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Surface profile prediction from bottom
pressure measurements with application to

marine current generators
A. Compelli, D. Henry and G. P. Thomas

Abstract—A knowledge of wave kinematics is requisite
for most aspects of marine engineering, yet still relatively
little is known in the context of wave-current interactions.
There is a requirement for wavepower applications to
predict the wavefield at a Wave Energy Converter (WEC),
particularly for the application of control algorithms. For
marine current generators a similar requirement arises.
The modelling of wave-current interactions possesses a
rich history, yet the presence of vorticity immediately
introduces major mathematical complications into mod-
elling considerations. Improving our understanding of the
relationship between the dynamic pressure function and
the underlying fluid kinematics for rotational ocean waves
has implications for both wave and tidal resource character-
isation. This paper considers the pressure-streamfunction
relationship for a train of regular water waves propagating
on a steady current, which may possess an arbitrary dis-
tribution of vorticity, in two dimensions. Using a novel
pressure-streamfunction reformulation of the governing
equations, an explicit formula was recently derived by
two of the authors in terms of series solutions detailing
the relationship between the pressure, streamfunction and
the vorticity distributions. In particular, for linear waves,
a description is provided of the role which the pressure
function on the sea-bed plays in determining the free-
surface profile elevation. These are the first results in this
direction for water waves with vorticity, and it is shown
that this approach provides a good approximation for a
range of current conditions.

Index Terms—Pressure recovery, surface prediction,
wave-current interactions.

I. INTRODUCTION

Aknowledge of wave kinematics is requisite for
most aspects of marine engineering. In the con-

text of wavepower applications there is a requirement
for wavepower applications to predict the wavefield at
a Wave Energy Converter (WEC), particularly for the
application of control algorithms and for loading upon
the device structure. Often this involves the measure-
ment of the incident wavefield at one or more loca-
tions and an approximate method is then employed
to predict the incident wavefield in the vicinity of the
WEC. This topic is both an interesting and difficult one
and one relevant study has previously been reported
in EWTEC in [17].

For marine current generators a similar requirement
arises, with horizontal and vertical variations in the
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current being associated with the additional difficulty
of the current possessing horizontal and vertical distri-
butions of vorticity. A demonstration of the importance
of vorticity to the local kinematics is given in [14].

Accurate measurement of the surface wavefield,
from which the wave kinematics may be determined,
is not a trivial task. In the absence of a non-uniform
current, where the wavefield is irrotational, there is a
substantial body of work associated with the measure-
ment of the pressure at or near to the bed and the use of
transfer functions to determine the free surface motions
(cf. [2], [10], [11]). This is not universally useful, since
it depends upon a classification of the wavefield and
a reasonable practical correlation between the pressure
at the bed and at the free surface. However, in appro-
priate circumstances it can provide a valuable input
into the wave prediction algorithms.

For marine current generators, there is less appli-
cable work but there is the important advantage that
most devices are fixed to the sea bed and not restrained
by the wave classification difficulty identified above.
Flows with vorticity are relevant in several physical
contexts and techniques originating in coastal and
nearshore engineering may be adapted to be for direct
use for the description of the wavefield in the vicinity
of marine current generators.

The modelling of wave-current interactions pos-
sesses a rich history (cf. [9], [12], [13], [15]), yet the
presence of vorticity introduces major mathematical
complications into modelling considerations. Improv-
ing the understanding of the relationship between the
dynamic pressure function and the underlying fluid
kinematics for rotational ocean waves has implications
for both wave and tidal resource characterization.

This paper considers the pressure-streamfunction re-
lationship for a train of regular water waves propagat-
ing on a steady current, which may possess an arbitrary
distribution of vorticity, in two dimensions. The appli-
cation of such work is targeted towards marine current
generators. Using a novel pressure-streamfunction re-
formulation of the governing equations, recently de-
rived by two of the authors in [5], an explicit formula
was obtained in terms of series solutions detailing the
relationship between the pressure, streamfunction and
the vorticity distributions. A benefit of this approach is
the construction of explicit formulae for the pressure-
transfer function and the pressure amplification factor,
relating dynamic pressure measurements at a fixed-
depth beneath the wave trough — not necessarily on
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the flat bed — to the linear wave surface elevation, for
arbitrary current profiles. These are the first results in
this application for waves with vorticity.

The effectiveness of the transfer function formula,
shown in (7) in the text for purely irrotational flow,
has been widely tested in the engineering literature,
through field data and experiments: cf. [3] for an
interesting comparison and contrast between a number
of different data-sets, for both regular and irregular
waves. While some interesting experimental and nu-
merical analyses of the pressure distribution have been
undertaken for irregular waves in the literature, for
example in [2], [3], [8], this paper will be focussed
primarily on regular waves.

Two particular topics addressed throughout the lit-
erature are of relevance to the considerations of the
current paper. Firstly, one source of speculation for
possible discrepancies between theory and observa-
tion in the irrotational pressure transfer function is
the presence of depth-varying currents, for which the
assumption of irrotationality is invalid and vorticity
much be included in the fluid model. Secondly, much
experimental work has been undertaken (cf. [3]) to
establish if the transfer function is sensitive to the
relative-depth at which the pressure transducers are
located: the pressure transfer formula for irrotational
waves may be applied regardless of the depth at which
the pressure is measured and, in particular, pressure
sensors need not be located on the sea-bed.

