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Abstract 

 Actinin and spectrin proteins are members of the Spectrin Family of Actin 

Crosslinking Proteins. The importance of these proteins in the cytoskeleton is 

demonstrated by the fact that they are common targets for disease causing 

mutations. In their most prominent roles, actinin and spectrin are responsible for 

stabilising and maintaining the muscle architecture during contraction, and 

providing shape and elasticity to the red blood cell in circulation, respectively. To 

carry out such roles, actinin and spectrin must possess important mechanical and 

physical properties. These attributes are desirable when choosing a building block 

for protein-based nanoconstruction. 

 In this study, I assess the contribution of several disease-associated 

mutations in the actinin-1 ABD that have recently been linked to a rare platelet 

disorder, congenital macrothrombocytopenia. I investigate the suitability of both 

actinin and spectrin proteins as potential building blocks for nanoscale structures, 

and I evaluate a fusion-based assembly strategy to bring about self-assembly of 

protein nanostructures. 

I report that the actinin-1 mutant proteins display increased actin binding 

compared to WT actinin-1 proteins. I find that both actinin and spectrin proteins 

exhibit enormous potential as nano-building blocks in terms of their stability and 

ability to self-assemble, and I successfully design and create homodimeric and 

heterodimeric bivalent building blocks using the fusion-based assembly strategy. 

 Overall, this study has gathered helpful information that will contribute to 

furthering the advancement of actinin and spectrin knowledge in terms of their 

natural functions, and potential unnatural functions in protein nanotechnology.  
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Chapter 1: General Introduction 

 

Actin is a fundamental constituent of the cytoskeleton. It functions in many 

cellular processes such as cell division, cellular motility, endocytosis and 

intracellular trafficking, and is also responsible for providing the cell with shape and 

strength (Winder & Ayscough 2005). As a result, the organisation and arrangement 

of actin filaments into bundles and networks is central to preserving the integrity of 

the cell (Winder & Ayscough 2005). Actin bundling and actin binding (Fig. 1.1) are 

the two main methods used to assemble and organise actin filaments (Winder & 

Ayscough 2005) and proteins known to have such functions can be found in the 

Spectrin Superfamily of Proteins (Broderick & Winder 2005). 

This family includes the cytoskeletal proteins α-actinin, α- and β-spectrin, 

dystrophin and their homologues and isoforms. Proteins in this family all share 

common structural features and all perform the same basic function, that is to 

crosslink actin filaments to each other or to the cell membrane. But despite this, 

their differing number of homologous repeating units, spectrin repeats, imparts 

important functional differences between them (Yan et al. 1993). 

 

 

 
Figure 1.1: Actin Crosslinking Proteins. Such proteins are responsible for organising actin filaments 
into bundles and networks. These forms of organisation permit actin to function in many types of 
cellular process, and also provide the cell with shape (Winder & Ayscough 2005; Broderick & Winder 
2005). 
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1.1 Spectrin Family Protein Members: α-Actinin and α-/β-Spectrin 

 

1.1.1 Evolution 

It is believed that the members of this family evolved from a common 

ancestral actinin ancestor, but difficulties in aligning the dystrophin sequence to the 

actinin and spectrin sequences suggests that dystrophin/utrophin diverged from 

this path at a very early stage (Pascual et al. 1997). Sequence alignments between 

actinin and spectrin however have revealed that they share notable homology 

within their protein domains. The N-terminal of actinin shares sequence similarity 

to the N-terminal of β-spectrin (Byers et al. 1989) while the C-terminal of actinin 

shares sequence similarity to the C-terminal of α-spectrin (Dubreuil et al. 1989). 

Also, sequence alignments and phylogenetic tree analysis have reported the 

existence of a common ancestor for repeat 1 of actinin and repeat 1 of β-spectrin, 

the same has also been found for remaining repeats 2-4 of actinin and repeats 2 of 

β-spectrin and repeats 20-21 of α-Spectrin, respectively (Pascual et al. 1997). An 8-

residue amino acid insertion has been conserved in the linker region between the 

four actinin spectrin-like repeats and the spectrin spectrin repeats β1-2 and α20-21 

(Viel & Branton 1994). This insertion is responsible for specifying the correct lateral 

register between these repeats (Viel, 1999), of which is important for self-assembly 

(Viel & Branton, 1994). 

One theory (Fig. 1.2) proposes that this ancestral actinin protein possessed 

four spectrin-like repeats, duplication of its gene sequence generated one stable 

actinin lineage and one unstable spectrin/dystrophin lineage. The stable actinin 

lineage brought about the development of the present day actinin genes, while the 

unstable spectrin/dystrophin lineage, through genetic rearrangements and unequal 

crossing-over events gained additional repeats, and developed into one very long 

gene.  A gene cleavage event in this elongated gene sequence produced two 

functional genes, each encoding the α-spectrin subunit or the β-spectrin subunit 

(Viel 1999).  
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Figure 1.2: Evolution of the Spectrin Superfamily. Gene duplication of the actinin ancestral protein 
gave rise to one stable actinin lineage and one unstable spectrin/dystrophin. The stable lineage 
eventually gave rise to present day actinin genes. The unstable lineage gained additional repeats and 
formed one elongated actinin-like gene. The dystrophin lineage diverged from the model at this 
point. A gene cleavage event divided this elongated gene into two, leading to the generation of 
present day α- and β-spectrin proteins. 

 

An alternative theory suggests that the original ancestral actinin possessed 

one spectrin repeat, not four (Viral & Backman. 2004). Early in invertebrate 

evolution, intragenic duplication generated a second repeat. Another round of 

intragenic duplication brought the total number of repeats to four (Viral & 

Backman, 2004).  

Regarding evolution of the actinin family; two courses of genome 

duplication that occurred in vertebrate evolution, known as the 2R hypothesis 

(Hughes, 1999; Durand, 2003), gave rise to the two vertebrate actinin groups; the 

calcium sensitive non-muscle isoforms (actinin-1/-4) and the calcium insensitive 

muscle isoforms (actinin-2/-3) (Fig. 1.3) (Viral and Backman, 2004).  Functional 

divergence occurred between these isoforms in respect of avoiding gene loss (Lek 

et al. 2010). Neo-functionalisation, where only one of the duplicates acquires 

specific functions (Lek et al. 2010), occurred between actinin-1 and actinin-4; 

actinin-4 appears to have unique functions in the kidney (Kaplan et al, 2000; Weins 
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et al, 2005), plays a role in cancer and acts as a transcriptional regulator (Honda 

2015 and references therein). Sub-functionalisation, where both duplicates acquire 

specific changes (Lek et al. 2010), or neo-functionalisation between actinin-2 and 

actinin-3 has generated an actinin-2 isoform that is the principal actin crosslinker in 

the sarcomeric Z-disc, and an actinin-3 isoform whose function is specialised to type 

two fast glycolytic skeletal muscle fibres (Lek et al. 2010).  A multiple sequence 

alignment of human actinin proteins (actinin-1,-2,-3 and -4) and actinin sequences 

from select model organisms is provided in Appendix at the back of this document.  

 

 

Figure 1.3: The α-Actinin Family. There are four actinin isoforms, two non-muscle isoforms (actinin-
1; yellow, and actinin-4; brown) and two muscle isoforms (actinin-2; green, and actinin-3; blue). The 
non-muscle isoforms are expressed in most cell types (Foley & Young 2014). Their actin binding 
activity is regulated by calcium binding to their CaM domain (Sjöblom et al. 2008). The muscle 
isoforms are expressed in muscle cells (Beggs et al. 1992). Their actin binding activity is not calcium 
regulated (Blanchard et al. 1989).  
The colour scheme used for each isoform in this figure is used in subsequent figures through-out this 
document. 

 

 

1.1.2 Structure 

Actinin functions as a homodimer made up of two identical monomers. Each 

monomer comprises an N-terminal actin-binding domain (ABD), a rod domain 

composed of four spectrin-like repeats, and a C-terminal Calmodulin-like domain 

(CaM). Anti-parallel dimerisation positions an ABD at both ends of the molecule, 

this facilitates actin crosslinking (Sjöblom et al. 2008; Ribeiro et al. 2014). Within 

this dimer, the ABD of one actinin monomer is situated next to and opposite the 

CaM domain of the opposing actinin monomer (Ribeiro et al. 2014). 

Spectrin is a heterodimeric protein complex that is made up of an α-spectrin 

and a β-spectrin protein subunit. The α-spectrin subunit comprises a CaM domain 

and 20 full length spectrin repeats, while the β-spectrin subunit comprises an ABD 

and 16 full length spectrin repeats. Dimerisation between both generates a 
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heterodimer in which the β-spectrin ABD lies opposite the α-spectrin CaM (Baines 

2009).  

 

1.1.2.1 Actin Binding Domain 

The ABD allows for direct interaction with actin filaments, and is found at 

the N-terminal of both actinin and β-spectrin proteins. For both actinin and β-

spectrin, the ABD is made up of two tandem calponin homology domains, CH1 and 

CH2 (Gimona et al. 2002). Four main α-helices (A, C, E and G) make up the principal 

structure of the CH domain, and together they form the core of the protein; helices 

C and G are parallel to each other and are wedged between helix A on one side and 

helix E on the other (Fig. 1.4) (Djinovic-Carugo et al. 1997; Franzot et al. 2005). β-

spectrin CH domain structure contains three minor helices (B, D, and F) however 

only two of these, B and F, are present in the actinin structure (Fig. 1.4). Helix D, 

which normally connects helices C and E is absent in all CH domains in actinin 

(Djinovic-Carugo et al. 1997; Franzot et al. 2005).  

 

 

Figure 1.4: Structure of the actinin ABD. The actinin ABD is made up of two CH domains, CH1 (blue) 
and CH2 (red), each consisting of four main α-helices, A, C, E and G, and 2 minor α-helices, B and F. 
The “closed” conformation is achieved through expensive interactions between the two CH domains 
whereby the A and G helices of CH1 pack against the G and F helices of CH2 (Franzot et al. 2005; 
Borrego-Diaz et al. 2006). 

 



Page | 16  
 

Despite both types of CH domain (CH1 and CH2) having similar structures 

they have been found to be functionally inequivalent. CH1 alone displays affinity for 

actin, but CH2 has no affinity for actin filaments. However, actin affinity displayed 

by CH1 is much lower than the actin affinity displayed by the complete ABD, 

indicating that the presence of CH2 must contribute to the actin binding interaction 

(Way et al. 1992; Gimona et al. 2002). It may be that CH1 plays a role in making 

contact with the actin filaments, while CH2 enhances this binding (Bañuelos et al. 

1998; Way et al. 1992). However, deletion of the first 20 amino acids of CH2 of β-

spectrin was found to expose CH2 actin binding activity (An et al, 2005). In addition 

to strengthening actin binding, the CH2 domain is also the binding site for PIP2 in 

the actinin protein (Ribeiro et al. 2014) (discussed further in section 1.1.3.1), and 

the binding site for protein 4.1 in the β-spectrin protein (An et al. 2005) (discussed 

further in section 1.1.3.2). Many older studies, such as these involving mutational 

(Hemmings et al. 1992; Kuhlman et al. 1992) and NMR spectroscopy (Levine et al. 

1992; Levine et al. 1990) analyses of dystrophin and actinin, have identified three 

regions responsible for actin binding, actin binding sites 1, 2 and 3 (ABS1-3). Actinin 

crystal structures, and others, have reported their location to be; on the N-terminal 

A helix and C-terminal G helix of CH1, and on the region connecting both CH 

domains very near the N-terminal Helix A of CH2. Both ABS2 and ABS3 are located 

close to each other on the surface of the domain, while ABS1 is partially buried in 

the region between the two CH domains (Borrego-Diaz et al. 2006; Franzot et al. 

2005). 

There has been considerable questioning regarding the conformation of the 

ABD. The crystal structures of ABDs have been reported for dystrophin (Norwood et 

al. 2000), utrophin (Keep et al. 1999), fimbrin (Goldsmith et al. 1997) and all four 

isoforms of actinin (Lee et al. 2008; Franzot et al. 2005; Borrego-Diaz et al. 2006; 

Ribeiro et al. 2014). For each of these, CH1 and CH2 are reported to be in very close 

contact, a “closed” conformation, which is represented by a large amount of 

interactions between the two CH domains (Keep et al, 1999; Norwood et al, 2000; 

Lee et al. 2008; Franzot et al. 2005; Borrego-Diaz et al. 2006; Ribeiro et al. 2014). 

For both dystrophin and utrophin however, close contact between the CH domains 

(i.e. the “closed” conformation), occurs through the form of antiparallel dimers 
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where the CH1 domain of one ABD interacts with the CH2 domain of the other ABD, 

this may not have any biological relevance as this type of occurrence is generally 

regarded as an artefact associated with crystallography, it is known as domain 

swapping. Each dystrophin or utrophin ABD monomer contributing to the dimer 

however exhibits a “open” conformation (dumb-bell shape), in which both CH 

domains are uncoupled from each other via extension of the central connecting α-

helix (Norwood et al. 2000; Keep et al. 1999). The solution structures of the 

utrophin and dystrophin ABDs have been found to be monomeric in solution in the 

“closed” conformation (Winder et al. 1995; Singh & Mallela 2012), this is supported 

by the observation that the utrophin ABD undergoes limited proteolysis when 

treated with chymotrypsin and trypsin; the cleavage products obtained are not as a 

result of cleavage of the central CH domain connecting α-helix (Moores & Kendrick-

Jones. 2000). The compact “closed” conformation must protect this central α-helix 

from digestion (Moores & Kendrick-Jones. 2000). Studies involving cryo-EM 

reconstructions of actin filaments decorated with utrophin ABDs have reported that 

the utrophin ABD binds to actin in the “open” conformation (Moores et al. 2000).  

For the actinin ABD, cryo-EM studies of chicken gizzard actinin crystals have 

reported that each ABD at either end of the dimer display conformational diversity; 

the ABD at one end of the molecule displays a “closed” conformation, while the 

ABD at the other end displays the “open” conformation (Liu et al. 2004). As 

mentioned above, ABS1 is buried between the two CH domains, therefore, to 

efficiently bind actin, structural rearrangements of the CH domains may be required 

(Borrego-Diaz et al. 2006). Also, the interface between the two CH domains is 

moderately conserved and semi polar, suggesting that this interface is favourable to 

structural changes and rearrangements (Borrego-Diaz et al. 2006). Cysteine 

mutagenesis of the utrophin ABD has revealed that utrophin binds actin in the 

“open” conformation (Broderick et al. 2012) and cryo-electron microscopy 

reconstructions of actin filaments decorated with actinin ABDs have reported that 

the “closed” ABD conformation is not agreeable to actin binding (Galkin et al. 

2010). This latter study suggests that a conformational rearrangement is necessary 

due to steric clash between CH2 and actin when the ABD is in the “closed” 

conformation, rather than exposure of another ABS1. 
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 It may be however, that all actin binding proteins do not require structural 

rearrangements of their ABDs for effective actin binding. The crystal structure of 

fimbrin ABD and helical reconstructions of actin filaments decorated with fimbrin 

ABDs have reported that, for fimbrin, actin binding does not involve ABS1. Actin 

binding occurs when the fimbrin ABD is in the “closed” conformation and therefore 

involves only ABS2 and ABS3 (Hanein et al. 1998). Fimbrin has a much longer than 

usual central linker connecting the two CH domains, this may account for its 

different actin binding mechanism (Gimona et al, 2002).  

Ribeiro et al (2015) have reported the crystal structure of the human 

actinin-2 dimer. This study has confirmed the closed confirmation of the unbound 

actinin ABD and provides details on the intramolecular mechanisms that regulate 

actin binding for the actinin muscle isoforms. It is important to mention that it may 

be unreliable to focus all attention on the three ABSs in attempting to answer the 

“open” or “closed” debate on the conformation of the ABD. Studies identifying 

these sites (mentioned above) made use of peptides, rather than fully folded 

domains, and so residues on the domain surface that are not normally available for 

actin interaction may have been capable of actin interaction in peptide binding 

studies (Keep et al, 1999).    

 

1.1.2.2 Calmodulin-like Domain 

EF hand motifs are helix-loop-helix structures that function to chelate 

divalent ions such as calcium. They appear in pairs and form a globular domain 

(Ikura 1996). Two pairs of EF hands (EF1-2 and EF3-4; four EF-hands in total) make 

up the C-terminal CaM domain of α-spectrin and actinin (Trave et al. 1995; Sjöblom 

et al. 2008). In general, the binding of calcium to this globular domain induces in it a 

conformational change whereby it transitions from a closed to an open 

conformation, allowing it to interact with its targets (Ikura 1996).  

 

1.1.2.2.1 Actinin CaM Domain 

In non-muscle calcium sensitive actinins, this CaM domain serves to regulate 

actin binding. At a calcium concentration above 10-7 M, actin binding is impaired 

(Sjöblom et al. 2008).  
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Muscle isoforms have lost their ability to bind calcium due to several 

mutations in their EF hand motifs that are important for calcium co-ordination 

(Blanchard et al. 1989). This may have been an evolutionary adaption brought 

about to avoid the destabilising effect of calcium on the muscle architecture during 

times of calcium induced contractions (Blanchard et al. 1989). Cryo-electron 

microscopy studies of the full length actinin dimer from rabbit skeletal muscle (Tang 

et al. 2001) and chicken gizzard smooth muscle (Liu et al. 2004) reported that the 

CaM domain from one actinin molecule was positioned between the two CH 

domains of the opposite actinin molecule in the dimer, while the crystal structure 

of the human actinin-2 dimer (Ribeiro et al, 2014) has reported that the EF3-4 pair 

engages the helical linker that connects the actinin ABD to spectrin-like repeat 1 of 

the central rod domain. This helical linker contains an acknowledged 

calcium/calmodulin binding motif (Ribeiro et al, 2014). This interaction is stabilised 

by hydrogen bonds and stacking interactions between spectrin-like repeat 1 and 

the EF3-4 pair (Ribeiro et al, 2014). 

These structural studies suggest that within the actinin dimer, the CaM 

domain of one monomer administers regulatory control over the actin binding of 

the adjacent and opposite ABD, this is discussed further in section 1.1.3.1. 

 

1.1.2.2.2 α-Spectrin CaM Domain 

Similar to actinin, close contact between the α-spectrin CaM domain and 

the β-spectrin ABD suggests that the α-CaM domain plays a role in regulating actin 

binding of the adjacent β-ABD (Broderick & Winder, 2005). Indeed, protein 

minispectrin complexes made up of truncated α-spectrin proteins (containing only 

spectrin repeats 18-21, the EF1-2 pair of the CaM domain and an abridged EF3-4 

pair), and truncated β-spectrin proteins (containing CH1 and CH2 of the ABD and 

spectrin repeats 1-4) have a reduced ability to bind actin (Korsgren and Lux, 2010). 

Also, independent β-spectrin proteins do not bind actin (Cohen & Langley 1984) 

even in the presence of protein 4.1 (Cohen & Langley, 1984), the importance of this 

latter protein, protein 4.1, is discussed further in section 1.1.3.2. Therefore, the 

CaM domain, specifically the EF3-4 pair, must contribute to actin binding. 
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Within the α-spectrin CaM domain only one pair of EF-hand motifs are 

functional with regard to calcium binding; the EF1-2 (N-terminal) is calcium 

sensitive and responsive to calcium in the millimolar range, while the EF3-4 (C-

terminal) is thought to be calcium insensitive (Trave et al. 1995). The functions of 

non-erythroid spectrin are believed to be calcium regulated, while the functions of 

erythroid spectrin are not; erythroid α-Spectrin has a calcium dissociation constant 

in the low millimolar range, 0.5mM, and therefore it is believed that the 

physiological micromolar concentrations of calcium that exist in erythrocytes have 

no effect on α-spectrin calcium binding (Korsgren & Lux 2010). In the body, non-

erythroid Spectrin has many more varied roles compared to erythroid spectrin 

therefore, calcium regulation may be necessary to control and organise these 

different functions (Buevich et al, 2004). It is interesting to note, however, that one 

study has reported that the erythroid α-spectrin CaM is responsive to micromolar 

concentrations of calcium in vitro (Korsgren et al, 2010).  This is discussed further in 

section 1.1.3.2. 

 

1.1.2.3 The Central Region of Spectrin Repeats 

Spectrin repeats are one of the protein units which Nature has used to build 

long protein molecules, such as those in the Spectrin Family of Proteins. They act as 

spacers to separate protein interaction domains, such as the ABDs of dimeric 

members of the Spectrin Superfamily. However, this does not seem to be the only 

function of these repeats. They are commonly found in cellular structures that 

experience great stress, such as the erythrocyte membrane skeleton (EMS) or the 

muscle sarcomere. The mechanical properties needed to withstand such stresses 

are provided by the important structural role of the spectrin repeats (Djinovic-

Carugo et al. 2002). An extremely versatile protein unit, these repeats have 

developed a high specificity to form dimers, and some also specialise in binding to 

many different proteins (Djinovic-Carugo et al. 2002). It is interesting to note that 

single spectrin repeats display a greater sequence identity to equivalent repeats in 

other species than with neighbouring spectrin repeats in the same protein chain. 

This suggests that each individual spectrin repeat has evolved to have its own 

particular and specific set of functions (Baines 2009; Thomas et al. 1997).  
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The first detailed structural analyses of the spectrin repeats came from both 

the crystal structure of the single 14th repeat from the Drosophilia melanogaster α-

spectrin (Yan et al. 1993) and from the solution structure of the single 16th repeat 

from chicken brain α-spectrin (Pascual et al. 1997). These studies revealed the core 

feature of each spectrin repeat to be a triple helical coiled-coil bundle (Pascual et al. 

1997; Yan et al. 1993). Within this triple helical bundle, each of the three α-helices 

displays the heptad sequence of periodicity, with amino acid residues traditionally 

labelled a to g (Yan et al. 1993). Every two turns of each α-helix comprises the 

seven residues of the heptad (Le Rumeur et al. 2012). Hydrophobic residues are 

generally found in positions a and d, and charged residues are generally found at 

positions e and g (Pascual et al. 1997). Sequence alignment studies of spectrin 

repeats have revealed that these hydrophobic residues at positions a and d are 

conserved (Pascual et al. 1997) and further analysis of spectrin repeat crystal 

structures have reported that these residues are positioned on the inward-facing 

surface of the helix (Yan et al., 1993).  Hydrophobic interactions between these a 

and d residues in each of the three α-helices bring about the formation of the triple 

helical coiled-coil bundle, while further electrostatic interactions between e and g 

residues in each of the three α-helices contribute to the stability of each repeat 

(Yan et al. 1993; Pascual et al. 1997).  

 

1.1.2.3.1 The Actinin Rod Domain  

The central region of the actinin protein (Fig. 1.5), length of 24nm and width 

of 4-5nm, contains four spectrin-like repeats, the region is commonly referred to as 

the actinin rod domain (Ylänne et al. 2001).  
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Figure 1.5: Structure of the α-Actinin Rod Domain. The actinin rod domain is made of four spectrin-
like repeats (R1; yellow, R2; red, R3; green, R4; blue). Each repeat is a triple helical coiled coil bundle, 
separated with a helical linker. Intrahelical interactions contribute to the stability of each bundle 
while interhelical interactions bring about the formation of the dimer. This dimeric interface spans 
the length of the molecule, in which each repeat is perfectly aligned to its juxtaposing repeat 
(Djinovic-Carugo et al. 1999; Ylanne et al. 2001). 

 

Dimerisation between actinin monomers is principally mediated by the rod 

domain (Ylänne et al. 2001; Imamura et al. 1988), however, the crystallographic 

structure of full length actinin-2 has revealed that a small number of polar 

interactions between the EF3-4 pair of the CaM domain of one actinin monomer 

and the helical linker between the ABD and spectrin-like repeat 1 of the opposing 

actinin monomer acts to stabilise the dimer (Ribeiro et al. 2014). The rod domain 

serves as a solid junction between the two ABDs of the actinin dimer, the exact 

distance of separation that this rod domain imposes between the two ABDs is 

crucial for correct organisation of the sarcomeric Z-disc and proper maintenance of 

its architecture during muscle contraction (discussed in section 1.1.4.1.3) (Djinovic-

Carugo et al. 2002).  

 Crystal structures of multiple spectrin-like repeats from human muscle 

actinin-2 have reported a long and specific spectrin repeat dimeric interface where 

complementary electrostatic interactions between charged amino acid residues 

drive the formation of a very tight dimer (Ylänne et al. 2001). The electrostatic 

potential of this dimeric interface displays a gradient from basic in spectrin-like 

repeat 1 to acdic in spectrin-like repeat 4 (Ylänne et al. 2001). However, 

dimerisation is also brought about by solvent molecules that maintain the hydrogen 

bond network that connects both monomers (Djinović-Carugo et al. 1999).  Within 

this tight dimer, both monomers are in contact with each other along their entire 

length (Djinović-Carugo et al. 1999; Ylänne et al. 2001). This structural analysis 

explains the high dimer formation affinity for the actinin rod domain (Ylänne et al. 
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2001), which has been calculated to be about 10pM (Flood et al. 1995; Flood et al. 

1997). 

Crystallographic studies have also revealed more information regarding the 

inter-repeat junction. The C-terminal helix of one spectrin-like repeat and the N-

terminal helix of the following spectrin-like repeat are connected to each other 

through a helical linker. This helical linker remains continuous with the secondary 

structure of the spectrin-like repeats with no obvious break or discontinuity 

(Djinovic-Carugo et al. 2002; Djinović-Carugo et al. 1999). The helices connecting 

the different spectrin-like repeats in the rod domain have different amino acid 

compositions meaning that each can adopt different conformations. The linker 

connecting repeats two and three contains a proline residue, meaning that this 

linker is bent slightly at an angle of 21°. These linkers are structurally important as 

they dictate the orientation of the spectrin repeats (Djinović-Carugo et al. 1999) 

and are important for describing the lateral register of each repeat (Viel 1999). In 

general, for actinin, these helical linkers are described as being stiff, providing 

overall rigidity to the rod domain (Sjöblom et al. 2008).  The helical linker 

connecting repeats 2 and 3 is probably the most important; the orientation that 

these repeats adopt determines the orientation of the entire actinin molecule 

(Djinović-Carugo et al. 1999). These studies have also reported that the dimeric 

actinin rod domain is twisted 90° to the left, with most of the tilting occurring at 

repeats 2 and 3. Importantly, this twist functions to stabilise the rod, and it 

prevents it from bending (Ylänne et al. 2001). The ABD is connected to spectrin-like 

repeat 1 via a six turn helical linker (Ribeiro et al. 2014). This linker is very flexible, 

being highly susceptible to proteolytic cleavage (Winkler et al. 1997). This flexibility 

permits the ABD to adopt many orientations to facilitate actin binding; crosslinking 

both parallel and anti-parallel actin filaments (Ribeiro et al. 2014). The rigidity of 

the rod domain, provided by the 90° twist, also functions to control the orientations 

the ABD (Ribeiro et al. 2014; Ylänne et al. 2001). In general, these studies, and more 

involving chemical crosslinking and analytical equilibrium sedimentation, suggest 

that the actinin dimeric rod, made up of eight spectrin repeats in total, forms a very 

stable and rigid junction between two very flexible ABDs (Imamura et al. 1988; 

Flood et al. 1997; Flood et al. 1995; Djinovic-Carugo et al. 2002). The actinin rod 
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domain offers more than just a structural role. While the overall charge of the 

dimeric interface runs from positive to negative (mentioned above) (Ylänne et al. 

2001), the surface of the rod domain is acidic, the residues of which have been 

greatly conserved (Ylänne et al. 2001). The actinin rod domain can therefore act as 

a type of protein docking platform through interaction with the basic peptides of 

many different proteins (Djinovic-Carugo et al. 2002; Ylänne et al. 2001). Such 

interactions lead to the generation of multiprotein assemblies that are involved in 

developing cytoskeletal architectural complexes, or are involved in signal 

transduction pathways (Djinović-Carugo et al. 2002).  

 

1.1.2.3.2 The Spectrin Central Region 

While spectrin proteins contain more spectrin repeats than actinin, α-

spectrin has 20 full repeats and β-spectrin has 16, the repeats in both α- and β-

spectrin are shorter; actinin repeats are made up of 122 amino residues while 

spectrin protein repeats contain only 106 amino acids (Broderick & Winder 2005).  

Heterodimerisation between α-and β-spectrin is also mediated by the 

spectrin repeats, and begins at a spectrin repeat nucleation site consisting of α-

spectrin repeats 20 and 21 and β-spectrin repeats 1 and 2, in which α-21 interacts 

with β-1 and α-20 interacts with β-2. This initial interaction involves complementary 

electrostatic interactions where the α20-21 repeats contribute the negatively 

charged residues and the β1-2 contribute the positively charged residues. These 

primary steps align the remaining spectrin repeats, and also align the β-spectrin 

ABD with the α-spectrin CaM domain. Dimerisation then propagates in a “zipper-

like” fashion down the length of protein molecules (Li et al. 2007). These two stages 

of dimerisation, initiation and propagation, have different thermodynamic 

properties. Through carrying out sedimentation equilibrium experiments with 

spectrin complexes in conditions of increasing salt concentrations, and thereby 

disrupting electrostatic interactions, Begg et al. (2000)  found that recombinant α-

/β-spectrin complexes containing only those spectrin repeats that make up the 

nucleation site (α20-21 and β-1-2) were more susceptible to salt induced 

dissociation than α-/β-spectrin complexes containing additional spectrin repeats 
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outside of the nucleation site (α18-21 and β1-4). This suggests that hydrophobic 

interactions predominate in the second stage of dimerisation (Li et al. 2007; Begg et 

al. 2000). Overall, dimer initiation is directed by enthalpic interactions involving 

electrostatic interactions along with hydrogen bonds and many hydrophilic 

interactions. Subsequent dimer propagation is directed by entropic interactions 

including weak hydrophobic interactions (Li et al. 2007; Begg et al. 2000).  

Spectrin repeat 1 the at N-terminus of α-spectrin and spectrin repeat 17 at 

its C-terminus of β-spectrin are both only partial repeats; of the triple helical coiled 

coil structure that makes up every other spectrin repeat, α-1 only comprises one of 

these α-helices, while β-17 only comprises two (Speicher et al. 1993). To form a 

closed dimer “hairpin” structure, the longer α-spectrin folds back on its N-terminal 

so that the α-1 partial repeat interacts with and forms an intradimer bond with the 

β-17 partial repeat. A triple helical coiled coil that is very similar to the usual 

complete triple helical coiled coil spectrin repeats is reformed (Speicher et al. 

1993). 

Spectrin repeat 9 of both erythroid and non-erythroid α-spectrins contains a 

SRC homology 3 domain (SH3) (Wasenius et al. 1989; Machnicka et al. 2014). The 

SH3 domain is a well- known protein interaction domain and is very commonly 

found in proteins involved in signal transduction pathways (Mayer 2001). Owing to 

the presence of this SH3 domain, spectrin has been found to play a role in signalling 

pathways, such as those involved in Rac activation (Bialkowska et al. 2004).  

Spectrin repeat 10 of non-erythroid α-spectrin contains a 36 amino acid 

sequence that incorporates recognition sites for both calpain and caspase 

proteases, and a Ca+2 dependent calmodulin binding site (Harris et al. 1988; Harris 

& Morrow, 1988; Rotter et al. 2004). The close proximity of these sites suggests 

that a close relationship may exist between the activity of each protein (Harris et al. 

1988), indeed Rotter et al. (2004) have reported that calcium dependent 

calmodulin binding regulates non-erythroid α-spectrin cleavage by caspases and 

calpains.  

Spectrin repeat 15 of β-spectrin contains the ankyrin binding site (Kennedy 

et al. 1991). Ankyrin functions to attach the spectrin-actin network to the cell 

membrane (Bennett & Baines 2001). 
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While crystal structures have reported the dimeric actinin rod domain to be 

very rigid, studies of spectrin proteins have reported the spectrin central region to 

be quite flexible. Work carried out by Grum et al. (1999) has revealed that the 

spectrin central region has two models of flexibility; conformational rearrangement 

and bending at the linker region. This study solved four crystal structures of four 

closely related sections of repeats 16-17 of the chicken brain (CB) α-spectrin 

protein; one crystal structure contained an additional eight amino acid residues on 

the N-terminal side of repeat 16 and all four contained increasing amounts amino 

acid residues on the C-terminal side of repeat 17. In this study, the conformational 

rearrangement model is founded on the observation that, upon comparing two CB 

α16-17 crystal structures, a loop undergoes a conformational change to a helix. 

Within repeat 17 of one crystal structure, a loop is centred between two helices, on 

comparing this structure to another one of the four crystal structures, this loop has 

transitioned to a helix, while the neighbouring helix has melted to replace the loop, 

in other words, the loop has moved. The authors suggest that, in nature, if many 

tandem repeats were to undergo such a conformational change in unison, the 

spectrin protein would change in length.  The bending model is formed on the 

observation that the relative orientation of the two repeats varies on comparison of 

each of the crystal structures. Considering that all individual repeats within each 

crystal structure superpose well (with the exception of the crystal structure 

displaying movement of the position of the loop within spectrin repeat 17, 

mentioned above), implying no change in secondary structure, the authors suggest 

that all changes in orientation must be centred on the linker region connecting the 

two repeats, i.e. bending of the linker region. Crystal structures of human erythroid 

(HE) β-spectrin repeats 8 and 9 have also been solved by Kusunoki et al. (2004a). 

This study supports the bending model of flexibility. Through repetitive 

superpositioning of the two-repeat structures; HE β8-9 repeats and CBα16-17 

repeats, the authors constructed hypothetical models of β-spectrin made up of 16 

full length spectrin repeats and one partial repeat. A range of conformations form 

from each of the models constructed, the formation of which depends on the twist 

angle between the repeats in each of the models constructed. This study proves 
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that the linker between repeats is agreeable to a wide variety of different twist 

angles. 

 Studies have reported that β-spectrin repeats 8-9 exhibits very low thermal 

stability, unfolding at 33.8°C in the presence of physiological NaCl concentration 

(MacDonald & Cummings, 2004).  In studying the HEβ8-9 crystal structure Kusunoki 

et al. (2004a) reported that repeat 9 is without two tryptophan residues which are 

highly conserved in spectrin repeats and are important for the formation of a very 

tightly packed spectrin repeat hydrophobic core and, as a result, confer 

conformational stability to the repeat. This finding explains why HEβ8-9 displays 

very such low thermal stability and both studies (MacDonald & Cummings, 2004; 

Kusunoki et al. 2004a) suggest that β-spectrin repeat 9 is partially unfolded in 

physiological conditions. Kusunoki et al. (2004a) also found that HEβ8-9 has a fewer 

number of canonical intrahelical hydrogen bonds compared to other spectrin 

repeats. They speculate that this finding may also explain the reduced thermal 

stability of HEβ8-9.  Studies investigating the stability of folding to temperature of 

many pairs of spectrin repeats have found that some pairs are more stable than 

others. MacDonald & Cummings (2004) found that HEα13-14, like HEβ8-9, exhibits 

low thermal stability, unfolding at 36°C., while repeat pairings such as HEα1-2 and 

HEα2-3 were found to have higher thermal stabilities and unfolded at 52.3°C and 

57.9°C, respectively. Their study proposes that, within the spectrin tetramer 

formation, pairs of less stable spectrin repeats are located next to and opposite 

other pairs of unstable spectrin repeats and likewise for the more stably folded 

spectrin repeats; HEβ8-9 lies opposite HEα13-14 on the same spectrin tetramer, 

while HEα1-2 lies nearly opposite HEα2-3 (MacDonald & Cummings 2004). They 

suggest that these clusters of unstable, partially unfolded spectrin repeats may 

function as a type of “hinge” region, providing the spectrin complex with flexibility 

(MacDonald & Cummings 2004). Crystal structures composed of three CB α-spectrin 

spectrin repeats, repeats 15, 16 and 17, solved by Kusunoki et al. (2004b) have also 

exposed the large conformational flexibility available to the spectrin proteins.  This 

study found that the spectrin repeats at either end of this three repeat structure 

move independently of one another, and that the bending of one linker in between 
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two repeats does not have any impact or significance on the bending of the 

adjacent linker (Kusunoki et al. 2004b).  

All crystal structures; CBα16-17, HEβ8-9 and CBα15-17, have reported that 

the linker connecting the spectrin repeats is helical (Grum et al. 1999; Kusunoki et 

al. 2004a; Kusunoki et al. 2004b). 

 

1.1.2.3.3 A Comparison of the Crystal Structures of the Actinin and Spectrin 

Central Regions 

The crystal structures of the actinin rod domain crystallised as an anti-

parallel homodimer, as did the two spectrin-like repeat actinin structure (Ylänne et 

al. 2001; Djinović-Carugo et al. 1999). Interestingly, the three spectrin repeat α-

spectrin structure, CBα15-17, also crystallised as an anti-parallel dimer (Kusunoki et 

al. 2004a). Comparative studies on both the actinin rod domain dimeric crystal 

structures and the α-spectrin spectrin repeat 15-17 dimer crystal structure have 

been important in constituting the structural, and thereby functional, differences 

between actinin and spectrin proteins, namely rigidity versus flexibility respectively. 

Overall, it was found that the actinin spectrin-like repeats show greater dimer 

affinity than the spectrin spectrin repeats. The increased dimer affinity for actinin 

spectrin-like repeats is provided by the precise alignment of spectrin-like repeats 1 

and 2 with spectrin-like repeats 3 and 4. This precise alignment guarantees 

maximum use of surface area for dimerisation, ensuring almost all of the entire 

length of the rod domain contributes to the dimeric interface. This is in contrast to 

the imprecise antiparallel alignment of the α-spectrin 15-17 repeats. This imprecise 

alignment provides a much smaller surface area for dimerisation, in this case only 

three quarters of each spectrin repeat are contributing to the dimeric interface. 

Points of no contact between the spectrin repeats promote movement of the 

repeats. Differences in the dimeric interface contribute to differences in the range 

of movements assigned to each protein (Kusunoki et al. 2004b). Overall, these 

repeats provide structure and rigidity to actinin, flexibility and elasticity to erythroid 

spectrin. 
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1.1.2.4 Pleckstrin Homology Domain 

 In addition to those domains mentioned above, β-spectrin proteins also 

contain a pleckstrin homology (PH) domain (Zhang et al. 1995). Differential mRNA 

splicing of erythroid and non-erythroid β-spectrin generates two splice forms; one 

form containing a long C-terminal region, about 230 amino acid residues, and the 

other form containing a shorter C-terminal region, about 52 amino acid residues 

(Winkelmann et al. 1990; Hayes et al. 2000). The longer splice variant, and not the 

short variant, contains the PH domain (Baines 2009; Machnicka et al. 2014). PH 

domains are normally involved in membrane targeting, cell signalling and 

cytoskeleton organisation via their ability to bind phosphoinositides (Lemmon & 

Ferguson, 2000; Lemmon et al. 2002). The β-spectrin PH domain binds 

phosphatidylinositol 4,5 bisphosphate (PIP2) (Hyvonen et al. 1995), and Das et al. 

(2008) have reported that, in midgut copper cells, an epithelial cell type, spectrin 

targeting to the plasma membrane is dependent on phosphoinositide binding its PH 

domain.  

 The β-spectrin PH domain has been reported to bind PIP2 with low affinity 

(Lemmon et al. 2002). Considering that α-/β-spectrin proteins can assemble into 

oligomeric complexes, tetramers and larger (Morrow & Marchesi, 1981) (discussed 

in section 1.1.4.2), and that spectrin junctional complexes consist of many spectrin 

dimers bound to actin (Nans et al. 2011) (also discussed in section 1.1.4.2) it seems 

likely that spectrin PH domain-lipid mediated membrane association occurs through 

multivalent interactions with phosphoinositides (Lemmon et al. 2002).     

The alternative β-spectrin splice variant with the shorter C-terminus contain, 

at this location, a stretch of amino acid phosphorylation sites (Baines, 2009).  

 

 

1.1.3 Regulation  

 

1.1.3.1 Regulation of Actinin 

It is known that actin binding of non-muscle actinin isoforms is regulated by 

calcium binding to their EF-hand motifs in their CaM domain (Sjöblom et al. 2008). 

Cryo-electron microscopy studies carried out by Tang et al. (2000) have revealed 
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that dimerisation between actinin molecules oppositely aligns the N-terminal CH 

domains in the ABD of one monomer to the C-terminal EF-hand motifs in the CaM 

domain of the other. This study has speculated that the binding of calcium to the EF 

hand motifs in the CaM domain induces the EF3-4 pair to wrap itself around the 

linker region between the two CH domains. This linker contains large hydrophobic 

amino acid residues that are a common feature of calmodulin binding motifs (Tang 

et al. 2001). This action would serve to separate the two CH domains, preventing 

them from partaking in actin binding. Also, the bulk presence of the CaM domain 

between the two CH domains might act to sterically prevent actin binding. 

Actin binding activity of muscle actinin isoforms is regulated by 

phosphatidylinositol 4,5 bisphosphate (PIP2), whose binding site has been mapped 

to CH2 of both actinin-2 and -3 (Ribeiro et al. 2014). As confirmed by the recent 

crystal structure of dimeric actinin-2, in the aligned parallel dimer formation, the 

EF3-4 hands from one monomer interact with the neck region between the ABD 

and spectrin-like repeat 1 of the opposing monomer, a known calmodulin binding 

motif (Fig. 1.6A) (Ribeiro et al. 2014). Binding of PIP2 disrupts this interaction. It has 

been proposed that the binding of PIP2 at the CH2 site positions it in proximity to 

the neck region between the ABD and spectrin-like repeat 1. At such a distance, its 

long aliphatic chain can disturb the EF3-4 interaction with the neck region. This 

releases the EF3-4, making it available to interact with the protein titin and be 

targeted to the Z-disc of the sarcomere (Fig. 1.6B) (Ribeiro et al. 2014). PIP2 binding 

has been reported by Fukami et al. (1992 and Fukami et al. (1996) to make actinin 

more receptive to actin binding (Fig. 1.6B). This may be explained by the fact the 

PIP2 binding site is located near ABS3 on CH2 of the actinin ABD (Tang et al. 2001). 

