink, was uploaded on the controller board using the dSPACE 

ControlDesk 5.4 software. The block diagram of one system axis, with all the components and their 

connections, is shown in Fig. 3. 

 

Fig. 1: The implemented two axes high-performance positioning system. 

                   XYZ CPM 

                    Motion stage 



 

Fig. 2: XYZ CPM design: (a) Monolithic CAD design with three axis highlighted (grey colour indicating base stages); (b) Assembled 
design with the two controlled axes highlighted [13]. 

 

 

 

Fig. 1: One axis block diagram. 

 

The mechanical system exhibits a non-linear behaviour mainly due to the stiffness non-linearity of 

the CBPMs. According to [29], the stiffness non-linearity can be neglected in a motion range of ±0.2 

mm. Under that assumption, a mass-spring-damping model, (second order linear transfer-function) 

is sufficient for each axis. Thus, the ratio between the position signal measured by the encoder and 

the input voltage (from the DAC on the dSPACE controller board) can be written as [28]: 

where: 𝐾𝑓 is the force sensitivity of the actuator, 𝐾𝑑 is the servo amplifier gain, 𝑚𝑡𝑜𝑡 is the axis total 

mass, 𝑐 is the axis viscous damping coefficient and 𝑘𝑡 is the axis stiffness. Since 𝑚𝑡𝑜𝑡 = 1.824  Kg 
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and  𝑘𝑡 =  129460 N/m, the resultant first resonant frequency is 𝑓𝑟 = 42.4  Hz [28]. The bode 

diagram of Eq. (1) is shown in Fig. 4. As expected, the plots show a second order behaviour, with a 

DC gain equal to 20 log10
𝐾𝑓𝐾𝑑

𝐾𝑡
 =  −66.2 𝑑𝐵 and a resonant frequency at 42.4 Hz, with a 

corresponding peak of −39.4 dB.  At higher frequencies, the magnitude of the transfer-function 

decreases with a decay rate of -40 dB/dec, while its phase approaches -180°. Thus, particular 

attention is required for reference signals with frequencies near the resonant frequency. Moreover, 

frequencies higher than the resonant frequency may require a very high input voltage to produce a 

significant movement. 

 

Fig. 2: Linear model Bode diagram 

 

To exploit the full motion range of ± 1 mm, the non-linear equations of the CBPM primary actuation 

force and stiffness are [19]:  
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where: 𝑋 is the primary translational motion, 𝐸 is the Young’s modulus, 𝐼 is the second moment of 

area of a rectangular cross-section, 𝐿 is the beam actual length and 𝑝 =  
12

(𝑇/𝐿)2 
, with 𝑇 being the 

beam in-plane thickness.  



 

The feedforward controller is implemented by adding the CBPM non-linear force to the XYZ CPM 

force 𝐹𝑋𝑌𝑍 = 24
12𝐸𝐼𝑋𝑌𝑍

𝐿𝑋𝑌𝑍
3  𝑋 [29] (where 𝐼𝑋𝑌𝑍 and 𝐿𝑋𝑌𝑍 are the second moment of area and length of 

the identical square wire beams, respectively, in the XYZ CPM) and the contributions of velocity and 

acceleration.  

 

By analysing the effect of the cross-coupling interaction between the axes, the system can be 

controlled as a decoupled structure. Both the kinematic and kinetostatic cross-couplings were 

statically analysed. The kinematic cross-coupling occurs when a movement of one axis produces an 

unwanted movement on the other axis. Conversely, the kinetostatic cross-coupling arises when the 

force needed to move one axis increases when the position of the other axis differs from the null 

position.  

 

The kinematic cross-coupling analysis was performed by driving one axis with a static reference 

signal and measuring, in open-loop, the movement of the other axis. The data showing the effect 

on the X-axis, when positive movements were performed on the Y-axis is shown in Fig. 5, together 

with the corresponding linear and cubic fittings. Similar results were obtained when negative Y-axis 

movements were performed, or when the roles of axes were exchanged. 