The formulae for waves with vorticity, derived in
[5], are similarly unrestricted with regard to the exact
location of the pressure measurements, and it is a ref-
erence pressure level that is required. These formulae
are highly suited to the Moderate Current Approxi-
mation regime, described herein, where they assume
a particularly amenable form. The aim of this paper
is to validate this new model through testing these
formulae numerically for a range of underlying current
distributions considered to be typical wave-current
interactions for both adverse and following currents. In
the process it is established that the formulae provide
good approximations for a wide range of currents and
at a range of reference pressure levels.

II. MODELLING WAVE-CURRENT INTERACTIONS

Marine currents can be regarded as being locally
constant when compared to the time variations asso-
ciated with the local wave-field or turbulence in the
flows [14]. Accordingly, the local velocity field below
the wave trough can be expressed as

u(x, t) = U(x, y, z) + uw(x, y, z, t),

where 〈uw(x, y, z, t)〉 = 0. Here 〈·〉 denotes the time
average, which for regular waves is taken over a single
period, while a longer measure should be employed
for irregular wave fields. A requisite of attempting to
predict the wave-current kinematics is that the under-
lying current profile is either assumed known a priori,
or can be obtained to the required degree of accuracy;
such methods employ either numerical predictions or
fieldwork.

Fig. 1. Schematic of vertical section for two-dimensional wave-
current interactions

It is usual to choose the x-axis so that it is lo-
cally aligned with the principal horizontal direction
of the current, with the z-axis then being measured
positive in a vertically upwards direction. The y-axis
then completes the right-handed coordinate system. In
this paper we focus on two-dimensional wave-current
interactions which are confined to a vertical plane. A
schematic is shown in Fig. 1 in which the current takes
the form U = (U (z) , 0, 0). From a modelling perspec-
tive, it is usual to assume that the density is constant
and that the water is incompressible. Unless attention is
directed towards the narrows viscous boundary layer
at the bed, then it is reasonable to assume that viscosity
is unimportant. It is further assumed that spatial pe-
riodicity is present with respect to the x-variable. The
origin O is chosen to lie in the mean water level: if
z = η(x, t) represents the unknown free-surface, and
λ > 0 is the characteristic wavelength, then∫ λ

0

η(x, t)dx = 0.

The choice of reference frame implies that z = −h
denotes the location of the impermeable flat bed, which
is assumed to be locally horizontal and where h is the
mean water depth.

III. GOVERNING EQUATIONS

The equations of motion comprise the incompressib-
lity equation

ux + wz = 0, (1a)

while the Euler equation takes the form

ut + uux + wuz = −px
ρ
,

wt + uwx + wwz = −pz
ρ
− g, (1b)
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where u,w are the horizontal and vertical velocities
respectively, p represents the pressure distribution, ρ
is the fluid density (assumed to be constant) and g is
the standard gravitational constant of acceleration. On
the flat bed the kinematic boundary condition gives

w = 0 on z = −h, (1c)

and at the free-surface the kinematic and dynamic
conditions are

w = ηt + uηx, (1d)
p = constant on z = η(x, t). (1e)

Typically, the constant atmospheric pressure, denoted
pa, is taken as the free-surface value in (1d) and the
pressure can be written as

p = pa − ρgz + pd(x, z, t), (2)

where pd denotes the dynamic pressure, measuring the
deviation from the hydrostatic pressure. The nonlinear
free-boundary value problem specified by the system
of equations (1) represents the full governing equations
for water waves in two dimensions. The vorticity
prescribed by fluid motion is defined as the curl of
the fluid velocity field, Ω = ∇ × u, which reduces in
two-dimensions to Ω = (0,Ω, 0), leading to the scalar
vorticity equation

Ω(x, z, t) = uz − wx. (3)

IV. SURFACE PROFILE PREDICTION: IRROTATIONAL
WAVE MOTION

Following a standard linearisation procedure and
assuming the surface profile to be

η(x, t) = a cos(kx− ωt) (4)

for a regular linear wave solution, the linearised form
of the governing equations (1) may be solved explicitly
for waves satisfying the irrotationality condition Ω ≡ 0,
leading to

pd(x, z, t) = ρag
cosh k(z + h)

cosh kh
cos(kx− ωt). (5)

Here a is the wave amplitude, k = 2π/λ is the
wavenumber and ω is the phase frequency; these quan-
tities are not independent but are related by c = ω/k,
where c is the wave phasespeed. In the present setting
of linear waves over a flat bed it may be shown that
the dispersion relation ω2 = gk tanh kh holds, leading
to the prescription of the wave phase-speed as

c = c(k) =
√
g tanh kh/k. (6)

Comparing (4) and (5) leads to the so-called transfer
function formula

η(x, t) =
pd(x, z, t)

ρgKp(z)
(7)

where Kp(z) = cosh k(z + h)/ cosh kh is sometimes
called the pressure response factor. Note that this re-
lationship may seem to be inconsistent as the right-
hand-side depends upon three independent variables
whereas the left-hand-side depends only upon two;

however, the left-hand-side is independent of z by
construction.

The effectiveness of the transfer function formula
(7) has been widely tested through field data and
experiments; for example, cf. [3] for an interesting
comparison and contrast between a number of different
data-sets, for both regular and irregular waves. Among
the issues considered in [3] is the need to offset any
potential inaccuracies between theory and observations
by multiplying the right-hand side of (7) with an
empirical correction factor N , a constant which may
vary depending on the local environment to which the
particular data set relates. The authors outline the dif-
fering opinions which prevail regarding the necessity
for, and possible behaviour of, this empirical correction
factor. They conclude that such a factor is probably
unnecessary (that is, it is reasonable to choose N = 1)
with any perceived discrepancies between theory and
observation being accounted for by issues such as
inaccurate measurements, instrument limitations and
analysis methods. Furthermore, they assert that “linear
theory is adequate to compensate pressure data and
give reliable estimates of surface wave heights” for
most of the wave amplitudes considered.