Interestingly, for the non-muscle actinin isoforms, the binding of phosphoinositides, 

namely PIP2 and phosphatidylinositol 4,5 bisphosphate (PIP3), to the ABD have been 

reported to decrease actinin actin bundling activity (Fraley et al. 2003). It was later 

found that PIP2 acts to inhibit actin bundling, while PIP3 acts to both inhibit and 

disrupt actin bundling (Corgan et al. 2004). However, this study reported that PIP3 

only disrupted full length actinin actin bundling activity, i.e actin bundling activity of 

the actinin dimer, and not the actin bundling activity of the isolated actinin ABD 
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(Corgan et al. 2004). The intimate surroundings of the ABD may influence 

phosphoinositide regulation (Gimona et al. 2002). 

 

 

Figure 1.6: Phosphoinositide Regulation of Actinin-2. (A) In the unbound actinin ABD, the EF3-4 pair 
interacts with the helical linker between spectrin repeat 1 and the ABD (Ribeiro et al. 2014). (B) PIP2 

binding to the ABD disrupts this interaction and makes available the EF3-4 pair to interact with the 
muscle protein titin (Ribeiro et al. 2014). The binding of PIP2 has also been reported to make the ABD 
of actinin-2 more sensitive to actin binding (Fukami et al. 1992; Fukami et al. 1996). 

 

Actinin actin binding activity is also regulated through actinin 

phosphorylation by protein kinases. Phosphorylation of tyrosine residue 12 in the 

ABD of actinin-1 by the focal adhesion kinase (FAK) (Izaguirre et al. 2001) and 

phosphorylation of tyrosine residues 4 and 31 in the ABD of actinin-4, in response 

to epidermal growth factor (Shao et al. 2010), reduces their ability to bind actin.   

Another form of actinin regulation is calpain mediated proteolysis. This is 

modulated by the binding of the phosphoinositides PIP2 and PIP3 to actinin (Sprague 

et al. 2008).  

 

1.1.3.2 Regulation of Spectrin 

Despite being considered vestigial, reports have suggested that the α-

spectrin EF hand motifs are functional in physiological calcium concentrations. 

Calcium binding to EF1-2 induces an interaction between EF3-4 and protein 4.2 

(Korsgren et al. 2010), a very important protein involved in maintaining both the 

structure and flexibility of the EMS (Sung et al. 1992). In the presence of high 
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micromolar concentrations of calcium, calmodulin binding to EF1-2 inhibits the 

binding of protein 4.2 to EF3-4 (Korsgren et al. 2010). 

β-spectrin contains two binding sites for protein 4.1 on its ABD; one on each 

CH domain (An et al. 2005). Binding of spectrin to protein 4.1 functions to anchor 

the spectrin-actin network to the cell membrane (Viel & Branton 1996), but the 

binding of protein 4.1 to β-spectrin has also been shown to increase spectrin 

binding to actin (An et al. 2005; Cohen & Langley 1984). However, it appears that 

the α-spectrin EF3-4 plays a vital role in β-spectrin ABD actin binding. Truncated α-

spectrin proteins not containing EF3-4, complexed with β-spectrin, still retain the 

ability to bind protein 4.1, but their ability to bind actin is reduced (An et al. 2005). 

In addition, independent β-Spectrin proteins do not bind actin in the presence of 

protein 4.1 (Cohen & Langley 1984). Therefore, the EF3-4 must contribute to actin 

binding.  An interaction between the α-spectrin EF3-4 and the β-spectrin ABD may 

be necessary to induce actin binding in the presence of protein 4.1 (An et al. 2005). 

Similar to actinin, heterodimerisation aligns the β-spectrin ABD with the α-spectrin 

CaM domain. Perhaps similar regulatory mechanisms are therefore involved; where 

EF3-4 interacts with either the short linker connecting CH1 and CH2, or, the longer 

linker connecting β-spectrin spectrin repeat 1 to the ABD, and in doing so, regulates 

actin binding through modulating conformation (Korsgren & Lux 2010). 

 The interaction between protein 4.1 and β-spectrin is regulated by PIP2, the 

binding of PIP2 to the β-spectrin ABD greatly increases protein 4.1 binding to β-

spectrin (An et al. 2005).  

 For both actinin and spectrin, the exact role of the interaction between 

oppositely aligned CaM domains and ABDs in regulating actin binding is unclear. 
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1.1.4 Function 

 

1.1.4.1 Functions of Actinin Proteins  

 

1.1.4.1.1 General Functions of Non-Muscle Actinins 

Within the cell, actin filaments can be fashioned into many different types of 

structures. Membrane protrusions called microvilli, which function to increase the 

surface area of a cell, are made up of ordered tight bundles of actin. Contractile 

structures called stress fibres are made up of actin bundles, and a web of actin 

filaments form the lamellipodia, which extend from the leading edge of a cell during 

migration (Lodish et al. 2008a). 

Actinin plays an important structural role in organising actin filaments into 

some of these structures. In addition to binding actin, actinin has evolved to 

interact with many other different types of proteins; cytoskeletal proteins, 

signalling proteins, and transmembrane proteins. Through these additional 

interactions, actinin functions not only to crosslink the actin cytoskeleton to the 

plasma membrane, thus providing and maintaining structure and shape to the cell, 

but it also serves to regulate the actin cytoskeleton by acting as scaffold for 

proteins involved in signalling pathways (Djinovic-Carugo et al. 2002; Sjöblom et al. 

2008). A number of many cellular structures and processes in which the non-muscle 

actinins play important roles are described below. 

 

1.1.4.1.1.1 Microvilli 

L-selectin is a cell-surface glycoprotein found on the microvilli of leukocytes 

(te Velthuis et al. 2007; Pavalko et al. 1995). L-selectin is involved in the primary 

stages of leukocyte activation at sites of inflammation; tethering and rolling. 

Through binding lectin ligands, L-selectin functions to attach (tether) the leukocyte 

to the endothelium of a blood vessel.  The leukocyte then moves (rolls) slowly along 

the blood vessel wall (Dwir et al. 2001; Pavalko et al. 1995). Through its rod domain, 

actinin constitutively interacts directly with the cytoplasmic tail of L-selectin 

(Pavalko et al. 1995). This interaction has been found to be very important for L-
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selectin function and subsequent leukocyte activation. Deletion of the L-selection 

cytoplasmic domain abrogates leukocyte tethering and rolling to the endothelium 

(Dwir et al. 2001; Pavalko et al. 1995). In anchoring L-selectin to the actin 

cytoskeleton, actinin functions to stabilise the L-selectin bond tethering the 

leukocyte to the endothelium so that the leukocyte remains tethered during 

physiological shear flow. In connecting L-selectin to the actin cytoskeleton, actinin 

regulates the activity of L-selectin (Dwir et al. 2001).  

 

1.1.4.1.1.2 Stress Fibres 

Stress fibres are the contractile structures of non-muscle cells (Tojkander et 

al. 2012) of which both actin and myosin are the primary proteins. Contractile force 

is produced through the ATPase activity of myosin coupled with its interaction with 

actin filaments (Tojkander et al. 2012). Within this actomyosin structure, actinin 

functions to crosslink the actin filaments into a bipolar arrangement (Fig. 1.7) 

(Tojkander et al. 2012). Immunofluorescent staining reveals a periodic pattern of 

actinin in which it appears to alternate with myosin bands (Langanger et al. 1986). 

This arrangement resembles the sarcomeric contractile unit in muscle cells. 

However, the arrangement of actin filaments in stress fibres is less ordered than in 

muscle sarcomeres (Tojkander et al. 2012).  

FRAP analysis has revealed that actinin in stress fibres does more than just 

arrange actin filaments. It has revealed that a very dynamic association exists 

between actinin and actin filaments (Peterson et al. 2004; Edlund et al. 2001; Fraley 

et al. 2005; Hotulainen & Lappalainen 2006). A dynamic cytoskeleton is important 

because it allows the cell to rapidly reorganise in response to signals (Fraley et al. 

2005). It has been suggested that this dynamic dissociation/re-association is 

important because it could permit rotation of the actin filaments, which, when 

coupled with the ATPase activity of myosin, would allow for contraction (Hotulainen 

& Lappalainen 2006). Another possible reason for the importance of this dynamic 

dissociation/re-association is due to stress fibres not being as organised as muscle 

sarcomeres (Tojkander et al. 2012). In the latter, actinin is confined to the muscle Z-

disc, but in stress fibres, actinin may also be localised in the equivalent of the I band 
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too. In this case, actinin must be constantly dissociated from the actin filament to 

allow for myosin movement and subsequent contraction (Peterson et al. 2004). 

 

 

Figure 1.7:  Actinin in Stress Fibres. The dynamic association between actinin and actin in stress 
fibres allows for a semi-ordered arrangement of actin filaments and permits for the rotation of actin 
filaments, providing a means of contraction (Tojkander et al. 2012; Hotulainen & Lappalainen 2006). 
 

Apart from actin, several other proteins that are common to stress fibre 

regions have been reported to interact with actinin, providing actinin with various 

functions. In binding the proteins zyxin and cysteine-rich protein 1 (CRP1), proteins 

involved in actin filament organisation and cell differentiation respectively, actinin 

functions to target them to stress fibre regions, and to scaffold interactions 

between them (Reinhard et al. 1999; Pomies et al. 1997; Crawford et al. 1992; 

Crawford et al. 1994). In binding the CLP-36 PDLIM protein, a protein with the 

ability to bind protein kinases, actinin acts as a type of linker, connecting signalling 

pathways to the cytoskeleton (Vallenius et al. 2000; Vallenius & Mäkelä 2002). 

 

 

1.1.4.1.1.3 Focal Adhesions 

Terminating stress fibres can be attached to the plasma membrane at 

regions known as focal adhesions (Tojkander et al. 2012). Focal adhesions are 

contact points between the cell and its surrounding extracellular matrix (ECM) and 

they are important because they allow for communication between the cell and the 

ECM (Burridge & Chrzanowska-Wodnicka 1996). Integrins are transmembrane 

proteins and they are one of the main components of a focal adhesion (Burridge & 

Chrzanowska-Wodnicka 1996). Actinin, via its rod domain, binds to the cytoplasmic 
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tail of the β1 integrin receptor, and in doing, so connects the actin cytoskeleton to 

the plasma membrane (Fig. 1.8). Consequently, in addition to crosslinking actin 

filaments, actinin also functions to anchor them (Otey et al. 1990).   

 

Figure 1.8: Actinin in Focal Adhesions. Through binding to transmembrane proteins such as integrin 
proteins, actinin functions to attach the actin cytoskeleton to the plasma membrane (Otey et al. 
1990). 

 

Communication between the cell and the ECM is by means of mechanical 

force or stress. The cell can apply force on the ECM and, in return, the ECM can 

apply force on the cell. Focal adhesions provide both the ECM and the cell the 

ability to “sense” mechanical cues from each other, and respond accordingly. Such 

responses could be cellular processes such as proliferation and differentiation (Ye 

et al. 2014; Roca-Cusachs et al. 2013; Tojkander et al. 2012). One of the main forces 

produced by a cell is that of a contractile force resulting from the movement of 

myosin proteins along actin filaments in stress fibres (Tojkander et al. 2012). With 

its ability to bind integrin receptors, two independent studies have shown that 

actinin is responsible for transmitting these mechanical contractile forces from the 

cytoskeleton to focal adhesions (Roca-Cusachs et al. 2013; Ye et al. 2014). In both 

studies, the transmission of force or tension through actinin resulted in maturation 

or growth of focal adhesions. With its ability to crosslink actin filaments, actinin 

may also be able to control the stiffness of these filaments by increasing or 

decreasing its actin binding. In doing so actinin could function to modulate the 
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transmission of this tension (Clainche & Carlier 2008). Roca-Cusachs et al. (2013) 

suggest that actinin may also be able to do this through increasing or decreasing its 

integrin binding.  

Also, in addition to force transmission, in linking the actin cytoskeleton to 

receptors in the plasma membrane, actinin functions to maintain cell shape and 

structure, and regulate the activity of transmembrane receptors (Otey & Carpen 

2004). 

 

1.1.4.1.1.4 Cell Motility 

Due to its considerable involvement in focal adhesions, actinin also 

contributes to cell motility. Lamellipodia are actin rich cell membrane protrusions 

which function to direct cell motility, propelling the cell across the substratum 

(Lodish et al. 2008a).  These structures are generated through actin filament 

polymerisation at the leading edge of a cell and attach themselves securely to the 

underlying substratum through focal adhesions (Ridley et al. 2003). As mentioned in 

section 1.1.4.1.1.3, actinin plays a role in anchoring the actin cytoskeleton to the 

cell membrane through its interaction with integrin proteins (Otey et al. 1990). 

These focal adhesions serve to stabilise the lamellipod, but they also serve as 

traction sites that allow the cell to move forward; these tractional forces are 

transmitted to the focal adhesions and are generated through myosin interactions 

with actin filaments (Ridley et al. 2003). In order to finally permit cell movement, 

focal adhesions at the rear of the cell are disassembled. This disassembly involves 

separation of the actin cytoskeleton from the focal adhesion (Lodish et al, 2008a). 

Not only playing a role in focal adhesion formation, actinin may also be involved in 

focal adhesion disassembly. Inactivation of actinin in focal adhesions results in 

disruption of the interaction between actinin and integrin and separation of stress 

fibres from focal adhesions (Rajfur et al. 2002), while the introduction of actinin 

fragments containing only the ABD, or only the rod domain, also results in 

disruption in both stress fibres and focal adhesions (Pavalko & Burridge 1991). 

Essentially, cell motility involves co-ordinating and balancing forces; the 

contractile forces generated by the actomyosin cytoskeleton and the resisting 

forces generated by the focal adhesion. Ultimately, no cell movement will occur if a 
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cell is too strongly attached to its underlying substratum (Lodish et al, 2008a). As 

already mentioned in section 1.1.4.1.1.3, actinin may play a role in modulating the 

transmission of tension through regulating its actin binding (Clainche & Carlier 

2008) or integrin binding (Roca-Cusachs et al. 2013). Binding of integrins to the ECM 

via their extracellular domain triggers the activation of many signalling pathways 

that bring about protein tyrosine phosphorylation and changes in phospholipid 

biosynthesis (Ridley et al. 2003). Actinin actin binding activity is regulated by both 

tyrosine phosphorylation and phosphoinositide binding (section 1.1.3.1). This also 

suggests that actinin plays an active role in focal adhesion assembly and 

disassembly. 

 

1.1.4.1.1.5 Endocytosis 

Another dynamic cellular process where actinin plays a role is endocytosis, 

which is the internalisation of cell surface molecules into intracellular 

compartments (Le Roy & Wrana 2005). In motile cells, such as macrophages, 

actinin-4 is localised to circular ruffles on their dorsal surface (Araki et al. 2000). 

These circular ruffles are the precursor forms of macropinosomes, a variety of 

cellular chamber that form during macropinocytosis, a type of endocytosis (Lim and 

Gleeson 2011). Scrape loading cultured macrophages with anti-actinin antibodies, 

designed to recognise the actinin central rod region and hence disrupt actinin 

dimerisation and ultimately actin crosslinking, resulted in decreased 

macropinocytosis activity in these cells (Araki et al. 2000).  

Also in the context of endocytosis, actinin interacts with the intracellular C-

terminal of the G-protein coupled receptor Adenosine A2A receptor (A2AR). These 

interactions may function in internalising the receptor upon agonist induction. A 

truncated A2AR without its intracellular C-terminal, and thereby not able to interact 

with actinin, was not internalised upon agonist induction in cultured cells. This 

study indicates that the attachment of the A2AR to the actinin-actin cytoskeleton is 

necessary for receptor internalisation i.e. endocytosis (Burgueño et al. 2003). 
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1.1.4.1.1.6 Adherens Junctions 

While actin filaments can be moulded into different cellular structures, the 

cells themselves can assemble into different tissues and be organised into different 

organs. This requires molecular interactions between cells in the form of cell:cell 

adhesions or junctions. These junctions confer strength and rigidity to a tissue or an 

organ, and also allow for communication between cells, regulating important 

processes, such as development (Lodish et al. 2008b). Several studies have 

identified actinin as a constituent of some of these junctions.  

Adherens junctions are one such type of cell:cell adhesion. At the electron 

microscope level, these junctions are identified by very close contact between two 

interacting cells (Knudsen et al. 1995). Transmembrane proteins called cadherins 

are a common component of these junctions. Their extracellular domain functions 

to mediate cell:cell interactions through binding copies of themselves on 

neighbouring cells, while their intracellular domain promotes interactions with a 

group of proteins called catenins. Through its rod domain, actinin interacts with the 

α-catenin protein so that it indirectly tethers the actin cytoskeleton to these 

junctions (Fig. 1.9).  The presence of two α-catenin binding sites on the actinin 

dimer greatly stabilises the complex (Nieset et al. 1997; Knudsen et al. 1995).  

 

 

Figure 1.9: Actinin in Adherens Junctions. In binding to catenin proteins, actinin functions to 
indirectly link the actin cytoskeleton to cadherin protein complexes, and ultimately, to the actin 
cytoskeleton of neighbouring cells (Nieset et al. 1997; Knudsen et al. 1995). 
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A direct association has been reported between actinin and the 

transmembrane protein intracellular adhesion molecule-1 (ICAM-1), a ligand for 

leukocyte integrins (Carpén et al. 1992). This interaction may facilitate the 

extravasation of leukocytes through the cell junction (Celli et al. 2006).  

 

1.1.4.1.2 Actinin-1/Actinin-4 Specific Functions 

Both actinin-1 and actinin-4 share 86.7% amino acid identity, which suggests 

that they are very closely related (Honda et al. 1998). However, in motile cells, they 

each display a very different localisation pattern; actinin-1 is normally associated 

with focal adhesions, and adherens junctions while actinin-4 is usually associated 

with stress fibres and is distributed throughout the cytoplasm (Honda et al., 1998). 

Other studies have also reported actinin-4 to be associated with dorsal ruffles in 

motile cells (Araki et al. 2000). Different distribution patterns suggest different 

functions for both isoforms (Honda et al., 1998). 

As an aside, it is interesting to note that these two isoforms form actinin-

1/actinin-4 heterodimers.  Even more surprising, these heterodimers predominate 

over homodimers in many cancerous cell lines (Foley & Young, 2013). The authors 

suggest that these heterodimers may have properties that differ from the actinin 

homodimers, speculating that the homodimers perform the isoform specific functions 

(that are discussed in the following sections 1.1.4.1.2.1 - 1.1.4.1.2.3). 

 

1.1.4.1.2.1 Actinin-1 and Platelets 

A role for actinin-1 in a human genetic disorder has become apparent in the 

past three years, with four independent studies showing ACTN1 to be one of many 

causative genes implicated in dominantly-inherited congenital 

macrothrombocytopenia (CMTP) (Bottega et al. 2015; Guéguen et al. 2013; 

Kunishima et al. 2013; Yasutomi et al. 2016). This is a rare blood disorder 

characterised by a reduced number of platelets in the peripheral vascular system 

along with increased platelet size (Kunishima & Saito 2006). Initially Kunishima et al 

identified six variants that co-segregated with affected individuals in six Japanese 

families suffering from CMTP. Expression of these variants in Chinese hamster ovary 

cells and primary mouse fetal liver-derived megakaryocytes brought about 
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abnormal alterations in the actin cytoskeleton organisation. Gueguen et al 

subsequently reported an ACTN1 variant, p.Arg46Gln, to be segregating with CMTP 

in a French family. This missense mutation had already been reported by Kunishima 

et al. Six novel ACTN1 variants were reported by Bottega et al. Expression of these 

mutant actinin-1 proteins in human fibroblast cultured cells caused actin 

cytoskeleton disorganisation. Recently, Yasutomi et al. have reported a 

p.Leu395Gln mutation in a CMTP family. It has been suggested that a possible cause 

for macrothrombocytopenia is a deficiency in the regulation of platelet production 

(Thon & Italiano 2012). In support of this, primary mouse fetal liver-derived 

megakaryocytes transfected with ACTN1 variants display altered pro-platelet 

formation and size (Kunishima et al. 2013). This finding is compatible with the 

increased platelet size that is characteristic of CMTP. A recent study has reported 

that several of these mutations that are located in the actnin-1 ABD cause 

increased binding of actinin-1 to actin filaments and enhance filament bundling in 

vitro (Murphy and Young 2016). Actinin-1 may play a specific role in platelet 

formation, possibly through actin binding or bundling ability, that is sensitive to 

mutational perturbation and cannot be compensated for by other actinin isoforms.

   

1.1.4.1.2.2 Actinin-4 and Cancer 

Invasive cancer cells exhibit increased mobility performance and, during 

metastasis, make use of extensive structures such as invadopodia, which are similar 

to lamellipodia, to guide them through the ECM and through blood vessels  

(Yamaguchi & Condeelis 2007; Machesky 2008).The functions of non-muscle 

actinins, particularly with regard to cell motility and the localisation pattern of 

actinin-4, being mostly expressed moving structures, such as dorsal ruffles, (Araki et 

al., 2000) would suggest potential metastatic properties. Indeed, overexpression of 

actinin-4 in colorectal cancer cells induced their formation of membrane ruffles and 

lamellipodia, where the actinin-4 protein was largely localised. These cells also 

experienced increased cell mobility compared to control cells in wound healing 

assays (Honda et al. 2005). In a subsequent study, this group reported a reduction 

in cell motility and retraction of cellular protrusions in actinin-4 knockdown colon 

cancer cells (Hayashida et al. 2005). Of all four actinin isoforms, actinin-4 is 
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predominantly associated with cancer and overexpression of actinin-4 has been 

reported for a number of different cancer types (Honda 2015). Biopsy samples from 

patients with oral squamous cell carcinoma (OSCC) revealed large amounts of 

staining for actinin-4 at the growing edge of the tumours, while overexpression of 

actinin-4 was reported for all OSCC cell types. siRNA mediated knockdown of 

actinin-4 in one OSCC cell line resulted in a reduction in the cell mobility rate and 

invasiveness (Yamada et al. 2010). 

In some cases, ACTN4 gene amplification is the cause of protein 

overexpression, and the use of this observation can be helpful in determining 

patient outcome and deciding upon additional adjuvant therapies (Honda 2015). 

Gene amplification has been noted in ovarian cancer patients. In these studies, 

patients with a high ACTN4 copy number (four copies or over) exhibited highly 

malignant, chemoresistant tumours and, in general, displayed a poorer prognosis 

for survival than those patients with normal copy number (less than four copies) 

(Yamamoto et al. 2009).  

Apart from overexpression, expression of an alternative splice variant of 

actinin-4 has been found to be associated with some cancer types (Honda 2015).  

Actinin-4 splicing removes the 83bp exon 8 and replaces it with an exon of the same 

size, exon 8a is swapped for 8b. Three amino acid changes differentiate this new 

exon from the normal exon. This splice variant has been detected in biopsy samples 

from patients with small cell lung cancer (SCLC) and large cell neuroendocrine 

carcinoma (LCNEC) and in many SCLC cell lines (Honda et al. 2004; Miyanaga et al. 

2013). The isolated ABD of this Actinin-4 8b variant has been reported to have a 

greater affinity for actin than the 8a variant, which may explain why SCLC cells are 

characteristically fragile and it may explain the irregular actin cytoskeleton that was 

observed in patient biopsy samples (Honda et al. 2004). Interestingly, the sites of 

the three amino acid changes within the exon map near the sites of two mutations 

that are known to cause the kidney disease focal segmental glomerulosclerosis 

(FSGS) (Honda et al., 2004). This disease is discussed further in section 1.1.4.1.2.3. 

Actinin-FSGS causing mutants also exhibit increased actin affinity (Weins et al. 

2007; Weins et al. 2005; Kaplan et al. 2000). Reports regarding the activity of this 

splice variant in cancer promotion have been conflicting however. A subsequent 
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study has found that the dimeric actinin 8b variant has a similar actin binding 

affinity and calcium sensitivity to that of the 8a variant (Foley & Young 2013). 

In addition to its structural properties in cancerous cells, there have been 

several reports which suggest that actinin-4 may also act as a transcriptional co-

activator (Honda 2015). Actinin-4 displays nuclear localisation in many cancer cell 

lines (Honda et al. 1998). In vitro studies suggest that actinin-4 may function to 

regulate transcription from nuclear hormone receptors such as the oestrogen 

receptor (Khurana et al. 2011). 

 

1.1.4.1.2.3 Actinin-4 and the Kidney 

In addition to different localisation patterns within a cell, unique expression 

of actinin-4 in the kidney has been described, particularly within podocytes (Kaplan 

et al. 2000). Podocytes are highly differentiated epithelial cells that strengthen the 

glomerular basement membrane and participate in the formation and function of 

the glomerular filtration barrier.  They have long extensions called foot processes 

with function to firmly attach the podocyte to the glomerular basement membrane 

via integrin receptors. The foot processes of many neighbouring podocytes 

interdigitate together and are connected to each other through an adherens 

junction-like structure called the slit diaphragm, the function of which is to maintain 

the permselectivity of the glomerulus. The correct organisation of actin filaments is 

vital to maintaining this complex architecture (Pavenstädt et al. 2003; Mundel & 

Shankland 2002; Cybulsky & Kennedy 2011; Michaud et al. 2009). 

Human studies have identified five dominant ACTN4 mutations that cause 

FSGS (Kaplan et al. 2000; Weins et al. 2005). This disease is characterised by 

decreasing kidney function with final progression to end stage renal failure (Feng et 

al. 2015). These five mutations have been mapped to the actinin-4 ABD (Fig. 1.10) 

(Weins et al. 2005; Kaplan et al. 2000), where they give rise to a gain-of-function 

phenotype; mutant actinin-4 proteins have a higher affinity for F-actin binding 

compared to WT actinin-4 (Weins et al. 2005; Kaplan et al. 2000; Weins et al. 2007). 

In addition, the p.Lys255Glu-actinin-4 mutant is no longer sensitive to calcium 

regulation (Weins et al. 2007).  
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Figure 1.10: FSGS-associated Actinin-4 mutations. All five actinin-4-FSGS mutations have been 
mapped to its ABD.  

 

The p.Lys255Glu mutation in the ABD resides on the CH2 domain. It was 

initially thought that its presence would bring about a more “open” conformation 

of the ABD because the replacement of a lysine residue with a glutamic acid residue 

disturbs an important stabilisation interaction between the two CH domains, an 

interaction that was thought to bring about a “closed” conformation (Lee et al. 

2008). However, the crystal structure of the Lys255Glu actinin-4 ABD displayed the 

compact formation, which indicated that a structural change was not responsible 

for the increased actin binding (Lee et al. 2008). As mentioned in section 1.1.2.1, 

Ribeiro et al (2015) have reported the closed confirmation of the unbound actinin-2 

ABD. 

Many studies have suggested that actin disorganisation is the molecular 

mechanism by which these mutations operate to cause disease. Actin networks 

crosslinked with p.Lys255Glu actinin-4 and visualised using electron microscopy 

(Weins et al. 2007) or fluorescence microscopy (Yao et al. 2011) reveal abnormal 

actin organisation. WT actinin-4 induces the formation of uniform bundles of actin, 

while the p.Lys255Glu actinin-4 induces the formation of tight entangled networks . 

These Lys255Glu actinin-4-actin based networks were reported to be very fragile, 

this suggests that the increased actin binding may be altering the elastic properties 

of the actin network (Yao et al. 2011). Mouse models are also indicative of a 

cytoskeleton disorder. Actn4 knock-out mice (Actn4-/-) show altered podocyte 

morphology, with signs of glomerular kidney collapse and foot process effacement. 

They eventually develop FSGS.  In mice, both actinin-1 and actinin-4 proteins are 

expressed in podocytes (Kos et al. 2003), however this result suggests that in mice, 

actinin-1 cannot compensate for actinin-4 (Kos et al. 2003). These mice also 

displayed a reduced podocyte number per glomerulus compared to WT mice. At 
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weeks 6-10 there was a 20% difference in podocyte number (Dandapani et al, 2007) 

and in culture, immortalised podocytes from knock-out mice were reported to be 

less adhesive to proteins that are commonly found in the glomerular basement 

membrane, such as collagen and laminin (Dandapani et al, 2007). It was found that 

the loss of actinin-4 resulted in a very weak linkage between the integrin receptor 

and the cytoskeleton, resulting in improper cell adhesion and therefore large cell 

loss (Dandapani et al. 2007). A knock in mouse model homozygous for the murine 

correlate of p.Lys255Glu-actinin-4 exhibited podocyte abnormalities such as foot 

process effacement, displayed signs of proteinuria and showed an altered 

localisation pattern of actinin-4 with protein aggregation (Yao et al. 2004). 

In addition to actin disorganisation, it has been suggested that the 

molecular mechanism by which these mutations cause disease is through the 

development of protein aggregates, leading to eventual proteotoxicity in podocytes 

(Cybulsky & Kennedy 2011). In cell culture systems, p.Lys255Glu actinin-4 

aggregates have been shown to impair the ubiquitin-proteasome system, leading to 

a build-up of proapoptotic stress in the endoplasmic reticulum. (Cybulsky & 

Kennedy 2011). 

 

1.1.4.1.3 General Function of Muscle Actinins: The Sarcomere 

The muscle actinins, actinin-2 and -3, are notable for their role in the 

sarcomeric Z-disc, where they crosslink and anchor actin filaments from adjacent 

sarcomeres (Squire 1997; Gautel & Djinovic-Carugo 2016). 

Muscle cells are made up of myofibrils, and each myofibril is composed of a 

chain of sarcomeres. These sarcomeres are responsible for both the structural 

integrity of the muscle cell, and its functionality; contraction. One sarcomere is the 

most basic unit of contraction in the muscle cell. The sarcomere cytoskeleton is 

made up of a series of thick and thin filaments, myosin and actin filaments 

respectively. Sarcomeres are separated from each other through a region called the 

Z-disc, which is made up of a network of cytoskeletal proteins and fibres. Actin 

filaments extend from this Z-disc structure down the sarcomere. Viewed under a 

light microscope, this region makes up part of the I band. Towards the centre of the 

sarcomere is a region of cross-linked myosin filaments, the M-band.  Where both 
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the actin and myosin filaments overlap is a region called the A band. In the 

presence of calcium and ATP, these actin and myosin filaments slide past each 

other through a mechanism called the Sliding Filament Model, which involves 

myosin binding to and pulling the actin filaments towards the centre of the 

sarcomere. During this process both the actin and myosin filaments do not shorten 

in length, but simply overlap to a greater extent, i.e. the I band becomes narrower 

and the A bind becomes wider, which results in the shortening of the sarcomere 

length (Lodish et at 2008a). When a muscle contracts, this process is intensified; all 

the millions of sarcomeres within the entire muscle, work congruently together, 

over distances of millimetres to centimetres to bring about unidirectional force and 

movement that ultimately brings about whole muscle contraction (Gautel & 

Djinovic-Carugo 2016). The steady and regular banding pattern seen for all 

sarcomeres under a light microscope is evidence of a highly organised collection of 

cytoskeletal proteins (Gautel & Djinovic-Carugo 2016). 

The sarcomere (Fig. 1.11) is considered to be a biological machine, made up 

of many different parts interacting together (Barral & Epstein 1999). The basic parts 

that make up this machine are the proteins myosin and actin, along with a host of 

accessory proteins such as titin, telethonin, actinin, tropomyosin, myomesin and 

nebulin, to name a few (Gautel & Djinovic-Carugo 2016). Assembly of this highly 

organised machine occurs progressively, from the formation of premyofibrils to 

nascent myofibrils and eventually to mature myofibrils, with interactions between 

many of those aforementioned proteins. Premyofibrils are minisarcomeres, they 

contain Z bodies which are composed of actinin and cross-linked actin, while their A 

band region contains nonmuscle myosin II proteins. The addition of muscle myosin 

II and titin to the Z bodies alters the actinin organisation, and this signals the shift 

from premyofibrils to nascent myofibrils. Also, at this stage the premyofibrils start 

to align with each other. As maturation continues, the aligned Z bodies start to 

transform into Z-discs. Further proteins, such as telethonin and myomesin, are 

added to the complex to stabilize the core proteins (Sanger et al. 2010; White et al. 

2014). Interactions between these proteins is mediated by a multitude of 

chaperone proteins (Willis et al. 2009). This highly organised protein assembly is a 

great example of how nature employs molecular assembly to generate well defined 
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protein complexes. The precision of molecular assembly is evident from the 

regularity that is observed between sarcomeres. This regularity is vital to muscle 

functionality (Gautel & Djinovic-Carugo 2016). 

 

 

Figure 1.11: Schematic Diagram of the Sarcomeric Cytoskeleton. The M-band is made up of 
crosslinked myosin filaments. The Z-disc marks the end of the sarcomere and is made up of actinin 
mediated actin cross links. Actin filaments extend into the I-band. The A-band consist of overlapping 
myosin and actin filaments.  

 

Muscle actinins are largely localised to the Z-disc of the mature sarcomere, 

in fact actinin it is one of its primary proteins. Here, actinin functions to cross-link 

anti-parallel actin filaments from two neighbouring sarcomeres to create a 

tetragonal lattice-like structure (Sjöblom et al. 2008). This tetragonal lattice is quite 

elastic and can adopt two different conformations, a small square lattice and a 

basket weave conformation (Luther 2009). These conformations are a symptom of 

the condition of the muscle; small square form takes precedence in relaxed muscle 

while the basket weave form takes precedence in contracting muscle (Goldstein et 

al. 1988). These conformations are permitted owing to inherent flexibility in the 

helical linker connecting the ABD to spectrin-like repeat 1, and the rigidity of the 

central rod region (discussed in section 1.1.2.3.1) (Ylänne et al. 2001; Ribeiro et al. 

2014; Gautel & Djinovic-Carugo 2016). 
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 Apart from flexibility, the functions of the Z-disc actinin-actin lattice suggest 

that it possesses huge mechanical and physical strength and stability; it stabilises 

the muscle contractile machinery (Sjöblom et al. 2008), it controls the assembly of 

actin filaments (Luther et al. 2002) and it permits the transmission of mechanical 

strain or force from one sarcomere to the other (Vigoreaux 1994).  

Actinin also plays a principle role in determining muscle performance. The 

width of a Z-band differs among fibre types and muscle types; fast muscles fibres 

have narrow Z-bands, while cardiac and slow muscles fibres have wide Z bands. This 

represents an adaption of the muscle to its function, fast muscle fibres produce a 

very high contraction velocity with a strong force (Luther 2009). Overlap between 

the actinin-actin cross-links produce different amounts actinin-actin layers within 

the Z-band. The width of a Z-disc is known to correlate to the number of actinin-

actin layers in that Z-disc. Fast muscle fibres usually exhibit two layers while slow 

muscle fibres exhibit six layers (Luther 2009). The muscle protein titin is known to 

also play a role here.  Titin is a giant protein, the length of which runs from the M 

band to the Z-disc in the sarcomere (Luther 2009). 45 amino acid residue repeats, 

called Z-repeats, make up a region near its N-terminus. Actinin can bind these Z-

repeats through its C-terminal CaM domain. In this way, titin acts as a ‘molecular 

ruler’, targeting actinin to the Z-disc and specifying its layout (Young et al. 1998). 

Alternatively spliced variants of titin are found in different muscle types and they 

contain different numbers of Z repeats (Gautel et al. 1996). This means that each 

variant binds a different number of actinin molecules, leading to a different number 

of actinin-actin cross links for each muscle type. 

 

1.1.4.1.4 Actinin-3 Specific Functions 

Both actinin-2 and actinin-3 are the non-muscle, calcium insensitive actinin 

isoforms. These isoforms both share 80% amino acid identity. Actinin-2 is expressed 

in all muscle fibre types while expression of actinin-3 is limited to type two fast 

glycolytic skeletal muscle fibres, the muscle fibres responsible for the generation of 

rapid and forceful contractions. This actinin-3 restricted expression would imply 

that actinin-3 is the most specialised of the mammalian actinins (Beggs et al. 1992; 

MacArthur & North 2007; Mills et al. 2001). Surprisingly, an ACTN3 polymorphism, 
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causing the nonsense mutation p.Arg577X, was found to be very prevalent in many 

human populations (North et al. 1999). Approximately 16% of the world’s 

population are homozygous for this sequence change that completely prevents the 

production of the actinin-3 protein, meaning that more than one billion people lack 

actinin-3 expression (Lek et al. 2010). This null genotype is not associated with any 

disease, suggesting that ACTN3 is a non-essential gene in humans, and its loss 

compensated for by actinin-2 (North et al. 1999). Though absent in birds, the 

ACTN3 gene is conserved in most other vertebrates, including fish, suggesting that 

it arose by gene duplication early in vertebrate evolution (Holterhoff et al. 2009). 

Actinin-3 must have had non-redundant functions through the course of vertebrate 

evolution in most lineages to explain its sequence conservation. In early humans 

however, it appears that the p.Arg577X mutation arose, was not detrimental, and 

was maintained for some time, before expanding under positive selection to 

achieve a very high frequency in specific populations (e.g. European and Asian), but 

not others (e.g. African)(Mills et al. 2001). 

 Yang et al. (2003) initially reported an overrepresentation of the wildtype 

ACTN3 allele (p.Arg577Arg) in elite Australian sprint athletes, suggesting that its 

presence is advantageous in sprint and power activities. They also found the 

homozygous p.Arg577X genotype to be more common in female endurance 

athletes when compared to power athletes. This suggested that the ACTN3 

genotype is linked to normal variation in muscle function, with each genotype 

possibly conferring an advantage for different types of athletic performance. 

Numerous other studies have subsequently investigated the association between 

the ACTN3 genotype and athletic performance, in both normal populations and 

various groups of elite athletes. Some studies support the basic findings of Yang et 

al. (2003), while others do not find significant associations. Overall, it can be 

concluded that at least in some populations (e.g. Caucasians), the association of the 

wildtype allele with sprint and power performance seems to hold true, while the 

association of p.Arg577X  variant with enhanced endurance is not as clear cut 

(Alfred et al. 2011; Eynon et al. 2012). Notably though, in African populations, 

where the frequency of the p.Arg577X variant is very low, no association of ACTN3 

genotype with elite athlete status was found (Yang et al. 2007), despite Kenyans 
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and Ethiopians having dominated long-distance running in recent years (Larsen 

2003). This suggests that we must consider not only the ACTN3 genotype, but also 

other polymorphisms that may be working in combination with, or independently 

of, ACTN3 to dictate performance (Alfred et al. 2011). In addition, athletic 

performance depends not just on an individual’s genetic make-up, but also on 

environmental factors, training regimes and coaching expertise (Alfred et al. 2011; 

Eynon et al. 2012).  

 Studies of Actn3 knockout mice provide further insights (MacArthur et al. 

2007). These mice are viable and healthy. They do exhibit slight decreases in muscle 

mass and muscle strength, but these values are regarded as within the normal 

range and are not a sign of muscle dysfunction (Berman & North 2010). More 

significantly, these mice display muscle metabolism conversion from the anaerobic 

pathway, which is generally seen in slow muscle fibres (MacArthur et al. 2007). 

Activity of key enzymes associated with oxidative metabolism, such as citrate 

synthase and succinate dehydrogenase, and glycolysis, such as hexokinase, are 

increased, while indicators of anaerobic metabolism namely glycogen 

phosphorylase, showed decreased activity. The metabolic changes have a positive 

effect on endurance; knockout mice have a much greater running distance prior to 

experiencing fatigue compared to wildtype controls (MacArthur et al. 2007). The 

function of glycogen phosphorylase is to breakdown glycogen. In humans, activities 

such as sprinting rely on glycogen as a main source of energy, a reduction in 

glycogen breakdown would therefore be unfavourable to sprint athletes (Berman & 

North 2010). However, a reduced ability to breakdown glycogen might be beneficial 

to endurance athletes, as it allows them to utilise other fuels and conserve glycogen 

(Quinlan et al. 2010). Thus, metabolic changes observed in Actn3 knockout mice 

might provide plausible explanations for the association of ACTN3 genotypes with 

sprint/power versus endurance performance in humans. More efficient aerobic 

muscle metabolism may be the trait associated with p.Arg77X genotype that has 

been positively selected for in specific human populations. The frequency of this 

allele in human ethnic groups is correlated with latitude, with the p.Arg577X 

mutation is more prevalent further from the equator  (Friedlander et al. 2013). 

Indeed, recently described alterations in the calcium kinetics of Actn3 knockout 
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mice are consistent with cold acclimatisation and thermogenesis (Head et al. 2015; 

Quinlan et al. 2010) 

 The molecular mechanisms mediating these effects on actinin-3 are still 

unknown. Actinin-2 and actinin-3 serve as a scaffold to anchor many signalling 

proteins and metabolic enzymes to the Z-disc (Sjöblom et al. 2008). Most of these 

interactions are probably shared by both muscle actinin isoforms, though this has 

not been explicitly tested, nor have actually binding affinities been compared. 

Assuming there are some differential interactions of signalling proteins with actinin-

2 versus actinin-3, then alterations in sarcomeric signal transduction in humans or 

mice lacking actinin-3 could drive a program of gene expression resulting in the 

actinin-3 null muscle phenotype. Calsarcin-2, a regulator of calcineurin signalling, 

displays just such a differential interaction (Seto et al. 2013). Actinin-3 deficient 

muscle in both mice and humans show enhanced calcineurin signalling, probably as 

a result of increased binding of calsarcin-2 to actinin-2 in the absence of actinin-3 

(Seto et al. 2013). Calcineurin signalling is known to shift muscle fibres towards an 

oxidative phenotype (Long et al. 2007; Delling et al. 2000; Chin et al. 1998). 

 

In the interest of completeness, a number of investigations have now linked 

dominantly-inherited ACTN2 missense mutations to a range of myopathies. An 

ACTN2 mutation was reported in a patient with dilated cardiomyopathy (DCM), a 

condition characterised by dilation of the left ventricle of the heart and a reduction 

in the heart’s ability to contract (Mohapatra et al. 2003). This p.Gln9Arg mutation is 

found in the ABD of actinin-2 and abrogates an interaction of actinin-2 with the Z-

disc component muscle LIM protein (MLP) (Mohapatra et al, 2003). Examining 

patients with hypertrophic cardiomyopathy (HCM), Theis et al. (2006) identified 

thirteen mutations in five Z-disk proteins, including three in actinin-2. Semsarian 

and co-workers found one of these same mutations (p.Thr495Met) as well as three 

novel mutations in Australian families affected by HCM and other heterogeneous 

cardiac conditions (Chiu et al. 2010; Bagnall et al. 2014). Similarly, an actinin-2 

p.Met228Thr mutation was found to segregate with affected individuals in a large 

Italian family that had a history of HCM and juvenile atrial arrhythmias (Girolami et 

al. 2014). Eight ACTN2 have thus far been linked to HCM, DCM and/or other cardiac 



Page | 52  
 

abnormalities. These mutations do not map to a particular region of actinin-2, with 

some located in the ABD, some in the central rod and one in the CaM domain. 