 

 

Fig. 3: Kinematic cross-coupling interaction on the X-axis when performing positive movements on the Y-axis. 

 



Experimental results show that the shift introduced by the kinematic cross-coupling has a cubic 

behaviour and it is quite small (less than 1%) compared to the shift of the primary axis. A 

compensation of this effect using linear fitting of data was implemented. However, the 

compensation is found to be unnecessary for trajectories under closed-loop control, because the 

effect of the cross-coupling interaction was then so small that it was undetectable. Moreover, with 

dynamic reference signals (sinusoidal or triangular), the acquired data showed no appreciable 

difference when cross-coupling compensation was added. Thus, compensation of such cross-

coupling will be neglected, henceforth. 

In [30], the effect of the kinetostatic cross-coupling interaction in the actuation force was 

theoretically analysed. It was shown that the force needed to perform a movement on one axis 

increases if the other axis is not in the null position. Equation (4) shows the increment of the X-axis 

force ∆𝐹𝑋𝑌 due to the kinetostatic cross-coupling with the Y-axis. Given the symmetrical nature of 

the system, effectively identical equations are relevant to both axes. 

  

 
∆𝐹𝑋𝑌 =

𝐸𝐼

𝐿3 

1058400𝑋𝑌2𝑇2

(3𝑋2 + 3𝑌2 + 175𝑇2)(3𝑋2 + 175𝑇2)
 

 

(4) 

where: 𝑋 is the X-axis motion, 𝑌 is the Y-axis motion, while  𝐸, 𝐼, 𝐿 and 𝑇 are the same quantities as 

in (3). Due to symmetry, a similar equation holds when the axes are exchanged. In Fig. 6, the 3D plot 

of the X-axis force increment returned by (4) is shown. It is clear that the increase in actuation force 

is appreciable only when both axes are far away from the null position.  

 
Fig. 4: X-axis force increment due to the kinematic cross-coupling with the Y-axis 

 

The unwanted static, kinetostatic cross-coupling interaction was analysed experimentally using 

static signals. For this purpose, one axis was held in a fixed position, while the actuation force 



needed to perform a desired movement on the other axis was measured and the force increment 

required to move one axis when the other is not in the null position was evaluated. Fig. 7 shows the 

force increment for the X-axis when the Y-axis was at +1 mm from the null position. Similar results 

were found when the Y-axis was held at ±0.5 mm and -1 mm, or when the roles of the axes were 

exchanged.   

 

Fig. 5: X-axis force increment when the Y-axis was held in 1 mm from the null position. 

 

It was verified that the variation in force is quite small in all the configurations chosen (around 1% 

in most cases). The effect of the kinetostatic cross-coupling was compensated by a linear fitting of 

static analysis data. However, no significant improvements were obtained when dynamic reference 

signals are used, since the system behavior is dominated by dynamic effects. Consequently, the 

kinetostatic cross-coupling effect will be neglected henceforth, because no such compensation is 

required. 

3. Design of Controllers  

Both axes of the system have the same structure and are controlled using the same control 

approach. Moreover, they are decoupled, so that they can be controlled independently.   

 

Each axis control is composed by a feedback and a feedforward controller. The feedback controller 

increases the system’s robustness to external noise or non-modelled effects. It is based on a PID 

approach, tuned with the Ziegler-Nichols method, as described in [31]. The feedforward controller 

is designed to improve the dynamic behaviour of the system, thereby reducing transient times.   