Further experimental studies of interest regarding
the transfer function are found in [7], where the au-
thors consider a purely empirical expression for the
transfer function derived through dimensional-analysis
considerations; it is shown in [1] that this formula may
be regarded as a version of the theoretically derived
formula (7). Further analysis and discussion of these
issues was undertaken in the more recent paper [16].

The considerations involved in the derivation of (4)–
(6), and the subsequent pressure recovery formulae,
may be readily adapted to accommodate an irrotational
velocity field of the form (u+U, 0, w), where U(z) ≡ U
is a constant underlying current, cf. [9], [11], [15]. In
so doing, the ‘absolute’ wave frequency ω must be
directly replaced by the ‘relative’ or ‘intrinsic’ wave
frequency σ := ω − kU : the presence of a constant
underlying current amounts to a form of Doppler
shift in the wave motion. These modifications have
a number of interesting ramifications, not least that it
may be discerned directly from the modified dispersion
relation σ2 = gk tanh kh as to which wave motions,
depending on the magnitude and direction (adverse
or following) of the current, are admissible, cf. [9].

An additional physical quantity, which is of practical
significance, is the pressure amplification factor Q,
relating the dynamic pressure at the free surface to the
dynamic pressure of the fluid at any arbitrary depth
−h ≤ z < 0. Expressing pd(x, z, t) = Pd(z) cos(kx− ωt),

Q(z) =
Pd(0)

Pd(−z)
. (8)

The pressure response factor Kp(z) is related to the
amplification factor by way of Q(z) = 1/Kp(z). It
is straightforward to show that Q (0) = cosh kh and
this imposes a limit on the usefulness of this approach
in terms of the wave regime. For deep water waves,
defined by kh >> 1, the bed pressure will be very
small in comparison to the surface pressure and the
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process will not provide a useful method for surface
prediction; inaccuracies in the pressure measurement
will be magnified throughout the water column. Thus
the method will work best for shallow wave waves and
decrease in effectiveness if kh increases towards the
deep water regime. In a physical context, this means
that is likely to be more efficient generally in the coastal
zone than in an oceanographic environment.

V. REFORMULATION

Recently, a new pressure–streamfunction formula-
tion of the governing equations (1) for rotational flows
was constructed in [5], the salient features of which are
presented. Defining the stream function Ψ(x, z, t) by

u =
∂Ψ

∂z
, w = −∂Ψ

∂x
, (9)

it follows immediately from (3) and (9) that

∇2Ψ = Ω, (10)

where ∇2 represents the (two-dimensional) Laplacian
operator. Focussing attention on regular wave solu-
tions, by which we mean that the x, t dependence can
only occur via a phase function θ(x, t) = kx − ωt, re-
expresses the x− and t−derivatives as

∂

∂x
= k

∂

∂θ
,

∂

∂t
= −ω ∂

∂θ
. (11)

With an absence of detail, it can be shown that

1

ρ

∂p

∂θ
=
∂H

∂θ
−Ψ∇2Ψθ,

1

ρ

∂p

∂z
=
∂H

∂z
− ω

k
∇2Ψ−Ψ∇2Ψz, (12)

where

H(θ, z) = −gz +
ω

k
Ψz −

1

2

{
Ψ2
z + k2Ψ2

θ

}
+ Ψ∇2Ψ.

The terms on the right-hand side of (12), which are
not included in H(θ, z) are strictly rotational terms,
where H(θ, z) represents a form of integrability in the
equations. Elimination of p (θ, z) in (12) is straight-
forward and yields an equation in Ψ, which is the
streamfunction method. However, this approach is not
adopted at this stage as the principle interest is directed
towards the pressure. In order to seek analytic or
semi-analytic solutions in the pressure-streamfunction
formulation (12), the streamfunction and the pressure-
type terms are represented as

Ψ(θ, z) =
∞∑
n=0

ψn(z) cosnθ,

p(θ, z) = −ρgz +
∞∑
n=0

pn(z) cosnθ,
(13)

and the vorticity Ω(= ∇2Ψ) is also expressed in the
same way,

Ω (θ, z) =
∞∑
n=0

Ωn(z) cosnθ,

Here p is now the pressure relative to the atmospheric
pressure. It is known that analytic solutions have
been obtained only for the special cases of Ω0 = 0
or Ω0 =constant, both corresponding to irrotational
wave motions. Also, from (12) and (13), the hydrostatic
component of the pressure is identified explicitly and
need not be included in the subsequent analysis. With
the hydrostatic component omitted the full dynamic
pressure-streamfunction relationship can be expressed

1

ρ

∞∑
n=0

pn(z) cosnθ = −A0 −
1

2
(ψ′0(z))

2
+

∫ z

ψ′0(z)Ω0(z)dz

− 1

4

∞∑
m=1

[
(ψ′m(z))

2
+ (mkψm(z))

2 − 2

∫ z

ψ′m(z)Ωm(z)dz

]
+

∞∑
n=1

{
ω

k
ψ′n(z)− 1

2
[ψ′n(z)ψ′0(z)− 2ψn(z)Ω0(z)]