While mutations that map to the ABD and CaM domains may affect actin binding 

properties, those in the rod domain are more likely to affect the binding of other Z-

disc proteins to actinin. However, the consequences of these mutations have not 

been examined experimentally. 

 

1.1.4.2 Functions of Spectrin Proteins: Erythrocyte Membrane Skeleton 

Spectrin fashions actin filaments in to ordered networks. In their most 

prominent role they are responsible for providing support and shape to the 

erythrocyte through their ability to crosslink actin filaments into a flexible 2D 

protein lattice known as the erythrocyte membrane skeleton (EMS) (Bennett & 

Baines 2001).  

The essential function of the erythrocyte is to carry and offload oxygen from 

the lungs to the tissues of the body. This requires the erythrocyte to pass through 

not only blood vessels of the macrovasculature, but also thin, narrow blood vessel 

capillaries of the microvasculature, some of which are narrower than its own 

diameter, everyday throughout its 120-day life-cycle (Gratzer 1981). This means 

that, throughout the hundreds of miles that the erythrocyte travels in its lifetime, it 

undergoes considerable morphological revisions; from a biconcave, discoid shape in 

the macrovasculature to a parachute shape in the microvasculature, with 

regression back to the biconcave shape in the macrovasculature again (Uzoigwe 

2006). This shape change is not only required for progression through the 

circulatory system, but it also maximises their functional performance; the 

biconcave shape encourages laminar flow and discourages turbulent flow, while the 

parachute shape encourages diffusion of oxygen molecules to the tissues through 

its increased surface area (Uzoigwe 2006). These mechanical and elastic properties 

are attributed to its membrane skeleton, the aforementioned 2D flexible protein 

lattice (Fig. 1.13) comprising of spectrin crosslinked with actin, and many other 

proteins such as, protein 4.1 and ankyrin, tropomyosin and protein 4,2 (Bennett & 

Baines 2001). This lattice has a well ordered hexagonal shape (Liu et al. 1987). The 

most basic aspect of this lattice formation is the self-association properties 
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displayed by spectrin. The functional unit of spectrin is the heterodimer (Fig. 1.12A) 

(Winkelmann & Forget 1993) however, anti-parallel association of two spectrin 

heterodimers through interaction between the N-terminal α-spectrin partial repeat 

1 and the C-terminal β- spectrin partial repeat 17 forms a spectrin tetramer that 

consists of a long chain of uninterrupted spectrin repeats (Ipsaro et al. 2010). This 

formation places an ABD at both ends of the tetramer (Dubreuil et al. 1989). In this 

form, spectrin can crosslink actin filaments (Fig 1.12B) (Begg et al. 1997). 

 

Figure 1.12: Heterodimeric Spectrin Complexes and Tetrameric Spectrin Complexes. (A) Spectrin 
can exist as a heterodimer made up of an α-spectrin subunit and a β-spectrin subunit. To form a 
closed “hairpin” dimer, the longer α-Spectrin folds back on its N-terminal so that the α-Spectrin 
partial repeat interacts with and forms an intradimer bond with the β-Spectrin partial repeat 
(Speicher et al. 1993). (B) Spectrin can also exist as a tetramer, made up of two α-spectrin proteins 
and two β-spectrin proteins. Tetramer formation is brought about with antiparallel association of 
two spectrin heterodimers through interactions between the α-spectrin and β-spectrin partial 
repeats. This tetramer formation places an ABD at either end of the structure, facilitating actin 
crosslinking (Ipsaro et al. 2010; Dubreuil et al. 1989; Begg et al. 1997). 

 

 The ability of the erythrocyte to resist mechanical stress are supplied by 

spectrin. Spectrin tetramers have the ability to convert and revert into dimers and 

tetramers respectively. The dissociation of tetramers to dimers accommodates the 

large amount of deformation needed for the erythrocyte to pass through small 

blood vessels (An et al. 2002). The importance of these elastic properties of spectrin 

is demonstrated by the finding that the spectrin dimer/tetramer self-association 

site is a very common target for mutations (Pascual et al. 1997) which cause 

haemolytic anaemias such as hereditary elliptocytosis (HE) (Dhermy et al. 1982; 

Nicolas et al. 1998; Delaunay 1995) The red blood cells (RBCs) of patients with this 

disease exhibit increased instability and fragility (Liu et al. 1982). 
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Figure 1.13: The Erythrocyte Membrane Skeleton. Tetrameric spectrin complexes function to 
crosslink actin filaments into a 2D protein lattice called the EMS which functions to provide RBCs 
with shape and support (Bennett & Baines 2001). 

 

The protein ankyrin functions to tether this spectrin lattice to the RBC 

membrane bilayer through interaction with both β-spectrin, at spectrin repeat 15, 

and band 3, an integral membrane protein. Spectrin tetramers provide two ankyrin 

binding sites (Pascual et al. 1997). Protein 4.1 also has a similar function. It binds 

both β-spectrin, in the ABD, and the protein gylcophorin C, another integral 

membrane protein (Workman & Low 1998). These interactions function to not only 

tether the cytoskeletal lattice to the cell membrane but they also stabilise the 

membrane. In binding to these membrane proteins, spectrin controls their 

distribution within the membrane. It also acts to prevent receptor aggregation and 

to prevent the formation of membrane regions devoid of proteins; such regions 

promote membrane fragmentation or vesiculation (De Matteis & Morrow 2000; 

Gratzer 1981). The spectrin lattice can also be attached to the lipid bilayer through 

direct interaction with phospholipids along the inner layer. Phosphatidylserine (PS) 

was found to bind to spectrin repeats from both α-spectrin and β-Spectrin; β-

Spectrin repeats 12-14, which is close to the ankyrin binding site, and α-Spectrin 

repeats 8-10. PS was also reported to bind at a site close to the protein 4.1 binding 

site, near the ABD on β-spectrin (An et al. 2004a; An et al. 2004b). It has been 
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suggested that these interactions between spectrin and phosolipids act to stabilise 

the lipid bilayer with concern to the translocation of phospholipids from one leaflet 

of the membrane to the other (An et al. 2004a; Mohandas & Gallagher 2009).  

Many other proteins play many other roles in this complex structure; 

protein 4.2 (as mentioned in section 1.1.3.2) acts to maintain the integrity of the 

EMS (Sung et al. 1992), adducin functions to cap the fast growing end of actin 

filaments, and tropomodulin, in a complex with tropomyosin, caps the slow 

growing end of actin filaments (Machnicka et al. 2014; De Matteis & Morrow 

2000).The end result is a large multifunctional elastic and deformable self-

assembled protein scaffold capable of binding to and organising cytoplasmic, 

structural and membrane proteins (De Matteis & Morrow 2000; An et al. 2002). 

 

 

1.1.5 Conclusion 

Both actinin and spectrin proteins display a remarkable array of capabilities. 

Nature has selected them as building blocks to create a wide variety of important 

cellular structures not only for their robust qualities, but also for their finely tuned 

molecular recognition properties. While both proteins are similar in terms of their 

domain content, there structural differences (i.e. number of spectrin repeats) and 

thereby functional differences are very apparent when comparing their EM 

micrographs. Actinin has been described as “rod-like” (Winkler et al. 1997) while 

spectrin has been described as “floppy” (Yoshino & Marchesi 1984). These 

observations emphasise the adaptability of the spectrin repeat. Such structures, or 

variations thereof, might also be useful in an unnatural setting, outside the cell.  

Mutational studies involving actinin-4 and FSGS have revealed how simple 

missense mutations can give rise to new or altered properties. Such properties, 

although an obvious disadvantage to a natural system, such as the kidney, might be 

advantageous in the construction of an unnatural system or complex.   

Many studies have documented successful efforts in using biomolecules as 

building blocks to create nanostructures with potential useful properties. The next 

section of this introduction I review some of these studies. 
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1.2 Bionanotechnology and its Contributions to Synthetic Biology 

  The definition of Synthetic Biology is two-part: firstly; it involves the use of 

unnatural molecules to construct or reproduce complexes from natural biology, 

secondly; it exploits natural components from living systems to produce complexes 

that assemble unnaturally, and have either comparable or different properties to 

those already seen in nature (Benner & Sismour 2005). It offers the potential to 

gain a better and deeper understanding of biological systems and to also develop 

novel molecules and systems (Benner & Sismour 2005). On review of the literature 

within this area of research, it is clear that Bionanotechnology has contributed to 

many of the advances in Synthetic Biology in recent times. 

Nanotechnology concerns the research and development of materials, 

devices and systems whose structure is defined in the nanometre scale. Objects at 

this size and scale are termed ‘nanoparticles’, and they are very desirable because 

of their novel properties, providing great potential in the field of medicine and 

biology. By operating at the nanoscale, nanoparticles can pass through blood vessel 

walls and travel within the circulatory system of the host. They can also transverse 

many physiological barriers, such as the blood-brain-barrier and stomach 

epithelium (McNeil 2005). Their small size also disposes them to many non-

therapeutic applications too. In electronic circuitry, for example, nanometre scale 

electronic connections are advantageous because they allow for a faster 

performance at a reduced weight and power consumption (Mishra 2015). 

Traditionally, nanoparticles have been prepared using top-down approaches such 

as photolithography (Xia & Whitesides 1998) and much study has been focused on 

the use of nanomaterials such as metals and carbon (Nayak & Andrew Lyon 2005). 

Biomolecules, such as DNA, lipids, polysaccharides and proteins, are nanoparticles 

that naturally exist in the nanometre range, and bionanotechnology employs their 

molecular recognition properties in the “bottom-up” fabrication and self-assembly 

of artificial nanostructures (Jungmann et al. 2008). Self-assembly is profuse in 

nature, where stable systems and complex organelles are assembled from simple 

building blocks of biological molecules. Structural compatibility and chemical 

complementarity provide the shape and surface properties to bring about this 
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instinctive, spontaneous and specific association of molecules, which is mediated 

through many non-covalent interactions such as hydrogen bonds, Van Der Waals 

and electrostatic interactions, the sum of which contribute to the overall stability of 

the complex (Whitesides et al. 1991; Goodsell & Olson 2000). Biomolecular self-

assembly is an attractive bottom-up approach to nanoconstruction because it does 

not require the need to individually pattern building blocks. This approach 

therefore contains fewer design steps, making the whole process much faster and 

much more amenable to mass production in the long-term (Scheibel et al. 2003). 

Also, because assembly is initiated at the atomic or molecular level, construction 

using self-assembling biomolecules as building blocks provides a much greater 

degree of control over the construction process (Lee et al. 2010) and it allows for 

the manipulation of these building blocks, so as to functionalize the final structure.   

While this study is primarily interested in protein-based bionanotechnology, 

a brief review of research carried out on all biological molecules (nucleic acids, 

lipids, carbohydrates and peptides and proteins) is important. It contributes to a 

better understanding of this scientific field, particularly with regard to techniques 

and theories, and it provides inspiration and ideas for similar bionanotechnology 

based projects. 

 

 

1.2.1 Nucleic Acid Nanotechnology 

Nucleic acids have been reassigned from their traditional use in molecular 

genetics and genetic manipulation and have now been described as materials with 

which to build nanostructures. Single strands of DNA can self-assemble into double 

stranded helices through complementary and precise hydrogen bonding Watson-

Crick base pairing. This simple, specific, and most importantly, predictable bonding 

of DNA base pairs, adenine-thymine and guanine-cytosine, makes DNA highly 

programmable for construction (Krishnan & Bathe 2012). It has the ability to be 

processed with atomic precision and efficiency with DNA -modifying enzymes, such 

as endonucleases and ligases, and thus provides the researcher with a “toolbox” of 

biomolecular reagents (Niemeyer 2001). DNA synthesis is relatively cheap and DNA 
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amplification is a very straightforward process (Niemeyer 2001; Krishnan & Bathe 

2012). Finally, the DNA double helix has been well characterised; the distance 

between each base pair is 3.4 Angstrom, it has a diameter of 20 Angstrom and it 

makes a complete turn about its axis every 10-10.5 base pairs, or every 3.5nm 

(Nelson & Cox 2005a). This knowledge should provide for control and calculation of 

the final arrangement of the structure. 

 

1.2.1.1 Tile Based Approach 

The tile based approach is one method used to construct DNA-based 

nanostructures. Structures are self-assembled from branched DNA structures which 

resemble branched DNA Holliday Junctions that form during cell division (Seeman 

2003). Each branch point is designed to contain a complementary single stranded 

DNA overhang, called a “sticky-end” so that self-assembly of these branched 

structures is brought about through complementary sticky-end hybridisation 

(Seeman 2003). Initial building blocks consisted of four DNA strands, creating four 

way junctions, but more rigid building blocks have since been described consisting 

of double and multiple crossover motifs, and comprising of two DNA intertwined 

duplexes at each branch point (Seeman et al 1993; Shen et al. 2004).  

Using this tile based approach Yan et al. (2003) created a DNA tile 

nanostructure comprising four four-branch junctions that could self-assemble into 

two different lattice forms, depending on the composition of the sticky ends; a 

nanoribbon or 2D nanogrid. The branched junctions were formed from nine single 

stranded DNA strands, with each branch point pointing North, South, East or West. 

Individual branch points were stabilised with interaction between two single 

strands of DNA, and with the participation one single strand in all four junctions. 

The distinctive feature of this structure was their inclusion of T4 DNA hairpin loops 

in each of the four inside corners of the tile. Their purpose was to allow the branch 

points to point in all four different directions, and to decrease interactions between 

the different branch points.  While serving a very important structural role, in a 

follow-on study Park et al. (2005) found that, in the 2D nanogrids lattice formation, 

these DNA loops could serve to aid in functionalising the nanogrid with their ability 

to tether functional groups. This group found that this nanogrid could be useful as a 
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periodic protein array; they observed periodic streptavidin arrays when they 

incorporated biotin into the T4 loops. This report proves that it is possible to 

pattern DNA nanostructures, and that it may be possible to do so precisely. It 

represents a movement in the right direction for the eventual use of DNA lattices to 

scaffold the assembly of molecular complexes, for example.  

 

1.2.1.2 DNA Origami 

Another approach for generating DNA nanostructures is called DNA origami, 

developed by Paul Rothemund (Rothemund 2006). This new technique facilitates 

the rapid design and creation of DNA nanostructures and its development 

represents one of the most important advances in DNA nanotechnology (Nangreave 

et al. 2010; Rothemund 2006). 

The DNA origami technique is very straightforward and is based on the 

folding of a long single strand of DNA, called the scaffold strand, Rothemund 

exploited from the M13 phage genome, into any desired shape or pattern with the 

aid of many, much shorter single strands, called staple strands (Rothemund 2006). 

Rothemund himself described the technique as a “one-pot” method (Rothemund 

2006) in which the scaffold strand and the short staple strands are all mixed in a 

Mg+2 buffer and are then heat annealed to create the desired designed structure 

(Rothemund 2006). The staple strands are designed to be complementary to two or 

more different regions of the scaffold strand and they are also all of different 

lengths so that they all anneal at different temperatures. The initial attachment 

partly arranges the scaffold and makes it more feasible for the remaining strands to 

bind, making the folding process hierarchical and therefore coordinated. In general, 

100-fold excess staple strands are used so that incorrect binding can be eliminated 

through strand invasion during the hierarchical folding process (Birkedal et al. 2011; 

Zadegan & Norton 2012; Rothemund 2006; Nangreave et al. 2010). It is believed 

that the long scaffold strand acts to enclose the staple strands in a small area, 

thereby increasing their concentration. Regardless of whether oligonucleotides are 

purified or not, this increase in concentration causes precise stoichiometry to form 

between staple and scaffold and, a result, leads to the generation of correctly 

formed structures (Pinheiro et al. 2011). 
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In general, the DNA origami approach has taken precedence over the tile-

based approach. The latter requires a considerable amount of knowledge on DNA 

geometry (Rothemund & Andersen 2012) and is very time consuming, requiring the 

precise design and exact stoichiometry of many oligonucleotides so that they 

assemble into the desired structure (Nangreave et al. 2010). Equimolar 

stoichiometric concentrations are not a concern using the DNA origami approach 

because the staple strands are not required to bind to each other and so their 

concentrations are not important (Nangreave et al., 2010).  

Rothemund initially used his technique to produce random 2D planar shapes 

and structures, such as a smiley face, a star and dolphin (Andersen et al. 2008; 

Rothemund 2006).  However, a leading study carried out by Ke et al. (2008) found 

that this technique was not limited to the production of arbitrary shapes and that it 

might have important applications in single molecule detection. In this study, Ke et 

al used the DNA origami method to create nucleic acid probe tiles that allowed for 

the label free detection of RNA hybridization. Short staple strands were designed to 

fold a long scaffold strand into a rectangular nucleic acid tile, from which single 

strands of DNA, each 20 nucleotides in length, protruded from. These protruding 

single strands were complementary to their RNA targets, Rag-1, c-myc and β-actin, 

and they worked together in pairs to bind 40 bases of their RNA target. The binding 

of the RNA target to the pair of half probes caused the strands to form a stiff V-

shaped structure. After binding the tiles were then adsorbed onto mica and the 

new stiff V-shaped structure, signalling RNA hybridisation, was easily detected using 

atomic force microscopy (AFM). While this probe tile is not yet at the standard 

where it can compete with the more established techniques for low level gene 

detection, such as DNA microarrays that contain thousands of probes, it’s smaller 

size, and its potential to be made smaller, offers it the possibility of one day being 

used to detect low level gene expression in one single cell. 

Another very exciting study using 2D DNA origami was reported by Endo et 

al. (2010). They used the DNA origami method to scaffold a study of enzyme 

activity. Their 2D DNA structure was designed to contain a centre vacant area. 

Through this vacant area they placed double stranded DNA molecules that each had 

a damaged nucleobase that was in need of repair. Onto this structure they then 
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planted DNA base excision repair enzymes and through AFM they were able to 

analyse and capture the motion of the enzymes as they processed the DNA. This 

study demonstrated the ability of a DNA-based structure to act as a support when 

studying complex interactions.  

Apart from 2D structures, there have also been a number of studies 

describing their production and use of 3D origami nanostructures. Ke et al. (2009) 

reported construction of a closed tetrahedron container. In one step, 248 designed 

staple strands folded along the M13 scaffold DNA creating a tetrahedron with 

internal volume of 1.5x10-23m3. One of the most exciting structures arising from 3D 

DNA origami was the design and creation of a DNA box that remarkably had a 

controllable lid, opening in the presence of externally supplied “keys” (Andersen et 

al. 2009). Its assembly took place over two reactions, the first involved the folding 

of the M13 phage into six DNA origami sheets, and the second involved linking the 

edges of each sheet together to form the cuboid box shape. The DNA box had an 

external size of 42x36x36nm3. Strand displacement was the technique used to bring 

about opening of the lid. The “lock” on the DNA box was made up of DNA duplexes 

with “sticky ends”. The “key” was a new strand, the displacement strand, that was 

designed to be complementary to the “sticky-ends” of the “lock”. Hybridization 

between the displacement strand and the “sticky-ends” of the DNA duplex, brought 

about branch migration which displaced the pre-hybridized strands, forming the 

“lock” (Andersen et al. 2009; Zadegan & Norton 2012). The addition of two 

fluorophores, one to the edge of the lid and the other to the edge of the face 

perpendicular to the lid, meant that the opening of the lid could be monitored 

through FRET (fluorescence resonance energy transfer) analysis; when the lid is 

closed, FRET occurs because the dyes are close to each other, but opening of the lid 

brings distance between the dyes, and FRET decreases (Andersen et al. 2009). The 

next important step with such a structure is to determine its ability to store cargo. 

3D DNA structures that possess the ability to carry molecular cargo have enormous 

potential in future applications, especially as a delivery vehicle for the transport and 

release of cargo such as therapeutic agents.  
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1.2.1.3 RNA Nanostructures 

To extend the utilisation of nucleic acids as building blocks in the 

construction of nanostructures RNA molecules are now being considered as a 

building material.  RNA has many distinctive and special characteristics that also 

make it suitable for this purpose. Just like DNA, RNA molecules can also self-

assemble through Watson-Crick complementary base pairing. However, RNA 

molecules also have alternative base pairing rules, non-Watson-Crick base pairing 

such as Wobble base pairing (Li et al. 2016), which allow RNA molecules to fold into 

structurally distinct motifs, such as loops, pseudoknots, bulges hairpins and stems 

(Li et al., 2016). The variety of structures that natural RNA molecules can form 

reveals a very impressive folding capability for nanoconstruction exploitation. Using 

hairpin loops and kissing loop RNA structures Chworos et al. (2004) constructed 

RNA “jigsaw pieces” or tectosquares which, through sticky tail connectors, could 

self-assemble into pre-designed patterns.  

Not just limited to DNA, studies have also proven that RNA molecules are 

also amenable to the origami technique of nanoconstruction. In one such study a 

long single strand of RNA molecules, produced from an in vitro transcription 

reaction, was folded into a pre-designed shapes, such as rectangles and triangles, 

using DNA staple strands (Wang et al. 2013).  This study noted however, that the 

RNA scaffold strand was less stable than a DNA scaffold strand. In fact, RNA 

instability is a factor that has interfered with the progression of RNA as a 

nanostructure building material (Guo 2010).  

 

 

1.2.2 Carbohydrate Nanotechnology 

A broad range of heterogeneity exists between different polysaccharides. 

This heterogeneity is brought about by the presence or absence of certain 

functional groups; amino, carboxyl, or hydroxyl groups, and the position of these 

groups, their chirality, and their ability to form linear or branched structures 

(Ghazarian et al. 2011). This diversity offers potential for the arrangement of unique 

nanostructures, and their functional groups are readily amenable to chemical 

modification (Swierczewska et al. 2016; Han et al. 2015).   
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The attachment of hydrophobic molecules, such as fatty acids, to the 

polysaccharide backbone has brought about self-assembly of carbohydrate 

nanoparticles, consisting of a hydrophobic cavity and a carbohydrate outer 

framework. These nanoparticles are capable of carrying the drug ibuprofen and so 

display remarkable potential for drug delivery and release therapies (Jiang et al. 

2006). While the structural complexity of polysaccharides is regarded as their 

biggest potential for use in the nanotechnology industry, it may also be regarded as 

one their biggest deterrents. Their complexity complicates their preparation 

process and reduces the yields obtained (Han et al. 2015). Research carried out to 

identify and address these challenges will inspire more studies to consider 

polysaccharide molecules as tools for nanoconstruction (Han et al., 2015). 

 

 

1.2.3 Lipid Nanotechnology 

Lipid nanotechnology has not yet been acknowledged as a scientific 

discipline and this is surprising because lipids do exhibit some attractive properties 

that make them appealing as a building material and there are many studies 

describing their use as such (Mashaghi et al. 2013). Phospholipids are amphiphilic 

being are made up of a hydrophilic polar head group and two hydrophobic 

hydrocarbon tails (Nelson & Cox 2005c).  In an aqueous environment, hydrophobic 

interactions force these phosolipids to spontaneously self-assemble into lipid 

bilayer. An exposed edge in a lipid bilayer is forbidden, phospholipids will always re-

arrange themselves to close the edge, forming closed structures with internal 

cavities called liposomes (Nelson & Cox 2005d). These liposomes can be 

manipulated to enclose molecular reagents upon assembly (Mashaghi et al. 2013) 

and have proven popular as a form of nano-gene or drug carrier in the medicine 

and healthcare industry. Liposomes functionalised with monoclonal antibodies 

directed against the ErbB2 tyrosine kinase receptor, a receptor which plays a large 

role in the pathogenesis of many types of cancer, have served very well as nano-

carriers of the drug Doxorubicin. In animal models, these liposomes were 

specifically targeted to and internalised in to ErbB2 overexpressing cells, showing 

successful targeted delivery, and no drug leakage (Park et al. 2002). The utility and 
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benefit in using natural biomolecules as building blocks for nanostructures became 

apparent when, in 2007, the FDA approved the human use of Doxil, a liposomal 

formulation drug for the treatment of myelomas (Ning et al. 2007).  

 

 

1.2.4 Peptide Nanotechnology 

Peptides are simple structures which can be easily synthesised. They are 

capable of self-assembly and their amino acid side chains can be readily 

functionalised with both chemical and physical properties. For these reasons, 

peptides are attractive building blocks for nanoconstruction (Colombo et al. 2007; 

Gilead & Gazit 2005).  

 

1.2.4.1 Dipeptides 

 In nature, polypeptide self-assembly is normally associated with disease. 

Amyloid fibres are an organised collection of self-associating polypeptides, of 

average diameter 4-11nm (Rambaran & Serpell 2008). The presence of amyloid 

fibres is the prevailing characteristic of several diseases, such as Alzheimer’s 

Disease, in which these aggregations were found mostly to be made up a 4kDa β-

amyloid peptide of 40-43 amino acids in length, a fragment of the transmembrane 

amyloid precursor protein (APP) (Tatarnikova et al. 2015; Rambaran & Serpell 

2008). In studies to identify the molecular mechanism by which this aggregation 

was occurring, it was found that a core diphenylalanine recognition motif within 

this β-amyloid peptide was the minimum requirement to induce polypeptide 

aggregation. Remarkably, this dipeptide contained all the information required to 

self-assemble (Reches & Gazit 2006). The natural self-assemblies observed with this 

dipeptide were well-ordered distinct nanotubes of constant lengths that were 

brought about by stacking interactions between the phenylalanine residues (Reches 

2003; Reches & Gazit 2006).  These nanotubes were found to be highly stable and 

soluble in organic solvents (Reches 2003; Reches & Gazit 2006) and have been used 

as moulds for casting metal nanowires (Reches 2003). Ionic silver solution was 

added to the cavity of the nanotube, and was then reduced using citric acid. The 

diphenylalanine peptide mould was then removed via proteolytic degradation using 
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proteinase K. Individual silver nanowires were obtained, each ~20nm in length. 

These nanotubes may have further use as potential nanotube based biosensors or 

as tubing in nanofluidic circuits (Reches 2003). With the introduction of a thiol 

group (cysteine residue), these peptides were found to self-assemble into spheres 

10-100nm in diameter (Reches & Gazit 2004), suggesting that these building blocks 

have great versatility. 

 

1.2.4.2 Ionic Self-Complementary Peptides 

 In general, these peptides are made up of 16 amino acid residues arranged 

in an alternating polar and non-polar pattern which self-assemble to form β-sheets 

in which one side is hydrophilic and the other is hydrophobic (owing to the 

alternating polar and non-polar amino acid pattern). These peptides are carefully 

designed so that the hydrophilic side of the β-sheet is made up of regular repeats of 

alternating positively and negatively charged amino acids. In water, these β-sheets 

self-assemble to shield the hydrophobic residues, while the positively and 

negatively charged residues form complementary ionic bonds.  Further self-

assembly of the β-sheets leads to the formation of discrete nanofiber structures 

which further self-assemble into nanoscaffolds. Similar to the porosity of the ECM, 

these nanoscaffolds also contain pores of sizes 5-200nm and so offer potential for 

use as 3D cell culture systems (Zhang 2003). Indeed, the attachment of biologically 

active motifs, such as the RGD cell adhesion motif, which is found in many ECM 

proteins, to such nanoscaffolds has been shown to allow for cell attachment to 

these scaffolds. Such functionalised nanoscaffolds have already been used in 

studies involving cell growth, differentiation and tissue formation (Kisiday et al. 

2002; Holmes et al. 2000; Zhang et al. 1995). One ionic self-complementary peptide 

consisting of arginine, alanine and aspartate amino acid residues is now a 

commercially available under the name of PuraMatrix. It is actively used in research 

to culture and differentiate many different types of cells (Zhao & Zhang 2007).  

 

1.2.4.3 Surfactant-like Peptides 

Another type of amphiphilic peptide being utilised as a nanoconstruction 

unit are surfactant-like peptides. The design of these peptides was inspired by 
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phospholipids; they all consist of a hydrophilic head group, made up of one to two 

positively or negatively charged amino acids, and a hydrophobic tail, made up of 

many successive hydrophobic amino acids (Zhao 2009). In water, electrostatic 

repulsion within the head group induces the self-assembly of nanotubes of 

diameter 30-50nm, with a peptide bilayer thickness of 4-5nm (Zhao 2009). Such 

amphiphilic peptides can also self-assemble into micelles or nanospheres (Zhao 

2009). Surfactant-like peptides have found a role in solubilising and stabilising 

membrane proteins. By interacting with the hydrophobic domain of these 

membrane proteins, they act to surround the protein, preventing its interaction 

with water (Zhao & Zhang 2007). They therefore offer great potential in the 

determination of structures of many more transmembrane proteins. 

 Bola-amphiphilic peptides have two hydrophilic head groups which are 

linked together with a hydrophobic alkyl spacer. In water, amphiphilic peptides 

were observed to self-assemble into nanofibers and nanospheres that have both a 

hydrophilic core and surface. Diameters of these structures were measured to be 

very narrow at 10nm. Their small size and unique characteristics offers massive 

potential for their use as nano-carriers of hydrophilic substances such as nucleic 

acids or drugs (Zhao 2009).  

 

1.2.4.4 Cyclic peptides 

Cyclic peptides are comprised of even numbers of alternating D- and L-

amino acids. Interactions between these amino acids leads to the self-assembly of 

nanotubes, the diameter of which can be manipulated through altering the length 

of the peptide (Reches & Gazit 2006). The amino acid side chains determine the 

surface of the nanotubes and this can be manipulated through altering the amino 

acid composition of the peptide. The ability to adjust and modify the outer surface 

of the nanotubes permits their formation in a wide variety of environments. Cyclic 

peptide based nanotubes have already been shown to form in bacterial cell 

membranes where they function to increase cell permeability, ultimately causing 

cell death. This offers a hopeful alternative to antibiotics, aiding in the treatment of 

infectious diseases (Fernandez-Lopez et al. 2001). 
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1.2.4.5 Coiled Coils 

 Coiled coils are a common type of interaction motif made up of two or more 

α-helices wrapped around each other (Mason & Arndt 2004).  These motifs are 

interesting because their formation appears to rely a few certain rules and 

commonalities. Each helix contributing to the coil is amphipathic, made up of a 

contiguous pattern of seven hydrophobic (H) and polar (P) amino acid residues that 

generally follows the sequence (HPPHPPP)n (where n is the number of times the 

pattern is repeated within the helix). This repeating pattern is known as the heptad 

repeat and, conventionally, the residues within the repeat are labelled abcdefg, 

where hydrophobic amino acids reside at a and d sites (Woolfson et al. 2012).  In 

general, α-helices turn every 3.6 amino acid residues. This periodicity brings the a 

and d residues close together and creates an a/d hydrophobic face which twists it 

way around the α-helix. Owing to the hydrophobic effect (i.e. to ensure complete 

burial of hydrophobic amino acids), two or more α-helices associate via these 

hydrophobic faces and, in doing so, wrap around each other forming a left-handed 

supercoil, a coiled coil (Woolfson et al. 2012). The hydrophobic effect is non-specific 

and, as a result, coiled coils can adopt a variety of different oligomerisation states, 

dimeric, trimeric, tetrameric etc. (Woolfson et al. 2012). The e and g residues are 

generally charged and interhelical interactions between these residues act to 

stabilise coiled coil formation (Woolfson 2005). The b, c and f residues are exposed 

to the solvent, contribute to the intrahelical interactions, are hydrophilic and helix 

forming (Mason & Arndt 2004).  In summary, each individual amino acid within the 

heptad performs to maintain the α-helical structure (intrahelical interactions) or to 

promote particular oligomeric states and orientations (interhelical interactions) 

(Fig. 1.14).  
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Figure 1.14: Helical Wheel Representations of Coiled-coil Structures. The relative positions and type 
of residues at each site of the heptad sequence dictates the type of oligomeric coiled-coil that will 
form (Mason & Arndt 2004; Woolfson et al, 2012), (A) dimeric, (B) trimeric (C) tetrameric. 
Blue arrows represent interactions between residues.  

 

Pioneering work by Harbury et al. (1993) involving the coiled coil GCN4 yeast 

transcription factor found that is possible to program the overall structure of the 

coiled coil motif. The 33 amino acid crystal structure of the naturally occurring 

GCN4 reveals a dimeric parallel coiled coil that is made up of four full heptad 

repeats in which position a is normally occupied by a valine and position d is 

normally occupied by a leucine (O’Shea et al. 1991). Harbury et al manipulated the 

hydrophobic core of the GCN4 dimer and simultaneously mutated the four a 

residues (normally valine) and the four d residues (normally leucine) to leucine, 

valine or isoleucine. They found that different combinations of each of the amino 

acids in these two sites induced the formation of different oligomeric coiled coil 

structures; a leucine at the a site and an isoleucine at the d site induced the 

formation of a tetramer, an isoleucine at both sites induced the formation of a 

trimer, while an isoleucine at the a site and a leucine at the d site generated a 

dimeric structure (Harbury et al. 1993). This study was exciting as it represented 

one of the first steps in rational protein design; there was a very clear relationship 
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between the amino acid sequence, the coiled coil folding, and the eventual end 

structure. Since this time, many groups have built upon these broad principles to 

use coiled coils in protein engineering and synthetic biology projects. Linking a pair 

of complementary coiled coils together via a flexible linker of various lengths, each 

made up of different amounts of glycine and asparagine residues, Boyle et al. 

(2012) reported the formation of a diverse range of nanostructures. Identifying 

steric constraints imposed by residues in the linker, Boyle et al.  found that short 

linkers induced the formation of rigid nanofibres, while longer linkers induced the 

formation of large insoluble aggregates. The optimum linker length was four 

residues long, and it induced the formation of closed structures.  Drawing 

inspiration from the DNA origami technique (section 1.2.1.2), Gradišar et al. (2013), 

documented their formation of a tetrahedron structure whose formation was 

brought about by the self-assembly of a polypeptide chain composed of 12 coiled 

coil segments. Self-assembly of this structure was brought about by designed 

interactions between the coiled coil segments, which allowed for the correct pairing 

and orientation of each segment. Therefore, the final shape of the structure, i.e. 

tetrahedron, was defined by the order and individual design of each coiled coil 

segment. This study represents one of the first in de novo protein fold design. 

 

 

1.2.5 Proteins  

Possessing large conformational variability and a range of functionality, 

proteins are a particularly attractive building block for nanoconstruction. They 

naturally self-assemble into intricate 3D structures and are most commonly used by 

nature to form large and complicated protein machines consisting of remarkably 

co-ordinated moving parts. All the information that is required to fold a protein 

along a particular folding pathway into its natural and functional shape is encoded 

in its primary amino acid sequence, a sequence which contains varying ratios of 20 

amino acids. This large repertoire of amino acids makes possible the unique 

structural architecture exhibited by natural protein complexes. This indicates that a 

large amount of information can be encoded in this primary sequence. The 

considerable variety of chemical moieties displayed on each of these amino acids in 
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the primary sequence facilitates the addition of functionality to the structure. This 

versatility can be used to create new protein assemblies with capabilities unseen in 

nature (Whitesides et al. 1991; Gradišar & Jerala 2014; Alberts 1998). Proteins, 

being larger than peptides, make it possible to disconnect the self-assembly process 

of the nanostructure from the eventual function of the nanostructure. Thus, in 

theory, the architecture of the nanostructure should not be compromised with the 

addition of functionality (Bruning et al. 2010).  

Thus far, protein-based nanoconstruction has been dominated by the 

exploitation of ferritin proteins and viral capsid proteins. This is because, in nature, 

these proteins are known to instinctively self-assemble into cage-like structures 

with interior cavities and so, offer the potential for use as drug-delivery carrier 

systems. (MaHam et al. 2009; He & Marles-Wright 2015). However, various 

approaches have been established to manipulate the self-assembly and molecular 

recognition properties of different types of proteins to bring about the formation of 

higher order nanostructures. 

 

1.2.5.1 Fusion-based Assembly 

The fusion strategy involves genetically fusing two protein oligomerisation 

domains into a single protein chain (King & Lai 2013), (Fig 1.15) 

 

 

 

Figure 1.15: Protein Fusion Strategy:  A short peptide linker (yellow) is used to fuse two oligomeric 
domains from two different proteins (green and purple) into one protein chain. Self-assembly 
between the oligomerisation domains drives the formation of complex structures. 
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 This strategy was first introduced by Padilla et al. (2001) in which they 

created a fusion protein containing one domain of the trimeric bromoperoxidase 

protein linked to one domain of the dimeric M1 matrix protein of the influenza 

virus, by way of a rigid alpha-helical linker. 12 copies of this fusion protein self-

assembled to generate a cage structure. Careful design of the linker region between 

the two protein domains allowed for precise control of the orientation of these 

domains, leading to the production of homogenous protein assemblies (Lai et al. 

2013).   

A deviation on this method fuses together protein oligomerisation domains 

with rotational symmetry, which was pioneered by Sinclair et al (2011). The use of 

higher order symmetry increases the area of the interaction interface of each fusion 

protein and, in doing so, allows for the formation of two or more connections 

between fusion proteins, providing that the two domains within the fusion protein 

are connected along the same order of symmetry (Sinclair et al. 2011). Self-

assembly of such fusion proteins brings about the formation of unbounded protein 

lattices. In their study, Sinclair et al designed two protein fusions, one fusion 

protein comprised one domain of the D4 symmetric aminolevulinic acid 

dehydrogenase (ALAD) fused to either one of two “Velcro-like” peptides, the Lac21E 

synthetic peptide or the Lac21K synthetic peptide {these form heterotetramers 

through ion pair interactions (Fairman et al. 1996)}. Upon mixing, these two fusion 

proteins self-assembled together to form a protein lattice.   

 

1.2.5.2 Ligand-mediated Assembly 

Ligand-mediated assembly is another approach used to bring about the 

formation of protein structures. This approach exploits the high affinity of small 

molecules for their specific binding sites in proteins This approach is attractive 

because it can sometimes provide a means to regulate both assembly and dis-

assembly of the building blocks (King & Lai 2013). Ligand-mediated assembly was 

also utilised by Sinclair et al in their generation of protein lattices (this group also 

used fusion-based assembly, section 1.2.5.1). They created two fusion proteins 

each consisting of two protein oligomerisation domains with rotational symmetry. 

The first fusion protein comprised one domain of the D2 symmetric tetrameric 
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protein DsRED fused to the D2 symmetric streptag I, and the second fusion protein 

comprised one domain of the ALAD octameric protein fused to the D2 symmetric 

streptag I. With the addition of streptavidin, both of these fusion proteins self-

assembled into 2D protein lattices. The successful attachment of a calmodulin 

domain to the N -terminus of each subunit of ALAD without any disruption to the 

self-assembly of the protein lattice is an indication that these structures have the 

capacity to be functionalised, which indicates a broad range of possible future 

applications.  

Another study prepared a fusion protein consisting of one subunit from the 

gyrase protein and one subunit from the trimeric bacterial CutA1 protein. Self-

assembly into a hexagonal lattice occurred with the addition of the antibiotic 

coumermycin, and disassembly of the lattice was promoted with the addition of 

novobiocin. Coumermycin can simultaneously bind two gyrase subunits, leading to 

the formation of a gyrase dimer, while novobiocin competes with and displaces 

coumermycin and in doing so dissociates the gyrase dimer (Doles et al. 2012)  

(Fig. 1.16). 

 

 

Figure 1.16: Ligand-Mediated Assembly/Disassembly Strategy. Fusion proteins consisting of protein 
gyrase (crescent shape) and one domain of naturally trimeric CutA1 protein. Coumermycin 
simultaneously binds two gyrase binding sites, inducing gyrase dimerisation and formation of 
protein lattice. Novobiocin displaces coumermycin, promoting disassembly of lattice. 

 

A different study reported the formation of nanoring structures through the 

self-assembly of fusion proteins made up of two dihydrofolate reductase (DHFR) 

molecules fused together with a flexible linker (DHFR2). Assembly only occurred in 

the presence of a methotrexate (MTX) molecule that was previously manipulated 
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be divalent, consisting of two MTX molecules connected with a dodecanediamine 

linker (bisMTX), and therefore able to bind two DHFR molecules.  The nanoring size 

could be manipulated through altering the composition and length of the flexible 

linker separating the two DHFR molecules (Carlson et al. 2006). Further studies on 

these nanorings found them capable of being functionalised with single chain 

antibodies via the DHFR2 (Li et al. 2010) and fluorophores via the bisMTX (Fegan et 

al. 2012). With their ability to be endocytosed into T-cells, they show great 

potential for future therapeutic applications (Fegan et al. 2012; Li et al. 2010). 

 

1.2.5.3 Metal-directed Assembly 

Metal-directed protein assembly exploits the natural affinity of metal ions to 

certain amino acid residues to direct the folding and assembly of protein complexes 

(Salgado et al. 2010). This approach was used by (Bai et al. 2013) to make protein 

nanorings. They modified the glutathione S transferase (GST) homodimer so that it 

displayed two His tag motifs. Self-assembly was brought about by the addition of 

Ni+2 metal ion and its binding to two His tags, each from a separate GST protein. 

The location of the His tags on the GST homodimer dictated the shape of the final 

structure formed.   

 

 

1.2.6 Conclusion 

Overall, these studies demonstrate the effectiveness of the self-assembly 

approach in the engineering of biological based nanoconstructions. The success 

demonstrated by these studies indicate that such research is worthwhile and 

beneficial. The structure and function of actinin and spectrin proteins offer 

potential in such studies.   
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Chapter 2: 

Congenital Macrothrombocytopenia-linked 
Mutations in the Actin-Binding Domain of α-
Actinin-1 Enhance F-actin Association 
 

2.1 Abstract 

Mutations in the actin crosslinking protein actinin-1 were recently linked to 

dominantly inherited congenital macrothrombocytopenia, a rare platelet disorder.  

Here I report that several disease-associated mutations that are located within the 

actinin-1 actin-binding domain cause increased binding of actinin-1 to actin 

filaments and enhance filament bundling in vitro. These actinin-1 mutants are also 

more stably associated with the cytoskeleton in cultured cells, as assessed by 

biochemical fractionation and fluorescence recovery after photobleaching 

experiments. This study might contribute to a more comprehensive understanding 

of the function of the cytoskeleton in platelet production. 
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2.2 Introduction 

 

2.2.1 Platelets 

Platelets are small anucleate blood cells that circulate in the bloodstream 

and function in haemostasis. They are discoid in shape, a shape which is preserved 

by a unique and highly specialised cytoskeletal system, comprising of tubulin- 

spectrin-, and actin-based cytoskeleton proteins (Semple et al. 2011). They have the 

ability to store numerous biologically active substances in their secretory 

organelles, of which they have three; α-granules, dense granules and lysosomes 

(Semple et al. 2011). They specialise in preventing bleeding by clumping together 

and clotting injuries to blood vessels to create a thrombus, or blood clot (Semple et 

al. 2011; Machlus et al. 2014). 