 



When operating in the linear range (for movements up to ±0.2 mm), system performance 

significantly improves when the action of a force feedforward controller, based on Newton’s law, is 

added to the PID feedback controller [32]. Thus, the feedforward output force is expressed in terms 

of the position, velocity and acceleration related to the reference trajectory: 

 𝐹 = 𝑚𝑡𝑜𝑡�̈� + 𝑐�̇� + 𝑘𝑡𝑥 (5) 

 

where: 𝑚𝑡𝑜𝑡 is the axis total mass, 𝑐 is the axis viscous damping coefficient, 𝑘𝑡 is the axis stiffness 

and 𝑥 is the axis movement. When the axis movement is extended up to ±1 mm, (5) becomes:  

 𝐹 = 𝑚𝑡𝑜𝑡�̈� + 𝑐�̇� + 𝑘𝑡(𝑥)𝑥 (6) 

 

where the term 𝑘𝑡(𝑥)𝑥 is the summation of the primary actuation force of the CBPM (2) and the 

XYZ CPM force 𝐹𝑋𝑌𝑍 . Both simulation and experimental results reported below show that 

implementation of the non-linear force feedforward (6) facilitates high-quality performance control 

over the full motion range. 

 

In some applications of high-performance positioning systems, such as Atomic Force Microscopes 

(AFM) [8]-[11], periodic reference signals are used. In this case, system performance can be 

improved if a repetitive controller (RC) [9], [11], [15], [28] is added in the control scheme. The RC is 

intended to provide compensation of the periodic component of the tracking error and it requires 

a knowledge of both the period of the reference signal and the system’s close-loop transfer-

function. If, for the sake of simplicity, it is assumed that the system exhibits a predominantly linear 

behaviour, with closed-loop transfer-function 𝑊(𝑧) =  𝐵(𝑧−1)/𝐴(𝑧−1), the RC transfer-function is 

[33]: 

 
𝐺𝑅(𝑧−1) =

1

1 − 𝑧−𝑁
𝐾𝑅

𝑧−𝑁+𝑑+𝑚 𝐴(𝑧−1)(𝑧−𝑚𝐵−(𝑧))

𝐵+(𝑧−1)𝑏
 

(7) 

 

where: 𝑁 is the number of samples in a single period, 𝑑 is the relative degree of 𝑊(𝑧), 𝑚 is the 

number of the zeros outside the unit radius circumference and 𝐾𝑅  is the RC gain. In (7), the 

numerator polynomial of 𝑊(𝑧) is expressed as the product  𝐵(𝑧−1) =  𝐵+(𝑧−1) 𝐵−(𝑧−1), where    

𝐵+(𝑧−1) corresponds to its stable zeros, while 𝐵−(𝑧−1) relates to the unstable ones. Observe that 

𝐵−(𝑧−1) is not physically feasible, but (𝑧−𝑚𝐵−(𝑧)) it is. Finally, 𝑏 ≥ max |𝐵−(𝑒−𝑗𝜔)|
2

 with 𝜔 ∈

[0, 𝜋].  It has been shown in [32] that this controller is asymptotically stable if 0 < 𝐾𝑅 < 2. 

 



A schematic representation of the control scheme implemented for each axis of the system is shown 

in Fig.8.  

 

Fig. 6: Schematic control scheme 

 

Observe that the feedforward controller uses position, velocity and acceleration reference inputs, 

while the feedback controller requires only position and velocity. Since only a position measurement 

is performed, system velocity is estimated through a suitable observer, as described in [31].  

 

4. Simulation and experimental results 

4.1 Simulation results 

A number of simulations and experiments were performed using Simulink to assess the dynamic 

performance when feeding both axes with sinusoidal or triangular signals, but with different 

amplitude and frequency values. The analysis was performed both without and with RC. Simulation 

results are shown for only one axis because both axes are modelled identically, and the related 

control algorithms are decoupled. (Note that an addition at the system input of random noise about 

1 µm amplitude to the nonlinear model was made because its contribution at the system output 

matched well the magnitude of the noise measured on the physical system. 

  

Simulations showed that the RC action significantly reduces the position error, but that the error 

starts to increase after some time. Simulations showed that this undesired effect is due to system 

non-linearity, while the RC implementation is conversely based on a linear system model. However, 

if the RC action is terminated just before the error starts to increase, that detrimental behaviour is 

avoided, and a steady-state reduction ensues. The optimum termination time is easily found 

experimentally because it is repeatable and consistent for a particular type of periodic trajectory.  