}
cosnθ (14)

− 1

4

∞∑
n=0

∞∑
m=1

[
ψ′n(z)ψ′2mψn(z)ψm(z)− 2n

m+ n
ψn(z)Ωm(z)

]
cos(n+m)θ

− 1

4

∞∑
n=0

∞∑
m=1
m 6=n

[
ψ′n(z)ψ′2mψn(z)ψm(z) +

2n

m− n
ψn(z)Ωm(z)

]
cos(m− n)θ,

where the identity Ω0 = ψ′′0 has been employed. This
relation is valid up to constants of integration, which
vanish identically since ψn(−h) = 0 for all n ≥ 0. The
first order terms in (13) capture linear wave motion
and wave-current interactions. If the current takes the
form (U(z), 0, 0), then from (9) and (13), ψ0(z) can be
easily determined to be

ψ0(z) =

∫ z

−h
U(z)dz. (15)

At first order, the assumption that ψq(z) is of O (εq)
yields the following equation for ψ1(z):

ψ′′1 (z)−
(
k2 − kU ′′(z)

ω − kU(z)

)
ψ1(z) = 0. (16)

For regular waves over a horizontal bed with mean
water depth h, the appropriate boundary conditions at
the bed z = −h and surface z = 0 are

(c− U(0))2ψ′1(0) + [(c− U(0))U ′(0)− g]ψ1(0) = 0,



COMPELLI et al.: SURFACE PROFILE PREDICTION FROM BOTTOM PRESSURE MEASUREMENTS 5

ψ1(0) = a (c− U(0)) , (17)
ψ1(−h) = 0,

where a is the wave amplitude, defined to be the
magnitude of the first harmonic of the surface elevation
series, and c = ω/k is the phase velocity. In the deriva-
tion of the surface conditions the usual assumptions
of linearity apply. This is the Rayleigh equation of
hydrodynamic stability theory, or the inviscid form
of the Orr-Sommerfeld equation. Particularly in the
context of considering the pressure distribution, it is
worth noting that an alternative formulation to (16),
expressed in terms of p1(z) rather than ψ1(z), may be
employed for linear solutions [9].

The first harmonic of dynamic pressure p1(z) is
obtained from (14), with the appropriate ordering im-
plemented and (15) utilised, resulting in

p1(z)

ρ
=
(ω
k
− U(z)

)
ψ′1(z) + U ′(z)ψ1(z). (18)

Bearing in mind (13), the decomposition (2) and the
standard linear wave profile (4), p1(z) must also satisfy

p1(0) = ρga (19)

to ensure that condition (1d) holds. A noteworthy
consequence of (19) is that pn(0) = 0 for the higher
order (n ≥ 2) dynamic pressure terms in (13). Thus, if
ψ1(z) can be determined from (16) and (17), then p1(z)
can be obtained from (18).

For the pressure recovery problem, the aim is to
measure the dynamic bed-pressure pb = p1(−h) and
use this to determine the surface amplitude a. In this
formulation, the opposite approach is taken, namely
that a is used to determine ψ1(z) and hence the pres-
sure via (18). However, ψ1(z) is linearly proportional
to a, as can be seen from (16) and (17), and thus

ψ1(z) = aχ1(z), (20)

for an appropriate function χ1 (z) and from (18),

pb = p1(−h) = ρ [c− U(−h)]ψ′1(−h)

= ρa [c− U(−h)]χ′1(−h), (21)

as ψ0(−h) = ψ1(−h) = 0 from (15) and (17). Thus if pb
is the known quantity, then

a =
pb

ρ [c− U(−h)]χ′1(−h)
. (22)

The amplification factor Q(−h), defined in (8), relating
the pressure at the free surface to the pressure at the
bed now follows directly from (19) and (21):

Q(−h) =
g

[c− U(−h)]χ′1(−h)
. (23)

This formula is the generalisation of the amplification
factor to the setting of water waves with general vor-
ticity distributions; the formula for irrotational waves

is recovered immediately upon setting U(z) ≡ U ,
where U is a constant underlying current. This is
easily verified by taking U = 0, using the dispersion
relation (6) for the wave phase speed c and explicitly
determining χ′1(z). Furthermore, it is clear that there
is no restriction to working at the flat bed (z = −h)
in taking pressure measurements, although matters
are slightly more complicated otherwise; indeed, an
alternative choice such as Q(zr) = p1(0)/p1(zr) may
be made, working again with (19) and inputting an
arbitrary depth −h ≤ zr < 0 in formula (18), leading
to a generalisation of (21) and (23).

The drawback of the described approach in using
(18) to analyse the relationship between the dynamic
pressure and the wave-field kinematics is that, for arbi-
trary U(z), (16) and (17) can only be solved numerically
(as described in [12]) and for this reason approxi-
mate solutions are required in general. Nevertheless,
in the special cases of a uniform underlying current
U (z) = Uc (zero vorticity), and also for constant
vorticity distributions (representing a linearly–sheared
current profile U (z) = Us + Ωz), explicit solutions can
be derived, cf. [15], in which case the recovery formula
(23) is applicable. Accordingly, it is worthy of mention
that many current profiles can be approximated by a
number of linear components and with appropriate
matching conditions applied at the interfaces.