 

 

2.2.2. Platelet Production 

A human adult contains about one trillion circulating platelets in their 

bloodstream. The lifespan of each of these platelets is around eight to ten days, 

therefore, in order to keep these normal platelet levels, about 100 billion platelets 

must be produced daily (Semple et al. 2011).  

Platelets develop from the cytoplasm of megakaryocytes, which reside in 

bone marrow (Thon & Italiano 2012). Platelet production begins when the maturing 

megakaryocyte undergoes a process called endomitosis by which the 

megakaryocyte becomes polyploid. In its polylobulated nucleus the megakaryocyte 

can acquire DNA content of 4n, 8n,16n, 32n, 64n and 128n.  The maturing 

megakaryocyte also begins to develop an extensive membrane system called the 

invaginated membrane system (IMS). This consists of a series of cisternae and 

tubules. It is continuous with the plasma membrane of the megakaryocyte, and is 

also dispersed through-out its cytoplasm. The purpose of this system is to function 

as a membrane protein reserve for platelet formation. It has been suggested that 

megakaryocytes are polyploid so that they can produce the considerable amount of 

proteins required to produce this IMS, and also to yield the large amount of 
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proteins required by the developing platelet, such as platelet specific granule 

proteins and cytoskeletal proteins (Machlus et al. 2014).  

 The membrane of the megakaryocyte then evaginates to create blunt, thick 

protrusions called pseudopodia (Thon & Italiano 2012). This morphological change 

is brought about a re-organisation of the microtubule cytoskeleton. In immature 

megakaryocytes, the microtubules diverge from the nucleus to the cortex. With the 

development of the pseudopodia, cortical microtubules gather themselves into 

thick bundles positioned beneath the now protruding plasma membrane (Thon & 

Italiano 2012). These bundles are initially composed of hundreds of microtubules 

(Hartwig & Italiano 2006), however the blunt pseudopodia soon elongate into long 

tube-like extensions called proplatelet shafts, and as this occurs, the bundles get 

smaller and contain fewer numbers of microtubules (Thon et al. 2010; Hartwig & 

Italiano 2006). This elongation is powered by the growth of microtubules from their 

free plus ends (Hartwig & Italiano 2006), and through the sliding mechanism of the 

dynein motor protein that positions itself with these microtubules (Machlus et al. 

2014).  At the tip of the proplatelet shaft, the growing microtubule loops beneath 

the plasma membrane and re-enters the shaft. This creates a tear-shaped swelling 

called the proplatelet, and it is from this structure that platelets are formed 

(Machlus et al. 2014). 

In order to increase the number platelets produced per megakaryocyte, 

branching of the proplatelet shaft occurs, with each branch terminating with its 

own tear-shaped proplatelet (Thon & Italiano 2012; Hartwig & Italiano 2006). 

Through this mechanism, one megakaryocyte can produce hundreds of platelets 

(Italiano et al. 1999).  

The proplatelet shaft plays the part of an assembly line in which the 

microtubules behave as the molecular tracks on which material required by the 

developing platelet, such as cellular organelles, e.g. mitochondria, granules, and 

their granular content, are carried (Hartwig & Italiano 2006; Thon et al. 2010).  The 

proplatelet shafts extend into the sinusoidal vessels of the bone marrow (Thon & 

Italiano 2012), ensuring the release of the platelets into the vasculature. A recent 

study has provided evidence for the existence of podosomes on the outer surface 

of the megakaryocyte plasma membrane. They have shown that these podosomes 
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play an important role for the projection of the proplatelets across the basement 

membrane into the vascular space, via their ability to degrade the ECM with their 

matrix metalloproteinase activity (Schachtner et al. 2013). 

It has been proposed that shear stress induced by the blood flow in the 

vascular space acts to detach the proplatelet from the proplatelet shaft (Machlus & 

Italiano 2013). The fragment released has been termed the preplatelet. Once the 

whole megakaryocyte cell body has been reformed into proplatelets the nucleus is 

expelled and degraded (Machlus & Italiano 2013; Machlus et al. 2014).  From this 

point, platelet formation continues in the bloodstream. These preplatelets have the 

ability to reversibly convert back into proplatelets and, through a series of fission 

events, promoted by vascular shear forces and abscission, platelets are finally 

created (Machlus & Italiano 2013; Machlus et al. 2014).  

Platelet formation is one of the most complex haematopoietic cellular 

differentiation pathways (Schwertz et al. 2010), in which the cytoskeleton plays a 

fundamental and primary role (Machlus & Italiano 2013). 

 

 

2.2.3 Platelet Activation  

Once a tear appears in a blood vessel, collagen, which is normally located 

below the endothelium (Furie & Furie 2008), and tissue factor, normally present in 

the vessel wall (Brass 2003), both come into contact with the flowing blood. The 

exposed collagen initiates the accumulation of platelets at the site of injury (Furie & 

Furie 2008), while the exposed tissue factor triggers a coagulation cascade that 

ultimately ends with the generation of thrombin (Monroe et al. 2002).  Platelet 

adhesion to collagen is facilitated through three interactions; direct binding of 

collagen to the platelet glycoprotein VI or the platelet integrin protein α2β1, and 

indirect collagen binding through von Willebrand factor (vWF) bound glycoprotein 

Ib-V-IX complex, where vWF acts as a bridge between collagen and platelets (Furie 

& Furie 2008; Dubois et al. 2006). Both glycoprotein VI and thrombin play essential 

roles in activating platelets (Furie & Furie 2008; Brass 2003); the interaction of 

glycoprotein VI with collagen, and the cleavage of the PAR receptors on the platelet 
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surface by thrombin, both trigger a signal transduction cascade which ultimately 

leads to the “activation” of the platelet (Brass 2003; Furie & Furie 2008). 

Platelet activation involves the release of chemical mediators from their 

three secretory organelles. These mediators act to increase the signals for the 

activation of more platelets - an increase in the number of activated platelets will 

ultimately lead to a thrombus formation; a plug that will seal the site of injury (Furie 

& Furie 2008). The α-granules are the largest of the three secretory granules. They 

contain large molecules (Rendu & Brohard-Bohn 2001) such as: the blood clotting 

factors V, VII, XI and XIII, cellular mitogens, such as platelet derived growth factor, 

which promotes wound healing (Semple et al. 2011), and adhesive glycoproteins, 

such as fibronectin and vWF, which function to adhere platelets to the site of injury 

(Beumer et al. 1995). Dense granules contain much smaller, mostly non-protein 

molecules (King & Reed 2002), such as adenosine diphosphate (ADP), which 

functions to activate nearby platelets through interaction with the two ADP platelet 

surface receptors, P2Y1 AND P2Y12 (Furie & Furie 2008) and serotonin, which 

promotes coagulation (Semple et al. 2011).  Lysosomes contain digestive enzymes, 

such as proteases and glycohydrolases. It is thought that these enzymes function to 

remove the thrombus to restore the extracellular matrix (Rendu & Brohard-Bohn 

2001).   

Along with the release of these biological mediators, platelet activation also 

involves a morphological change, in which platelets transition from a discoid shape 

to a spherical shape with the extrusion of finger-like filapodia and pseudopods 

(Semple et al. 2011; Kamath et al. 2001). It has been speculated that this shape 

change induces a very stable attachment of the platelets to the endothelium 

(Kuwahara et al. 2002) while also providing an increased cell surface area for the 

platelet to display the higher number of receptors and molecules that are 

expressed upon its activation, such as ephrin-Eph and P-selectin molecules, both of 

which enhance platelet-platelet affinity and recruit more platelets to the injury site 

(Furie & Furie 2008; Kamath et al. 2001). This shape change is brought about by an 

actin cytoskeleton re-organisation brought about by the action of many different 

actin-binding proteins (Bearer et al. 2002). One very important receptor that is 

stimulated upon platelet activation is the integrin, αIIbβIIIa. During activation, it 
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undergoes a conformational change in which it transitions from a bent 

conformation to a more straightened one (Nurden & Nurden 2011). This 

conformational change increases its affinity for its two ligands; fibrinogen and vWF, 

both of which act as crosslinking proteins, crosslinking platelets together by co-

binding the αIIbβIIIa on each platelet (Fig. 2.1C) (Furie & Furie 2008; Kamath et al. 

2001). αIIbβIIIa is thus considered to be the main receptor in bringing about platelet 

aggregation (Jennings 2009). 

 Actinin-1 has a potential role in platelet activation and aggregation. In a 

resting platelet, tyrosine residue 12 of actinin-1 is phosphorylated and actinin-1 is 

associated with the βIII cytoplasmic tail of this αIIbβIIIa integrin complex (Fig. 2.1A). 

This interaction maintains the αIIbβIIIa integrin complex in its inactive conformation. 

On platelet activation, the cleavage products of thrombin mediated PAR receptor 

cleavage promote dephosphorylation of tyrosine residue 12 of actinin-1. This 

dephosphorylation disrupts the interaction between actinin-1 and the αIIbβIIIa 

complex and dissociation of actinin-1 promotes the αIIbβIIIa complex to adopt its 

active conformation (Fig. 2.1B) (Tadokoro et al. 2011). Actinin may be a regulator of 

platelet activation. Platelet activation results in a tyrosine phosphorylation cascade. 

The phosphorylation of actinin-1 may promote its re-association to the αIIbβIIIa 

complex, thus reversing activation (Tadokoro et al. 2011).  
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Figure 2.1:  Actinin-1 in Platelet Activation. One very important platelet adhesion receptor that is 
stimulated upon platelet activation is the integrin αIIbβIIIa complex (Nurden & Nurden 2011). 
Actinin-1 has a potential role in the stimulation of this receptor. (A) Phosphorylated actinin-1 
associates with the cytoplasmic tail of the βIIIa portion of this complex. In doing so, it retains the 
complex in its inactive bent conformation. (B) Signalling cascades during platelet activation promote 
dephosphorylation of actinin-1. Dephosphorylated actinin dissociates from βIIIa and this promotes 
the integrin complex to adopt a straight active conformation (Tadokora et al. 2011). (C) This 
conformational change facilitates its binding to its ligand vWF. vWF acts to crosslink platelets by co-
binding the αIIbβIIIa complex on two separate platelets. This brings about platelet aggregation and 
the eventual formation of a platelet plug (Furie & Furie 2008; Kamath et al. 2001; Jennings 2009). 
 

Once platelet aggregation has occurred, creating a platelet plug, the next 

step is stabilisation of this plug, preventing platelet retraction and disaggregation 

(Brass 2003). Here, thrombin again plays a role, converting fibrinogen to fibrin 

(Furie & Furie 2008). This fibrin acts to stabilise the platelet plug. It does this 

through its interaction with platelet cell surface receptors glycoprotein Ib, another 

receptor which is stimulated during platelet activation (Heemskerk et al. 2002), and 

the αIIbβIIIa integrin receptor (Brass 2003). The end result is a fibrin-strengthened 

platelet plug, the presence of which prevents blood loss and ensures haemostasis. 

Along with their ability to facilitate haemostasis, platelets have also been 

shown to have many immuno-functions, which can be attributed to their ability to 

store biologically active substances in their aforementioned secretory organelles, 

substances that, unlike above, have non-haemostatic functions, and work to 

promote the clearance of invading pathogens or insults (Semple et al. 2011; Smyth 



Page | 81  
 

et al. 2009; Franco et al. 2015). Platelets also express receptors on their cell surface, 

that upon ligand binding, promote activation of either the innate or adaptive 

immune response (Semple et al. 2011; Franco et al. 2015). Surface membrane 

glycoproteins involved in platelet thrombus formation, such as αIIbβIIIa and Ib-X, 

have also been shown to have the ability to recognise and bind invading pathogens 

(Franco et al. 2015). Platelets have been proven to be a multipurpose cell.  

 

 

2.2.4 Platelet Blood Disorders 

Certainly haemostasis is a very important process and, as such, inherited 

platelet disorders are quite rare (Gregg 2003). However, genetic defects of platelet 

production and function have been identified and these defects have given rise to a 

series of thrombocytopathies, defined by the presence of large platelets in the 

peripheral bloodstream, thrombocytopenia, and a variable bleeding tendency 

(Kunishima & Saito 2006).  

The MYH9 gene, encoding for the non-muscle myosin II A heavy chain is the 

most commonly affected gene (Kelley et al. 2000; Balduini et al. 2011). Platelet 

disorders such as the May-Hegglin anomaly, the Epstein syndrome and the 

Sebastian syndrome are all caused by various different mutations of this gene and 

are all therefore collectively known as MYH9-related diseases (Balduini & Savoia 

2012). These disorders are all characterised by the presence of large platelets, as 

well as variable degrees of severity of nephritis, hearing loss and sight failure 

(Balduini & Savoia 2012; Kunishima & Saito 2006). A distinguishing feature of all 

MYH9-related diseases is the presence of inclusion-bodies in the granulocytes, in 

fact, MYH9-related diseases are discriminated from each other through 

ultrastructural differences in their inclusion bodies (Savoia et al. 2010).  

One of the very early thrombocytopenias to be studied was Bernard-Soulier 

syndrome (BSS). Like the previously mentioned platelet disorders, BSS is 

characterised with the presence of large platelets, and a severe tendency to bleed 

(Balduini & Savoia 2012). This disorder is caused by mutations in the genes GPIBA, 

GPIBB or GP9, which encode for the proteins GPIbα, GPIbβ and GPIX. These 

proteins make up the GP Ib-V-IX receptor complex (Balduini & Savoia 2012), which, 
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as mentioned above in section 2.2.3, functions to adhere the platelet to the site of 

injury through its ability to bind vWF (Furie & Furie 2008), but may also play a role 

in platelet formation (Balduini et al. 2008).  Mutations in these genes cause 

qualitative or quantitative defects in the GP Ib-V-IX complex (Kunishima & Saito 

2006), which result in defective platelet adhesion to the site of injury, giving 

patients their severe tendency to bleed (Kunishima & Saito 2006).  A disrupted IMS 

has been observed in the bone marrow megakaryocytes of patients suffering with 

BSS. This observation suggests that the large platelets observed in this syndrome 

are the result of altered megakaryopoiesis (Kunishima & Saito 2006). 

Mutations in the FLNA gene, encoding for the filamin A protein, are 

associated with a wide variety of rare diseases, of which thrombocytopenia and a 

bleeding tendency appear as symptoms (Berrou et al. 2013). 

Despite being considered rare (Gregg 2003), there is an exhaustive list of 

platelet disorder causative genes. Glanzmann Syndrome is brought about by 

mutations in genes encoding the αIIbβIIIa complex receptor proteins, ITGA2B or 

ITGB3 (Nurden et al. 2011) and Gray Platelet Syndrome results from mutations in 

the NBEAL2 gene, a gene encoding a for protein involved in granule trafficking in 

platelets. This syndrome is characterised with the absence of α-granules in platelets 

(Gunay-Aygun et al. 2011). 

Platelet disorders seem to be very difficult to categorise, only some exhibit 

altered platelet numbers and morphology, however all experience some type of 

platelet dysfunction and all have a variable bleeding tendency.  

 In recent times, four independent studies have identified 13 actinin-1 

mutations implicated in congenital macrothrombocytopenia (CMTP) (Yasutomi et 

al. 2016; Kunishima et al. 2013; Guéguen et al. 2013; Bottega et al. 2015). 

Kunishima et al. (2013) first identified six ACTN1 variants (p.Gln32Lys, p.Arg46Gln, 

p.Val105Ile, p. Glu225Lys, p. Arg738Trp and p.Arg752Gln) to be co-segregating with 

affected individuals in six Japanese families suffering from CMTP. Subsequently 

Guegeun et al. (2013) reported one of these same mutations, p.Arg46Gln, to be co-

segregating with CMTP in a French family. The appearance of this p.Arg46Gln 

mutation in two independent disconnected cohorts provides reliable evidence for 

the definite involvement of ACTN1 in CMTP. Bottega et al. (2015) linked nine ACTN1 
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variants to CMTP in families from Italy and the United Kingdom. Six of these were 

novel mutations (p.Asp22Asn, p.Arg46Trp, pGly251Arg, p.Thr737Asn, p.Gly764Ser 

and p.Glu769Lys) and three had previously been identified by Kunishima et al 

(p.Glu225Lys, p.Arg738Trp and p.Arg752Gln). Again, their re-occurrence 

strengthens the involvement of ACTN1 in CMTP. Yasutomi et al. (2016) have very 

recently described one more ACTN1 variant (p.Leu395Gln) in a CMTP family. 

Based on the symptoms displayed by the individuals in these families 

examined in these four studies, we can characterise ACTN1-related 

thrombocytopenia with moderate macrothrombocytopenia and a low bleeding 

tendency. No additional platelet defects were observed in each of the patients; 

platelet aggregation and clot formation were normal (Kunishima et al. 2013; 

Guéguen et al. 2013; Bottega et al. 2015; Yamamoto et al. 2012). Overall, ACTN1 -

related thrombocytopenia appears to be a very mild syndrome. 

In the aforementioned studies, mutant actinin-1 proteins promoted dis-

organisation of the actin and actinin cytoskeleton when expressed in cell lines 

(Bottega et al. 2015; Guéguen et al. 2013; Kunishima et al. 2013; Yasutomi et al. 

2016), and in primary mouse fetal liver-derived megakaryocytes (Kunishima et al. 

2013). These primary mouse-derived megakaryocytes also experienced disrupted 

platelet formation (Kunishima et al. 2013).  The molecular mechanisms underlying 

these effects have not yet been explored. 

 

2.2.4.1 A similar pathological mechanism may exist for Actinin-1 related CMTP 

and Actinin-4 related FSGS 

Both actinin-1 and actinin-4 are the non-muscle calcium sensitive isoforms 

in the actinin family (Foley & Young 2014). These non-muscle actinins are expressed 

in nearly all cells and, to a great extent, their expression is overlapping (Foley & 

Young 2014). They do exhibit different expression patterns in motile cells however 

(Honda et al. 1998), and actinin-4 appears to have a unique function in the kidney 

(Weins et al. 2005; Kaplan et al. 2000). In general however, they function to 

crosslink and anchor actin filaments to structures such as cell:cell and cell:matrix 

junctions (Otey & Carpen 2004). They share 86.7% sequence similarity (Honda et al. 
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1998) and have similar actin binding properties (Foley & Young 2013). Also, 

platelets express large amounts of actinin-1 and actinin-4 (Foley & Young 2013). 

Of the 13 aforementioned actinin-1 mutations, 12 have been mapped 

adjacent to or within the ABD and the CaM domain (Kunishima et al. 2013; Bottega 

et al. 2015; Guéguen et al. 2013). Only one of these mutations has been mapped to 

the central rod domain (Yasutomi et al. 2016), even though the rod encompasses 

half the actinin protein sequence (Fig. 2.2). 

 

 

Figure 2.2: CMTP-associated Actinin-1 Mutations. 13 actinin-1 mutations have been identified to 
cause CMTP. Seven have been mapped to the ABD, five have been mapped to the CaM domain, and 
one to the central rod region (Yasutomi et al. 2016; Kunishima et al. 2013; Guéguen et al. 2013; 
Bottega et al. 2015). The R46 site is a particular mutational hotspot, with two different mutations of 
the same residues reported (Kunishima et al. 2013; Guéguen et al. 2013; Bottega et al. 2015). 

 

 These observations have connotations to the five actinin-4 mutations 

(p.Trp59Arg, p.Ile149Del, p.Lys255Glu, p.Thr259Ile and p.Ser262Pro) that have been 

identified to cause the kidney disease FSGS (Weins et al. 2005; Kaplan et al. 2000) 

since all five of these mutations have been mapped to the ABD of actinin-4 (Weins 

et al. 2005; Kaplan et al. 2000).  In vitro actin filament co-sedimentation assays 

show that these mutant actinin-4 proteins have increased actin-binding ability 

compared to the WT actinin-4 protein (Kaplan et al. 2000; Weins et al. 2005; Weins 

et al. 2007). Remarkably the binding affinity of p.Lys255Glu actinin-4 for actin was 

found to be three times greater than the WT actinin-4 actin binding affinity, as 

assessed through fluorescence recovery after photobleaching (FRAP) (Ehrlicher et 

al. 2015). In relation to their actin binding ability, both actinin-1 and actinin-4 

proteins are regarded as the non-muscle calcium sensitive isoforms; at intracellular 

calcium concentrations of above 10-7M their actin binding ability is decreased 

(Condeelis & Vahey 1982). Interestingly, despite the fact that all ACTN4 FSGS-

causing mutations reside in the ABD, the addition of calcium to actin-binding assays 
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involving the p.Lys255Glu actinin-4 had no effect on its actin binding ability, 

suggesting that this mutant actinin-4 protein is no longer sensitive to calcium 

regulation (Weins et al. 2007).  Cryo-electron microscopy studies (Tang et al, 2001) 

have reported that dimerisation between actinin molecules oppositely aligns the N-

terminal CH domains in the ABD of one monomer to the C-terminal EF-hand motifs 

in the CaM domain of the other. The proximity between these two domains 

suggests that the CaM domain may influence the activity of the opposite ABD. Tang 

et al. (2001) speculate that the binding of calcium to the EF hand motifs in the CaM 

domain induces the EF3-4 pair to wrap itself around the linker region between the 

two CH domains in the opposite ABD. This interaction may cause a decrease in actin 

binding ability in either one of two ways; it would separate the two CH domains, or 

the presence of the CaM domain between the two CH domains would sterically 

prevent actin binding (discussed in section 1.1.3.1). Taking this study into account, 

it is easy to understand how a mutation in the ABD of a non-muscle actinin protein 

could affect its calcium sensitivity. 

Expression studies of p.Trp59Arg and p.Ile149Del actinin-4 in cultured 

podocytes reveal their abnormal localization and the formation of large aggregates 

(Weins et al. 2005). Mutant Actn4 knock-in mouse models, homozygous for the 

murine correlate of Lys255Glu, also display these large aggregates in their kidneys 

(Yao et al. 2004). Podocytes, derived from this mouse model, transfected with 

p.Lys255Glu actinin-4 also exhibit actin aggregates (Yao et al. 2004). 

Immunostaining of fibroblasts, also derived from this knock-in mouse model, reveal 

that endogenously expressed mutant Actn4 proteins do not incorporate themselves 

in focal adhesions, but instead form large actin aggregates (Weins et al. 2007). All of 

these investigations suggest that dysregulation in the actinin-actin cytoskeleton in 

podocytes is involved in the pathogenesis of FSGS. 

From these actinin-4 studies, I speculated that dysregulation of actinin-1 

association with the actin cytoskeleton might also contribute to the pathogenesis of 

CMTP in platelets, it again presenting itself through altered F-actin binding and 

disrupted intracellular localization. 

I have tested this hypothesis directly and find that several CMTP-linked 

mutations within the ABD increase the association of actinin-1 with actin filaments 
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both in vitro and in cellula. These studies identify the impact that these actinin-1 

mutations have on the cytoskeletal system of platelets and might provide essential 

insight into the pathophysiology of ACTN1 related thrombocytopenias disorders or 

lead to a better understanding of the possibly exclusive functions of actinin-1 in 

platelets. 
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2.3 Materials and Methods 

 

 

2.3.1 Antibodies and Reagents 

Sources of antibodies and stains were as follows: anti-FLAG, anti-GAPDH, 

anti-β-actin, and rhodamine-conjugated Phalloidin were from Sigma-Aldrich, 

Arklow, Ireland (Catalog numbers: #F3165, #G9545, #A5441 and #77418 

respectively); IRDYE®800CW conjugated anti-mouse secondary antibody was from 

LI-COR Biosciences, Cambridge, UK (#926-32210); horseradish peroxidase-

conjugated anti-rabbit and Cy3 conjugated anti-mouse secondary antibodies were 

from Jackson ImmunoResearch Suffolk (#111-035-003 and #715-165-150 

respectively).  

All other reagents and chemicals used were obtained from Sigma-Aldrich 

(Arklow, Ireland) unless otherwise stated. 

 

 

2.3.2 Actinin-1 cDNA Constructs and Plasmid Construction 

The calcium sensitive (non-muscle, exon 19a-containing) splice variant of 

human actinin-1 was used in all experiments (Accession number: NM_001102). 

For actin co-sedimentation assays the ACTN1 cDNA sequence was cloned 

into a modified pET24 bacterial expression vector (Novagen, Quintin, France), 

pET24-6xHis-GST-TEV, that encodes an N-terminal 6xHistidine (6xHis) tag followed 

by the glutathione-S-transferase (GST) sequence and a recognition site for TEV 

protease. This served as the template into which the CMTP-associated mutations 

were introduced, using the Quikchange site-directed mutagenesis kit (Agilent 

Technologies). The veracity of all constructs was verified by DNA sequencing.  

For cytoskeletal purification experiments, these actinin-1 constructs were 

sub-cloned into the mammalian expression vector pCMV-NFLAG, to add an amino-

terminal FLAG epitope tag to actinin-1. 
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For FRAP experiments, WT and p.Arg46Gln Actinin-1 were sub-cloned into 

the pEGFP-N1 mammalian expression vector (Clontech, Saint-Germain-en-Laye, 

France) to produce these proteins with a C-terminal GFP tag. 

 

 

2.3.3 Bacterial Protein Expression and Purification 

Constructs encoding 6xHis-GST-TEV actinin-1 were transformed into E. coli 

[DE3] (Novagen, Quintin, France). Protein expression was induced at 37 oC by 

addition of 0.2mM isopropyl-β-D-thiogalactopyranoside (IPTG) and cells were 

harvested 4 hours post induction. Cell pellets were resuspended in PBS, 0.2% triton, 

20mM β-mercaptoethanol and 1mM phenylmethylsulfonyl fluoride (PMSF). Cells 

were lysed by sonication and addition of 0.1mg/ml lysozyme for 30 min at 4 oC. 

Lysates were cleared by centrifugation at 39,000xg for 40 min at 4 oC. For solubility 

comparison of WT versus mutant actinin-1 proteins the pellet generated during this 

centrifugation step was retained and resuspended in a 1% SDS lysis buffer. Both 

supernatant and pellet fractions at then analysed. 

For GST-based purification, proteins were loaded onto a glutathione column 

(GE Healthcare) pre-equilibrated with wash buffer (PBS, 0.1% triton, and 5mM β-

mercaptoethanol). The column was then washed twice with 12ml of wash buffer. 

Bound proteins were then eluted with 10mM glutathione in a solution of 50mM 

Tris-HCl, pH8.0.  Eluted proteins were incubated overnight at 4 oC with TEV-

protease (1mg TEV protease/100mg protein) in dialysis tubing immersed in a 

dialysate buffer (20mM Tris-HCl pH7.5, 50mM NaCl, and 5mM β-mercaptoethanol).  

For consequent Ni-column purification to remove cleaved tags, proteins 

were loaded onto a Nickel-NTA column pre-equilibrated with dialysate buffer. 

Untagged actinin-1 proteins were collected in the flow through fraction. Purified 

proteins were concentrated using Amicon Ultra centrifugal filters (Millipore, Cork, 

Ireland). 
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2.3.4 Actin Co-Sedimentation Assays 

Human platelet actin (Cytoskeleton Inc., Denver, USA) was mixed in G-actin 

buffer (5mM Tris pH 8.0, 0.2mM MgCl2, 0.2mM ATP, 0.5mM Dithiothreitol (DTT)), 

which as then cleared by ultracentrifugation at 112,000xg for 30min at 4 oC. Actin 

was polymerised by addition of 1/100 volume of 100x polymerisation buffer (2M 

NaCl, 0.1M MgCl2) and incubated overnight at 4 oC. Purified actinin-1 proteins were 

cleared by ultracentrifugation at 162,000xg for 1 hour at 4 oC.  

For actin binding and bundling assays, 2µM actin was mixed with 1µM 

actinin in F-actin buffer (10mM Tris-HCl pH7.5, 100mM NaCl, 10mM NaN3, 10mM 

MgCl2, 1mM ATP, and 1mM DTT). With the exception of section 2.4.1.2.4, all assays 

were performed in the presence of 0.2mM ethylene glycol tetra-acetic acid (EGTA), 

to maintain Actinin-1 in an uninhibited (calcium unbound) state with regard to actin 

binding. In section 2.4.1.2.4, EGTA is replaced with 0.1mM CaCl2. Samples were 

then incubated for 30 min at 30 oC. In studying actin binding, polymerised actin was 

separated by ultracentrifugation at 112,000xg for 30min at 30 oC. In the case of 

actin-bundling, cross-linked actin was separated by centrifugation at 10,000xg.  

Pellets and supernatants were brought to the same total volume with SDS sample 

buffer, boiled, and equal volumes loaded on 10% SDS-polyacrylamide gels. SDS-

PAGE gels were stained in GelCodeTM BlueSafe Protein Stain (Thermo Scientific, 

Waltham, USA) for 1 hour, and de-stained in deionised water for 1 hour. 

As controls, to account for the non-specific trapping of proteins in the F-

actin pellet, all actin co-sedimentation assays were carried out with an actinin-1 

only sample and an initial actin co-sedimentation assay was carried out with non-

actin-binding proteins. No significant trapping of non-actin binding proteins in F-

actin pellets was observed under assay conditions. A very small amount of protein 

of interest (whether actinin or non-actin-binding control proteins) were recovered 

in the pellet fraction in assays performed in the absence of F-actin. This represents 

either supernatant carryover, or the non-specific binding of the protein of interest 

to the assay tube, and if significant, was subtracted in calculations of bound actinin. 

Densitometry analysis was performed using Odyssey Image Studio Software (LI-COR 

Biosciences, Cambridge, UK).  
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To determine the dissociation constant (Kd) for actin binding, 2µM actin was 

used per assay along with a range of actinin concentrations (0.25-30µM). A single 

ligand-binding site was assumed, and rectangular hyperbolic curves were fitted to 

plots of bound versus free actinin with GraphPad Prism software using the 

equation: Y = (Bmax * X)/(Kd + X),  where Bmax is the maximal binding. 

 

 

2.3.5 Cell Culture and Transfections  

HeLa cells, a gift from Prof. Rosemary O’ Connor (University College Cork, 

Ireland), were cultured in Dulbecco’s Modified Eagle Media (Sigma-Aldrich D6429), 

10% Foetal Bovine Serum (FBS), 1% penicillin/streptomycin, and 1% L-glutamine. 

Cells were maintained routinely at 37 oC, 100% humidity and 5% CO2. 

For cytoskeleton purification, FRAP and immunofluorescence studies, HeLa cells 

were seeded so as to be 80-90% confluent for transfection in 6-well dishes, 35mm 

glass bottomed imaging dishes (Ibidi, Planegg, Martinsried, Germany) or glass 

coverslips, respectively.  

Transfections relating to cytoskeleton purification and FRAP were carried 

out using Lipofectamine 2000 regent (Invitrogen, Life Technologies Carlsbad, 

California, USA). Cells were washed with 1xPBS and were then covered with 1.7ml 

DMEM without antibiotics. For each transfection two solutions were made; one 

containing 1µg DNA made up to a volume of 150µl with Opti-MEM reduced serum, 

the other containing 2µl of Lipofectamine and 148µl of Opti-MEM reduced serum. 

Both solutions were mixed and incubated at room temperature for 20minutes. The 

resulting 300µl was added to the cells to be transfected and left incubate for 24-

36hours at 37 oC. 

For immunofluorescence studies, HeLa cells were transfected with 2µg of 

DNA using a calcium phosphate precipitation protocol. Transfected cells were left 

incubate for 24hours at 37 oC.  
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2.3.6 Purification of Cytoskeletal Fractions 

Cytoskeletal fractions enriched for F-actin and intermediate filaments were 

purified as described by Choi et al (2014). Briefly, 24hours post transfection, cells 

were rinsed twice with ice cold 1xPBS. Lysis buffer (50mM PIPES pH6.9, 50mM NaCl, 

5% glycerol, 0.1% NP-40, 0.1% Triton X-100, and 0.1% Tween 20) was added to the 

dish, on ice, for 1.5min. The lysate was collected and retained, while the dish was 

rinsed with wash buffer (50mM Tris-HCl, pH7.5) and then incubated with nuclease 

buffer (10mM MgCl2, 2mM CaCl2, and 10U/ml benzonase in 50mM Tris-HCl, pH7.5) 

for 10min at room temperature. The pre-collected lysates were then re-added to 

the dish for 30 seconds, on ice. The dish was then rinsed twice with wash buffer. 

Cytoskeletal proteins that remained on the dish were then collected in 1% SDS 

buffer. Lysis, wash and nuclease buffers all contained protease (Roche protease 

inhibitor cocktail) and phosphatase inhibitors (5mM sodium fluoride and 2mM 

sodium orthovanadate).  

Protein concentration was determined using the BCA protein assay (Thermo 

Scientific, Waltham, USA) and equivalent amounts of proteins (5µg) from both the 

cytosolic and cytoskeletal fractions were analysed by SDS gel electrophoresis and 

western blotting. Detection was carried out with both the Odyssey Infrared Imaging 

System and on X-ray films (Thermos Scientific, Waltham, USA) using enhanced 

chemiluminescence substrate (Thermo Scientific, Waltham, USA) for peroxidase 

tagged secondary antibodies. Quantification of actinin was normalised to β-actin 

levels. 

 

 

2.3.7 Fluorescence Recovery after Photobleaching (FRAP) 

FRAP experiments were performed on a Zeiss LSM 510 META confocal 

microscope. Images were acquired every two seconds for a period of two minutes. 

After capturing 10 images, a circular region of interest (ROI) in each cell was 

bleached with 4sec using 60 iterations of 100% laser power. The average 

fluorescence intensity in the ROI was measured at each time point and normalised 

against the average fluorescence intensity of the whole cell using the FRAP profiler 
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Plug-In for Image J software. The degree of bleaching of the baseline fluorescence 

achieved was slightly greater for the p.Arg46Gln mutant than the wildtype protein. 

Fluorescence recovery curves were fitted to the data in Kaleidograph software 

using the equation: τ1
2⁄
=

ln0.5

−τ
 f (t) = A (1-e- t), where A is the mobile fraction. The 

half time fluorescence recovery (τ1/2) was calculated using the equation 1/2 = 

(ln0.5)/-. Three independent experiments were performed with 9-12 cells images 

for each condition per experiment.   

 

 

2.3.8 Immunofluorescence Cytochemistry 

24hours post transfection, cells were washed with 1xPBS and fixed with 4% 

paraformaldehyde (PFA) for 10min at 4 oC. Cells were incubated in blocking buffer 

(0.1% triton x-100, 5% goat serum, and 2% bovine serum in PBS) for 1 hour at room 

temperature prior to antibody incubation. All wash steps were carried out using 

1xPBS in the wells of a 6-well cell-culture dish. All antibodies were diluted in 5% 

goat serum and 2% bovine serum in PBS, were added to cells and left to incubate 

overnight at 4 oC.  Coverslips were mounted onto glass slides using Fluoromount 

mounting media. 

Images were obtained using a Leica DMI 3000 microscope using 10x, 20x 

and 40x objectives. Fluorescent images taken with different light channels were 

merged using Adobe Photoshop Software. 

 

 

2.3.9 Statistical Analysis 

Comparisons of actin binding/bundling and FRAP for WT versus p.Arg46Gln 

Actinin-1 was analysed using a two-tailed Student’s T-test (Microsoft Excel 

software). Experiments comparing WT Actinin-1 with multiple mutants were 

analysed using a one-way ANOVA, followed by a Dunnett t post-hoc test (2-sided). 

ANOVA was performed using SPSSv22 or GraphPad Prism software. 
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2.4 Results 

 

2.4.1 In Vitro Functional Analysis of the ACTN1-CMTP Associated Mutations 

 

2.4.1.1 A Comparative Study on the Solubility of WT and CMTP-Associated Mutant 

Actinin-1 Proteins 

To identify if protein misfolding was the molecular mechanism through 

which these mutant actinin-1 proteins were acting, I set out to assess their 

solubility. 

When expressed as recombinant proteins in E. coli cells, approximately 

equal amounts of all proteins were seen in both the soluble and insoluble fractions. 

There was no obvious difference in solubility between WT and mutant actinin-1 

proteins (Fig. 2.3).  

 

 
Figure 2.3: Assessing WT and Mutant Actinin 1 Protein Solubility. Soluble and insoluble protein 
fractions of E. coli cells expressing WT or mutant actinin-1 proteins were analysed using SDS protein 
gel electrophoresis. Proteins were visualised using Coomassie Brilliant Blue staining.   
Proteins of interest and the sizes (in kDa) of the relevant molecular weight markers are indicated. 
n=2 
Single amino acid code is used for actinin-1 mutations in the labelling of this figure and in the 
labelling of subsequent figures. 
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2.4.1.2 A Comparative Study on Actin-Binding/Bundling Ability Between WT 

Actinin-1 and CMTP-Associated Mutant Actinin-1 Proteins 

Based on their location predominantly within the ABD and CaM domains, 

and prompted by the increased actin binding ability of the actinin-4 FSGS associated 

mutations (Kaplan et al. 2000; Weins et al. 2005), I reasoned that CMTP-associated 

mutations may affect the interaction of actinin-1 with F-actin. To examine this 

possibility directly, I performed in vitro actin binding and bundling assays using 

purified recombinant WT and mutant actinin-1 proteins. Supernatants and pellets 

from actin co-sedimentation assays were analysed on Coomassie Blue-stained 

polyacrylamide gels and the proportion of actinin in both fractions was quantified.  

 

2.4.1.2.1 Purification of Actinin-1 Proteins  

6xHis-GST-TEV-WT/mutant full-length actinins were recombinantly 

expressed in E. coli cells. Purified untagged full-length actinins were achieved using 

sequential purification, which involved GST-column purification, followed with 

overnight TEV protease treatment to remove the 6xHis-GST affinity tag, and 

completed with His-column purification to separate the 6xHis-GST affinity tag from 

the untagged actinin protein, which was collected in the flow-through (Fig. 2.4). 
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Figure 2.4: Purification of Full-Length Actinin-1. A Coomassie stained gel that is representative of 
the steps involved in purifying full-length WT or mutant actinin-1 proteins.  
Full Length 6xHis-GST-actinin-1 proteins (WT or mutant) were recombinantly expressed in E. coli 
cells with IPTG. Expression was carried out on a large scale (one litre cultures) and so three 2ml GST-
columns and three 2ml Ni-columns were required to accommodate the large volume of protein.  
GST-column purification was followed with overnight TEV treatment to cleave the 6xHis-GST affinity 
tag. Ni-column purification was then carried out to separate the tag from the untagged actinin 
protein. Purified actinin was obtained from the Ni-column flow-through and combined.  
Proteins of interest and the sizes (in kDa) of the relevant molecular weight markers are indicated. 
 

 

2.4.1.2.2 Comparison of Actin-Binding Ability of WT Actinin-1 and p.Arg46Gln 

Actinin-1 

My analysis initially focused on the p.Arg46Gln mutation, particularly 

because three separate studies had found it to be co-segregating with CMTP 

(Kunishima et al. 2013; Guéguen et al. 2013; Bottega et al. 2015). Also, this site had 

proved itself to be a mutational “hotspot” with one study, (Bottega et al. 2015), 

reporting a different mutation of this same residue (p.Arg46Trp). 

Firstly, in order to account for the non-specific trapping of proteins in the F-

actin pellet under high speed centrifugation, all co-sedimentation assays were 

carried out with an actinin-1 protein only control and an initial actin co-

sedimentation assay  was carried out with three different non-actin binding 

proteins; bovine serum albumin (BSA), two spectrin-like repeats from the central 
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region of the actinin-2 rod domain (repeats 2 and 3 (r2r3)), and polyhistidine-

tagged glutathione-S-transferase (GST).  

The very small amount of these non-actin-binding proteins detected in the 

F-actin pellet fraction is no greater that the amount observed in the pellet fractions 

from assays performed in the absence of F-actin. This indicates that there is no 

detectable trapping of proteins in the F-actin pellet. Any protein detected in the 

fraction represents supernatant carryover, or the non-specific binding of the 

protein of interest to the assay tube, either of which is then eluted upon the 

addition of SDS gel loading buffer to the tubes to recover the pellet (Fig. 2.5). When 

present, this non-specific signal was subtracted in calculations of bound proteins of 

interest, i.e. mutant/WT actinin-1. 

 

Figure 2.5: Analysis of Trapping in Actin Co-Sedimentation Assays. Co-sedimentation assays with 
the indicated proteins were performed in the absence and presence of F-actin. Supernatant (S) and 
pellet (P) fractions were analysed by SDS protein gel electrophoresis and proteins were visualised 
using Coomassie Brilliant Blue staining.  
Quantity of non actin-binding protein in F-actin pellet samples are comparable to quantity of non 
actin-binding protein in equivalent sample in the absence of F-actin. This indicates no detectable 
trapping of protein in F-actin pellet. 
Proteins of interest and the sizes (kDa) of the relevant molecular weight markers are indicated. 
 
 

In actin co-sedimentation assays performed at 112,000g, p.Arg46Gln actinin-

1  showed significantly increased actin binding compared to the WT protein (Fig. 

2.6).  

In samples containing actinin protein only (free from actin) no detectable 

amount of actinin, either WT actinin-1 or p.Arg46Gln actinin-1, was sedimented. 

This indicated that neither WT nor p.Arg46Gln actinin-1 were aggregating.  
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Figure 2.6: Effects of CMTP-associated R46Q Mutation on Actin Binding Properties of Actinin-1 in 
vitro.  
(A) The supernatants and pellets from actin binding assays performed with the indicated 
combinations of proteins were analysed by SDS protein gel electrophoresis and Coomassie staining. 
Proteins of interest are indicated. 
(B) Quantification reveals significantly increased co-sedimentation of the p.Arg46Gln (R46Q) mutant 
protein with actin compared to WT actinin  (*P<0.05). n=9   

 

 

2.4.1.2.2.1 Comparison of Dissociation Constants of WT Actinin-1 and p.Arg46Gln 

Actinin-1 

To quantitatively measure this increased actin-binding ability I determined 

the dissociation constants (Kd) of both WT actinin-1 and p.Arg46Gln actinin-1. Actin-

binding assays using increasing concentrations of actinin (WT or p.Arg46Gln) and 

fixed concentrations of actin were set up.  When calculating the Kd, a single ligand 

binding site was assumed and rectangular hyperbolic curves were fitted to plots of 

bound versus free actinin. The results obtained were in agreement with those seen 

for Fig. 2.6; the (Kd) for the interaction of the p.Arg46Gln mutant with F-actin was 

calculated to be 0.72 ± 0.18μM compared to 2.53 ± 1.28μM for WT Actinin-1 (Fig. 