 



The results returned by some typical simulations are reported below. The position error 

corresponding to a sinusoidal reference signal of 500 µm amplitude and 10 Hz frequency is shown 

in Fig. 9. Results obtained without and with the RC action are shown and the related RMS errors are 

equal to 9.75 µm and 0.44 µm, respectively. The system’s performance improvement due to RC is 

evident. It is worth observing that the position error signal exhibits a periodic behaviour at the 

frequency of the reference signal when RC is not implemented.  

 

Fig. 7: Simulation results (both without and with RC action) for the position error corresponding to a sinusoidal reference signal of 500 
µm amplitude and 10Hz frequency.  

 

The same analysis was performed using a triangular reference signal with 500 µm amplitude and 10 

Hz frequency. The corresponding position error obtained is reported in Fig. 10. The RMS errors of 

the results obtained both without and with the RC action are equal to 27.77 µm and 0.69 µm, 

respectively. Thus, the RC action strongly improves the system performance also in this case. As 

before, that the error still exhibits a periodic behaviour at the frequency of the reference signal 

when the RC is not used. Also, the error is significantly greater than the one observed with a 

sinusoidal reference signal, due to the first derivative discontinuity of the triangular wave.  



 

Fig. 8: Simulation results (both without and with RC action) for the position error corresponding to a triangular reference signal of 500 
µm amplitude and 10Hz frequency. 

 

4.2 Experimental results 

Operating conditions similar to those considered in simulations were applied to the physical system.  

The obtained results are reported in the following. Sinusoidal or triangular reference signals were 

applied to both axes considering different values of amplitude and frequency. The Y-axis signal was 

phase-shifted by 90° with respect to the X-axis signal, in order to drive the system in such a way that 

circular or square shapes can be drawn in the XY-plane. All reference signal configurations 

considered were tested without or with the RC action, which was stopped when the error started 

to increase, as with the simulations.   

 

The RMS position errors corresponding to sinusoidal reference signals are presented in Tables 1 and 

2, for 100 µm and 500 µm amplitude, respectively and different frequencies. (The amplitude of the 

test was limited to 100 µm at 20 and 50 Hz due to the limitation of the available power supply). The 

position error waveforms for both axes are shown in Fig.11 when a sinusoidal reference signal of 

500 µm amplitude and 10 Hz frequency is used. Fig. 12 shows the corresponding XY-plane plot.  

Table 1: Experimental RMS position error for sinusoidal reference signal of 100 µm amplitude at different frequencies. Results 
obtained both without and with the RC action are shown. 

Frequency [Hz] 1 5 10 20 50 
RC  NO YES NO YES NO YES NO YES NO YES 

RMSE X-axis [µm] 1.84 1.19 3.61 0.74 5.41 0.55 6.45 2.98 78.87 1.57 
RMSE Y-axis [µm] 1.57 1.46 3.81 2.66 7.71 1.78 11.39 2.28 57.82 2.43 

 



Table 2: Experimental RMS position error for sinusoidal reference signal of 500 µm amplitude at different frequencies. Results 
obtained both without and with the RC action are shown. 

Frequency [Hz] 1 5 10 
RC  NO YES NO YES NO YES 

RMSE X-axis [µm] 2.50 1.46 8.20 0.29 16.69 1.54 
RMSE Y-axis [µm] 1.74 1.34 6.95 3.52 19.88 1.39 

 

Fig. 9: Experimental results for the position error corresponding to a sinusoidal reference signal of 500 µm amplitude and 10Hz 
frequency on both axes. Results obtained both without and with the RC action are shown. 

 

Fig. 10: XY-plane. Experimental plots related to quadrature sinusoidal reference signals with 500 µm amplitude and 10 Hz frequency 
on system axes. 

 

Experimental data show that RC improves the system performance in all the chosen configurations. 