A. Moderate Current Approximation
Although numerical solutions are not difficult to

obtain at this order, the lack of an analytic solution
prevents simple insights to be gained and also hinders
progress to higher orders. For this reason a pertur-
bation approach is developed for weakly nonlinear
waves, consistent with Stokes waves for irrotational
wave motion and with the pressure–streamfunction
formulation presented above. In contrast to most
procedures in water waves, two non-dimensional per-
turbation parameters are employed — the wave slope
ε, already utilised above, and δ as a measure of the
current strength relative to the phase speed of the
waves: typically δ = Û/c, with Û a characteristic cur-
rent measure. The presence of δ is formally recognised
by writing

U(z) = δV (z) , (24)

so that V (z) has the same dimensions as the current but
is of comparable magnitude to the wave phase speed
c. There is no requirement to evaluate δ explicitly, it
is simply a measure to indicate relative magnitude. A
full history of this approach is provided by [15].

Perturbation solutions for the streamfunction Ψ, sur-
face elevation η and pressure p are sought of the form

Ψ = Ψ00 + δΨ01 + δ2 Ψ02 + · · ·+ ε (Ψ10 + δΨ11 + · · · ) + ε2 (Ψ20 + δΨ21 + · · · ) + ...

η = η00 + δ η01 + δ2 η02 + · · ·+ ε (η10 + δ η11 + · · · ) + ε2 (η20 + δ η21 + · · · ) + ... (25)
p = −ρgz + p00 + δ p01 + δ2p02 + · · ·+ ε (p10 + δ p11 + · · · ) + ε2 (p20 + δ p21 + · · · ) + ...
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An intuitive interpretation of the representation de-
fined by (25) is that the formal setting δ = 0 removes
the imposed current but permits mean flows associated
with the waves, depending upon the choice of refer-
ence frame. Similarly the setting ε = 0 corresponds to
the case of a current alone in the absence of waves and
mixed terms of O(εiδj) describe the interaction terms.
To maintain consistency with established practice in
Stokes wave theory, it is also necessary to expand the
frequency ω of the waves (or phase speed c) in a similar
manner,

ω = ω00+δω01+δ2ω02+· · ·+ε (ω10+δω11+· · · )+..., (26)

and this is only meaningful when ε is non-zero.
The scheme in (25) and (26) requires the imposi-

tion of a relative ordering upon ε and δ. Thomas
& Klopman [15] proposed a classification scheme of
three regimes based upon the relative magnitude of the
parameters, together with a discussion of the salient
issues involved. In the terminology of that paper, the
Moderate Current Approximation (MCA) is defined by
the regime ε << δ << 1 and is the one of interest here.
It is noted that the Strong Current Approximation
defined by ε << 1, δ ∼ O(1) is the same as the
one employed linearly in previous considerations and
requires numerical evaluation.

Implementation involves substituting the series for
Ψ, η and ω into the Helmholtz equation obtained from
combining (12) and formulating a hierarchy in the
usual manner. It is hoped that these can be solved
when appropriate boundary conditions are applied
and p can then be obtained from (12). As mentioned
previously, the problem can be formulated in terms
of the pressure at O (ε) [9] but this cannot be readily
extended beyond O (ε) and thus the streamfunction Ψ
is employed here. The basic current term is at O (δ)
and is given by

Ψ01(z) =

∫ z

−h
V (z) dz . (27)

The first wavelike term at O (ε) is the incident wave
in the absence of a current. As the streamfunction
component Ψ10(z, θ) satisfies ∇2Ψ10 = 0 and is the
known linear wave solution we have

η10 =
1

k
cos θ(x, t), Ψ10 =

ω00

k2
sinh k(z + h)

sinh kh
cos θ(x, t),

p10 = ρ
ω00

k
.
∂Ψ10

∂z
, (28)

with
ω2
00(k) = gk tanh kh.

If kinematic evaluation is required, then the wave slope
ε = ak must be included as in (25). The primary
interaction term occurs at O (εδ) and is the MCA
equivalent of (18) correct to O (εδ). The derivation of
all the O (εδ) terms is given in the Appendix and the
results will be retrieved here as necessary.

The wavelike pressure correct to O (εδ) is the sum
of p10 and p11. These terms are given in (28) and (35)
respectively; for convenience this combined pressure
is written just as p (θ, z). As the θ−dependency is the

same in all terms, it is convenient to write the pressure
as

p (θ, z) = ρa Π (z) cos θ . (29)

A similar analysis to that conducted in the earlier
part of this section may now be undertaken, with
the difference being that Π (z) is known and can be
evaluated. If the bed and surface pressures are written
as

p (θ,−h) = ρa Π (−h) cos θ = pb cos θ,

p (θ, 0) = a Π(0) cos θ,

then the surface elevation a is

a =
pb

ρΠ (−h)
, (30)

and the pressure amplification factor Q is

Q =
Π (0)

Π (−h)
. (31)

In contrast to the corresponding expressions for a and
Q in (22) and (23), all terms in (30) and (31) are
known and can be evaluated for a given current profile
U (z). Also, with Π(−h) obtained from (36) and (29)
with z = −h, the last term in the expression is zero
since Ψ10 (θ,−h) = 0 by construction. Furthermore, in
common with the considerations of previous sections
there is no restriction at the depth at which reference
pressure measurements are taken. Thus for a reference
pressure taken at z = zr, where h ≤ zr < 0, the choice
corresponds to Q(zr) = Π (0) /Π (zr). This is a useful
approach as it extends the validity to a measurement
above the bed.

VI. RESULTS

There are no measurements from a dedicated exper-
imental programme against which to test the predica-
tions of this general approach; nor are field measure-
ments readily available. Thus the existence of models
associated with particular cases and the availability of
numerical studies has become important.