2.7 and 2.8).  
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Figure 2.7: Actin Binding Affinity (Kd) Assays of WT Actinin-1. 
(A) Actin binding assays were set up with increasing concentrations of WT actinin-1 (0.25-30µM) and 
a fixed concentration of F-actin.  Supernatants and pellets were analysed by SDS protein gel 
electrophoresis and Coomassie staining, with densitometry.  
Representative gel shown. 
Proteins of interest and the sizes (in kDa) of the relevant molecular weight markers are indicated. 
(B) Plots of bound actinin versus free actinin concentrations were used to calculate the indicated 
dissociation constant (Kd) values for the interaction of WT actinin-1 with F-actin.  
Three independent experiments were averaged to obtain the Kd value shown (± S.E.M). The 
experimental data and fitted curves for all three replicates are shown. 
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Figure 2.8: Actin Binding Affinity (Kd) Assays of R46Q Actinin-1. 
(A) Actin binding assays were set up with increasing concentrations of p.Arg46Gln (R46Q) actinin-1 
(0.25-30µM) and a fixed concentration of F-actin.  Supernatants and pellets were analysed by SDS 
protein gel electrophoresis and Coomassie staining, with densitometry.  
Representative gel shown. 
Proteins of interest and the sizes (in kDa) of the relevant molecular weight markers are indicated. 
(B) Plots of bound actinin versus free actinin concentrations were used to calculate the indicated 
dissociation constant (Kd) values for the interaction of p.Arg46Gln (R46Q) actinin-1 with F-actin.  
Three independent experiments were averaged to obtain the Kd value shown (± S.E.M).  
The experimental data and fitted curves for all three replicates are shown. 
 

 

2.4.1.2.3 Comparison of Actin-Bundling Ability of WT Actinin-1 and p.Arg46Gln 

Actinin-1  

Actin bundling assays were performed at 10,000g, a centrifugal force at 

which non-crosslinked actin filaments do not sediment.  Supernatants and pellets 

were analysed on Coomassie Blue stained polyacrylamide gels and the proportion 

of both actin and actinin in each fraction was quantified. In these bundling assays 

increased binding, as well as an increased ability to bundle, was observed for the 

p.Arg46Gln mutant (Fig. 2.9).  
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Figure 2.9: Effects of CMTP-associated R46Q Mutation on Actin Binding and Bundling Properties of 
Actinin-1 in vitro.  
(A) Representative results of an actin bundling assay performed at 10,000g are shown. 
 Proteins of interest are indicated. 
(B) Quantification reveals significantly increased co-sedimentation of the p.Arg46Gln (R46Q) mutant 
protein with actin compared to WT actinin-1 (*P<0.05). n=6  
(C) Quantification shows significantly increased actin bundling by p.Arg46Gln (R46Q) actinin-1 
compared to WT actinin-1. (*P<0.05) n=6 

 

 

2.4.1.2.4 Comparison of the Calcium Sensitivity of Actin-Binding for WT Actinin-1,  

p.Arg46Gln Actinin-1 and p.Glu225Lys Actinin-1  

The p.Arg46Gln mutation was mapped to the ABD of actinin-1 (Kunishima et 

al. 2013), and is therefore not directly involved in the binding of calcium, however, 

considering the dimeric anti-parallel orientation of actinin monomers (Ribeiro et al. 

2014), I thought it worthwhile to investigate if its presence altered the calcium 

sensitivity of this calcium sensitive isoform. Also, studies investigating the effect of 

the p.Lys255Glu FSGS-associated mutation on protein function found that this 

mutant actinin-4 was no longer sensitive to calcium regulation, despite the fact that 

this mutation resided in the ABD of actinin-4 (Weins et al. 2007). 
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The physiological levels of free calcium in a resting cell are normally 

approaching 100nM (Clapham 2007). Previous work to determine the calcium 

sensitivity of actin-binding for actinin-1 found that at free calcium concentrations of 

above 10µM there was a decrease in actin-binding ability (Foley & Young 2013).  

Therefore, to ensure calcium saturation, actin co-sedimentation assays, performed 

at 112,000g, were carried out in the presence of 0.1mM CaCl2.  Supernatants and 

pellets were analysed on Coomassie Blue stained polyacrylamide gels and the 

proportion of actinin in each fraction was quantified.  

Increased actin binding is observed for both p.Arg46Gln and p.Glu225Lys 

actinin-1 proteins compared to WT in assays carried out in the absence of calcium, 

reconfirming my previous observation regarding pArg4Gln actinin-1 (section 

2.4.1.2.2 ). 

Actin binding in the presence of calcium is reduced to a similar extent for all 

three proteins, p.Arg46Gln, p.Glu225Lys and WT actinin-1. These mutations don’t 

affect calcium regulation. (Fig 2.10). 
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Figure 2.10:  Effects of Calcium on Actin Binding Properties of WT, R46Q and E225K Actinin-1 
proteins.  
(A) The supernatants and pellets from actin binding assays performed, with the indicated 
combinations of proteins and in the presence of either 0.2mM EGTA or 0.1mM CaCl2, were analysed 
by SDS protein gel electrophoresis and Coomassie staining.  
Proteins of interest and the sizes (in kDa) of the relevant marker bands are indicated. 
(B) Quantification confirms that the p.Arg46Gln (R46Q) and p.Glu225Lys (E225K) actinin-1 mutants 
exhibit increased co-sedimentation with actin compared to WT actinin-1 in the absence of calcium.  
Actin co-sedimentation is diminished to a similar extent for all three proteins in the presence of 
calcium. n=3. 
Proteins of interest and the sizes of the relevant molecular weight markers are indicated. 

 

 

2.4.1.2.5. Comparison of the Actin Bundling Ability of WT Actinin-1 and 

p.Val105Ile/p.Glu225Lys/p.Arg738Trp/p.Arg752Gln CMTP-associated Actinin-1 

Mutations 

I further investigated the actin bundling activity of four other CMTP-

associated mutant proteins. All these mutant proteins exhibited both increased 

actin binding and bundling compared to WT actinin-1, though this only reached 
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statistical significance in the case of actin binding for p.Arg46Gln, p.Val105Ile and 

p.Glu225Lys Actinin-1. (Fig. 2.11). 

 

 

Figure 2.11: Effects of CMTP-associated Mutations on Actin Bundling and Binding Properties of 
Actinin-1 in vitro.  
(A) Representative results of an actin bundling assay performed at 10,000g are shown. 
Proteins of interest and the sizes (in kDa) of the relevant molecular weight markers are indicated. 
(B) Quantification reveals increased actin bundling for all mutants compared to the WT protein.  
(C) Quantification reveals increased actin binding for all mutants compared to the WT protein. This 
reaches statistical significance in the case of p.Arg46Gln, p.Val105Ile (*P<0.05) and p.Glu225Lys  
(**P<0.01). n=7 

 

 

2.4.2 In Cellula Functional Analysis of ACTN1-CMTP Associated Mutations 

 

2.4.2.1 Comparison of Actin Organization in WT Actinin-1 or Mutant Actinin-1 

Expressing Cells 

Previous studies carried out to analyse the functional effect of some of the 

actinin-1 CMTP-associated mutations found that they induce actin disorganisation 
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when expressed in various cell lines, such as CHO cells (Yasutomi et al. 2016; 

Kunishima et al. 2013), human fibroblast cells (Bottega et al. 2015) and COS-7 cells 

(Guéguen et al. 2013). To investigate and evaluate these effects for myself, I 

examined HeLa cells transfected with FLAG-epitope tagged mutant or WT actinin-1 

by immunofluorescence microscopy, in which Phalloidin staining was performed to 

reveal F-actin structures.  

In contrast to what had previously been documented in the literature, I 

observed no actin cytoskeleton disruption (Fig. 2.12) In examining F-actin staining 

alone in a blinded fashion, transfected cells could not be consistently distinguished 

from neighbouring untransfected cells in terms of actin organisation for either WT 

or any of the mutants. In the vast majority of transfected cells, the mutant actinins 

co-localised with F-actin in a similar manner to the WT protein. Both WT and 

mutant exhibited a regular striated staining pattern in cells that had extensive 

stress fibre-like structures.  
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Figure 2.12: Assessing Mutant Behaviour in Cells. The indicated FLAG epitope-tagged actinin-1 
proteins were detected by immunostaining following transient expression in HeLa cells (middle row 
of panels; green in merged image). F-actin was labelled using rhodamine Phalloidin (top row of 
panels; red in merged image).  
(A) No major disruption of the actin cytoskeleton was observed in cells expressing moderate levels 
of either WT or mutant actinin-1. 
(B)Further examples of cells with similar actin organisation to those shown in (A). Examining F-actin 
staining alone in a blinded fashion, transfected cells alone could not be consistently distinguished 
from neighbouring untransfected cells in terms of actin organisation for either WT or any of the 
actinin-1 mutants. Sometimes transfected cells did exhibit a degree of actin disorganisation (as 
discernible here for the p.Val105Ile (V105I) or p.Arg752Gln (R752Q) mutants), this may be related to 
actinin overexpression rather than the presence of the CMTP-linked mutations. 
(C) Examples of cells that had extensive stress-fibre like structures. The mutant actinins generally co-
localised with F-actin in a similar manner to the WT protein, and both WT and mutant actinins 
exhibited a regular, striated staining pattern along stress fibres in a subset of cells in which these 
structures were prominent. 
Scale bar=20µm. 

 

 

2.4.2.2 Comparison of the Stability of the Association of WT-Actinin-1 or Mutant-

Actinin-1 with Actin 

Since the mutant proteins did not appear to cause major disruption of F-

actin organisation, I next examined whether the enhanced stability of the 

association of mutant actinin-1 with F-actin that was observed in vitro could also be 

observed in cellula. 

 The actin cytoskeleton is insoluble in nature and, on binding to the 

cytoskeleton, cytoskeleton regulatory proteins also become insoluble (Choi et al. 

2014). Through separation of insoluble cytoskeletal fraction from the soluble 

cytoplasmic fraction from WT or mutant Actinin-1 transfected HeLa cell lysate, and 

quantifying the amount of WT/mutant actinin in each, I was able to confirm the 

increased binding of mutant actinin-1 for actin in a cell culture model.  

 

2.4.2.2.1 Cytoskeletal Purification Protocol – Trial Run 

I first tested the cytoskeleton purification protocol on untransfected HeLa 

cell lysates. For detailed description of the procedure see Materials and Methods 

Section, this protocol was adapted from Choi et al. (2014). Briefly, live HeLa cells 

were treated with a cell lysis buffer containing a combination of phosphatase and 

protease inhibitors, and detergents that function to remove the soluble cytoplasmic 
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proteins. Once this buffer was collected, cells were treated with a nuclease buffer 

containing benzonase, which functioned to remove DNA/RNA molecules and their 

associated proteins. In between these steps, proteins that remained bound to the 

dish were washed with a wash buffer, also containing phosphatase and protease 

inhibitors, to remove any remaining soluble proteins. Under these conditions, the 

insoluble actin cytoskeleton remained attached to the cell culture dish. These 

remaining cytoskeletal proteins were then solubilised and collected in 1% SDS 

solubilisation buffer (Choi et al. 2014). Fractions were then separated and analysed 

using SDS-PAGE electrophoresis, followed by western blotting.  

Western blot analysis detected a small amount of β-actin in the soluble 

cytoplasmic fraction, G-actin. However, the cytoskeletal fraction was enriched with 

β-actin, F-actin. This result validated the overall approach, and proved that the 

protocol was effective in cleanly separating the soluble from the insoluble fraction 

in cell lysates.  The detection of endogenous actinin-1 in both the soluble 

cytoplasmic fraction and the insoluble cytoskeletal fraction was verification that it 

would be possible to go forward and compare the amount of WT or p.Arg46Gln 

actinin-1 in each (Fig. 2.13) 

  

 
Figure 2.13: Western Blot Analysis of Indicated Proteins in the Cytoplasmic, Nuclear and 
Cytoskeletal Fractions.  
Fractions were prepared from untransfected HeLa cell lysates using lysis buffer, nuclease buffer and 
solubilisation buffer respectively.  
Actinin-1 and actin were detected via western blotting with anti-actinin-1 and anti-β-actin antibodies 
respectively.  
Proteins of interest and the sizes (in kDa) of the relevant molecular weight markers are indicated. 
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2.4.2.2.2 Cytoskeletal Purification to Assess the Stability of the Association of WT 

Actinin-1 or Mutant Actinin-1 with Actin 

Quantification of fractions obtained from HeLa cells overexpressing WT 

actinin-1 or mutant actinin-1 revealed that the amount of FLAG-actinin in the 

cytoskeletal fraction was increased for all tested mutant proteins compared to WT 

actinin-1. This increase in cytoskeletal association reached statistical significance for 

p.Gln32Lys and p.Arg46Gln actinin-1 mutant proteins. Variations in the levels of the 

mutant actinins in the cytosolic/nuclear fraction were not significantly different 

from WT protein. Western blot analysis showed that, as expected, β-actin was 

detected in both the cytosolic/nuclear fractions (G-actin) and cytoskeletal fractions 

(F-actin), while the cytosolic marker, GAPDH, was confined to the cytosolic/nuclear 

fraction (Fig. 2.14).   

 

 

Figure 2.14: Effects of CMTP-associated Mutations on the Actin Association Properties of Actinin-1 
in cellula.  
Cytosolic/nuclear and cytoskeletal fractions were prepared from HeLa cells expressing the indicated 
FLAG-tagged actinin-1 proteins, and analysed by western blot. Successful purification of an F-actin 
containing cytoskeletal fraction is indicated by the presence of β-actin and the absence of the 
cytosolic marker GAPDH. Quantification of FLAG-actinin in both fractions (normalised to β-actin 
levels) is shown beneath the western blots. More actinin is found in the cytoskeletal fraction for all 
CMTP-associated mutants compared to the WT protein, and this reaches statistical significance for 
the p.Gln32Lys (Q32K) and p.Arg46Gln (R46Q) mutants. n=4.   
 

 

 



Page | 109  
 

2.4.2.2.3 Quantitative Comparison of WT Actinin-1 and p.Arg46Gln Actinin-1 Actin 

Association  

To examine and quantitatively measure this mutation-induced increased 

actin association more directly in living cells I performed fluorescence recovery 

after photobleaching (FRAP) experiments employing WT and p.Arg46Gln GFP-

tagged actinin-1 transiently transfected into HeLa cells.  

 

2.4.2.2.3.1 Expression of GFP-Tagged WT/p.Arg46Gln Actinin-1 Constructs 

Firstly, protein expression of each construct was confirmed by western blot 

(Fig. 2.15) 

 
Figure 2.15: Expression of GFP Tagged WT and p.Arg46Gln Actinin-1 Proteins.  
Anti-GFP Western blot detection of HeLa cell lysates transfected with GFP-tagged WT or p.Arg46Gln 
(R46Q) actinin-1 proteins. 
Proteins of interest and the sizes (in kDa) of the relevant molecular weight markers are indicated. 

 

 

2.4.2.2.3.2 FRAP Analysis to Quantitatively Assess Association of WT Actinin-1 or 

p.Arg46Gln Actinin-1 with Actin  

FRAP was carried out 36 hours after HeLa cells had been transfected with 

GFP conjugated WT or p.Arg46Gln actinin-1 constructs.  Concisely, after establishing 

the baseline fluorescence, a small region of interest was bleached and the recovery 

of fluorescence was monitored for 100 seconds (Fig. 2.16). Setting the intensity 

immediately post bleach as zero the recovery curves were fitted using the equation 

f(t)=A(1-e-τt).  The mobile fraction was not significantly different for WT actinin-1 

and p.Arg46Gln actinin-1 (46±3% and 49±5% respectively). However, the calculated 

half time (τ1/2) for fluorescence recovery for the p.Arg46Gln mutant (τ1/2 = 15.5 ± 

0.9 sec) was significantly slower than for the WT protein (τ1/2 = 7.0 ± 1.7 sec; 

P<0.01). This is in agreement with the p.Arg46Gln mutant being bound more tightly 

to F-actin structures in cells. 
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Figure 2.16: FRAP Analysis to Assess WT and R46Q-Actinin Association in Cells. 
FRAP experiment using GFP-tagged WT and Arg46Gln (R46Q) actinin-1 expressed in HeLa Cells. 
Images of representative cells, single confocal sections, taken immediately before and after 
bleaching, as well as after 20 seconds after recovery, are shown (left). Dashed circles and the insets 
indicate the bleached area. Representative plots of fluorescence recovery data and fitted curves are 
shown to the right (9-12 cells per experiment). The half time (τ1/2) for fluorescence recovery, 
averaged from the three independent experiments, was 7.0±1.7 sec for WT actinin-1 and 15.5±0.9 
sec for the p.Arg46Gln mutant (±S.E.M).  
Scale bar = 20µm. 
See appendix Fig 6.1 for projection confocal z-stack of whole HeLa cell (rather than single confocal 
section as displayed here). 
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2.5 Discussion 

Congenital macrothrombocytopenias are a very rare group of platelet 

disorders. An accurate diagnosis is often very difficult to make because their clinical 

presentation can be very heterogeneous, ranging from asymptomatic patients, to 

patients suffering with a serious, life-threatening bleeding tendency. As a result, 

patents are sometimes misdiagnosed, receiving inappropriate, and sometimes 

harmful, treatments (Kunishima & Saito 2006).  Advances in molecular genetics has 

led to progress in exposing some of the responsible genes for many CMTP 

(Kunishima & Saito 2006; Bolton-Maggs et al. 2006). To date, many genes have 

been identified (Kunishima & Saito 2006), however for about 50% of patients, the 

molecular cause remains unknown (Kunishima & Saito 2006). This may be partly 

due to a deficiency in our level of understanding of the various stages of platelet 

formation (Thon et al. 2010; Kunishima & Saito 2006).  Owing to the characteristic 

symptoms normally ascribed to congenital macrothrombocytopenias, abnormal 

platelets size and a reduced platelet count (Kunishima & Saito 2006), we can 

speculate that the mutations arise in genes with unknown functions in 

megakaryocytes and/or platelets.  Studies that identify the impact of these 

mutations will lead to a better understanding of the steps and stages of normal 

platelet production and/or function (Kunishima & Saito 2006). 

The ACTN1 gene has very recently been exposed as a CMTP causative gene 

(Guéguen et al. 2013; Bottega et al. 2015; Kunishima et al. 2013; Yasutomi et al. 

2016). However, the molecular defects associated with mutant actinin-1 have not 

been explored.  

Here, I have characterised the biological effect of several of these 

mutations, through biochemical assays and cell based studies, and describe a 

putative molecular basis for the deleterious effects of several of these CMTP-linked 

actinin-1 mutations. I provide evidence that these mutations, which localise within 

the ABD, increase actinin-1 binding to, or bundling of, actin filaments in vitro, 

and/or enhance actinin-1 association with the actin cytoskeleton in cultured cells.  

In contrast to previous studies, (Guéguen et al. 2013; Bottega et al. 2015; 

Kunishima et al. 2013; Yasutomi et al. 2016), I did not observe major disruption of 
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the F-actin organisation in heterologous cells expressing moderate levels of CMTP-

linked actinin mutant proteins. However, this finding agrees with the observation 

that patients carrying these mutations have a mild phenotype that seems to be 

restricted to platelet formation or maturation. Mutations causing widespread 

disruption of F-actin would be expected to yield a broader, more severe phenotype.  

The increased actin-binding ability observed for these CMTP-associated 

mutant actinin-1 proteins lead me to speculate that the disorder operates through 

a “gain-of-function” mechanism. This gain-of-function phenotype fits with the 

dominant inheritance pattern of actinin-linked CMTP.  

The biochemical mechanism, increased actin binding affinity, underlying this 

gain-of-function phenotype is one that has been seen before. Studies carried out to 

identify the mechanical impact of FSGS-associated mutations on actinin-4 observed 

increased actin binding affinity (Kaplan et al. 2000; Weins et al. 2007; Weins et al. 

2005). The functional changes in the actinin-4 protein, due to the presence of these 

mutations, affect the structural organisation of the podocyte actin cytoskeleton, 

leading to podocyte abnormalities, making them more susceptible to damage or 

insult, eventually causing glomerulopathy (Kaplan et al. 2000; Weins et al. 2005). In 

this case, the cytoskeleton, or rather abnormalities in the cytoskeleton, play a 

definite role. It is no surprise that changes to the cytoskeletal structure and system 

can give rise to a pathological condition, given that cell division, stability, 

morphology and mobility, intracellular transport and communication cascades all 

originate and involve various aspects of the cell cytoskeleton (Ramaekers & Bosman 

2004). The similar gain-of-function phenotype for actnin-1 associated CMTP as 

observed for actinin-4 associated FSGS suggests that similar molecular mechanisms 

may underlie these two different disorders This may help us to explain, and 

eventually understand, the pathological mechanism of ACTN1-CMTP related 

mutations.  

From the results presented here, and through my review of other actin 

binding domain mutations, I support the hypothesis that ACTN1 related CMTP is 

caused by a defect in the actin cytoskeleton, which presents itself during the stages 

of megakaryocyte differentiation and platelet production; this defect being 

increased actinin-actin binding ability. Even though actin is known to be the most 
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abundant protein in platelets (Hartwig & Italiano 2006), very little information is 

known about the exact role of actin in platelet production (Thon & Italiano 2012). 

What is known is that, ultimately, the crucial steps in this production rely on both 

the actin and microtubule cytoskeletons (Poulter & Thomas 2015; Thon & Jr 2012).  

To begin, platelet biogenesis begins when megakaryocytes enter 

endomitosis (Machlus & Italiano 2013; Machlus et al. 2014). Just as actin plays an 

important role in the cell cycle and cell division (Heng & Koh 2010), it appears to 

also plays an essential role in endomitosis. To start with, for the megakaryocyte to 

be able to enter into this process, it is vital that the actin cytoskeleton is correctly 

and tightly regulated (Poulter & Thomas 2015). Another function for actin in 

platelet production and formation is its involvement in podosomes. These are actin 

rich structures that exhibit matrix metalloproteinase activity which allow them to 

degrade the ECM, thereby facilitating the extension of proplatelets shafts across 

the basement membrane of a sinusoidal vessel for the eventual release of 

preplatelet and platelets in to the bloodstream (Schachtner et al. 2013). Once 

released into the blood system, platelet development continues through fission 

events promoted by vascular shear forces and abscission (Machlus & Italiano 2013; 

Machlus et al. 2014). This fission resembles the cleavage furrow that forms during 

cytokinesis ( Thon et al. 2010; Schwertz et al. 2010), a process in which actinin is 

involved.  Indeed, overexpression of actinin in dividing epithelial cells induces a 

failure in cytokinesis (Mukhina et al. 2007). It may be that a similar situation arises 

in these CMTP platelets; actinin being more stably attached to the actin filaments 

might make these pro or preplatelets more resistant to fission events. “End 

Amplification” is another proposed role for actin in platelet production. Through 

branching and bifurcating of the proplatelet shaft, this mechanism increases the 

number proplatelet tips, and with that, increases the number of final platelets that 

are produced (Hartwig & Italiano 2006). This process involves the bending of the 

proplatelet shaft into a u-shape, which then folds back on itself to form a loop. A 

new process develops from this loop, and elongates. Actin-based forces drive these 

bending forces, and while the finer details of this reaction are unknown, it is 

believed that the actin filaments behave as “muscles” and bend the microtubules 

that comprise the proplatelet shaft (Hartwig & Italiano 2003; Hartwig & Italiano 



Page | 114  
 

2006). Through these important roles that actin plays in platelet formation, it is 

easy to comprehend how a mutation affecting the actin cytoskeleton regulation 

or/and stability could lead to the production of a reduced number of platelets. 

This is not the first study to implicate an actin-binding protein and actin 

cytoskeleton abnormalities, as the causing factor and pathological mechanism of a 

platelet disorder. MYH9-disorders result through mutation of the MYH9 gene, 

which encodes for the actin binding non-muscle myosin II protein (Kunishima & 

Saito 2006). This protein is believed to be responsible for actin organisation (Pertuy 

et al. 2014). While the impact of its mutations are not yet well defined, it is known 

that patients who have mutations affecting the head domain of this protein, the 

domain responsible for actin-binding, display a more severe thrombocytopenia 

than those patients with mutations affecting the tail domain, which has the ability 

to polymerise molecules. (Balduini & Savoia 2012; Pecci et al. 2008).  Also, myh9 

knockout mice display premature proplatelets in their bone marrow and their 

megakaryocytes display a disrupted actin cytoskeleton and organelle distribution 

(Pertuy et al. 2014).  

Filaminopathy A is another macrothrombocytopenia. The causative gene in 

this case the FLNA gene, encoding for cytoskeletal protein filamin A (Nurden et al. 

2011). While this gene has been found to be mutated in patients displaying 

thrombocytopenia, the thrombocytopenia is usually seen as a symptom to one of 

the many rare diseases that FLNA mutations are known to produce, such as 

periventricular nodular heterotopia and the otoplatatodigital syndrome spectrum 

disorders (Berrou et al. 2013). Although it has also been known to cause 

thrombocytopenia as an isolated Filaminopathy A syndrome (Nurden et al. 2011). 

Filamin A is an actin binding protein (Tyler et al. 1980).  It is richly expressed in 

platelets (Goubau et al. 2014). It stabilises actin filaments and connects them to the 

cell membrane via its ability to interact with major platelet integrin receptors 

(Stossel et al. 2001), such as the glycoprotein Ibα, of the Ib-V-IX complex (Nakamura 

et al. 2006). This interaction is vital platelet integrity (Williamson et al. 2002). 

Patients with Filaminopathy A exhibit abnormal platelet adhesive function, reduced 

platelet counts (Goubau et al. 2014) and altered platelet morphology (Nurden et al. 

2011). Mouse model studies display reduced actin cytoskeleton integrity due to 
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disturbed filamin-integrin interaction (Falet et al. 2010). Interestingly, research 

carried out to characterise the effect of filamin A mutations implicated in 

otoplatatodigital skeletal disorders, which are located in the filamin A ABD, have 

also reported increased actin binding ability as the molecular mechanism through 

with these disorders operate (Clark et al. 2009).  

Studies carried out with cell culture models promote the importance of the 

actin cytoskeletal integrity in platelets. Mouse derived megakaryocytes, when 

cultured with actin polymerisation inhibitors such as the cytochalasins, display an 

altered and disrupted actin cytoskeleton and exhibit reduced proplatelet branching 

(Italiano et al. 1999). These results mirror some of the observations reported in 

investigations previously carried out with CMTP-associated actinin-1 mutant 

proteins. They also advocate the definite involvement of the actin cytoskeleton in 

the development of macrothrombocytopenia (Kunishima et al. 2013). 

Referring back to this study and CMTP-associated actinin-1 mutations; the 

mechanism through which this increased actin binding ability affects the actin 

cytoskeleton system still remains unknown. However, in a study undertaken to 

address the physical changes that occur in podocytes expressing the FSGS-

associated p.Lys255Glu actinin-4 protein (Ehrlicher et al. 2015) it was found that an 

increased actinin dissociation time from actin reduces cell motility and cytoplasmic 

mobility. Overall, this increased actinin-actin association time inhibits actin filament 

sliding, which leads to a relatively immobile cell that is unable to respond to its 

surrounding forces. In a subsequent study, they found that this increased 

dissociation time meant that cross-linked actin networks were under stress for 

longer periods of time (Yao et al. 2011). This might make the podocyte more 

susceptible to damage. Through my FRAP analysis, I observed a two-fold increase in 

mutant actinin-1 actin binding ability compared to WT protein. Perhaps the CMTP-

associated mutations are also disrupting platelet cellular forces and dynamics 

through alterations of the cytoskeleton. 

Although this study has described a similar gain-of-function phenotype for 

CMTP as has been observed for FSGS, by contrast, I found that calcium regulation of 

p. Arg46Gln actinin-1 actin-binding was unaffected, unlike the FSGS p.Lys255Glu 

actinin-4, which was shown to have no calcium sensitivity (Weins et al. 2007). 



Page | 116  
 

Calcium sensitivity of actin binding is also another important aspect of actinin-1 

function that might be affected by CMTP-causing mutations that are located in the 

C-terminal calmodulin-like domain. While I observed that both p.Arg738Trp and 

p.Arg752Gln actinin-1 proteins exhibited increased F-actin binding both in vitro and 

in cultured cells, this did not reach statistical significance. However, it could be that 

these two mutations, and the other three, p.Thr737Asn, p.Gly764Ser and 

p.Glu769Lys, all of which have been mapped in or near the actinin-1 CaM domain 

(Bottega et al. 2015), affect actinin-1 calcium regulation. Similarly, it is conceivable 

that the p.Leu395Gln actinin-1 mutation mapped to the rod domain (Yasutomi et al. 

2016) might affect actinin-1 homodimerisation, or indeed, heterodimerisation with 

otheraActinin isoforms that expressed in platelets, such as actinin-4 (Foley & Young 

2013). It is interesting to note that of the five mutations mapped to the ABD, only 

the Gln32, Arg46 and Gly251 residues are conserved in actinins, while the Val105 

and Lys225 residues are conserved across the spectrin family and in the ABD of 

calmin, plectin and dystonin proteins. Neither Val105 and Lys225 are conserved in 

fimbrin and only Val105 is conserved in filamin proteins (Borrego-Diaz et al. 2005). 
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2.6 Conclusion  

Studies have described a potential role for actinin in platelet activation 

(Tadokoro et al. 2011), but no known role has been assigned to actinin in relation to 

platelet formation. It has been suggested that the actinins and their actin-cross 

linking activity are, to some degree, involved in nearly every actin-dependent 

process (Foley & Young 2014). Combining that statement with this study, and other 

previous studies carried out on ACTN1-related thrombocytopenia, particularly 

those carried out by (Kunishima et al. 2013), it would not be unreasonable to 

speculate that actinin-1, through its actin bundling and binding activity, does indeed 

play a role in platelet formation, a role that is sensitive to mutational disturbance.  
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Chapter 3: 
Assessment of the Actinin and Spectrin 
Dimerisation Domains in view of their use as 
Potential Nanostructure Building Blocks 
 

 

3.1 Abstract 

Protein bionanotechnology is an emerging area of research that involves the 

use of proteins as building blocks in the construction of novel nanostructures. The 

functional and physical properties of proteins make them an appealing choice as a 

material with which to build and, in my opinion, the cellular cytoskeleton is a 

particularly attractive source for such protein building blocks.  

The two most important properties to consider when choosing a protein-

based building block are; stability and ability to self-assemble. Here, in relation to 

these two properties, I have investigated the suitability of the spectrin repeat 

domains from the actin crosslinking proteins, actinin and spectrin, as building blocks 

for nanoscale structures. Such an assessment was carried out through the use of  

dimerisation and protein stability assays. Proteins were produced through a 

bacterial co-expression system and purification system that I designed and 

optimised. 

Both actinin and spectrin dimers show remarkable robustness in high salt 

and high temperature conditions, and I find that the minimum requirement for 

actinin dimer formation to be the presence of repeats 2 and 3 from its central 

region.  Overall, this study demonstrates that spectrin repeats have many desirable 

properties supportive of their use in protein bionanotechnology. 
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3.2 Introduction 

In theory, actinin dimers and α/ β-spectrin heterodimers would be perfect 

components with which to build a protein nanostructure. In muscle cells, actinin 

acts to stabilize the muscle contractile apparatus machinery (Sjöblom et al. 2008), 

while spectrin is responsible for maintaining the shape and structure of RBCs (Zhang 

et al. 2013). In relation to this project, their most attractive feature is their ability to 

form dimers; actinin forms antiparallel dimers with itself (Ylänne et al. 2001), and 

spectrin forms antiparallel heterodimers composed of an α-spectrin subunit and a 

β-spectrin subunit (Speicher et al. 1992). I propose that this inherent property of 

“self-assembly” makes them amenable to bottom up fabrication, a popular 

construction approach in protein bionanotechnology in which small units assemble 

to form larger units (Zhang 2003). 

 

 

3.2.1 Actinin Dimerisation 

Actinin dimerisation is mediated by the four spectrin-like repeats that make 

up its central rod region (Djinović-Carugo et al. 1999; Ylänne et al. 2001). The 

arrangement of these spectrin-like repeats within the dimer has been the subject of 

much consideration and many studies has been set up to discriminate between the 

two models that have been proposed; the aligned model and the staggered model. 

 

 

3.2.1.1 The Staggered Model for the Actinin Rod Domain 

The staggered model predicts that only three of the four spectrin-like 

repeats are paired.  In this model, the two actinin monomers contributing to the 

dimer are “staggered” relative to one another by one repeat, leaving either repeat 

1 or repeat 4 unpaired and without a corresponding partner.  Repeats 1, 2 and 3 of 

one monomer are paired with repeats 3, 2 and 1 of the opposing monomer, or 

alternatively, repeats 2, 3 and 4 are paired with repeats 4, 3 and 2. Depending on 

the arrangement, either repeat 1 or repeat 4 is unpaired or interacting with the 

non-homologous calmodulin-like domain (CaM) or actin binding domain (ABD), 

respectively (Fig. 3.1) (Winkler et al. 1997; Taylor & Taylor 1993) 
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Figure 3.1: Staggered Model of Actinin Rod Domain Structure.  
(A) Staggered arrangement of spectrin-like repeats in which repeats 1, 2 and 3 of one monomer 
interact with repeats 3, 2, and 1 of the opposing monomer, leaving repeat 4 unpaired or interacting 
with the ABD.  
(B) Alternative staggered arrangement of spectrin-like repeats in which repeats 2, 3 and 4 of one 
monomer interact with repeats 4, 3 and 2 of the opposing monomer, leaving repeat 1 unpaired or 
interacting with the CaM domain. 

 

Using chicken gizzard actinin Taylor & Taylor (1993) reported that the 

dimeric structure of actinin was staggered. Utilising the lipid layer crystallization 

technique, Taylor & Taylor (1993) formed large two-dimensional actinin chicken 

gizzard protein crystals. Using electron microscopy, they used these crystals to 

produce low resolution three-dimensional projection images of actinin.  These 

images revealed eight density peaks within the central rod region of actinin. They 

were arranged as three central pairs bordered with a single peak at either end, and 

were assumed to be the eight spectrin-like repeats of the actinin dimer. The single 

peak was interpreted to be repeat 1 and the three pairs of density peaks were 

interpreted to be the pairwise interactions of repeats 2-4 with repeats 4-2. 

  Winkler et al. (1997) also reported the actinin dimeric structure to be 

staggered. Images of purified actinin chicken gizzard protein were obtained using 

transmission electron microscopy. The overall general morphology of the central 

rod region in these images was that of three large central masses, assumed to be 

the three pairwise interactions between repeats 2-4 and 4-2. Repeat 1 was 

suspected to be the smaller mass that sometimes appeared in the images, or was 

assumed to be part of the larger mass defined as the actin binding domain.   

One flaw with this staggered arrangement was that it positioned the CaM of 

one actinin monomer distant to the ABD of the other opposing monomer, making it 

very difficult to comprehend how calcium regulation could be accomplished in the 

calcium sensitive actinin isoforms.  
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3.2.1.2 The Aligned Model for the Actinin Rod Domain 

The aligned model predicts the pairing of all four repeats, in which the 

repeats of one monomer are in symmetry, but opposite polarity, with the repeats in 

the opposing monomer.  Repeats 1 and 2 are paired with repeats 4 and 3 

respectively (Ylänne et al. 2001; Djinović-Carugo et al. 1999) (Fig. 3.2). 

 

 
Figure 3.2: Aligned Model of Actinin Rod Domain Structure.  
Aligned arrangement of spectrin-like repeats in which repeats 1 and 2 interact with repeats 4 and 3, 
respectively, from the opposing monomer. 

 

In this model, four pairwise spectrin-like repeat interactions are contributing 

to the dimer formation. Therefore, dimers formed between full length rod domain 

monomers should be more stable than the dimers formed between terminally 

truncated rod domain monomers; the elimination of either of the terminal spectrin-

like repeats, should result in a loss of two of these pairwise interactions, leaving 

only two to contribute to the dimer formation. This differs to the staggered model 

where three pairwise spectrin-like interactions are contributing to the dimer 

formation. Here, the elimination of either of the terminal spectrin-like repeats 

should not disrupt these three pairwise interactions, and so, for this aligned model 

to be true, one would expect the dimer stability between full length rod domain 

monomers to be equal to the dimer stability between terminally truncated rod 

domain monomers. Investigations carried out by Flood et al. (1995), using chemical 

cross-linking and sedimentation equilibrium studies with full length and truncated 

rod domain chicken gizzard actinin constructs, show that that full length actinin rod 

domain, repeats 1-4, can self-associate and form a very stable dimer. Truncated 

actinin rod domain constructs, consisting of repeats 1-3 (r1r2r3) or repeats 2-4 

(r2r3r4), created through the removal of either repeat 4 or repeat 1 respectively, 

can also self-associate and form homodimers, but this self-association is much 
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weaker than that for the full length rod domain. This data disagrees with the 

staggered model and suggests that all repeats contribute to the dimer.  

Isolated chicken gizzard actinin dimeric rod domain alone has been shown 

to be very stable (Imamura et al. 1988). This high stability indicates that the 

spectrin-like repeats are sufficient for actinin dimerisation, although interactions of 

the CaM domain with the “neck” region of the ABD and rod domain may also 

contribute to dimerisation of full length actinin (Young & Gautel 2000; Ribeiro et al. 

2014). 

Studies involving a yeast 2 hybrid system and two spectrin-like repeat 

truncated human actinin-2 constructs also support the aligned model. Here, 

constructs comprising repeats 1 and 2 (r1r2) were capable of dimerising with 

constructs comprising repeats 3 and 4 (r3r4), but each of these two repeat 

constructs were not capable of interacting with themselves or with constructs 

comprising repeats 2 and 3 (r2r3). These yeast 2 hybrid studies also showed that 

constructs comprising repeats 2 and 3 were only able to dimerise with copies of 

themselves (Young & Gautel 2000). In the staggered model, one would expect r2r3 

to be able to interact with either r1r2 or r3r4. 

The crystal structure of r2r3 of human actinin-2 has been determined to be 

an aligned anti-parallel dimer (Djinović-Carugo et al. 1999). This study provides near 

certainty that the aligned model is the correct one. 

The crystal structure of the human actinin-2 rod domain (r1r2r3r4) has 

revealed that the rod domain is twisted 90° to the left (Ylänne et al. 2001). This 

feature may have been responsible for electron micrograph misinterpretation. As a 

result of the twist, the two repeats at one end the dimer, repeat 1 and repeat 4, 

might eclipse. In an electron micrograph, this might look like one singe mass (a 

single repeat). 

 

 

3.2.2 Spectrin Dimerisation 

Unlike actinin, spectrin is an antiparallel heterodimer. It is composed of both 

an α- and β-spectrin subunit (Speicher et al. 1992). The spectrin repeats that make 

up the basic structure of both of these α- and β- spectrin subunits mediate 
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dimerisation between them (Ursitti et al. 1996; Harper et al. 2001; Speicher et al. 

1992). Full length α- and β-spectrin contain 21 and 17 spectrin repeats respectively 

(Harper et al. 2001). Evaluation of these spectrin repeats through dimerisation 

studies have revealed the principal contributors to α-/β-spectrin heterodimer 

formation. Initial dimerisation studies involved investigating the assembly of 

peptide fragments from each of the spectrin subunits (α-spectrin or β-spectrin) with 

their complementary full-length subunit. Through HPLC gel filtration 

chromatography, it was found that of the fragments produced when β-spectrin was 

cleaved with trypsin, only those containing the βIV domain, which includes the first 

four spectrin repeats (r1r2r3r4) at the N-terminal, could associate with full-length 

α-spectrin. Additionally, of the α-spectrin fragments produced, only those 

containing the αV domain, which includes spectrin repeats 19-21 (r19r20r21) at the 

C-terminal, could associate with full-length β-spectrin monomers (Speicher et al. 

1992). Further characterization of α-/β-spectrin heterodimerisation was carried out 

by Begg et al. (2000) and Ursitti et al. (1996). They found that the minimum number 

of spectrin repeats necessary to be present to initiate heterodimer formation is 

four; spectrin repeats β1 and β2 from β-spectrin and spectrin repeats α20 and α21 

from α-spectrin. This site is commonly referred to as the dimer initiation site or the 

nucleation site. Ursitti et al. (1996) also found that the β1 repeat alone is 

insufficient to induce heterodimer formation with α-spectrin monomers, but its 

presence is vital to the initialisation of heterodimerisation; truncated constructs not 

containing this β1 repeat (β2-β4) could not induce heterodimer formation with α-

spectrin monomers. Subsequent investigations thereafter found that while a 

minimum of two repeats from each spectrin monomer was necessary to induce 

heterodimerisation, the addition of more repeats was found to increase the salt 

stability of the heterodimer (Begg et al. 2000). This result revealed that 

complementary electrostatic interactions between α- and β- repeats in the dimer 

initiation site are contributing to this initial high affinity binding step, while 

dimerisation of additional repeats outside of the dimer initiation site thereafter is 

through low affinity hydrophobic interactions (also discussed in section 1.1.2.3.2) 

(Begg et al. 2000). The α20-21 repeats contribute the majority of the negatively 
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charged residues and the β1-2 contribute the majority of the positively charged 

residues (Li et al. 2008)  

Harper et al. (2001) set out to assess the contribution of both the ABD and 

the CaM domain to heterodimer formation. Their studies compared the binding 

affinities between two repeat α-spectrin and two repeat β-spectrin recombinant 

proteins containing the EF-hand motifs from the CaM domain and the ABD 

respectively (α20-21EF and βABD1-2) with two-repeat α- and β-spectrin 

recombinant proteins lacking these domains (α20-21 and β1-2). Overall, they found 

no significant difference in binding affinity between α20-21EF with βABD1-2 and 

α20-21 with β1-2. Both pairs were able to form high affinity heterodimers, which 

suggested that both the ABD and the EF hand CaM domain do not contribute to 

heterodimer initiation.  