However, the improvement is bigger at the highest selected frequencies.  As expected from 

simulations, Fig. 11 shows that the position error exhibits a periodic behaviour at the reference 

signal frequency when RC is not applied.  

 



Similar configurations were tested using triangular reference signals with different amplitudes and 

frequencies. The obtained RMS position errors are reported in Tables 3 and 4 for 100 µm and 500 

µm amplitude, respectively and for different frequencies. The position error waveforms for both 

axes are shown in Fig. 13 when a triangular reference signal of 500 µm amplitude and 10 Hz 

frequency is used. Fig. 14 shows the corresponding XY-plane plot. 

 

Table 1: Experimental RMS position error for triangular reference signal of 100 µm amplitude at different frequencies. Results 
obtained both without and with the RC action are shown. 
 

 
 
Table 2: Experimental RMS position error for triangular reference signal of 500 µm amplitude at different frequencies. Results 
obtained both without and with the RC action are shown.  

Frequency [Hz] 1 5 10 
RC  NO YES NO YES NO YES 

RMSE X-axis [µm] 25.72 12.38 12.30 3.13 35.99 8.86 
RMSE Y-axis [µm] 39.18 35.58 34.48 10.97 44.72 29.90 

 

 

Fig. 11: Experimental results for the position error corresponding to a triangular reference signal of 500 µm amplitude and 10Hz 
frequency on both axes. Results obtained both without and with the RC action are shown. 

Frequency [Hz] 1 5 10 20 50 
RC  NO YES NO YES NO YES NO YES NO YES 

RMSE x-axis [µm] 1.90 2.90 3.82 4.35 6.04 2.50 9.21 3.01 64.78 2.97 
RMSE y-axis [µm] 1.58 3.10 3.99 3.47 8.43 2.41 13.73 5.25 44.71 3.75 



 

Fig. 12: XY-plane. Experimental plots related to quadrature triangular reference signals with 500 µm amplitude and 10 Hz frequency 
on system axes. 

 

Experimental results showed that the inclusion of RC action was always advantageous for sinusoidal 

reference signals. For a triangular reference, it also improved performance except in the specific 

case of very small, low magnitude, low frequency (less than about 5 Hz) references, when the 

performance worsened, as shown in Table 3. Moreover, the tracking errors obtained with the 

triangular reference signals are bigger than those for the sinusoidal reference signals. As commented 

in the simulation section, this effect is due to discontinuity in the first derivative of the triangular wave. 

 

5. Conclusions 

In this paper, a description and analysis of a two-axis high-performance compliant positioning 

system have been presented, with emphasis on the control strategies utilized. It has been shown 

that the system exhibits a non-linear behaviour due to a stiffness non-linearity, which is not 

negligible when axis movement is larger than ±0.2 mm from the null position. This non-linear 

behaviour has been modelled and compensated for by means of a suitable control system.  

 

Both kinematic and the kinetostatic cross-coupling interactions between the axes were statically 

analysed. It was verified that their effects are negligible in the presence of a controller that includes 

a feedback controller.  

 

Finally, different dynamic testing were performed on sinusoidal or triangular periodic reference 

signals. Then, a suitable RC controller enabled significant performance improvement, particularly at 



higher frequencies. Even without RC action, the system relative accuracy is in the order of few 

percent of the displacement amplitude up to 10 Hz with both sinusoidal and triangular required 

position reference signal of amplitude up to ±1 mm from the null position.  When the RC is suitably 

activated, a significant improvement in system accuracy is obtained, except in the case of triangular 

reference signal with small amplitude and low frequency. The RC action was seen to facilitate 

accurate control of higher bandwidth position movements of up to 50 Hz.   

 

System performances can be further improved by using lower noise servo amplifiers. Moreover, 

increasing the power provided by the supply system could enable higher frequency movement for 

either axis, over the full motion range. It is worth observing that the proposed control approach is 

beneficial for many similar systems which exhibit non-linear a stiffness or require the tracking of 

periodic trajectories.  
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