Two particular approaches were utilised. The first
employs the analytic formulae presented by Brink-
Kjaer [4] for the case of a linear current profile and
which provide expressions for the pressure as well
as the usual kinematic quantities. Although these
are presented to second order, only the linear case is
employed to retain consistency with the present work.
The idea is to stipulate the parameters of a linear
current profile given by U (z) = U0+Ωz, i.e. the surface
value U0 and the constant vorticity Ω, and then input
the pressure at the bed p0 for a given wave amplitude;
the MCA pressure prediction model is then used with
pb as input to predict the amplitude. This enables a
comparison to be made between prediction and known
form, by way of a relative error, for a range of U0 and
Ω. The second approach utilises numerical results that
are already available from [15] for a current with a
specified depth variation.

The profiles have been selectively chosen so as to be
representative of an adverse and a following current,
as described more fully in [15], with data taken from
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Klopman [6]. The considered set-up is for a system of
water depth 0.5m, wave amplitude 0.005m and angular
frequency ω is 1.6π rad s−1, as described in [15]. All
calculations were completed using MATLAB.

Four current profiles are considered. The first is

U1(z) = (−0.261− 0.359z)ms−1,

which is an adverse profile with constant vorticity
fitted to experimental data from [4]. The second profile
is

U2(z) = (−0.4− Ωz)ms−1,

structured to be a general adverse profile for which the
vorticity Ω can be varied. Profile three is

U3(z) = −0.20 exp (2.778z)ms−1

and is a test adverse arbitrary profile used in [15]. The
final profile U4(z) is a following profile fitted to exper-
imental data using 10th order Chebyshev orthogonal
polynomials of the first kind. The experimental data is
taken from [6].

Figure 2 shows the profiles and the experimental
data upon which two are based. As data is not available
for the uppermost layer, above a depth of 0.1m for U4,
a rational polynomial fit has been applied to the five
highest points and extrapolated to the MWL as shown
by the dashed line.
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Fig. 2. Current profiles. For U21, U22 and U23 the vorticities are 0,
-0.2 and -0.4s−1 respectively.

For a given current and the appropriate physical
variables, such as water depth and wave frequency,
the method of prediction of surface amplitude is as
follows. The first step is to solve the dispersion relation
(34) to obtain the wavenumber k, then determine Ψ11

from (32) and p11 from (35) to obtain the pressure
amplifications from (30) and (31). For two special
cases it is possible to monitor progress prior to final
evaluations. The profile U3 was employed in [15] and
the accuracy is confirmed in Table 1 of that paper.
For the linear profile U2, Table I below shows the

wavenumber predictions for three cases of U2, with
each corresponding to a different vorticity value Ω. It
is clear from this table that the differences in k from
the MCA and the appropriate exact dispersion relation
are insignificant.

For the current profiles U1 and U2, which possess
constant vorticity, the dynamic pressure values are
determined following the strategy outlined above from
the velocity distribution following [4] where the am-
plitude is known. The amplitude is then recovered
using (30) where these dynamic pressure values are
the inputs. The approach initially requires solving the
dispersion relation (34) to obtain the wavenumber.
Wavenumber calculations compared with those ob-
tained using the approach in [4] are shown in Table
I. In the case of zero vorticity (U21) the results corre-
spond exactly but increasing the vorticity (U22 and U23)
introduces a small discrepancy.

TABLE I
WAVENUMBER COMPARISON.

Profile Brink-Kjær MCA Difference
U21 5.20896 5.20896 0.000%
U22 4.91387 4.91586 0.040%
U23 4.64248 4.64991 0.160%

The amplitude recovery procedure is initially ap-
plied to profile U1(z). Table II shows the recovered
amplitude, which is to be compared to the target
value of 0.005, together with the pressure amplification
factor Q. The pressure reference values are determined
from [4] and are given in Pascals. It is clear that the
variations between the target and predicted amplitudes
are insignificant. As can be seen in Table II, noting that
pressure measurements are given in Pascals, the recov-
ered amplitude matches the expectation very closely (at
the scale of microns). The amplification factor Q is also
displayed. The variation in Q shows the attractiveness
of moving away from the bed if possible.

TABLE II
AMPLITUDE RECOVERY U1(z) = −0.261− 0.359z.

Depth p(z) Recovered a Difference Q(z)
-0.50 14.816 0.00500035 0.007% 3.311
-0.40 15.811 0.00499988 -0.002% 3.103
-0.30 18.993 0.00499916 -0.017% 2.583
-0.20 24.894 0.00499889 -0.022% 1.970
-0.10 34.435 0.00499923 -0.015% 1.424

Tables III - V employ the the profile U2 for differing
values of the vorticity Ω, with an initial value of Ω = 0.
These tables confirm the comments made above with
regard to the position of the reference level and the
accuracy of prediction. The first table in this sequence
(Table III) corresponds to a constant current and so
very good agreement should be expected. There is
however, some increase in error with an increase in
vorticity, although it is insignificantly small.
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TABLE III
AMPLITUDE RECOVERY U21 = −0.4.

Depth p(z) Recovered a Difference Q(z)
-0.50 7.216 0.00500000 0.000% 6.799
-0.40 8.217 0.00500000 0.000% 5.971
-0.30 11.498 0.00500000 0.000% 4.267
-0.20 17.971 0.00500000 0.000% 2.730
-0.10 29.431 0.00500000 0.000% 1.667

TABLE IV
AMPLITUDE RECOVERY U22(z) = −0.4− 0.2z.