Overall, a comprehensive model for the role of the spectrin repeats in α-/β-

spectrin heterodimer formation is as follows: an initial high affinity association of 

α20-21 with β1-2, mediated by complementary electrostatic interactions (Fig. 3.3A), 

aligns the αEF hand motifs with the βABD (Fig. 3.3B) and aligns the remaining α-

spectrin repeats with their remaining complementary β-spectrin repeats (Fig. 3.3C). 

Heterodimerisation then occurs in a “zipper-like” fashion, through lateral 

association of remaining spectrin repeats involving weaker hydrophobic 

interactions, to create a strong dimeric complex (Li et al. 2007).  
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Figure 3.3: Spectrin Heterodimerisation. (A) Spectrin heterodimerisation begins with initial 
electrostatic interactions between β-spectrin spectrin repeats 1-2, and α-spectrin spectrin repeats 
20-21. (Begg et al 2000; Ursetti et al 1996). (B) These primary interactions align the βABD with the 
αCaM domain (Harper et al. 2001). (C) Dimerisation continues through hydrophobic interactions 
between the remaining α and β spectrin spectrin repeats in a “zipper-like” fashion down the length 
of the protein molecule (Begg et al. 2000).  

 

3.2.3 Strategies for the Characterisation of Actinin and α-/β-Spectrin Rod 

Domains 

From a nanoconstruction point of view, I considered stability and the ability 

to self-assemble the two most important attributes to a protein when considering it 

as a potential building block.  

As we have seen, actinin and spectrin dimerisation have been well studied 

from a structural and biochemical point of view. In general, for both actinin and 

spectrin, it appears that isolated single repeats interact very weakly, if at all, and 

that pairing of two consecutive repeats are required to achieve appreciable 

dimerisation. It also appears that the addition of further interacting repeats to this 

core dimeric structure will add further stability. However, from the standpoint of 

using spectrin repeats in synthetic biology, further investigation into the structural 

foundations and conditions pertaining to the formation of these dimers is desirable.  

Specifically, it would be important to determine and establish:   

 Which pairs of spectrin repeats are capable of inducing dimer 

formation? 

 Is the context of consecutive repeats important, or can they be “mixed 

and matched”? 
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 What conditions disrupt dimer formation? 

Ultimately, this study involved the investigation of the stability and self-assembly 

(dimerisation), properties of both the actinin rod domain and truncated α-/β-

spectrin proteins, each containing only four spectrin repeats, for potential use as 

nanostructure building blocks. These studies would primarily provide information 

that would allow for the exploitation of these proteins for protein-based 

nanoconstruction, but they would also provide more information regarding the 

physiological function and physical attributes of these proteins.  

The general strategy for such an investigation employed in this chapter first 

involves expression and purification of various spectrin-like and spectrin repeat 

constructs that contain combinations of affinity, epitope or fluorescent protein tags 

that would allow both stability and dimerisation to be assessed through "pulldown" 

type assays or, in the case of dimerisation only, through native gel electrophoresis.  

I anticipated that in order to study actinin homodimerisation in particular, co-

expression of differentially tagged constructs would be necessary.  This is because 

certain constructs when expressed individually might be expected to form very 

stable homodimers, precluding their use in interaction or stability assays.  However, 

I envisioned a secondary use for this co-expression system, a use that focused on 

the nanosynthetic aspect of the project. In order to build a structure using the 

bottom-up assembly technique I thought it important to have a system in which I 

could simultaneously produce several different “building blocks” and independently 

control the expression levels of each one.  For these reasons, strategies for tunable 

co-expression of two or more constructs in E. coli were evaluated.   

 

 

3.2.4 Strategies for Inducible Co-expression of Multiple Proteins in E. coli  

    Various co-expression strategies for protein production in E. coli have been 

described and several plasmid systems are available commercially. One potential 

approach is the expression of multiple proteins from a bicistronic mRNA. Another is 

the use of a two-promoter-one-plasmid system, and an alternative approach is the 

use of two plasmids. Both bicistronic and two-promoter-one-plasmid approaches 

use only a single plasmid into which both genes of interest are cloned. A bicistronic 



Page | 127  
 

plasmid contains only a single promoter. This promoter regulates the expression of 

multiple genes, and all genes are transcribed in one long mRNA strand. The two-

promoter-one-plasmid approach consists of a plasmid that has two promoters.  The 

expression of both genes of interest is controlled by its own promoter, and each 

gene is transcribed in its own short mRNA strand (Busso et al. 2011). In the two 

plasmid approach each plasmid carries a single gene. With this method, each 

plasmid must carry a different antibiotic resistance gene, and both plasmids must 

be compatible with each other, meaning they must each carry different origins of 

replication (Busso et al. 2011).  

Out of the three co-expression strategies, the two plasmid approach might be 

considered to be the most flexible. Two popular bacterial expression systems are the 

T7 system, and its derivatives, and the PBAD system (Studier & Moffatt 1986; Guzman 

et al. 1995).  

The plasmids that I chose were the pBAD plasmid, purchased from Invitrogen 

(Life Technologies, Carlsbad, California, USA), containing the PBAD promoter, and the 

pCDF/pRSF-duet plasmids, purchased from Merck (Novagen, Quintin, France), 

containing the T7lac promoter. 

 

3.2.4.1 PBAD Expression System 

Along with the PBAD promoter, the pBAD vector also contains the araC gene. 

This gene encodes for the AraC protein. This AraC protein regulates the activity of 

the PBAD promoter (Guzman et al. 1995). It is a dimeric protein made up of a C-

terminal DNA binding domain, a N-terminal dimerisation domain from which an 18 

amino acid arm protrudes from, and an arabinose binding pocket (Fig. 3.4) (Schleif 

2003). 
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Figure 3.4: The AraC Protein. A multi-domain protein consisting of a C-terminal DNA binding domain 
and an N-terminal dimerisation domain with an 18 amino acid residue arm extension and an 
arabinose binding pocket (Schleif 2003). 

 

 In the absence of arabinose transcription is prevented (Fig. 3.5A). The N-

terminal arm binds to the DNA binding domain. This interaction brings about an 

AraC orientation that encourages its binding to two half sites, araI1 and araO2, that 

are upstream of the PBAD promoter. These sites are separated from each other by a 

great distance, and AraC binding to both generates a DNA loop (Schleif 2003), a 

widely used method to regulate gene expression (Matthews 1992). When arabinose 

is bound to AraC in the arabinose binding pocket binding (Fig. 3.5B) the N-terminal 

arm binds over the arabinose. The DNA binding domain is no longer constrained, 

and the dimeric AraC protein can now bind to two neighbouring half sites, araI1 and 

araI2 (Schleif 2003). This new interaction causes the DNA loop to open, which 

facilitates transcription (Schleif 2003; Schleif 2010).  This regulatory mechanism is 

referred to as “The Light Switch Mechanism” (Schleif 2003). 
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Figure 3.5: The Promoter and AraC Binding Sites on the Regulatory Region of the pBad Vector.  
(A) In the absence of arabinose, the N-terminal arm interacts with the DNA binding domain. This 
permits the AraC protein to adopt a restricted conformation that allows it to bind to two well-
separated AraC binding sites upstream of the PBAD promoter, the araO2 half site and the araI2 half 
site. A DNA loop forms and this prevents transcription.  
(B) When arabinose (depicted here as red circle) is present in the arabinose binding pocket, the N-
terminal arm repositions itself, and no longer binds to the DNA binding domain. This allows the DNA 
binding domains to re-organise themselves and bind to two adjacent half sites, araI1 and araI2 half 
sites. This interaction opens the DNA loop and facilitates transcription (Schleif 2003; Schleif 2010). 

 

Both the DNA binding domain and the dimerisation domain of the AraC 

protein can function independently of each other; in vivo and in vitro experiments 

with a chimeric protein made up of the AraC dimerisation domain and the DNA 

binding domain from the transcriptional repressor protein LexA report that this 

fusion protein can dimerise and can bind to the LexA operator sequence, while in 

vivo and in vitro experiments with a chimeric protein made up of the AraC DNA 

binding domain and the dimerisation domain, a leucine zipper motif, of the C/EBP  
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transcriptional activator protein report that this fusion protein can bind the araI site 

and stimulate transcription from the PBAD promoter, and dimerise (Bustos & Schleif 

1993).  The AraC DNA binding domain is very flexible in terms of its DNA binding 

specificity; it can bind to repeat half sites and inverted repeat half sites (Carra & 

Schleif 1993). This suggests that the arabinose induced loop breaking is not a 

consequence of increased or decreased affinity for each of the half sites, but rather 

a protein conformational change that favours binding to two non-adjacent or 

adjacent sites, depending on the absence or presence of arabinose respectively. 

This mechanism relies upon the structure if the AraC protein (Lobell & Schleif 1990).  

 

3.2.4.2 The T7lac Expression System 

Both the pCDF/ pRSF-Duet plasmids carry the T7lac promoter and, as their 

name suggests, they contain the T7 promoter. The T7 expression system makes use 

of the T7 RNA polymerase that comes from the T7 bacteriophage (Studier & 

Moffatt 1986). The gene needed to encode T7 RNA polymerase is not contained on 

either of the duet plasmids, nor is it naturally expressed in E. coli cells (Studier & 

Moffatt 1986; Francis & Page 2010). For this reason, when using this promoter, it is 

necessary to choose a bacterial expression strain whose genome has been 

manipulated to encode for the T7 RNA polymerase. BL21 [DE3] E. coli cells are one 

such strain. In these cells expression of T7 RNA polymerase is under the control of 

the lacUV5 promoter. Transcription from this lacUV5 promoter is regulated with 

the presence or absence of IPTG. Transcription occurs when IPTG is present in the 

system (Francis & Page 2010). The T7 RNA polymerase specifically recognizes the T7 

promoter (Studier & Moffatt 1986) and, once transcribed, in the presence of IPTG, 

the T7 RNA polymerase can go forward and activate transcription of the target 

construct (Studier & Moffatt 1986) (Fig. 3.6) 

T7lac promoters present on the pCDF/ pRSF-Duet plasmids in this study 

have additional regulatory features that help to minimise basal expression. They 

have a lac operator sequence downstream of the T7 promoter, and they contain 

the lacI gene sequence that encodes for the lac repressor. Binding of the lac 

repressor to the lac operator sequence reduces transcription and, in doing so, helps 

to decreases background expression (Novagen Duet Vector User Protocol). 
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Figure 3.6: The T7 Expression System. Target constructs are cloned into an expression plasmid with 
the T7 promoter. Constructs are then transformed into E. coli cells whose genome has been altered 
to contain the T7 RNA polymerase. (A) When no ITPG is present there is no T7 RNA polymerase 
transcribed and therefore there is no transcription of the gene of interest. (B) When IPTG is present, 
the lacUV5 promoter is activated to transcribe the T7 RNA polymerase. This T7 RNA polymerase can 
then activate transcription from the T7 promoter (Francis & Page 2010). 

 

 

3.2.4.3 Crosstalk between the T7lac Promoter and the PBAD Promoter 

One drawback in using the two plasmid co-expression approach is that 

sometimes the two promoters can disrupt each other’s activity, i.e. engage in 

promoter crosstalk when the inducer of one promoter disturbs expression from the 

other promoter (Lee et al. 2007).  A study undertaken by Lee et al. (2007) showed 

that IPTG inhibited expression from the PBAD system. It was suggested that the 

binding of IPTG to AraC, the transcriptional regulator of the PBAD system, was 

interfering with arabinose induction (Lee et al. 2007; Schleif 2010). Through 

directed evolution they were able to derive a PBAD expression system that was more 

responsive to the presence of arabinose and, as a result, no longer sensitive to the 

presence of IPTG. This modified version of the PBAD system contains a mutated 

variant of the araC gene that causes the production of a truncated AraC protein at 

its C-terminal (C280*). They found this new AraC protein to be IPTG-insensitive, 
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and, as a result, this new version of the PBAD system to be more compatible with 

IPTG-induction systems.  

This study also found that three mutations in the AraC N-terminal 

dimerisation domain collectively gave the same phenotype as the AraC protein 

truncated at its C-terminal.  It is unclear why these mutations decrease the 

sensitivity of the PBAD system to IPTG.  The affected amino acid residues were found 

to reside outside of the arabinose binding pocket, and were found not to be any of 

the residues involved in DNA binding or involved in the binding of the N-terminal 

arm. This suggest that these mutations do not affect the binding of each domain to 

its corresponding ligand (Lee et al. 2007). The fact that both sets of mutations 

resulted in the same phenotype, even though they reside on different domains of 

the protein, suggests that these mutations take effect when both the dimerisation 

domain and the DNA binding domain need to work together.  

Focusing on the C280* mutation, in their study, Lee et al (2007) compared 

expression from the WT PBAD system with expression from their new C280* PBAD 

system in the presence of IPTG; in all tests carried out, only one protein expression 

system was present and, therefore, only one protein was to be expressed.  

To better determine the usefulness of this new C280* PBAD system going 

forward, examination of expression from the C280* PBAD system in a co-expression 

situation would need to be carried out; where one protein would be expressed 

from the C280* PBAD system, induced by the presence of arabinose, together with 

expression of another protein from the T7lac promoter, induced by the presence of 

IPTG. 

 

 

3.2.5 Objectives 

In conclusion, the overarching objectives of this chapter were to: 

1. generate a co-expression system and purification strategy that 

would enable us to: 

➢ verify and produce actinin dimers and spectrin 

heterodimers. 
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➢ produce different “building blocks” for the self-assembly of 

a pre-designed protein nanostructure. 

 Accessory aims of this section were to: 

 further the investigation started by Lee et 

al. (2007) and compare expression between 

the WT PBAD system and the C280* PBAD 

system in a co-expression environment 

with the T7lac system. 

 shorten the purification strategy of these 

dimers in view of making it a more 

attractive method for generating protein 

complexes. 

2. study and learn more about the actinin rod domain dimerisation 

process (i.e self-assembly properties), with the intention of: 

➢  widening the knowledge of this dimerisation process in a 

biological context. 

➢ exploiting this dimerisation process to create potential 

biosynthetic building blocks. 

3. determine the conditions that disrupt dimer association and 

induce dissociation between actinin dimers and α/ β-spectrin 

heterodimers (i.e. stability properties). 
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3.3 Materials and Methods 

 

 

3.3.1 Antibodies and Reagents 

Sources of antibodies were as follows: anti-FLAG, from Sigma-Aldrich, 

Arklow, Ireland (Catalog Number:  #F3165) and anti-MPB, from New England 

Biolabs, Hitchin, UK (Catalog Number: # E8030S); IRDYE®800CW conjugated anti-

mouse and anti-rabbit secondary antibodies were from LI-COR Biosciences (Catalog 

Numbers: #926-32210 and #926-3221, respectively). All other reagents and 

chemicals used were obtained from Sigma-Aldrich, unless otherwise stated.  

 

 

3.3.2 cDNA constructs  

The cDNA constructs, for protein expression and subsequent self-assembly 

and stability analysis, were amplified by PCR.  

All actinin constructs are the human muscle actinin-2 (calcium insensitive) 

isoform. Primer design was based on the GeneBank sequence NM_001103. All α-

Spectrin constructs are the human erythrocytic α-Spectrin and all β-Spectrin 

constructs are the human erythrocytic β-spectrin transcript variant 1. Primer design 

was based on the GeneBank sequences; NM_003126 and NM_001024858, 

respectively.  

The constructs used, with amino acids residues in brackets, are as follows. 

Actinin: r1-r4 (274-746); r1-r3 (274-637); r2-r4 (371-746), r1-r2 (274-501), r2-r3 

(371-637) and r3-r4 (502-746). α-Spectrin: r18-r21 (1818-2259). β-Spectrin: r1-r4 

(293-743). 

Of special interest, two sets of primers (Integrated DNA Technologies, Inc., 

Leuven, Belgium) were designed for actinin r1-r4 construct amplification; one set to 

yield a product with an EcoRI site at its 5’ end, and XhoI and HindIII sites at its 3’ 

end. The other set, to yield a product with EcoRI and SacII sites at its 5’ end, and 

KpnI and SalI sites at its 3’ end (Fig. 3.7)  
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Figure 3.7: Strategy for Cloning Actinin cDNA Constructs. Restriction sites employed for the cloning 
of Actinin-2 constructs. 

 

The primers to amplify the α-spectrin: r18-r21 construct were designed to 

yield a product with BglII and AscI sites at its 5’ end and SalI and XhoI sites at its 3’ 

end. The primers to amplify the β-spectrin: r1-r4 construct were designed to yield a 

product with a EcoRI site at its 5’ end, and SalI and HindIII sites at its 3’ end (Fig. 

3.8). 

 
Figure 3.8: Strategy for Cloning Spectrin Constructs. Restriction sites employed for the cloning of α-
Spectrin and β-Spectrin constructs. 

 

For remaining constructs, restriction sites included in amplicon design were 

those used to introduce amplicon to plasmid, and are mentioned in Plasmid 

Construction section. 

 

 

3.3.3 Plasmid Construction 

 

3.3.3.1 Cloning of Actinin Constructs 

The actinin r1-r4 construct was introduced into the commercially available 

pCDF-Duet plasmid (see appendix for plasmid map) twice as two separate 

preparations, as follows (restriction sites in brackets): 
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MCS1 (EcoRI and HindIII), so to be fused to a 6xHis tag at its N-terminal. This 

construct preparation was later modified to contain a FLAG epitope tag at the C-

terminus of the 6xHis tag. MCS2 of the pCDF-Duet vector (EcoRI and SalI; making 

use of compatible cohesive end ligation with plasmid sites Mfe I and XhoI, 

respectively), so as to be fused to a S- tag at its C-terminal.  From hereafter, actinin 

r1-r4 was sub-cloned into: MSC1 of a modified pCDF-Duet plasmid (EcoRI and 

HindIII), encoding a N-terminal 6xHis tag with a yellow fluorescent protein (YFP) tag 

sequence, a modified pBAD plasmid (EcoRI and HindIII), encoding a N-terminal HIS6 

tag followed by a maltose binding protein (MBP) tag sequence. A second modified 

pBAD plasmid (EcoRI and HindIII), encoding a N-terminal MBP tag sequence, which 

had previously been genetically manipulated, using the Quikchange site-directed 

mutagenesis kit (Agilent Technologies) to contain the C280* araC gene, encoding 

for the truncated version of the AraC regulatory protein. 

The following actinin constructs were introduced into the commercially 

available pRSF-Duet plasmid (using restriction sites in brackets) so that each would 

be fused to a 6xHis tag at their N-terminal: r1-r3 (EcoRI and HindIII), r2-r4, r1-r2, r2-

r3 and r3-r4. These construct preparations were later modified to contain a FLAG 

epitope tag at the C-terminus of their HIS6 tag. From here, these actinin constructs 

were sub-cloned into the modified pBAD plasmid to be fused to a HIS6MBP at their 

N-terminal. 

 

3.3.3.2 Cloning of Spectrin Constructs 

The α-spectrin r18-r21 construct was introduced into MSC1 of the pCDF-

Duet plasmid (BglII and XhoI; making use of compatible cohesive end ligation with 

plasmid sites BamHI and SalI respectively), so as to be fused to a 6xHis tag at its N-

terminal. From here, α-Spectrin r18-r21 was sub-cloned MCS1 of a modified pCDF-

Duet plasmid (AscI and SalI), encoding a N-terminal 6xHis tag with a mCherry 

fluorescent protein tag. 

The β-Spectrin r1-r4 construct was introduced into MSC1 of the pRSF-Duet 

plasmid (EcoRI and HindIII), so as to be fused to a 6xHis tag at its N-terminal. From 

hereafter, β-Spectrin r1-r4 was sub-cloned into a modified pRSF-Duet plasmid 
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(EcoRI and SalI), encoding a N-terminal 6xHis tag with a mCherry fluorescent 

protein tag, and sub-cloned into the C280* pBAD plasmid (EcoRI and SalI), with N-

terminal MBP sequence. 

 

3.3.3.3 Construction of Bicistronic Plasmid  

The pRSF bicistronic expression plasmid was produced through multiple 

sequential cloning steps and is derived from the commercially available Duet 

plasmids. The pRSF-Duet plasmid was enzymatically digested with HindIII and MfeI. 

Intermediary segment, containing second promoter sequence and transcription 

start site was replaced with short oligonucleotide of 43 base pairs. The two MCSs 

from the original pRSF still remained. Actinin r1r2r3r4 was sub-cloned into MCS2 

using restriction sites EcoRI and SalI; making use of compatible cohesive end 

ligation with plasmid sites Mfe I and XhoI, respectively. Resulting plasmid was 

enzymatically digested with KpnI and HindIII, to create a fragment containing the 

Actinin r1r2r3r4 sequence and the 43 base pair oligonucleotide. This fragment was 

introduced to a KpnI and HindIII digested modified pRSF-Duet plasmid encoding for 

YFP-r1r2r3r4 in MCS1, yielding a bicistronic YFP-r1r2r3r4 and r1r2r3r4-S tag 

expression plasmid. 

The veracity of all constructs was verified by restriction digest, followed by 

DNA sequencing. A list of all constructs and the studies each was utilised in can be 

found in table 3.1; section 3.3.4. 

 

 

3.3.4 Protein Expression  

For single protein expression: All constructs listed in table 3.1 were 

transformed into E. coli [DE3] (Novagen, Quintin, France). All actinin constructs 

were induced at 37 oC by addition of 0.2mM IPTG and cells were harvested 4 hours 

post induction. All spectrin constructs were induced at 30 oC by addition of 0.2mM 

IPTG and cells were harvested 6 hours post induction.  

For protein co-expressions using the two-plasmid-two-different-promoter 

co-expression system: Compatible plasmid combinations used were pRSF/pCDF-
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Duet with pBAD/pBAD C280*.  Each pair of recombinant actinin/spectrin constructs 

were co-electroporated into electro-competent E. coli [DE3]. All combinations were 

grown in LB media containing the two appropriate antibiotics (resistance markers 

for each plasmid are mentioned in table 3.1). Co-expression of actinin constructs 

was induced at 37 oC with the introduction of IPTG and arabinose (relevant 

concentrations listed in table 3.2). Cells were harvested 4 hours post induction.  Co-

expression of spectrin constructs was induced at 30 oC with the introduction of IPTG 

and arabinose (relevant concentrations listed in table 3.2). Cells were harvested 6 

hours post induction. 

For all expressions, a 1ml sample was removed from each culture before 

and after the induction period, pelleted, and resuspended in H2O, for inspection by 

SDS-PAGE. Harvesting of remaining culture was through centrifugation, and pellet 

was stored at -20 oC. 

For protein co-expressions using both the bicistronic and two-promoter-

one-plasmid systems, two-plasmid-same-promoter: plasmids were transformed 

into E. coli [DE3] and expression was induced at 37 oC by addition of 0.2mM IPTG 

and cells were harvested 4 hours post induction. Analysis was carried out on 1ml 

pre and post induction samples. 
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Spectrin Repeat Containing Constructs from Actinin and Spectrin 

Actinin Plasmid Inducer Conc.  Spectrin Plasmid Inducer Conc. 
Self-
Assembly 
Studies 

    Self-
Assembly 
Studies 

   

His 
r1r2r3r4 

pCDF-
Duet 
(SmR) 

IPTG 0.2mM  His α-
r18r19r20r21 

pCDF-
Duet 
(SmR) 

IPTG 0.2mM 

His MBP 
r1r2r3r4 

pBAD 
(AmpR) 

Arabinose 0.5%  His β-
r1r2r3r4 

pRSF-
Duet 
(KnR) 

IPTG 0.2mM 

His FLAG 
r1r2r3r4 

pCDF-
Duet 
(SmR) 

IPTG 0.2mM  His mCherry 
α-
r18r19r20r21  

pCDF-
Duet 
(SmR) 

IPTG 0.2mM 

His MBP 
r1r2r3 

pBAD 
(AmpR) 

Arabinose 0.5%  His mCherry 
β-r1r2r3r4  

pRSF-
Duet 
(KnR) 

IPTG 0.2mM 

His MBP 
r2r3r4 

pBAD 
(AmpR) 

Arabinose 0.5%  MBP β-
r1r2r3r4 

pBAD 
C280* 
(AmpR) 

Arabinose 0.5% 

His FLAG 
r1r2r3 

pRSF-Duet 
(KnR) 

IPTG 0.2mM      

His FLAG 
r2r3r4 

pRSF-Duet 
(KnR) 

IPTG 0.2mM      

His MBP 
r1r2 

pBAD 
(AmpR) 

Arabinose 0.5%      

His MBP 
r2r3 

pBAD 
(AmpR) 

Arabinose 0.5%      

His FLAG 
r1r2 

pRSF-Duet 
(KnR) 

IPTG 0.2mM      

His FLAG 
r2r3 

pRSF-Duet 
(KnR) 

IPTG 0.2mM      

His FLAG 
r3r4 

pRSF-Duet 
(KnR) 

IPTG 0.2mM      

         
Stability 
Assays 

    Stability 
Assays 

   

His 
r1r2r3r4 

pCDF-
Duet 
(SmR) 

IPTG 0.2mM  His α-
r18r19r20r21 

pCDF-
Duet 
(SmR) 

IPTG 0.2mM 

MBP 
r1r2r3r4 

pBAD 
C280* 
(AmpR) 

Arabinose 0.5%  MBP β-
r1r2r3r4 

pBAD 
C280* 
(AmpR) 

Arabinose 0.5% 

         
Co-
expression 
Strategies 

        

S-tag 
r1r2r3r4 

All co-
expression 
strategy 
plasmids 

0.2mM       

YFP 
r1r2r34 

All co-
expression 
strategy 
plasmids 

0.2mM       
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Table 3.1: List of Constructs Designed. Those constructs pertaining to this chapter and the studies 
they were utilised in (some constructs were used in more than one study; hence these are listed 
twice). Table includes the plasmid that each construct was cloned into, including the antibiotic 
resistance marker of that plasmid. Also listed is the inducer, and inducer concentration required, to 
activate the expression of each construct. AmpR=ampicillin resistance; KnR=kanamycin resistance; 
SmR=Spectinomycin.   
 

Co-Expression Combinations with Inducer Concentrations 

Construct Combinations IPTG Concentrations Arabinose Concentrations 
Actinin Self-Assembly Studies 
(using T7lac system and WT 
pBAD system) 

  

His FLAG r1r2r3r4 0.2mM - 

His MBP r1r2r3r4 - 0.2% 

   

His FLAG r1r2r3 0.0625mM - 

His MBP r1r2r3 - 1.25% 

   

His FLAG r1r2r3 0.0625mM - 

His MBP r2r3r4 - 1.25% 

   

His FLAG r2r3 0.0625mM - 

His FLAG r2r3 - 1.25% 

   
Actinin Stability Assays (using 
T7lac system and C280* pBAD 
system) 

  

His r1r2r3r4 1mM - 

MBP r1r2r3r4 - 0.2% 

   
Spectrin Stability Assays (using 
T7lac system and C280* pBAD 
system) 

  

His α-r18r19r20r21 1mM - 

MBP β-r1r2r3r4 - 0.1% 

Table 3.2: Co-Expression Protein Combinations with Optimum Inducer Concentrations. 
Combinations of protein pairs co-expressed and co-purified for various studies carried out 
throughout this chapter and the optimum inducer concentrations required to bring about co-
expression. Mentioned also are the two systems that were used to bring about co-expression.  
 

3.3.4.1 Promoter Cross-Talk Study Co-expressions  

Promoter cross-talk study was performed with the compatible plasmid combination 

pRSF-Duet and pBAD/pBAD C280*, expressing YFP and MBP proteins respectively. 

Expression was performed as described above; constant IPTG concentrations were 

at 0.2mM, with increasing IPTG concentrations being 0.2, 0.5 and 1mM. Constant 

arabinose concentrations were at 0.5%, with increasing arabinose concentrations 

being 0.01, 0.05. 0.2 and 0.5%. For expression of one protein, in a culture 

containing both plasmids, only the relevant inducer is introduced to the culture, 
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either 0.2mM IPTG or 0.5% arabinose only. Analysis was carried out on 1ml pre and 

post induction samples 

 

3.3.5 Protein Purification 

Frozen cells were thawed on ice and resuspended in PBS, 0.2% triton, 20mM 

β-mercaptoethanol and 1mM PMSF. Cells were lysed by sonication and addition of 

0.1mg/ml lysozyme for 30min at 4 oC. Lysates were cleared by centrifugation at 

39,000xg for 40min at 4 oC. 

For Ni-based purification, proteins were loaded onto a Ni-column pre-

equilibrated with Ni-wash buffer (0.5M NaCl, 50mM KPO4 pH 8.0, 20mM β-

mercaptoethanol, 5mM imidazole, 0.1% triton). Columns were washed three times 

with 10ml wash buffer. Bound proteins were eluted in 200mM imidazole pH7, with 

20mM β-mercaptoethanol.  

For amylose-based purifications, proteins were loaded onto an amylose 

column pre-equilibrated with amylose wash buffer (20mM Tris pH7.5, 150mM NaCl, 

1mM DTT). Columns were washed three times with 10ml wash buffer. Bound 

proteins were eluted in 10mM maltose, with 20mM Tris pH7.5, 150mM NaCl, 1mM 

DTT. Protein dimers were purified using sequential chromatography steps; Ni-based 

purification followed by amylose based purification. Eluted proteins/dimers were 

incubated overnight at 4 oC in dialysis tubing immersed in a dialysis buffer (20mM 

Tris-HCl pH7.5, 50mM NaCl, and 5mM β-mercaptoethanol). Purified proteins were 

concentrated using Amicon Ultra centrifugal filters (Millipore, Cork, Ireland). 

 

 

3.3.6 Actinin Spectrin-like Repeat and Spectrin Spectrin-Repeat 

Dimerisation Assays 

Actinin: His FLAG tagged with His MBP tagged actinin four-/three-/two-

spectrin-like repeat constructs were co-expressed as previously described above. 

Consequent cell lysate of comparable concentrations was incubated with 30µl of 

amylose resin for 30min at 4 oC with continuous mixing.  A separate sample using 

His MBP tag cell lysate was incubated with amylose resin as a control. The resin was 

collected with low speed centrifugation, 1800xg for 3min, and unbound proteins 
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were removed with three 1ml x 5min washing steps with amylose wash buffer. His 

MBP tagged proteins were eluted with 65µl amylose elution buffer. Eluted and pull-

down proteins were analysed with SDS-PAGE followed by anti-FLAG western blot 

detection. For actinin two-spectrin-like repeat dimerisation assays, both co-

expression and single expression cell lysates were used. For those assays involving 

mixing of single expression cell lysate: for each combination, comparable amounts 

of each expression lysate are mixed. Remainder of protocol is as per those assays 

carried out with co-expression lysate. 

Spectrin: 1µM of each purified protein, His α-r18r19r20r21 and MBP β-

r1r2r3r4, were mixed together for 20min at 4 oC. Protein mix was then incubated 

60µl amylose resin and left to rock continuously for 20min at 4 oC. A separate 

sample in which only the His α-r18r19r20r21 protein was incubated with amylose 

resin was set up as a control. The resin was collected with low speed centrifugation, 

1800xg for 3min, and three 1ml x 5min washing steps were carried out with 

amylose wash buffer. MBP β-r1r2r3r4 tagged proteins were eluted with 120µl 

amylose elution buffer. Eluted and pull-down proteins were analysed with SDS-

PAGE.  

 

 

3.3.7 Native Protein Gel Electrophoresis 

Native protein gel electrophoresis set up was as per the standard 

polyacrylamide gel electrophoresis protocol, with the exception that SDS, β-

mercaptoethanol and boiling steps were omitted. 

Actinin: Comparable amounts of purified His MBP r1r2r3r4 and His r1r2r3r4 

proteins were mixed. Single protein controls were also prepared; His MBP r1r2r3r4 

only and His r1r2r3r4 only.  

Spectrin: The following protein mixes were prepared, with comparable 

amounts of each protein: His mCherry α-r18r19r20r21 and His β-r1r2r3r4, His α-

r18r19r20r21 and His mCherry β-r1r2r3r4. Control mixes included His α-

r18r19r20r21 and His mCherry α-r18r19r20r21, His β-r1r2r3r4 and His mCherry β-

r1r2r3r4. Single protein controls included His α-r18r19r20r21 only, His mCherry α-

r18r19r20r21 only, His β-r1r2r3r4 only, and His mCherry β-r1r2r3r4 only.  
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Gel loading buffer (without β-mercaptoethanol and SDS) was added to all 

Actinin and Spectrin samples on ice. Samples were then loaded onto 5% native gels 

(prepared without SDS).  Samples were run in native gel running buffer (without 

SDS) at 4 oC. Both the separating gel and gel running buffer were designed to have 

an approx. pH8-9, as per standard denaturing protocol. 

 

 

3.3.8 Actinin spectrin-like repeat and Spectrin spectrin repeat Salt Stability 

Assays 

1.5µM of actinin pseudoheterodimers (His r1r2r3r4:MBP r1r2r3r4) or 1.5µM 

of spectrin heterodimers (His α-r18r19r20r21:MBP β-r1r2r3r4) were each incubated 

with 10µl Ni-resin in a buffer containing 20mM Tris pH7.5, 5mM  

β-mercaptoethanol, 5mM imidazole and varying concentration of NaCl; from 

150mM to 4.5M (150mM, 500mM, 1M, 1.5M, 2M, 2.5M, 3M, 3.5M, 4M and 4.5M) 

for actinin pseudoheterodimers, and 150mM to 2M (150mM, 500mM, 1M, 1.5M 

and 2M) for spectrin heterodimers. Separate samples containing either actinin MBP 

r1r2r3r4 only or spectrin MBP β-r1r2r3r4 were prepared as controls and were also 

subjected to all the same salt concentrations as their corresponding 

pseudoheterodimers or heterodimer.  Samples were left for 1hr at 4 oC. The resin 

was collected with low speed centrifugation, 1800xg for 3min, and three 1ml x 5min 

washing steps were carried out with Ni-wash buffer.  His tagged proteins were 

eluted with 40µl Ni-elution buffer. Eluted and pull-down proteins were analysed 

with SDS-PAGE, followed by anti-MBP western blot detection. 

 

 

3.3.9 Actinin spectrin-like repeat and Spectrin spectrin-repeat 

Thermostability Assays 

Thermostability assays were carried out as per salt stability assays, with a 

few variations: assays used 1µM of actinin pseudoheterodimers or spectrin 

heterodimers, each pseudoheterodimer or heterodimer sample was incubated in 

temperatures between 4 oC and 70 oC (4°, 27°, 50° and 70 oC) for 30 min prior to 

incubation with 10µl Ni-resin in a buffer containing 20mM Tris pH7.5, 5mM β-
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mercaptoethanol, 5mM imidazole and 150mM NaCl. All incubation and wash steps 

for each sample were carried out at that sample’s given temperature. 

For actinin dissociation and re-association studies 1µM of His r1r2r3r4 and 

1µM of MBP r1r2r3r4 were mixed and incubated at temperatures of between 37.7 

oC and 57.4 oC (37.7°, 40.7°, 45.6°, 50.9°, 55.7° and 57.4 oC) for 10min and were then 

cooled slowly to 4 oC. Remainder is as per previous salt and thermostability assays, 

with all wash steps carried out at 4 oC. 
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3.4 Results 

 

 

3.4.1 Expression and Purification of Spectrin-like and Spectrin Repeat 

Containing Constructs from Actinin and Spectrin 

It was first necessary to design and clone the spectrin-like and spectrin 

repeat constructs from actinin and spectrin proteins respectively (see table 3.1 in 

Materials and Methods for exhaustive list of all dimerisation constructs), check if 

they expressed in E. coli cells, determine the optimum concentration of inducer to 

promote expression, and adopt a protein purification strategy. 

Those constructs that were designed to have an MBP tag were cloned into 

the pBAD plasmid. All other constructs, those without an MBP tag, were cloned into 

either the pCDF- or pRSF-Duet plasmids.  

Fig. 3.9 is presented as a representative figure to illustrate that all individual 

constructs could be expressed at a high level upon induction, and could also be 

purified with a high yield.  
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Figure 3.9: Representative Gel Demonstrating Successful Expression and Purification Strategies of 
Repeat Constructs.  
All protein constructs were recombinantly expressed in E. coli cells. All protein expression and 
purification steps were analysed using SDS protein gel electrophoresis. Proteins were visualised 
using Coomassie Brilliant Blue staining. 
(A) Total cell protein samples, both pre and post induction of protein expression with arabinose or 
IPTG. 
(B) Fractions taken at each step of nickel column affinity chromatography purification.  
(C) Fractions taken at each step of amylose column affinity chromatography purification.  
(D) Total cell protein samples, both pre and post induction of protein expression with arabinose or 
IPTG. 
(E)  Purified His α-spectrin r18r19r20r21. Purification was carried out as per (B). 
(F) Purified MBP β-spectrin r1r2r3r4. Purification was carried out as per (C). 
Proteins of interest and the sizes (in kDa) of the relevant molecular weight markers are indicated on 
each gel. 

 

 

3.4.2 Co-expression System 

 

3.4.2.1 Choosing a Bacterial Co-Expression Strategy 

The aim here was to investigate which co-expression strategy (bicistronic, 

two-promoter-one-plasmid or two-plasmid) would be best to produce the actinin 

dimers and α-/β-spectrin heterodimers. A benchmarking study consisting of two 
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target constructs, S-tagged and YFP-tagged actinin rod domain constructs (spectrin-

like repeats 1-4, r1r2r3r4), was set up. Both target constructs were cloned into a 

bicistronic plasmid, that I designed myself, and a commercially available two-

promoter plasmid. One copy of each target constructs was cloned into a single 

separate plasmid for single expression (Fig. 3.10). 

 

Figure 3.10: Schematic Representation of the Genetic Design (DNA sequences) of the Co-
expression Constructs to Produce the YFP-ROD:S-ROD dimers. (A) pRSF bicistronic expression 
plasmid. (B) pCDF two-promoter-one plasmid expression plasmid. (C) pRSF and pCDF single gene 
expression plasmids for two plasmid expression approach.  
 

In examining protein co-expression from each of these strategies a 

difference was observed. Co-expression of each of the target constructs was noted 

using both the two-promoter-one-plasmid strategy and the two plasmid strategy. 

There was no co-expression noted with the bicistronic strategy, only expression of 

the gene positioned closest to the promoter on the plasmid (Fig. 3.11).  

 

 

Figure 3.11: SDS-PAGE Analysis of Co-expression Strategies.  
Total cell protein samples, both pre and post induction of protein expression with IPTG, were 
analysed using SDS-protein gel electrophoresis. Proteins were visualized using Coomassie Brilliant 
Blue staining.  
Co-expression of both proteins of interest is only observed for two of the three strategies; the two-
promoter-one-plasmid strategy and the two plasmid strategy.  
Proteins of interest and the sizes (in kDa) of the relevant molecular weight markers are indicated.  
n=1 
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3.4.2.2 Optimizing Co-expression of Actinin Spectrin-like Repeat Constructs using 

a Two-Plasmid Co-expression System 

For reasons explained in the discussion section of this chapter I decided to 

progress with the two plasmid co-expression system.  

For the benchmarking study on protein co-expression strategies, in the 

preceding section, the two-plasmid co-expression system (Fig.3.10C) made use of 

two plasmids that both had the T7lac promoter, meaning that gene expression 

from both plasmids was regulated with the absence or presence of the same 

inducer, IPTG. Going forward, I adapted the two-plasmid co-expression system so 

that each plasmid carried a different promoter, either the T7lac promoter or PBAD 

promoter, meaning that expression of each target construct was regulated with a 

different inducer; IPTG and arabinose, respectively.  This amendment was made 

with the intention that the expression of both genes of interest could be activated 

independently of each other, and that their expression levels could be altered 

separately. 

Recombinant constructs consisting of the entire actinin rod domain (His 

MBP r1r2r3r4 and His FLAG r1r2r3r4) were used to establish if it was possible to 

observe co-expression using the, now modified, two-plasmid approach, where each 

plasmid now carried a different promoter. The His MBP r1r2r3r4 construct was 

cloned into the pBAD vector, meaning its expression was under the control of the 

PBAD promoter, and the His FLAG r1r2r3r4 construct was cloned into the pCDF 

vector, meaning its expression was under control of the T7lac promoter.  Fig. 3.12 is 

a representative gel image which illustrates how the use of various combinations of 

concentrations of arabinose and IPTG yielded varying expression levels of each 

protein of interest. 
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Figure 3.12: Preliminary Two-Plasmid Co-expression Trials Involving Two Different Promoters.  
Total cell protein samples, both pre and post induction of protein expression, were analysed using 
SDS protein gel electrophoresis followed with Coomassie Brilliant Blue staining. Odd numbered lanes 
(lanes 1, 3, 5, 7, 9) refer to pre-induction samples. Even numbered lanes (lanes 2, 4, 6, 8, 10) refer to 
post-induction samples. Lane 2: 0.5% arabinose and 0.025mM IPTG; Lane 4: 2% arabinose and 
0.025mM IPTG; lane 6: 1.25% arabinose and 0.025mM IPTG; lane 8: 0.5% arabinose and 0.2mM 
IPTG; lane 10: 2% arabinose and 0.2mM IPTG. 
Different combinations of inducer concentrations yield varying expression levels of each protein.  
Proteins of interest and the sizes (in kDa) of the relevant molecular weight markers are indicated. 

 

Studies investigating dimerisation and stability of both entire and truncated 

actinin rod domains, and truncated α-/β-spectrin proteins, required co-expression 

of the monomeric proteins in equimolar amounts. 

For dimerisation, or self-assembly studies, proteins were paired as per table 

3.2 in Materials and Methods section (section 3.3.4.), and through optimisation, an 

optimal concentration of inducers that yielded near equimolar co-expression of 

both proteins in each pair was established, also listed in table 3.2. This near 

equimolar co-expression can be observed in Fig. 3.13 and 3.14. 

 
Figure 3.13: Equimolar Co-expression of His MBP r1r2r3r4 and His FLAG r1r2r3r4.  
Total cell protein samples, both pre and post induction of protein expression with 0.2% arabinose 
and 0.2mM IPTG, were analysed using SDS protein gel electrophoresis. Proteins were visualized 
using Coomassie Brilliant Blue staining. 
Approximately equimolar expression levels of both proteins of interest are observed using this 
combination of inducer concentrations. 
Proteins of interest and the sizes (in kDa) of the relevant molecular weight markers are indicated. 
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Figure 3.14: Equimolar Co-expression of Pairings of His MBP and His FLAG Tagged Actinin Three-
Spectrin-like Repeat Constructs.   
Total cell protein samples, both pre and post induction of protein expression with 1.25% arabinose 
and 0.0625mM IPTG, were analysed using SDS protein gel electrophoresis. Proteins were visualized 
using Coomassie Brilliant Blue staining. 
This combination of inducer concentrations generated near equimolar expression of both proteins in 
each pairing. 
Proteins of interest and the sizes (in kDa) of the relevant molecular weight markers are indicated on 
each gel. 