Depth p(z) Recovered a Difference Q(z)
-0.50 7.986 0.00500180 0.036% 6.146
-0.40 8.979 0.00500142 0.028% 5.465
-0.30 12.248 0.00500078 0.016% 4.006
-0.20 18.676 0.00500034 0.007% 2.627
-0.10 29.961 0.00500011 0.002% 1.637

TABLE V
AMPLITUDE RECOVERY U23(z) = −0.4− 0.4z.

Depth p(z) Recovered a Difference Q(z)
-0.50 8.751 0.00500600 0.120% 5.613
-0.40 9.731 0.00500467 0.093% 5.046
-0.30 12.973 0.00500243 0.049% 3.784
-0.20 19.341 0.00500091 0.018% 2.537
-0.10 30.449 0.00500023 0.005% 1.611

Table VI shows the pressure amplitude predictions
for profiles U3(z) and U4(z). These cannot be com-
pared with other models and provide the process for
prediction when working with laboratory or field data.
It is clear, once more, that from practical and theoretical
considerations, it is desirable to move the the point of
reference pressure measurement away from the bed.

TABLE VI
AMPLIFICATION FACTOR FOR U3(z) AND U4(Z).

Depth Q(z) for U3 Q(z) for U4

-0.50 2.827 1.982
-0.40 2.677 1.918
-0.30 2.295 1.744
-0.20 1.822 1.504
-0.10 1.373 1.245

VII. CONCLUSION

This paper establishes a methodology for predicting
the amplitude of surface waves from the measurement
of the pressure at the bed or at an appropriate reference
level, with an emphasis being placed upon measure-
ment away from the bed if possible. Initial findings,
based upon comparison with existing work are very
encouraging - showing good accuracy and relative ease
of use.

The model is a preliminary one, extending previous
work involving waves alone to include a steady cur-
rent possessing arbitrary variation with depth. In this
instance it is assumed that there is a single frequency
but this model can be extended to include an incident
defined by a linear sprectrum. In its present form it is
suitable for application to determine the wavefield in
the vicinity of a marine current generator.

One of the required inputs is the ambient current
U (z) and it is readily acknowledged that obtaining
the current profile is not a simple task. Recent ad-
vances in the design and application of ADCPs is
very encouraging and this gives some hope that the
method can be usefully employed. Within the context
of wavepower devices and marine current generators
this approach does not solve the complete prediction
problem, rather it provides a description of the incident
wavefield at a point for input into other models to
predict the wavefield at or within the vicinity of the
device. It should be stressed that this last step is itself
an unresolved problem.

APPENDIX A
The streamfunction component Ψ11 has previously

been obtained in [15] and presented here in a slightly
different form. If S(z), C(z), S2(z) and C2(z) denote
sinh k(z+h), cosh k(z+h), sinh 2k(z+h) and cosh 2k(z+
h) respectively, and the functions Is(z) and Ic(z) are
defined by

Is(z) =

∫ z

−h
V (z) sinh 2k(z + h) dz ,

Ic(z) =

∫ z

−h
V (z) cosh 2k(z + h) dz ,

then if Ψ11 (θ, z) is written as Ψ̃11(z) cos θ (x, t), then we
can solve for Ψ̃11(z) to get

Ψ̃11 = −S(z)

S(0)
.
V (z)

k
+

2

S(0)
.

[
Ic(z)C(z)− C2(0)

S2(0)
.Ic(0)S(z)

]
+ 2

S(z)

S(0)
. [Is(0)− Is(z)] . (32)

This solution necessitates that the unknown function
ω01(k) satisfies

ω01(k) =
2k2

sinh 2kh

∫ 0

−h
V (z) cosh 2k(z + h)dz. (33)

Thus from (26), the dispersion relation at this order is

ω = ω00(k) + δ ω01(k) + ... =√
gk tanh kh+ δ

2k2

sinh 2kh

∫ 0

−h
V (z) cosh 2k(z + h)dz + ...

In terms of the physical current U(z) and correct to the
order of working, this can also be written as

(ω − kŨ(k))2 = gk tanh kh, (34)

with

Ũ(k) =
2k

sinh 2kh

∫ 0

−h
U(z) cosh 2k(z + h)dz.

This process enables k to be determined once ω, h
and U(z) are specified. To obtain the pressure, it is



COMPELLI et al.: SURFACE PROFILE PREDICTION FROM BOTTOM PRESSURE MEASUREMENTS 9

necessary to take the perturbation respresentation for
Ψ and p from (25) and (26) and substitute into (12) or
(14). Comparison of the appropriate εmδn combination

will give pmn in terms of the Ψmn. At O (εδ), the two
equations from (12), relating equations relating p11, Ψ11

and Ψ10 are

1

ρ

∂p11
∂θ

=
∂H11

∂θ
−Ψ01∇2

(
∂Ψ10

∂θ

)
−Ψ10∇2

(
∂Ψ01

∂θ

)
,

1

ρ

∂p11
∂z

=
∂H11

∂z
− 1

k

[
ω00∇2Ψ11 + ω01∇2Ψ10 + ω10∇2Ψ01

]
−Ψ01∇2

(
∂Ψ10

∂z

)
−Ψ10∇2

(
∂Ψ01

∂z

)
,

H11(θ, z) =
1

k

{
ω00

∂Ψ11

∂z
+ ω01

∂Ψ10

∂z
+ ω10

∂Ψ01

∂z

}
− ∂Ψ01

∂z
.
∂Ψ10

∂z
+ k2

∂Ψ01

∂θ
.
∂Ψ10

∂θ

+Ψ01∇2Ψ10 + Ψ10∇2Ψ01 .