 

However, equimolar co-expression of two-spectrin-like repeat actinin 

constructs was not achieved with any combination of IPTG or arabinose 

concentrations (Fig. 3.15). In these cases, strong expression of one protein and 

weak expression of the other protein in each pairing was noted. 
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Figure 3.15: Uneven Co-expression of Pairings of His MBP and His FLAG Tagged Actinin Two-
Spectrin-like Repeat Constructs.  
Total cell protein samples, both pre and post induction of protein expression, were analysed using 
SDS protein gel electrophoresis Proteins were visualized using Coomassie Brilliant Blue staining. 
Varying concentrations of arabinose and IPTG were added to each co-expression culture in an 
attempt to achieve equal co-expression. Arabinose and IPTG concentration combinations for each 
co-expression are as follows: His MBP r1r2 and His FLAG r1r2; 1.25% and 0.2mM, His MBP r1r2 and 
His FLAG r2r3; 1.25% and 0.0625mM, His MBP r1r2 and His FLAG r3r4; 0.5% and 0.2mM, His MBP 
r2r3 and His FLAG r2r3; 1.25% and 0.0625mM. 
No equimolar co-expression was observed for any of the two-spectrin-like repeat pairings. 
Proteins of interest and the sizes (in kDa) of the relevant molecular weight markers are indicated. 
 

3.4.2.3 Crosstalk Between the T7 Expression System and the PBAD Expression 

System 

I wondered whether difficulties in achieving equimolar co-expression of 

certain construct pairings could be due to crosstalk between the T7lac promoter 

and the PBAD promoter, as described by Lee et al. (2007) (Section 3.2.4.3). I decided 

to investigate if the fine tuning of expression levels would be easier using the IPTG-

insensitive truncated AraC (C280* AraC) that Lee et al had described.  

I chose two widely used proteins on which to conduct this comparative 

study; YFP and MBP.  YFP was cloned into the pRSF-Duet plasmid meaning that its 

expression was regulated by the T7lac promoter and hence IPTG.  A pBAD plasmid 

with the C280* araC truncation was generated using site-directed mutagenesis.  

MBP was cloned into the previously used wildtype (WT) araC pBAD plasmid (WT) 

and this new C280* araC pBAD plasmid (C280*).  In both plasmids, the PBAD 

promoter and arabinose controlled MBP expression.  
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I first wanted to verify the observations seen by Lee et al. (2007); that the 

WT PBAD system was inhibited by the presence of IPTG, and that their mutated PBAD 

system was no longer affected by IPTG. 

Bacterial cultures containing either the MBP WT araC pBAD plasmid only 

(WT) (Fig. 3.16; lanes 1-4) or the MBP C280* araC pBAD plasmid only (C280*) (Fig. 

3.16; lanes 5-8) were prepared. 

In cultures containing the MBP WT araC pBAD plasmid only, high expression 

of MBP is observed when IPTG is not present (lane 1). MBP expression then 

decreases when increasing IPTG concentrations are present (lanes 2-4).  

In cultures containing the MBP C280* araC pBAD plasmid only, relatively 

high and stable expression of MBP is observed across all IPTG conditions (i.e IPTG 

being present or absent) and concentrations. 

Ultimately, expression of MBP from the WT araC pBAD plasmid reduces 

when IPTG is present in the culture. By contrast expression of MBP from C280*araC 

pBAD plasmid remains relatively stable across all inducer conditions. This is in 

agreement with Lee et al. 
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Figure 3.16: Inhibition of Expression from WT PBAD System and Improved Expression from C280* 
PBAD System in the presence of IPTG Inducer. 
 E. coli cells were transformed with either the MBP WT araC pBAD plasmid (WT) or the MBP C280* 
araC pBAD plasmid (C280*), from which bacterial cultures were prepared. MBP expression was 
induced with a constant concentration of arabinose in all cultures (0.5%). Increasing IPTG 
concentrations used (lanes 2-4 and 6-8) ranged from 0.2-1mM (0.2mM, 0.5mM, and 1mM). Total cell 
protein samples, post induction, were analysed using SDS protein gel electrophoresis.  Proteins were 
visualised using Coomassie Brilliant Blue staining. 
Expression of MBP from the WT araC pBAD plasmid reduces when IPTG is present in the culture 
(lanes 1-4). By contrast expression of MBP from C280*araC pBAD plasmid remains relatively stable 
across all inducer conditions (lanes 5-8). 
Proteins of interest and the sizes (in kDa) of the relevant molecular weight markers are indicated. 
n=5 
  

 

Next I wanted to extend the work of Lee et al and examine expression from 

the C280* PBAD system in a co-expression situation; where MBP is expressed from 

the C280* PBAD system, in the presence of arabinose, and YFP is expressed from the 

T7lac system, in the presence of IPTG. To do this I compared the effect that IPTG 

was having on the expression of MBP from both the WT and C280* PBAD systems in 

cultures that are also expressing YFP, under the control of the T7lac promoter. 

Bacterial cultures containing the YFP pRSF plasmid with either MBP WT araC 

pBAD plasmid (WT) (Fig. 3.17; lanes 1, 3-5, and 9) or the MBP C280* araC pBAD 

plasmid (C280*) (Fig. 3.17; lanes 2, 6-8 and 10) were prepared. 

In cultures wherein YFP was co-expressed with MBP from the WT araC pBAD 

plasmid, expression of MBP is observed when IPTG is not present (lane 1). 

Expression of MBP reduces when IPTG is present (lanes 3-5). YFP is expressed 
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across all IPTG concentrations and arabinose conditions i.e. arabinose being absent 

or present (lanes 3-5 and 9) 

In cultures wherein YFP was co-expressed with MBP from the C280* araC 

pBAD plasmid, expression of MBP is observed in all samples across all IPTG 

concentrations and conditions (lanes 2 and 6-8). YFP is highly expressed when no 

arabinose is present (lane 10), but these expression levels are reduced dramatically 

when arabinose is present, and are not regained as IPTG concentration increases 

(lanes 6-8).  

 

 
Figure 3.17: Effect of Increasing IPTG Concentrations on both WT araC and C280* araC PBAD 
Systems in the presence of T7lac regulated expression plasmid.  
E. coli cells were co-transformed with the YFP pRSF plasmid and either MBP WT araC pBAD plasmid 
(WT) or the MBP C280* araC pBAD plasmid (C280*), from which bacterial cultures were prepared. 
MBP expression was induced with a constant concentration of arabinose (0.5%), to those cultures 
indicated. Increasing IPTG concentrations used (lanes 3-5 and 6-8) ranged from 0.2-1mM (0.2mM, 
0.5mM, and 1mM). Expression of YFP only was carried out at 0.2mM IPTG (lanes 9 and 10). Total cell 
protein samples, post induction, were analysed using SDS protein gel electrophoresis.  Proteins were 
visualised using Coomassie Brilliant Blue staining. 
When co-expressed with YFP, expression of MBP from the WT araC pBAD plasmid reduces when 
IPTG is present in the culture (lanes 1 and 3-5). YFP is expressed in all samples where IPTG is present. 
By contrast, expression of MBP from C280*araC pBAD plasmid remains relatively stable across all 
inducer conditions (lanes 2 and 6-8). YFP is not expressed in those cultures where IPTG is present. 
Proteins of interest and the sizes (in kDa) of the relevant molecular weight markers are indicated. 
n=2 
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             Experiments thus far used a fixed and relatively high concentration of 

arabinose. I next wanted to observe the effect that varying arabinose 

concentrations would have on both the WT and C280* PBAD systems, and the T7lac 

system (Fig. 3.18). 

 

             Bacterial cultures containing the YFP pRSF plasmid with either MBP WT araC 

pBAD plasmid (WT) (Fig. 3.18; lanes 1, 3-6, and 11) or the MBP C280* araC pBAD 

plasmid (C280*) (Fig. 3.18; lanes 2, 7-10 and 12) were prepared. 

             In cultures wherein YFP was co-expressed with MBP from WT araC pBAD 

plasmid, expression of MBP is observed when IPTG is not present (lane 11). 

Expression of MBP reduces when IPTG is present, and are not regained as arabinose 

concentrations increase (lanes 3-6). YFP is expressed across all arabinose 

concentrations and conditions. 

             In cultures wherein YFP was co-expressed with MBP from C280* araC pBAD, 

expression of MBP is observed in all samples, regardless of the presence or absence 

of IPTG. As arabinose concentration increases, so too does MBP expression (lanes 

7-10 and 12). YFP is highly expressed when no arabinose is present (lane 2), but 

these expression levels are reduced dramatically when arabinose is present. As 

arabinose concentration increases, YFP expression decreases (lanes 7-10).  
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Figure 3.18: Effect of Increasing Arabinose Concentrations on both the WT araC and C280* araC 
PBAD Systems in the presence of T7lac regulated expression plasmid.  
E. coli cells were co-transformed with the YFP pRSF plasmid and either MBP wt araC pBAD plasmid 
(WT) or the MBP C280* araC pBAD plasmid (C280*), from which bacterial cultures were prepared.  
YFP expression was induced with a constant concentration of IPTG (0.2mM) to those cultures 
indicated. Increasing concentrations of arabinose (lanes 3-6 and 7-10) ranged from 0.01-0.5% (0.01, 
0.05, 0.2 and 0.5%). Expression of MBP only was carried out at 0.5% arabinose (lanes 11 and 12). 
Total cell protein samples, post induction, were analysed using SDS protein gel electrophoresis.  
Proteins were visualised using Coomassie Brilliant Blue staining. 
When co-expressed with YFP, high concentrations of arabinose fail to circumvent the reduction in 
expression of MBP from the WT araC pBAD plasmid when IPTG is present in the culture. YFP is 
expressed in those cultures where IPTG is present (lanes 3-6). By contrast, expression of MBP from 
C280*araC pBAD plasmid increases as arabinose concentration increases, despite the presence of 
IPTG in the culture (lanes 7-10). YFP expression decreases as arabinose concentration increases. 
Proteins of interest and the sizes (in kDa) of the relevant molecular weight markers are indicated. 
n=3 
 

             Fig. 3.18 suggests that the C280* PBAD system was negatively affecting the 

T7lac system (Fig. 3.18, lanes 7-10). Subsequently, in Fig. 3.19, I wanted to answer 

the question; was the arabinose molecule itself interfering with the T7lac system? 

 

              Bacterial cultures containing either the YFP pRSF plasmid only (Fig. 3.19; 

lanes 1-5) or both the YFP pRSF and the MBP C280* araC pBAD plasmids (Fig.19; 

lanes 6-10) were prepared.  

              In cultures containing the YFP pRSF plasmid only, the YFP protein is stably 

expressed in the presence of increasing arabinose concentrations. 

              In cultures wherein YFP is co-expressed with MBP from the C280* araC 

pBAD plasmid, high expression of YFP is observed when no arabinose is present 

(lane 6), or at very low arabinose concentrations (lane 7). However, as the 
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arabinose concentration increases, YFP expression levels decrease (lanes 7-10). 

Also, as seen before, under these conditions (Fig 3.18), as the arabinose 

concentration increases, so too does MBP expression.  

 

 

 
Figure 3.19: Arabinose does not Directly Interfere with the T7lac Promoter:  
E. coli cells were transformed with the YFP pRSF plasmid only and co-transformed with both the YFP 
pRSF and the MBP C280* araC pBAD plasmids, from which bacterial cultures were prepared. YFP 
expression was induced with a constant concentration of IPTG (0.2mM) to all cultures. Increasing 
concentrations of arabinose (lanes 2-5 and 7-10) ranged from 0.01-0.5% (0.01, 0.05, 0.2 and 0.5%). 
Total cell protein samples, post induction, were analysed using SDS protein gel electrophoresis.  
Proteins were visualised using Coomassie Brilliant Blue staining. 
In cultures containing YFP pRSF plasmid only (lanes 1-5), the addition of increasing arabinose 
concentrations is not affecting expression levels of YFP. In cultures where YFP is co-expressed with 
MBP (lanes 6-10), the increasing expression of MBP is affecting the expression levels of YFP. 
Proteins of interest and the sizes (in kDa) of the relevant molecular weight markers are indicated. 

n=2 

 

Since the presence of the arabinose inducer does not appear to be affecting 

expression from the T7lac system, but rather expression from the C280* PBAD 

system, it would appear that, in this situation, promoter crosstalk is not occurring.  

Perhaps, the C280* PBAD system is much stronger than the T7lac system, dominating 

the protein synthesis machinery of the bacterial cell. 
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3.4.3 Heterodimer Purification 

 

3.4.3.1 Actinin Dimer and α-/β-Spectrin Heterodimer Purification 

Using this two-plasmid co-expression system, two actinin rod domain 

proteins (repeat 1 to repeat 4; r1r2r3r4) were co-expressed, one was fused to a His 

tag only and was expressed from the T7lac promoter system. The other had a MBP 

tag only and was expressed from the C280* araC PBAD promoter system (Fig. 3.20A). 

As each actinin rod domain protein had a different tag, the actinin pseudo-

heterodimers (pseudo-heterodimers in the sense that each monomer contributing 

to the dimer had a different tag; His or MBP) could be purified using sequential 

affinity chromatography; nickel column chromatography followed by amylose 

column chromatography (Fig. 3.20B). 

An identical expression and purification strategy was used to generate 

truncated α/β-spectrin heterodimers; a truncated α-spectrin protein (repeat 18-

repeat 21; r18r19r20r21) was fused to a His tag and a truncated β-Spectrin protein 

(repeat 1-repeat 4; r1r2r3r4) was fused to a MBP tag. 

Fig. 3.20 relates to actinin proteins only.  
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Figure 3.20: Expression and Purification of Actinin Pseudo-Heterodimers for Stability Assays.  
His r1r2r3r4 and MBP r1r2r3r4 were both singly expressed and co-expressed in E. coli cells. All protein 
expression and purification steps were analysed using SDS protein gel electrophoresis. Proteins were 
visualised using Coomassie Brilliant Blue staining.  
(A) Total cell protein samples, both pre and post induction of protein expression with IPTG or/and 
arabinose. 
(B) Fractions taken at each step of sequential purification strategy to purify MBP r1r2r3r4: His r1r2r3r4 
pseudo-heterodimers; nickel column chromatography followed by amylose column chromatography. 
Proteins of interest and the sizes (in kDa) of the relevant molecular weight markers are indicated on 
each gel. 
 
 

3.4.3.2 Improvement of Dimer/Protein Complex Purification Strategy 

To streamline this heterodimer purification technique and turn the 

purification process into a one day rather than two-day procedure, the necessity of 

dialysing out the imidazole from the nickel column protein elution before loading 

the protein onto the amylose column was investigated. 

The potential disruption that the presence of imidazole could have on the 

binding of MBP to amylose was examined. I found MBP to still be able to bind 

amylose in the presence of imidazole. Densiometric analysis revealed that 

quantities of MBP r1r2r3r4 pull-downed from amylose in the presence of imidazole 
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were comparable to quantities pulled-down in the absence of imidazole (Fig. 3.21). 

This indicated the presence of imidazole does not interfere with the binding of MBP 

to the amylose column and therefore, the overnight dialysis is not a necessary step.  

 

 

Figure 3.21: Potential Disruption of Amylose Column Binding Ability. 
Purified MBP r1r2r3r4 protein was mixed in one of two solutions; one that did not contain any 
imidazole and one that contained 200mM imidazole. These two samples were incubated for a short 
period with amylose resin and after several wash steps MBP r1r2r3r4 was pulled-down with 10mM 
maltose. Resulting input and pull-down fractions were analysed using SDS protein gel 
electrophoresis followed by Coomassie Brilliant Blue staining. 
MBP r1r2r3r4 was successfully pulled-down under both conditions. Comparable quantities of MBP 
r1r2r3r4 were pulled-down in each case, confirmed with densiometric analysis.  
Proteins of interest and the sizes (in kDa) of the relevant molecular weight markers are indicated. 

n=1 

 

 

3.4.4 Actinin Spectrin-like Repeat Dimerisation Studies 

One of several attractive features of the actinin rod domain (r1r2r3r4) that 

prompted it to be considered as a possible building block in this study, was the fact 

that it could form anti-parallel dimers with itself (Ylänne et al. 2001) making it 

agreeable to bottom up assembly. 

In looking for additional accessory building materials, I considered dividing 

this entire rod domain into segments consisting of just three- or two-spectrin-like 

repeats; essentially, the entire rod domain (r1r2r3r4) was divided into two three-

spectrin-like repeat proteins: r1r2r3 and r2r3r4, and into three two-repeat proteins: 

r1r2, r2r3 and r3r4.   

To consider these four-, three- and two-spectrin-like repeat proteins as 

potential building blocks it was necessary to investigate if they were capable of 

interacting with each other, i.e. engaging in self-assembly through dimerisation.  

Fig. 3.22 illustrates the possible outcomes that could occur with three- and two-

spectrin-like repeat proteins. 
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Figure3.22: Possible Outcomes Resulting from Three-and Two- Spectrin-like Repeat Dimerisation 
Assay.  
(A) r1r2r3 monomers might dimerise with themselves in a form of staggered arrangement where 
only repeats 2 (r2) and 3 (r3) from both monomers are mediating the dimerisation. Alternatively, 
r1r2r3 monomers might dimerise with r2r3r4 monomers in an aligned arrangement where all 
repeats are mediating the dimerisation.  
(B) r1r2 monomers might dimerise with r2r3 monomers in a staggered arrangement, where only 
repeat 2 (r2) from one monomer and repeat 3 (r3) from the other monomer are mediating the 
dimerisation. Alternatively, r1r2 monomers might dimerise with r3r4 monomers in an aligned 
arrangement where all of the repeats are mediating the dimerisation.  
(C) An aligned dimer could form between two r2r3 monomers, where all repeats are mediating 
dimerisation. 
 

In this section, through a series of MBP pull-down spectrin-like repeat 

interaction assays and native gel electrophoresis, I explore the dimerisation, or self-

assembly, properties of the actinin spectrin-like repeats, assessing their suitability 

as potential building blocks. 

The two-plasmid co-expression strategy, using the WT PBAD system and the 

T7lac system is utilised to produce four-, three-, and two-spectrin-like repeat 

dimers (all mentioned in table 3.2 in Materials and Methods section 3.3.4.) to be 

utilised in these studies. 

 

3.4.4.1 Actinin spectrin-like repeat Interaction Assays 

An MBP pulldown approach was utilised to carry out the actinin spectrin-like 

repeat interaction assays. The two plasmid co-expression strategy for these actinin 

spectrin-like repeat proteins was as follows; those proteins to be expressed from 

the T7lac system were designed to have a FLAG tag so that western blot analysis 

could be used to certify their identity, and verify that protein bands observed were 

not impurities, or the degradation products of MBP tagged proteins, or the result of 
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His FLAG tagged proteins binding non-specifically to the amylose resin, i.e. to 

ensure that the presence of  a His MBP tagged actinin spectrin-like repeat protein is 

required for His FLAG tagged actinin spectrin-like repeat protein binding. 

 

This MBP pulldown approach first needed to be validated by re-confirming 

that the entire actinin rod domain (r1r2r3r4) could dimerise with another copy of 

itself. Interaction was confirmed with the detection of His FLAG r1r2r3r4 in pull-

down assay sample (Fig. 3.23). Co-expression samples for this assay were obtained 

using the WT PBAD expression system with the T7lac expression system. With this 

plasmid combination I was unable to achieve an ideal equimolar expression of His 

FLAG r1r2r3r4 with His MBP r1r2r3r4. With the levels of co-expression that were 

obtained however, I was still able to detect pseudo-heterodimerisation. 

 

 

Figure 3.23: Full Length Rod Domain of Actinin Dimerisation Assay. 
His MBP r1r2r3r4 and His FLAG r1r2r3r4 were co-expressed in E. coli cells. Cells were lysed and 
resulting lysate was subject to an MBP pull-down assay. A control assay involving a His MBP tag and 
His FLAG r1r2r3r4 co-expression lysate was carried out in parallel.  Resulting input and pull-down 
fractions were analysed using SDS protein gel electrophoresis followed by Coomassie Brilliant Blue 
staining, in conjunction with western blotting using anti-FLAG.  
Pull-down assays demonstrated interaction between His FLAG r1r2r3r4 and His MBP r1r2r3r4, and 
no interaction between His FLAG r1r2r3r4 and His MBP tag. 
I=input samples; P=pull-down samples. 
Proteins of interest and the sizes (in kDa) of the relevant molecular weight markers are indicated. 

n=1 

 

Once the MBP pull-down approach was validated, next was to investigate if 

a dimer would form from two actinin monomers each consisting of only three-
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spectrin-like repeats. Binding of spectrin-like repeats 1-3 (r1r2r3) to copies of itself 

and to spectrin-like repeats 2-4 (r2r3r4) were examined. Interaction was confirmed 

in these pairings of three-spectrin-like repeats indicated by the detection of His 

FLAG r1r2r3 pull-downed along with His MBP r1r2r3 or His MBP r2r3r4. (Fig.3.24). 

Results indicate that interaction between r1r2r3 and r2r3r4 may be stronger than 

interaction between r1r2r3 and r1r2r3. 

 

 

Figure 3.24: Actinin Three-Spectrin-like Repeat Dimerisation Assay. 
His MBP r1r2r3 with His FLAG r1r2r3 and His MBP r2r3r4 with His FLAG r1r2r3 were co-expressed in 
E. coli cells. Cells were lysed and resulting lysate was subject to an MBP pull-down assay. A control 
assay involving an expression lysate mix consisting of His MBP only expression lysate and His FLAG 
r1r2r3 only expression lysate was carried out in parallel. Resulting input and pull-down fractions 
were analysed using SDS protein gel electrophoresis followed by Coomassie Brilliant Blue staining, in 
conjunction with western blotting using anti-FLAG. 
Pull-down assays demonstrated incomparable interactions between His FLAG r1r2r3 with His MBP 
r1r2r3 and His FLAG r1r2r3 with His MBP r2r3r4. No interaction was detected between His FLAG 
r1r2r3 and His MBP tag.  
Proteins of interest and the sizes (in kDa) of the relevant molecular weight markers are indicated. 
n=2 

 

In investigating the dimerisation potential between the actinin two-spectrin-

like repeat proteins, a lysate mix of single expressions rather than a co-expression 

lysate was used.  This choice was made due to the difficulty experienced in co-

expressing these two-spectrin-like repeat proteins. At that time in which these 

experiments were carried out I was using the WT PBAD expression system with the 

T7lac expression system, and not the more sensitive C280* PBAD expression system.  
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Binding of spectrin-like repeats 1-2 (r1r2) to copies of itself, to spectrin-like 

repeats 2-3 (r2r3) and to spectrin-like repeats 3-4 (r3r4) were examined. The 

binding of r2r3 to copies of itself was also examined. No interaction in any of these 

pairings was detected (Fig. 3.25A). 

I decided to carry out the r2r3 two repeat spectrin-like interaction pull-down 

assay again, this time using a co-expression lysate of His FLAG r2r3 with His MBP 

r2r3 (Fig. 3.25B; Inputs: lanes 1 and 2, Pulldowns: lanes 5 and 6) in tandem to a pull-

down assay with His FLAG r2r3 expression lysate mixed with His MBP r2r3 

expression lysate (Fig. 3.25B; Inputs: lanes 3 and 4, Pulldowns: lanes 7 and 8). 

Interaction with this pairing was confirmed indicated by the detection of His FLAG 

r2r3 pulled-down along with His MBP r2r3. However, His FLAG r2r3 was only 

detected in the pull-down fraction from the sample for which a co-expression of the 

proteins had been used.  His FLAG r2r3 was not detected in pull-down sample 

pertaining to assay where lysate mix, rather than lysate co-expression, had been 

used. This observation suggested that r2r3 homodimers (e.g. His r2r3:His r2r3) were 

forming in single expression lysates and preventing further interactions with His 

MBP r2r3. 
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Figure 3.25: Actinin two-spectrin-like repeat Dimerisation Assay.  
(A) His MBP r1r2, His MBP r2r3, His FLAG r1r2, His FLAG r2r3 and His FLAG r3r4 were each singly 
transformed and expressed in E.coli cells.  Cells were lysed and resulting lysates were mixed to 
produce the following combinations; His MBP r1r2 and His FLAG r1r2, His MBP r1r2 and His FLAG 
r2r3, His MBP r1r2 and His FLAG r3r4, His MBP r2r3 and His Flag r2r3. Control assays consisted of 
lysate mixes of His MBP with His FLAG r1r2 and His MBP with His FLAG r2r3 and His MBP with His 
FLAG r3r4. These lysate mixes were subjected to an MBP pull-down assay. Resulting input and pull-
down fractions were analysed using SDS protein gel electrophoresis followed by Coomassie Brilliant 
Blue staining, in conjunction with western blotting using anti-FLAG. 
No possible interactions were detected in any of the two-repeat pairings. 
n=1  
(B) His MBP r2r3 and His FLAG r2r3 were co-expressed in E. coli cells. Cells were lysed and resulting 
lysate was subject to an MBP pull-down assay (input sample: lane 1; pulldown sample: lane 5). A 
tandem pull-down assay involving a lysate mix of singly expressed His MBP r2r3 and His FLAG r2r3 
(Input sample: lane 3; Pulldown sample: lane 7). Control assays, also with a co-expression lysate 
(Input sample: lane 2; Pulldown sample: lane 6) and single expression lysate mix (Input sample: lane 
4; Pulldown sample: lane 8), in which His MBP r2r3 is substituted with His MBP was carried out in 
parallel. Resulting input and pull-down fractions were analysed using SDS protein gel electrophoresis 
followed by Coomassie Brilliant Blue staining, in conjunction with western blotting using anti-FLAG 
Pull-down assays demonstrated interaction between His FLAG r2r3 and His MBP r2r3, but only 
where a co-expression lysate had been used as the input sample. No interaction detected between 
His FLAG r2r3 and the His MBP tag 
n=3 
Proteins of interest and the sizes (in kDa) of the relevant molecular weight markers are indicated. 
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3.4.4.2 Assessment of Actinin spectrin-like repeat Dimers Using Native-PAGE 

At the outset of this project, I decided that native gel electrophoresis (non-

denaturing conditions) would be the technique of choice when screening and 

characterizing potential building blocks and nanostructures.  

In native PAGE, proteins are separated according to not only their size and 

shape, but also their net charge (Fanarraga et al. 2010).  The recombinant actinin 

and spectrin proteins pertaining to this project had pI values of between 4.9 and 

5.9. Gel running buffer was designed to have a pH of approximately 8-9, so that all 

proteins should have a net negative charge as they ran through the gel. The actinin 

and spectrin constructs consisting of four spectrin repeats have all very similar 

molecular weights of approximately 50kDa. However small differences in their 

overall negative charge may cause them to migrate at somewhat different rates on 

a native gel. Nevertheless, we expected that differences in migration pattern would 

be observed for protein complexes assembled from these building blocks, making it 

possible to screen for possible interactions. 

 

In order to gain familiarity with this migration pattern of each of the actinin 

rod domain proteins, and to screen for potential interactions, they were expressed, 

purified, and subjected to native gel electrophoresis.  

Earlier in this project, I had demonstrated that dimerisation could occur 

between two actinin rod domain (r1r2r3r4) proteins (Fig. 3.23). Native gel 

electrophoresis re-confirmed this interaction. Both homodimers and pseudo-

heterodimers were generated in co-purified His MBP r1r2r3r4 with His r1r2r3r4 

protein samples (Fig. 3.26; lane 2), from co-expressions, and homodimers were 

generated in each of the single purification samples; His MBP r1r2r3r4 and His 

r1r2r3r4 (Fig. 3.26; lanes 1 and 3), from single expressions. 
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Figure 3.26: Observing Native Gel Migration Pattern of Actinin Dimeric Proteins.  
Nickel column purification products from both single protein expressions (lanes 1 and 3) and co-
expressions (lane 2) were analysed using Native protein gel electrophoresis followed by Coomassie 
Brilliant Blue staining.  
Three possible dimer formations are observed; His MBP r1r2r3r4 homodimers (lanes 1 and 2), His 
r1r2r3r4 homodimers (lanes 2 and 3), and His MBP r1r2r3r4:His r1r2r3r4 pseudo-heterodimers 
(intermediate band in lane 2). 
Migration pattern of each dimer is indicated with figure visuals. 
n=3  

 

 

3.4.5 Dimeric Actinin spectrin-like repeat Stability Assay Studies 

Both actinins and spectrins have been extensively studied in terms of their 

structure and regulation. It is widely known, however, that buffers can have serious 

effects on both the tertiary and quaternary structure of proteins, causing 

denaturation, unfolding or aggregation (Ugwu & Apte 2004).   

Neutral salts, such as NaCl are known to affect protein assembly (Sawyer & 

Puckridge 1973). Non-covalent interactions such as electrostatic attractions 

mediate dimerisation between two actinin monomers and between α- and β-

spectrins (Begg et al. 2000; Djinović-Carugo et al. 1999). I hypothesised that the 

addition of a high concentration of NaCl to the actinin rod domain dimers and to 

the truncated α-/β- spectrin spectrin repeat heterodimers would cause them to 

dissociate, since salt can screen electrostatic interactions (Dumetz et al. 2007). 

Heat, or temperature, is known to influence protein stability and structure 

by breaking up hydrogen bonds (Nelson & Cox, 2005b). The α-helical protein 

structure is stabilised through maximum use of hydrogen bonds (Nelson & Cox, 

2005b). Since each spectrin repeat is made up of a triple helical coiled-coil 

conformation (Yan et al. 1993; Djinovic-Carugo et al. 1999), I put forward the idea 

that high temperatures would disrupt the actinin rod domain and the truncated α-

/β-spectrin central spectrin region.   
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From a synthetic biology point of view, with particular regard to preparing 

the buffers in which assembly of my putative nanostructures would occur, I thought 

it important to investigate the resistance, or stability, of both actinin spectrin-like 

repeat dimers and α-/β-spectrin spectrin-repeat heterodimers to challenges, such 

as increasing salt concentrations and temperature conditions, through a series of 

stability assays. Such knowledge might be useful for preparing a buffer that would 

aid in the preparation of monomeric actinin or spectrin proteins, for example. 

 

In this section, the co-expression strategy, using the C280* PBAD system and 

the T7lac system, and sequential purification strategy are used to yield actinin rod 

domain spectrin-like repeat dimers to be utilised in salt and thermostability studies. 

To assess the effect of salt (NaCl) and heat on actinin spectrin-like repeat 

dimer stability, a His-tag pulldown approach was utilised. The two plasmid co-

expression strategy for the generation of these actinin spectrin-like repeat proteins 

was as follows: those proteins to be expressed from the C280* PBAD system were 

designed to have a MBP tag so that western blot analysis could be used to certify 

their identity, and verify that protein bands observed were not impurities, or the 

degradation products of His tagged proteins, or the result of MBP tagged proteins 

binding non-specifically to the resin, i.e. to ensure presence of His tagged r1r2r3r4 is 

required for MBP r1r2r3r4 binding. 

 

3.4.5.1 Investigating the Effect of Salt Concentration on the Structural Stability of 

Actinin Dimers 

Previous studies had reported that salt induced conformational changes in 

the actinin protein under different salt conditions. Winkler et al. (1997) found that 

the ionic strength affected the molecular length of the actinin protein. In solutions 

of low salt concentration, 0.05mM KCl, actinin was measured to be 29.3nm in 

length, while in solutions of higher salt concentration, 0.15mM KCl, actinin was 

measured to be longer, 32.6nm. Here, I assess the contribution of increasing NaCl 

concentrations on the stability of the actinin spectrin-like repeat dimer. 

Purified actinin rod domain pseudoheterodimers (Hisr1r2r3r4:MBPr1r2r3r4) 

were incubated for 1 hour at 4° in increasing concentrations of NaCl, ranging from 
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150mM – 2M (Fig. 3.27A) and from 500mM-5M (Fig. 3.27B) with nickel resin.  

Interaction between this pairing was confirmed under all salt conditions, indicated 

by the detection of MBP r1r2r3r4 pulled-down along with His r1r2r3r4.  
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Figure 3.27: Stability of the Actinin Rod Domain Dimer under High Salt Concentrations:  
MBP r1r2r3r4 and His r1r2r3r4 were co-expressed in E. coli cells, resulting pseudoheterodimers were 
purified using sequential affinity chromatography and subjected to a His tag pull-down assay under 
various NaCl concentrations. A control assay involving purified MBP r1r2r3r4 homodimers only was 
undertaken in parallel in all NaCl concentrations. (Full data not shown). Resulting input and pull-
down fractions were analysed using SDS protein gel electrophoresis followed by Coomassie Brilliant 
Blue staining, in conjunction with western blotting using anti-MBP. 
Pull-down assays demonstrated interaction between MBP r1r2r3r4 and His r1r2r3r4 under all salt 
conditions. No non-specific MBP r1r2r3r4 interactions were detected. 
(A) Pseudoheterodimers were incubated with nickel resin under increasing salt concentrations 
(150mM – 2M). n=1 
(B) Pseudoheterodimers were incubated with nickel resin under increasing salt concentrations 
(500mM-4.5M). n=1 
Proteins of interest and the sizes (in kDa) of the relevant molecular weight markers are indicated. 
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3.4.5.2 The Investigation of the Thermostability of Actinin Dimers 

Purified actinin rod domain pseudoheterodimers (Hisr1r2r3r4:MBPr1r2r3r4) 

were incubated in increasing temperatures for 30 min, from  4ᵒC - 70ᵒC. This short 

incubation period was to allow for possible dissociation between the 

pseudoheterodimers to occur. Each pseudoheterodimer sample at each 

temperature was then mixed with nickel beads and allowed to further incubate at 

its sample temperature. All wash steps were carried out at each samples required 

temperature. 

MBP r1r2r3r4 was detected in samples pulled-down with His r1r2r3r4 that 

were incubated at 4ᵒC and 37ᵒC (Fig. 3.28). A smaller amount of MBP r1r2r3r4 was 

dected in samples pulled-down with His r1r2r3r4 that were incubated at 50ᵒC. 

An unsatisfactory pull-down is achieved from samples incubated at 70ᵒC. 

Coomassie stain reveals, for His r1r2r3r4, a very faint band, unequal in intensity to 

those bands observed for lower temperatures, while the corresponding western 

blot detects a large amount of MBP r1r2r3r4. This may suggest that, at this higher 

temperature, protein aggregation is occurring. 
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Figure 3.28: Stability of the Actinin Dimer under Increasing Temperatures.  
MBP r1r2r3r4 and His r1r2r3r4 were co-expressed in E. coli cells, resulting pseudoheterodimers were 
purified using sequential affinity chromatography and subjected to a His tag pull-down assay under 
various temperatures of between 4 and 70ᵒC. Control assay involving purified MBP r1r2r3r4 
homodimers only was undertaken in parallel in all temperatures. (Full data not shown). Resulting 
input and pull-down fractions were analysed using SDS protein gel electrophoresis followed by 
Coomassie Brilliant Blue staining, in conjunction with western blotting using anti-MBP. 
Pull-down assays demonstrated a maintained interaction between MBP r1r2r3r4:His r1r2r3r4 
pseudoheterodimers in temperatures of 4ᵒ  and 37ᵒC, and dissociation of these pseudoheterodimers 
at 50ᵒC. No non-specific MBP r1r2r3r4 interactions were detected. 
Proteins of interest and the sizes (in kDa) of the relevant molecular weight markers are indicated. 
n=2 
 

 

Fig. 3.28 suggests that at 50°C the actinin pseudoheterodimers were 

dissociating to monomers. This finding complements the work carried out by Flood 

et al. (1997), in which they report that at 50°C the actinin rod domain starts to 

unfold, as measured using circular dichroism. I was interested in learning if it would 

be possible to re-associate these monomers to form dimers again.  

 The starting point for all of previous stability assays was with purified 

pseudo-heterodimers. For this next assay, however, the starting point was with 

singly expressed and purified His r1r2r3r4 homodimers and MBP r1r2r3r4 

homodimers. 

Equal concentrations of His r1r2r3r4 homodimers and MBP r1r2r3r4 

homodimers were mixed together and incubated at different temperatures for 10 

min ranging from 37.7ᵒC-57.4ᵒC. This range of temperatures was chosen because, 

drawing information from Fig. 3.28, dissociation of dimers should occur at some 

temperature above 37ᵒC and below 70ᵒC. His r1r2r3r4 and MBP r1r2r3r4 mixes 
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were then cooled to 4ᵒC to re-associate the monomers, forming heterodimers. 

Mixes were then incubated with nickel resin for 30 min, also at 4ᵒC. All wash steps 

were also carried out at 4ᵒC. 

Coomassie stain in Fig. 3.29A reveals that MBP r1r2r3r4 was only pulled-

down with His r1r2r3r4 in samples that were incubated at 50.9ᵒC, 55.7ᵒC or 57.4ᵒC.  

Western blot analysis (Fig. 3.29B) of two of these samples, 55.7ᵒC and 57.5ᵒC, 

verified the identity of the MBP r1r2r3r4, and that His tagged r1r2r3r4 was required 

for MBP r1r2r3r4 binding. 
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Figure 3.29: Dissociation and Re-association of Actinin Rod Domain Dimers. 
His r1r2r3r4 and MBP r1r2r3r4 were each singly expressed in E. coli cells and purified to form 
homodimers. Equal concentrations of each homodimer were mixed and incubated at increasing 
temperatures ranging from 37.7ᵒ- 57.4ᵒC. Mixes were then allowed to cool to 4ᵒC and were then 
subjected to a His tag pull-down assay. Control assay involving purified MBP r1r2r3r4 homodimers 
only was undertaken in parallel in all temperatures. (Full data not shown). Resulting input and pull-
down fractions were analysed using SDS protein gel electrophoresis followed by 
(A) Coomassie Brilliant Blue staining, in conjunction with  
(B) western blotting using anti-MBP. 
Pull-down assays indicate re-association, at 4ᵒC, of disassociated actinin rod domain monomers, at 
55.7ᵒ and 57.4ᵒC, verified with western blot. No non-specific interaction of MBP r1r2r3r4 is noted. 
Proteins of interest and the sizes (in kDa) of the relevant molecular weight markers are indicated. 
n=2 
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3.4.6 α/β-Spectrin Spectrin Repeat Dimerisation Studies 

I realized that one drawback of using actinin as a building block in certain 

contexts might be its strong ability to form homodimers with itself. These 

shortcomings are observed in chapter four of this document.  Spectrin was 

appealing as an alternative or complementary building block because it is a 

heterodimer, composed of α-spectrin and β-spectrin subunits.  The inability of the 

spectrin subunits to interact with themselves, but only with each other provides for 

a greater library of possible structures to design and create.  

 

In this section, through MBP pull-down spectrin repeat interaction assays 

and native gel electrophoresis, I explore the dimerisation, or self-assembly, 

properties of the α-/β-spectrin spectrin repeats, assessing their suitabiliy as 

potential building blocks. 

 

3.4.6.1 α/β-Spectrin spectrin repeat Interaction Assay 

To assess the ability of α-spectrin spectrin repeats 18-21 and β-spectrin 

spectrin repeats 1-4 to self-assemble and form heterodimers, an MBP pull-down 

approach was utilised in which equal concentrations of purified His α-r18r19r20r21 

and MBP β- r1r2r3r4 were mixed together with amylose resin. Interaction was 

observed, with His α-r18r19r20r21 pulled-down along with MBP β-r1r2r3r4 (Fig. 

3.30). 
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Figure 3.30: Dimerisation Between Truncated α- and β-Spectrin Constructs.  
His α-r18r19r20r21 and MBP β-r1r2r3r4 were each singly expressed in E. coli cells and purified. Equal 
concentrations of each were mixed and subjected to a MBP pull-down assay. Control assay involving 
His α-r18r19r20r21 only was carried out in parallel. Resulting input and pull-down fractions were 
analysed using SDS protein gel electrophoresis followed by Coomassie Brilliant Blue staining. 
Pull-down assays indicate interaction between His α-r18r19r20r21 and MBP β-r1r2r3r4. No non-
specific His α-r18r19r20r21 interaction is observed. 
Proteins of interest and the sizes (in kDa) of the relevant molecular weight markers are indicated. 
n=1 
 

 

3.4.6.2 Assessment of α/β-Spectrin spectrin repeat Heterodimers Using Native-

PAGE 

Just as per the actinin dimeric proteins, it was also necessary to become 

familar with the native gel migration pattern of the spectrin truncated proteins, and 

to screen for potential interactions. 

His α-r18r19r20r21, His β-r1r2r3r4, His mCherry α-r18r19r20r21 and His 

mCherry β-r1r2r3r4 were each singly expressed in E. coli cells and purified using a 

nickel column.  I had previously verified that dimerisation could occur between the 

truncated α- and β-Spectrin constructs (Fig. 3.30). Native gel electrophoresis re-

confirmed this interaction. 

For Fig. 3.31A, equal concentrations of His mCherry α-r18r19r20r21 and His 

β-r1r2r3r4 purified proteins were mixed together and subjected to native protein 

gel electrophoresis. For Fig. 3.31B equal concentrations of His α-r18r19r20r21 and 

His mCherry β-r1r2r3r4 purified proteins were mixed together and subjected to 

native protein gel electrophoresis. For both mixtures, controls investigating the 

possibility that these α- and β-Spectrin truncated proteins could form homodimers 

with themselves were also prepared. For Fig. 3.31A these included purified protein 
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mixes of His α-r18r19r20r21 with mCherry α-r18r19r20r21, and, for Fig 3.31B, these 

included purified protein mixes of His β-r1r2r3r4 with mCherry β-r1r2r3r4. 

In Fig. 3.31A, the presence of His mCherry α-r18r19r20r21 only in lane 1 is 

confirmed using mCherry fluorescence detection. His β-r1r2r3r4 only is represented 

with one band in Lane 3. A mix of both these proteins is represented with one band 

only in lane 2, which appears to have the same migration pattern as that for His β-

r1r2r3r4 only. mCherry fluorescence detection exhibits an altered migration pattern 

of His mCherry α-r18r19r20r21 from that seen in lane 1. This altered migration 

pattern and the presence of only one band suggests possible interaction between 

these two proteins. A mix of His mCherry α-r18r19r20r21 and His α-r18r19r20r21 

purified proteins in lane 4 is represented with two bands, His mCherry α-

r18r19r20r21 being one of these bands confirmed using mCherry fluorescence 

detection. The same migration pattern as that seen in lane 1 for this protein, and 

the presence of two bands suggests no interaction between these proteins. 