Considerable simplification is possible, as Ψ01 is a
function of z, from (26), and Ψ10(θ, z) satisfies Laplace’s
equation. It is straightforward, though tedious, to
show that the two equations possess the solution

1

ρ
p11(θ, z) =

1

k

{
ω00

∂Ψ11

∂z
+ ω01

∂Ψ10

∂z

}
− ∂Ψ01

∂z
.
∂Ψ10

∂z

+k2
∂Ψ01

∂θ
.
∂Ψ10

∂θ
+ Ψ01∇2Ψ10 + Ψ10∇2Ψ01 + γ11

where the arbitrary constant γ11 can be shown to

be zero by application of the boundary conditions.
Employing the predetermined properties of Ψ01(z),
Ψ10(θ, z) and Ψ11(θ, z) from (26)-(28), enables this ex-
pression to be determined as

1

ρ
p11(θ, z) =

ω00

k

∂Ψ11

∂z
+
(ω01

k
− V (z)

) ∂Ψ10

∂z
+Ψ10

dV

dz
.

(35)
The physical wavelike pressure component at this or-
der is retrieved by including ε and δ to give

p (θ, z) = ε (p10 + δ p11) = ρa

[
ω00.

∂Ψ10

∂z
+ ω00

∂Ψ11

∂z
+
(ω01

k
− U(z)

) ∂Ψ10

∂z
+ Ψ10

dU

dz

]
= ρa

[
(ω00 + ω01 − kU(z)) .

∂Ψ10

∂z
+ ω00

∂Ψ11

∂z
+ Ψ10 k

dU

dz

]
. (36)

ACKNOWLEDGEMENT

AC and DH were supported by the Science Founda-
tion Ireland under the grant 13/CDA/2117.

REFERENCES

[1] A. Baquerizo and M. Losada, “Transfer function between wave
height and wave pressure for progressive waves,” Coastal Eng.,
vol. 24, pp. 351–353, 1995.

[2] C. H. Barker and R. J. Sobey, “Irregular wave kinematics from
a pressure record,” in Proc. 25th Int. Conf. Coastal Engineering,
1996, pp. 1034–1047.

[3] C. Bishop and M. Donelan, “Measuring waves with pressure
transducers,” Coastal Eng., vol. 11, pp. 309–328, 1987.

[4] O. Brink-Kjær, “Gravity waves on a current: The influence of
vorticity, a sloping bed, and dissipation,” in Institute of Hydro-
dynamics and Hydraulic Engineering, ser. Technical University of
Denmark,Paper 12, 1976, pp. 1–137.

[5] D. Henry and G. Thomas, “Prediction of the free-surface eleva-
tion for rotational water waves using the recovery of pressure
at the bed,” Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, vol. 376, no. 2111,
p. 20170102, 2018.

[6] G. Klopman, “Vertical structure of the flow due to waves and
currents,” in Delft Hydraulics Progress Report H840.30, Part 2.,
1994.

[7] Y. Kuo and J. Chiu, “Transfer function between the wave height
and wave pressure for progressive waves,” Coastal Eng., vol. 23,
pp. 81–93, 1994.

[8] E. Meza, J. Zhang, and R. Seymour, “Prediction of surface wave
elevation based on pressure measurements,” J. Offshore Mech.
Arct. Eng., vol. 121, pp. 242–250, 1999.

[9] D. Peregrine, “Interaction of water waves and currents,” Ad-
vances in Applied Mechanics, vol. 16, pp. 9–117, 1976.

[10] F. Pinto and A. Neves, “Second order analysis of dynamic
pressure profiles, using measured horizontal wave flow velocity
component,” in Proc. 6th Int. Conf. Computer Modelling and
Experimental Measurements of Seas and Coastal Regions. WIT
Press, 2003, pp. 237–252.

[11] R. J. Sobey and S. A. Hughes, “A locally nonlinear interpretation
of puv measurements,” Coastal Eng., vol. 36, no. 1, pp. 17–36,
1999.

[12] G. Thomas, “Wave current interactions - an experimental and
numerical study. Part 1. Linear waves,” Journal of Fluid Mechan-
ics, vol. 110, no. SEP, pp. 457–474, 1981.

[13] ——, “Wave current interactions - an experimental and numer-
ical study. Part 2. Nonlinear waves,” Journal of Fluid Mechanics,
vol. 216, pp. 505–536, JUL 1990.

[14] ——, “On the importance of wave-current interactions to tidal
stream and marine current generators,” in Proc. 5th European
Wave Energy Conference, Cork, Ireland, 2003, pp. 167–174.

[15] G. Thomas and G. Klopman, “Wave-current interactions in the
nearshore region,” in Gravity waves in water of finite depth, 1997,
pp. 255–319.

[16] C. H. Tsai, M. C. Huang, F. J. Young, Y. C. Lin, and H. W. Li, “On
the recovery of surface wave by pressure transfer function,”
Ocean Eng., vol. 32, pp. 1247–1259, 2005.

[17] V. Voronovich, B. Holmes, and G. Thomas, “A preliminary
numerical and experimental study of wave prediction,” in Proc.
6th European Wave Energy Conference, Glasgow, Scotland, 2005, pp.
535–541.