In Fig. 3.31B the presence of His mCherry β-r1r2r3r4 only in lane 1 is 

confirmed using mCherry fluorescence detection. His α-r18r19r20r21 only is 

represented with one band in Lane 3. A mix of both these proteins is represented 

with two bands in lane 2. The top band is confirmed to be His mCherry β-r1r2r3r4 

using mCherry fluorescence detection. Its migration differs from that in lane 1. 

while the bottom band is His α-r18r19r20r21-migrating at the same rate as that 

seen in lane 3.  The presence of two bands does suggest no interaction between 

these two proteins, however the slightly altered migration pattern of His mCherry 

β-r1r2r3r4 between lanes 1 and 2 might indicate that interaction has occurred. The 

presence of two bands might mean that not all of the His α-r18r19r20r21 

interacted.  A mix of His mCherry β-r1r2r3r4 and His β-r1r2r3r4 purified proteins in 

lane 4 is represented with one band. The presence of mCherry β-r1r2r3r4 in this 

band is confirmed with mCherry fluorescence and its altered migration pattern 

from that seen in lane 1 is noted. This altered migration pattern and the presence 

of only one band suggests possible interaction between these proteins.  

It may be that β-r1r2r3r4 has a slight tendency to form dimers with itself 

while α-r18r19r20r21 does not, as indicated with figure visuals in Fig. 3.31. 
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Figure 3.31: Observing Native Gel Migration Pattern of α-Actinin and α-/β-Spectrin Proteins. 
His α-r18r19r20r21, His β-r1r2r3r4 and His mCherry α-r18r19r20r21 and His mCherry β-r1r2r3r4 were 
each singly expressed in E. coli cells and purified using a nickel column. Protein mixes were prepared 
as indicated and subjected to native protein gel electrophoresis followed by Coomassie Brilliant Blue 
staining in conjunction with mCherry fluorescence detection. 
(A) Native protein gel electrophoresis confirm interaction between His mCherry α-r18r19r20r21 and 
His β-r1r2r3r4 (lane 2). No interaction is detected between α-r18r19r20r21 proteins (lane 4). 
(B) Native protein gel electrophoresis may suggest possible interaction between His α-r18r19r20r21 
and His mCherry β-r1r2r3r4 (lane 2). Possible homodimeric interaction between β-r1r2r3r4 proteins 
is indicated (lane 4). 
Migration pattern of each of the monomers and dimers is indicated with figure visuals.  
n=3 

 

 

3.4.7 Heterodimeric α-/β-Spectrin spectrin repeat Stability Assays Studies 

See section 3.4.5 for short introduction. 

 In this section, the co-expression strategy, using the C280* PBAD system and 

the T7lac system, and sequential purification strategy are used to yield α-/β-

spectrin spectrin repeat heterodimers to be utilised in salt and thermostability 

studies. 

 

To assess the effect of salt (NaCl) and heat on spectrin spectrin repeat 

heterodimer stability, a His-tag pulldown approach was utilised. The two-plasmid 
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co-expression strategy for the generation of these spectrin spectrin-repeat proteins 

is as follows; those proteins to be expressed from the C280* PBAD system were 

designed to have a MBP tag so that western blot analysis could be used to certify 

their identity, and verify that protein bands observed were not impurities, or the 

degradation products of His tagged proteins, or the result of MBP tagged proteins 

binding non-specifically to the resin, i.e. to ensure presence of His tagged α-

r18r19r20r21 is required for MBP β-r1r2r3r4 binding. 

 

3.4.7.1 Investigating the Effect of Salt Concentration on the Structural Stability of 

Spectrin r1-r4/r18-21 Heterodimers 

Purified truncated α-/β-spectrin heterodimers (His α-r18r19r20r21:MBP β-

r1r2r3r4) were incubated for 1 hour in increasing concentrations of NaCl, ranging 

from 150mM – 2M with Nickel resin. Interaction between this pairing was 

confirmed under all salt conditions indicated by the detection of MBP β-r1r2r3r4 

pulled-down with His α-r18r19r20r21 (Fig. 3.32). However, a weakening of 

association is occurring as the NaCl concentration is increasing.  

 

 

 

. 
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Figure 3.32: Stability of the Truncated Spectrin Heterodimeric Domain under High Salt 
Concentrations: 
MBP β-r1r2r3r4 and His α-r18r19r20r21 were co-expressed in E. coli cells, resulting heterodimers 
were purified using sequential affinity chromatography and subjected to a His tag pull-down assay 
under various NaCl concentrations, between 150mM to 2M. A control assay involving purified MBP 
β-r1r2r3r4 monomers only was undertaken in parallel in all NaCl concentrations. (Full data not 
shown). Resulting input and pull-down fractions were analysed using SDS protein gel electrophoresis 
followed by Coomassie Brilliant Blue staining, in conjunction with western blotting using anti-MBP. 
Pull-down assays demonstrated interaction between MBP β-r1r2r3r4 and His α-r18r19r20r21 under 
all salt conditions and no non-specific MBP β-r1r2r3r4 interactions. As the NaCl concentration is 
increased, a weakening of association is observed. 
Proteins of interest and the sizes (in kDa) of the relevant molecular weight markers are indicated. 
n=1 

 

3.4.7.2 The Investigation of the Thermostability of Spectrin r1-r4/r18-21 

Heterodimers 

The thermal stabilities of all 36 single spectrin repeats has been determined 

by An et al. (2006). They reported that the unfolding transition midpoints for each 

repeat varies from 21-72°C.  This variability between repeats may supplement 

findings by MacDonald & Cummings (2004) they find that certain repeat pairings 

are less thermodynamically stable than others, and that these pairings may acts as 

“hinges”, supplying the spectrin complex with elastic properties (discussed in 

section 1.1.2.3.2).  Here, I investigate the thermal stability of four repeat spectrin 

proteins α-r18r19r20r21 and β-r1r2r3r4. 

  Purified truncated α-/β-spectrin truncated heterodimers (His α-

r18r19r20r21:MBP β-r1r2r3r4) were incubated for 30 min in increasing 

temperatures, from  4ᵒC - 70ᵒC. This short incubation period was to allow for 
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possible dissociation of the heterodimers to occur. Each heterodimer sample at 

each temperature was then mixed with nickel beads and allowed to further 

incubate for 1 hour at its sample temperature. All wash steps were carried out at 

each samples required temperature. 

MBP β-r1r2r3r4 was detected in samples pulled-down with His α-

r18r19r20r21 that were incubated at 4ᵒC. A smaller amount of MBP β-r1r2r3r4 was 

dected in samples pulled-down with His α-r18r19r20r21 that were incubated at 

37ᵒC. In all temperatures unsatisfactory pulldowns are obtained – coomassie 

staining is weak and inconsistent across all samples. This inconsistency is worsened 

in samples at 50ᵒC and over. Coomassie stain reveals very faint bands, unequal in 

intensity to those bands observed for lower temperatures for His α-r18r19r20r21, 

while the corresponding western blot detects a large amount of MBP β r1r2r3r4. 

This may suggest that, at higher temperatures, protein aggregation is occurring (Fig. 

3.33). 
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Figure 3.33: Stability of the Truncated Spectrin Heterodimeric Domain under Increasing 
Temperatures.  
MBP β-r1r2r3r4 and His α-r18r19r20r21were co-expressed in E. coli cells, resulting heterodimers 
were purified using sequential affinity chromatography and subjected to a His tag pull-down assay 
under under various temperatures of between 4 and 70ᵒC. Control assay involving purified MBP β-
r1r2r3r4 monomers only was undertaken in parallel in all temperatures. (Full data not shown). 
Resulting input and pull-down fractions were analysed using SDS protein gel electrophoresis 
followed by Coomassie Brilliant Blue staining, in conjunction with western blotting using anti-MBP. 
Pull-down assays demonstrated a maintained interaction between MBP β-r1r2r3r4 and His α-
r18r19r20r21 heterodimers at a temperature of 4ᵒ, and dissociation of these pseudoheterodimers at 
37ᵒC. No non-specific MBP β-r1r2r3r4 interactions were detected. 
Proteins of interest and the sizes (in kDa) of the relevant molecular weight markers are indicated.  
n=2 
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3.5 Discussion 

The overall aim of the research presented in this chapter was to examine the 

dimeric interactions between the spectrin-like repeats of actinin and the spectrin 

repeats of α-/β-spectrin in view of assessing their appropriateness as building blocks 

in the construction of protein nanostructures.  

To generate these dimers, I made use of a co-expression and purification 

system that I developed that would allow me to co-express and co-purify an 

assortment of proteins.  

 

 

3.5.1 Co-expression System 

In the benchmarking study comparing expression from three different co-

expression strategies (bicistronic, two-promoter-one-plasmid and two-plasmid), 

both the two-promoter-one-plasmid and the two-plasmid strategies performed well 

in expressing each protein. The bicistronic strategy yielded very low expression of 

one protein, actinin S-tag r1r2r3r4, whose gene sequence was positioned furthest 

from the promoter. When using the bicistronic system it is very normal to only get 

expression of one gene, usually that gene closest to the promoter (Kim et al. 2004). 

These observations suggested that either the two-promoter-one-plasmid strategy or 

the two plasmid strategy would have been an acceptable option with which to 

continue.  

While the initial aim was to generate a co-expression system to produce 

actinin dimers and α-/β-spectrin heterodimers, going forward, I wanted to be able to 

utilise and manipulate this system with respect to the nanosynthetic aspect of the 

project. When designing and creating any form of structure there is always more than 

one type of building block and, each building block is present in varying amounts. 

With this in mind, I wanted to create a system in which one could control and 

independently regulate the expression of each target construct. For this reason, I 

decided to progress with the two-plasmid strategy, rather than the two-promoter-

one-plasmid strategy. In addition, this one-plasmid-one-protein co-expression 

method would allow me to “mix and match” different protein combinations quite 

simply and easily. 
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While making use of the two-plasmid strategy, it was observed that, in 

practice, co-expressing two proteins, each under the control of a different promoter 

(PBAD or T7 lac promoters), on a different plasmid, was not very straightforward. To 

carry out the actinin spectrin-like repeat interaction assays (section 3.4.4.1) it was 

imperative that the actinin spectrin-like repeat proteins were co-expressed, to allow 

them the best opportunity to form dimers, if they were so inclined. A combination of 

IPTG and arabinose concentrations that produced relatively equimolar amounts of 

actinin four- and three-spectrin-like repeat proteins was identified, but, it was very 

difficult to establish a set of IPTG and arabinose concentrations that would produce 

equimolar amounts of actinin two-spectrin-like repeat proteins. A study, undertaken 

by Lee et al. (2007), prompted the consideration that maybe the two promoters 

(T7lac and PBAD) were not working independently of each other. In their study, they 

found that both of these promoters had a strong tendency to involve themselves in 

a type of promoter crosstalk where the inducer of one promoter disturbs expression 

from the other promoter; i.e. where IPTG was found to inhibit expression from the 

PBAD system. These findings reflected my own observations; expression from the PBAD 

system only seemed to occur in the presence of very low IPTG concentrations. This 

study found their mutated version of the PBAD system to be much more appropriate 

for use where the presence of IPTG was also required. I was able to re-affirm this 

observation using the MBP protein expressed from either the WT PBAD system or the 

C280* PBAD system in the presence or absence of IPTG.  

In expanding this study, comparing the WT and C280* PBAD systems,  and 

determining the robustness of this C280* PBAD system in a co-expression situation, i.e  

where MBP was expressed from the C280* PBAD system in the presence of arabinose, 

together with  YFP expression from the T7lac system in the presence of IPTG, it was 

observed that high concentrations of arabinose were affecting expression of YFP 

from the T7lac promoter, the opposite of what was seen in co-expression trials using 

the WT PBAD system and the T7lac system. In fact, it was observed that as the 

concentration of arabinose in the culture increased, expression from the C280* PBAD 

system also increased, while expression from the T7lac system decreased. Further 

investigation suggested that, this time, promoter crosstalk was not responsible; 

addition of increasing concentrations of arabinose to cultures containing only, and 
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therefore expressing only, from the T7lac system did not exhibit any decline in 

expression. The actual presence of the arabinose inducer was not affecting 

expression from the T7lac system, but rather expression from the C280* PBAD system 

was affecting expression from the T7lac system. This study suggests that perhaps the 

C280* PBAD system is much more selfish system than the T7lac system, monopolising 

the protein synthesis machinery of the bacterial cell leaving the cell deficient in its 

ability to produce protein from the T7lac system. 

Overall, the combination of the WT PBAD system with the T7lac system 

appeared to be very “inflexible” with varied combinations of IPTG and arabinose 

inducers yielding “all-or-nothing” expression patterns for the protein of interest. This 

makes it very difficult to uncover optimal inducer concentrations for balanced co-

expression. By contrast, while I revealed some previously unreported issues with use 

of the C280* pBAD system with the T7lac system, it was found that the 

concentrations of inducers were much more titratable with C280* pBAD system, 

compared to the WT version.  Thus the C280* pBAD system does represent an 

improvement in terms of achieving independent control of the expression of two 

proteins. 

 

 

3.5.2 Heterodimer Purification 

I speculated that a heterodimer purification system, involving the double-

tagging system followed by sequential affinity chromatography, would be useful not 

only in relation to this project, but to other protein-based projects. Some proteins 

require the presence of a chaperone protein to help them fold correctly and remain 

stable (Georgiou & Valax 1996).  By differentially tagging the protein of interest and 

the chaperone, and co-expressing them together in the one cell, I envisioned the use 

of this optimised co-expression and purification strategy to produce soluble, stable 

and correctly folded native proteins, which, for example, could then be further 

studied for structural determination. Previous work in our lab has shown through in 

vitro binding assays that actinin-1 and actinin-4 can form heterodimers (Foley & 

Young 2013). The properties of these actinin-1/-4 heterodimers have not yet been 



Page | 186  
 

completely studied. With the use of this co-expression and co-purification technique, 

is should be possible to purify these heterodimers and analyse them further.  

Originally, the purification strategy was a two-day procedure, consisting of an 

overnight dialysis to remove the imidazole from the semi-pure protein elution, prior 

to loading onto the second chromatography column. In efforts to streamline the 

procedure, thus making it more attractive, it was noted that the presence of 

imidazole does not affect the binding of MBP to the amylose column This observation 

made the overnight dialysis step in between purification from both columns 

unnecessary, turning the two-day procedure into a one-day process.  

 The added advantage of using a purification strategy involving sequential 

affinity chromatography is that should always yield a 1:1 ratio of each protein. An 

equal ratio of each protein was imperative when carrying out the salt stability and 

thermostability assays in sections 3.4.5 and 3.4.7. The use of double tag sequential 

affinity chromatography procedure slightly attenuated the pressures of trying to 

achieve equal co-expression of each protein. As previously mentioned and shown, 

the crosstalk that was observed between the two initial promoters that were chosen, 

T7lac and WT pBAD promoters made equal co-expression of each protein very 

complex and difficult to accomplish. However, use of the T7lac promoter with the 

C280* pBAD promoter, made co-expression a less formidable task. 

 

 

3.5.3 Actinin Spectrin-like Repeats and α-/β-Spectrin Spectrin Repeats: 

Dimerisation Studies 

The actinin spectrin-like repeats (r1r2r3r4) and the α-/β- 

(r18r19r20r21)/(r1r2r3r4) spectrin spectrin repeats have the ability to self-assemble 

into dimers and, as a result, were to be my main building blocks. I made use of MBP 

pulldown assays and native protein gel electrophoresis to confirm this dimerisation. 

Native protein gel electrophoresis uses non-denaturing conditions meaning 

that the proteins maintain their higher-order structure (Fanarraga et al. 2010). All 

spectrin repeat recombinant proteins (from both actinin and spectrin proteins) had 

low pI values, meaning they all had net negative charges at neutral pH, and so, 

migrated readily into the native gels. The rate of migration will be influenced by their 
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exact charge, as well as their molecular weight and shape.  When analyzing these 

native gels, I assumed that, when disposed to do so, dimers would form between 

protein pairings and they would run as one band and, when indisposed to do so, non- 

interacting monomeric proteins would run as two separate bands. The appearance 

of a third band would indicate another type of dimeric interaction. Using these 

guidelines, it was confirmed that actinin rod domain proteins (r1r2r3r4) interact with 

themselves forming homodimers, where both of the actinin rod domain proteins 

contributing to the dimer have the same tag, and pseudoheterodimers, where both 

the actinin rod domain proteins contributing to the dimer have a different tag. 

These guidelines were also used to study possible dimerisation between the 

α-/β-spectrin truncated proteins (α-r18r19r20r21/β-r1r2r3r4). β-r1r2r3r4 constructs 

migrate much more slowly than α-r18r19r20r21 constructs. This might be explained 

by charge differences. α-r18r19r20r21 has a much lower pI than β-r1r2r3r4, 4.90 and 

6.06 respectively. This means it has a much greater negative charge density and so 

will migrate at a faster rate. However, an alternative explanation could be that β-

r1r2r3r4 possesses a tendency to homodimerise with itself. This observation may 

explain the conflicting results obtained from these native gels regarding dimerisation 

between α-r18r19r20r21 and β-r1r2r3r4; complete dimerisation is observed 

between His mCherry α-r18r19r20r21 and His β-r1r2r3r4, but not between His 

mCherry β-r1r2r3r4 and His α-r18r19r20r21. It may be that the His mCherry β-

r1r2r3r4 is not available for complete heterodimerisation with His α-r18r19r20r21, 

due to it homodimerisation with itself, or it may simply be that, when present on β-

r1r2r3r4 protein, the mCherry tag sterically prevents complete heterodimerisation 

to His α-r18r19r20r21. It may also be that His α-r18r19r20r21 and His mCherry β-

r1r2r3r4 did interact, mCherry fluorescence did reveal an altered migration pattern 

of His mCherry β-r1r2r3r4 between lanes 1 and 2. The presence of two bands may 

mean that not all of the His α-r18r19r20r21 interacted with the His mCherry β-

r1r2r3r4. 

This would not be the first study to report associations between spectrin 

spectrin repeats. A three spectrin repeat α-spectrin molecule comprising spectrin 

repeats 15-17 crystallised as an anti-parallel homodimer (Kusunoki et al. 2004b). It is 

unclear if the lateral interactions that occur between spectrin repeats outside of the 
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dimer initiation site are specific, or if they occur due to proximity after initial 

alignment of α20-21 and β1-2 (Li et al. 2007). Li et al. (2007) have suggested that 

monomeric spectrin proteins can homodimerise with weak affinity. Considering the 

β-spectrin proteins used in this study contained two of the dimer initiation sites, β1 

and β2, which always precisely align with α20 and α21 (Li et al. 2007), it is unlikely, 

that non-specific pairing occurred. However, the presence of spectrin repeats β3 and 

β4 may have induced homodimerisation, especially in samples not containing the α-

spectrin protein. These possible homodimers may provide information on the pairing 

of spectrin repeats outside of the dimer initiation site. 

Nevertheless, heterodimerisation between His α-r18r19r20r21 and MBP β-

r1r2r3r4 was verified with a MBP pull-down.   

 

In assessing the dimerisation and self-assembly capability of truncated actinin 

rod-domain constructs, I found both the three-spectrin-like repeat proteins (r1r2r3 

and r2r3r4) to offer the most potential. Agreeing with previous studies involving 

chicken gizzard actinin carried out by Flood et al. (1997) and Flood et al. (1995), 

homodimerisation occurred between the equivalent truncated three-repeat 

constructs, r1r2r3. Heterodimerisation also occurred between two different three-

repeat constructs, r1r2r3 and r2r3r4. Densiometric analysis suggested that this 

heterodimerisation between r1r2r3 and r2r3r4 constructs was tighter and stronger 

than the homodimerisation between two r1r2r3 constructs. This observation was not 

surprising. In the aligned actinin dimer model, the abrogation of one pairwise 

alignment still leaves three available to mediate heterodimerisation between r1r2r3 

and r2r3r4, however homodimerisation between two r1r2r3 monomers involves only 

two pairwise alignments. This study lends further support to the aligned actinin 

dimer model. Only one of the actinin two-spectrin-like repeat proteins offered the 

possibility of self-assembly; r2r3. This result was anticipated, given that the crystal 

structure of the r2r3 protein had determined it to be a dimer, however an interaction 

between r1r2 and r3r4 was also expected, based on previous work carried out by 

Young & Gautel (2000) using a yeast 2 hybrid system. Also, with this protein 

combination, under the aligned actinin dimer model, two pairwise interactions are 

available, making dimerisation very probable. The fact that dimerisation was not 
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reported here could be due to a number of reasons, the use of different expression 

systems, the possibility that the MBP tag may have interfered with dimerisation, or, 

alternatively, maybe the interaction was very weak and, was therefore difficult to 

detect. However, speculative conclusions can be drawn from the observation that 

r1r2 proteins failed to interact with r3r4 proteins, while r2r3 was found to readily 

form dimers with itself, so substantially in fact, that differentially tagged r2r3 

proteins had to be co-expressed, rather than singly expressed in the hope of 

producing pseudoheterodimers over homodimers. It has already been suggested 

that r2r3 represents the structural foundation that determines the architecture of 

the entire rod domain and indeed, the complete actinin protein (Djinović-Carugo et 

al. 1999).  Results presented here indicate that perhaps dimerisation of r2r3 may 

represent the minimum requirement necessary to induce dimerisation; this 

interaction may create the context allowing for the co-operative binding of repeats 

one and four. Dimerisation of actinin molecules might occur from the middle 

outwards. This is in contrast to the zipper-like model of heterodimerisation between 

spectrin molecules, which begins with the alignment of α- and β-spectrin repeats at 

one end of the molecule followed by the lateral association of remaining spectrin 

repeats (Speicher et al. 1992; Ursitti et al. 1996; Harper et al. 2001) 

 

 

3.5.4 Actinin Spectrin-like Repeat Dimers and α/β-Spectrin Spectrin Repeat 

Heterodimers: Stability Assays 

In sections 3.4.5.1 and 3.4.7.1,  both actinin spectrin-like repeat dimers and 

α/β-spectrin spectrin repeat heterodimers displayed remarkable stability under all 

high salt concentrations. The electrostatic static interactions contributing to the 

dimer formation (Kusunoki et al. 2004b; Djinović-Carugo et al. 1999) must be buried 

deep within the dimer interface and are therefore protected from the screening 

effects of NaCl.  Since salts differ in their ability to screen charges, it might be 

interesting to observe the effect with a more chaotropic salt (Perez-Jimenez et al. 

2004). Although, a weakening of association between truncated α- and β-spectrin 

constructs was observed as the concentration of NaCl increased. This is in agreement 

with Begg et al. (2000) who also reported a reduced association between these 
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truncated spectrin constructs as the NaCl concentration increased from 0.1-1M in 

sedimentation equilibrium experiments. Older studies have found that the secondary 

structure of spectrin repeats is not disrupted with increased ionic strength, but rather 

dissociation of dimers is induced by disruption of electrostatic attractions between 

repeats (LaBrake et al. 1993; DeSilva et al. 1997).  

Thermostability investigations of actinin rod domain dimers yielded 

interesting results.  Up to temperatures of 37ᵒC, the actinin rod domain dimer 

remains intact. Beyond this temperature dissociation is induced. However, upon 

cooling, these monomers can apparently be enticed to re-associate and re-form the 

dimer. These characteristics are reminiscent of the DNA double helix, the formation 

of which makes use of complementary strand base- pair alignments between 

guanine and cytosine, adenine and thymine. Under conditions of high heat, DNA 

strands contributing to the helix separate and upon cooling, re-anneal. This process 

has been greatly exploited in the field of synthetic nanoconstruction (Nangreave et 

al. 2010). These disassociation and re-association properties of actinin could be 

useful in terms of building large and complex structures with actinin based building 

blocks as it provides an extra layer of control over the assembly process. Through 

manipulation of temperature, structures can be induced to assemble or dis-

assemble. This new found property should also it may make it easier to facilitate 

attachment of biological molecules, such as enzymes or motor proteins, to the 

actinin-based structure, making it functional. It would be interesting to study if 

temperatures inducing dis-association and re-association between actinin spectrin-

like repeats would be different depending on the amount of spectrin-like repeats 

present in the building block.  If so, assembly of structures formed from actinin 

building blocks made up of different numbers of spectrin-like repeats could be 

enticed to occur hierarchically, over a number of different temperatures, which 

might lead to the formation of a more detailed structure. Apart from the above, this 

property also suggests that the monomeric actinin rod domain is quite stable too, 

being able to maintain its structural integrity in high temperature conditions.  

Thermostability investigations of truncated α-/β-spectrin spectrin repeat 

heterodimers indicated that these dimers may not be as heat resilient as the actinin 

rod domain homodimer; truncated spectrin heterodimers dissociated at 37°C, while 
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actinin rod domain pseudoheterodimers dissociated at a higher temperature.  It 

maybe that full length α-/β-spectrin heterodimers are more heat resilient. Indeed, 

spectrin is believed to be dimeric in vivo, so the additional spectrin repeats in full 

length spectrin must provide additional thermostability. The physiological body 

temperature is 37°C. It may not be unusual to observe some spectrin heterodimer 

dissociation at this temperature as it may contribute to making the RBC more 

elastic. The interpretations gathered from these assays are credible considering the 

thermostability of the MBP protein has reported to have a Tm , the temperature at 

which a protein starts to denature, of 63°C at a pH of 7.4 (Ganesh et al. 1997). 

Spectrin repeat thermostability assays were carried out at a max temperature of 

70°C at a pH of 7.5. This may explain the possible protein aggregation that was 

observed in assays carried out at 70°C. In assays carried out at lower temperatures 

however, the MBP tag should have remained folded. These thermal characteristics 

make MBP protein a suitable protein tag for such assays. 
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3.6 Conclusion 

Although the goal of much of this work was to re-confirm what was already 

known in the field, it was important to do so. I needed to be able to relay this 

information in terms of my constructs, expression systems and lab techniques 

before proceeding further with the project, in the hope of using these constructs as 

components in the construction of a protein nanostructure. In my opinion, it was 

imperative for me to become familiar with my own tools and building blocks first, 

and then focus on the design and composition of my protein nanostructures. 

However, along the way I have devised and optimised a protein co-

expression and purification strategy that, for this study, has been successful in 

generating actinin and spectrin building blocks, but has the potential for use in any 

study requiring the generation of protein complexes. I have also gleaned a few 

novel insights with regard to spectrin-like and spectrin repeat interactions that 

should not only be helpful in designing protein building blocks and protein 

nanostructures going forward, but should also contribute to the large volume of 

information already known about these proteins; the central repeats of the actinin 

rod domain, r2r3, appear to an essential  minimum requirement for actinin dimer 

formation; within reasonable temperatures the actinin rod domain behaves in a 

similar fashion to the DNA double helix  insofar as it can be enticed to  dissociate 

and re-associate; and β-spectrin spectrin repeats 1-4 may have a slight tendency to 

homodimerise.  

The overall conclusion from the work carried out for this chapter is that 

spectrin repeats from both actinin and spectrin proteins make strong candidates as 

nanostructure building blocks with which to go forward with in attempts to design 

and build a protein nanostructure. 
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Chapter 4: 

Using Actinin and Spectrin Dimerisation Domains 
to Generate Nanostructure Building Blocks 
 

 

4.1 Abstract 

Proteins have enormous potential as building blocks, as has been evident 

with the creation of protein cages, lattices and nano-scaffolds. However, 

cytoskeletal proteins have been under-represented in this field. Considering their 

important mechanical and physical properties, I propose that cytoskeletal proteins 

have potential applications in this area.  In this study, I assess the possibility of using 

Spectrin Family proteins, particularly their spectrin repeat domains (dimerisation 

domains), as building blocks for protein-based nanostructures. Through a fusion-

based assembly strategy, I create homodimeric and heterodimeric bivalent building 

blocks and demonstrate their potential for future application in Bionanotechnology. 
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4.2 Introduction 

In the last number of years, a type of molecular biology revolution has taken 

place with the rise of bionanotechnology, a discipline dedicated to, not only 

identifying and describing biological macromolecules, but also using them to create 

nanoscale structures. Self-assembly is the instinctive automatic association of 

modules or components into organized structures and is the main approach used 

by nature to bring about the biological complexity that makes up the cell and its 

inner workings (Ryadnov 2007; Alberts 1998). Researchers, through bottom-up 

assembly techniques, exploit this intrinsic self-assembly ability of biomolecules to 

both gain a better understanding of living systems and their natural biological 

complexes, and to generate nanostructures that have practical “real-world” 

applications. DNA, for example has been used to create various complex 2D and 3D 

shapes and structures (Nangreave et al. 2010). However, proteins might make a 

more effective building block. They are principally used by nature to form great and 

complex structures (Alberts 1998). In fact, the bulk dry mass of a cell is made up by 

proteins and nearly every process carried out in a cell, is carried out through the 

collaboration and assembly of many proteins (Alberts 1998). Therefore, in terms of 

their functional properties, proteins are extremely diverse and versatile. This 

versatility can be extended to their physical and structural properties too because 

their functionality is determined through their tertiary structure (Nelson & Cox 

2005b). 

For this particular study, I considered the cytoskeleton to be a considerably 

attractive toolbox as a source of building components. Cytoskeletal proteins are 

known to have very dynamic mechanical properties. They provide stability to the 

cell and maintain cell shape, behaving rather like an internal scaffolding system, 

while, somewhat paradoxically, they co-ordinate forces that allow the cell to move 

and change shape (Fletcher & Mullins 2010). These functions indicate properties of 

great versatility and strength; important properties that I would consider to be 

necessary in a building block.  

From this cytoskeletal toolbox, I choose two proteins to construct with; α-actinin 2 

and erythroid α- and β-spectrin, particularly their spectrin repeats that make up 
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their central region (dimerisation domains). As an important architectural member 

of the sarcomeric Z-disc and the red cell membrane respectively (Gautel & Djinovic-

Carugo 2016; Gratzer 1981; Luther 1991), I propose that both actinin and spectrin 

proteins could also act as such in an unnatural synthetic structure. 

 

 

4.2.1 Approaches and Principles for Designing Protein Nanostructures 

There are many ways in which proteins can be manipulated into forming 

higher order complex structures. Ligand-mediated assembly is one such approach, 

it exploits the high affinity interaction between small molecules and their receptor 

to bring about protein assembly (Fegan et al. 2010; King & Lai 2013). Metal-directed 

protein assembly is another approach, this method gains from metal co-ordination 

and the ability of certain metal ions to bind to specific proteins and, for example, 

direct their folding or link proteins together in multiprotein complexes (Salgado et 

al. 2010).  The fusion-based assembly method is another technique that has been 

very successful in the creation of protein nanostructures.  It involves the creation of 

protein chimeras, through the fusion of two protein oligomerisation domains into 

the one protein chain (Padilla et al. 2001; King & Lai 2013) (see section 1.2.5). 

Taking advantage of the ability of telethonin to crosslink and associate with 

titin, Bruning et al. (2010) used the fusion-protein strategy to create a protein 

nanoscaffold, with the potential to display particular nanoparticles. Assembly was 

brought about through the use of two building blocks; one being a fusion protein 

consisting of two copies of the two N-terminal telethonin binding Ig-domains of 

titin, Z1Z2, separated from each other with a rationally designed linker (ZIZ2-ZIZ2), 

and the other building block being a truncated variant of the telethonin protein; 

made up of only its titin interacting region. The availability of two titin domains for 

telethonin binding on the one protein molecule made it possible for telethonin to 

crosslink these fusion proteins in a staggered fashion that lead to the formation of a 

long nanofibre.  

Another study also used the fusion-based strategy to create a protein cage 

(Padilla et al. 2001). This study exploited the self-associative properties of two 

proteins, bromoperoxidase, a protein which forms trimers with itself, and the M1 
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matrix protein of the influenza virus, a protein which forms dimers with itself. A 

protein cage was assembled from the interaction between fusion proteins made up 

of one of each of these protein domains separated with a helical linker. 

Although the functions of actinin-2 in the sarcomeric Z-disc imply that this 

protein has great structural strength, this was not my only reason for choosing this 

protein as my first building block, although both reasons are inherently linked 

(discussed below).  Actinin has the ability to form dimers with itself, a dimerisation 

which is mediated by its central rod domain (Ylänne et al. 2001; Djinović-Carugo et 

al. 1999). This means that the actinin dimer exhibits two-fold symmetry (Ylänne et 

al. 2001). In nature, the majority of assembled protein complexes are symmetrical, 

meaning that through evolution, they have acquired self-complementary shapes 

(King & Lai 2013; Villar et al. 2009; Goodsell & Olson 2000). The large volume of 

naturally symmetrical protein complexes in the present day cell would suggest that 

symmetrical complexes offer an evolutionary advantage over asymmetrical 

complexes, or simple single protein monomers (Goodsell & Olson 2000). Apart from 

the obvious advantages of symmetric assembles to the cell or organism; better 

coding efficiency, greater translational error control, and an improved regulation 

over the assembly process, one of the main advantages offered to the protein, or 

protein complex itself, is stability (Goodsell & Olson 2000). It has been said that the 

lowest energy state of an assembly is a symmetrical one (Goodsell & Olson 2000). A 

symmetrical complex is said to be more stable because its folding requires less 

interaction interfaces than the folding of asymmetric complexes (Lai et al. 2012). 

This means that there are less kinetic barriers to overcome during the folding 

process (Goodsell & Olson 2000). Also, large protein complexes tend to have a 

reduced surface area, which is said to protect them from degradation (Goodsell & 

Olson 2000). 

From a design perspective, it seemed logical that my protein based 

nanostructure should take into account the principles of symmetry, and from a 

practical point of view, this made sense. Symmetry would allow the possible 

creation of a large structure using only a small number of proteins, or interaction 

interfaces. 
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4.2.2 Objectives 

In the first part of this study I evaluate a fusion-based strategy for 

assembling protein complexes involving the fusion of two homodimeric proteins 

domains, that would naturally oligomerise with each other, into a single protein 

molecule, in this case, the fusion of two actinin-2 rod domains. 

In the second part of this study, I evaluate a fusion-based strategy for 

assembling protein complexes involving the fusion of homodimeric and hetero-

dimeric protein domains, domains that would not naturally oligomerise with each 

other, in a single protein molecule, in this case, fusion of the actinin rod domain 

with either a truncated α-spectrin protein or a truncated β-spectrin protein, each 

consisting of only four spectrin repeats.  

Ultimately, through the use of a fusion-based assembly strategy that leads 

to the creation of very promising bivalent and tetravalent building blocks, I 

demonstrate the possibility of using spectrin-like and spectrin repeats from actinin 

and spectrin respectively to build large complex protein assemblies, that might, one 

day, have the potential to be utilised in the synthetic biology discipline. 
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4.3 Materials and Methods 

 

 

4.3.1 cDNA constructs and Plasmid Construction 

 

4.3.1.1 Actinin and Spectrin cDNA Constructs 

All actinin constructs in this chapter correspond to residues 274-746 of the 

human muscle actinin-2 (calcium insensitive) isoform, GeneBank sequence 

NM_001103. This region contains spectrin-like repeats 1-4. 

All α-spectrin constructs correspond to residues 1818-2259 of the human 

erythrocytic α-spectrin, GeneBank sequence NM_003126. This region contains 

spectrin repeats 18-21. 

All β-spectrin constructs correspond to residues 293-743 of the human 

erythrocytic β-spectrin transcript variant 1, GeneBank sequence NM_001024858. 

This region contains spectrin repeats 1-4. 

Two sets of primers (Integrated DNA Technologies, Inc., Leuven, Belgium) 

were designed for actinin r1-r4 construct amplification; one set to yield a product 

with an EcoRI site at its 5’ end, and XhoI and HindIII sites at its 3’ end. The other set, 

to yield a product with EcoRI and SacII sites at its 5’ end, and KpnI and SalI sites at 

its 3’ end (Fig. 4.1) 

 

 
Figure 4.1: Strategy for Cloning Actinin cDNA Constructs. Restriction sites employed for the cloning 
of actinin-2 constructs. 

 

The primers to amplify the α-spectrin: r18-r21 construct were designed to 

yield a product with BglII and AscI sites at its 5’ end and SalI and XhoI sites at its 3’ 

end. 
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The primers to amplify the β-spectrin: r1-r4 construct were designed to yield 

a product with a EcoRI site at its 5’ end, and SalI and HindIII sites at its 3’ end (Fig 

4.2).  

 

 
Figure 4.2: Strategy for Cloning Spectrin Constructs. Restriction sites employed for the cloning of α-
Spectrin and β-Spectrin constructs. 

 

 

4.3.1.2 Homodimeric Fusion Protein Construction 

Homodimeric fusion proteins containing two actinin rod domains (r1r2r3r4) 

joined by a linker region were constructed through sequential cloning steps. 

Initially, actinin r1r2r3r4 was introduced into the commercially available pCDF-Duet 

plasmid (see appendix for plasmid map) twice as two separate preparations, as 

follows: MCS1 (EcoRI and HindIII) and MCS2 of the pCDF-Duet plasmid (EcoRI and 

SalI; making use of compatible cohesive end ligation with plasmid sites Mfe I and 

XhoI, respectively). Using EcoRI and HindII restriction sites, actinin r1r2r3r4 was 

then excised from the first plasmid preparation, and sub-cloned into the second, 

using the same restriction sites.  

In respect to designing linker regions, the PBD file 1HCl was examined. This 

file exhibited two extra serine residues in the N-terminus of actinin’s spectrin-like 

repeat 1 and one extra aspartic acid in the C-terminus of its spectrin-like repeat 4, 

that are not encoded for in the gene sequence. Linkers in Section 4.4.1.1.1 

accommodated these extra residues, but linkers designed thereafter only 

continually accommodated the aspartic acid residue. 

Oligonucleotides encoding for desired linker sequence (Integrated DNA 

Technologies, Inc., Leuven, Belgium) were designed to contain XhoI and SacII 

overhangs so to allow for introduction to the pCDF-Duet plasmid containing actinin 

r1r2r3r4 in each MCS. All linkers were designed as such, excepting the four short 
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linkers in section 4.4.1.1.2; -no linker-, -D- and -DS-. These three linkers were 

created through XhoI enzymatic plasmid digestion of the longer, rigid linkers of the 

that section; -DIPPR-, -DISRD- and -DISRDS, with subsequent re-ligation. 

 All construct design strategies incorporated the N-terminal 6xHis tag 

encoded by its gene sequence located in MCS1 of both pCDF/pRSF plasmids. 

 

4.3.1.3 Orthogonal Homodimeric Fusion-Protein Construction 

Actinin rod domain proteins with one, two or three amino acid insertions 

between repeat 2 and repeat 3 were generated using site directed mutagenesis 

with primer extension. Three mutagenic primers were designed, each encoding for 

one of the three desired amino acid insertions; p.L238_E239insL, p.L238_E239insLL 

and p.L238_E239insKLL.  For each mutational insertion, three PCR reactions were 

carried out. Two nested PCR reactions; one reaction with the EcoRI actinin r1r4 

forward primer and mid-actinin reverse primer, the next reaction with the SalIKpnI 

actinin r1r4 R primer and one of the three forward mutational primers, generated 

two DNA fragments with overlapping ends. Hybridisation between the 

complementary overlapping 3’ ends of each fragment in the subsequent PCR fusion 

reaction, with the EcoRI actinin r1r4 forward primer and the SalIKpnI sctinin r1r4 R 

primer generated the final full length product.  

Orthogonal homodimeric fusion-proteins, containing one of these 

p.L238_E239insL, p.L238_E239insLL or p.L238_E239insKLL actinin rod domains and 

one WT actinin rod domain, were created through replacement of one of the WT 

actinin rod domains in constructs containing the -DSS- linker and -D9xGSS- linker, 

using restriction sites EcoRI and HindIII.  

 

4.3.1.4 Heterodimeric-to-Homodimeric Fusion Protein Construction 

Heterodimeric-to-Homodimeric fusion-proteins with flexible linkers (section 

4.4.2.1) containing truncated spectrin proteins (four spectrin repeats; α-

r18r19r20r21/β-r1r2r3r4) and an actinin rod domain (r1r2r3r4) were created 

through sub-cloning steps in which actinin r1r2r3r4 in MCS1 of constructs 

containing the -D12xGSS- linker was replaced with either spectrin α-r18r19r20r21; 

using compatible cohesive end ligation involving BglI and XhoI with BamHI and SalI 
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respectively, or spectrin β-r18r19r21r22; using the EcoRI site, and compatible 

cohesive end ligation between SalI and XhoI sites. 

11 heterodimeric-to-homodimeric fusion proteins with rigid helical linkers 

(Section 4.4.2.2) containing truncated spectrin proteins (four spectrin repeats; α-

r18r19r20r21/β-r1r2r3r4) and actinin rod domains (r1r2r3r4) were created through 

sequential cloning steps. Using PCR amplification, 11 different actinin r1r2r3r4 

constructs were produced each juxtaposed to a XhoI site, followed by a sequence 

encoding for helical linkers of varying length, by use of 11 different forward 

primers. One of these forward primers was designed to produce a direct fusion 

between α-/β-spectrin and actinin. A common reverse primer placed XmaI, PacI and 

HindIII site at the 3’ end of these actinin r1r2r3r4 constructs. Using XhoI and PacI 

sites, each of the 11 actinin constructs were cloned into SalI and Pac I digested 

pCDF and pRSF Duet plasmids containing either α-spectrin r18r19r20r21 or β-

spectrin r1r2r3r4 their MSC1. The cohesive annealing of XhoI and SalI sites encoded 

for a short two amino acid sequence consisting of serine and arginine. All helical 

linker sequences started with this short sequence, including the construct 

presumed to be a direct fusion.  

All construct design strategies incorporated the N-terminal 6xHis tag encode 

in MCS1 of both pCDF/pRSF plasmids 

Constructs containing one actinin rod domain centred between two spectrin 

rod domains were created through several cloning steps. α-r18r19r20r21 and β-

r1r2r3r4 with 6xGly N-terminal linker sequences and appropriate flanking 

restriction sites were first synthesised (Integrated DNA Technologies). 

 A 6xHis-α-spectrin r18r19r20r21-actinin r1r2r3r4-α-spectrin r18r19r20r21 

construct was created by cloning the 6xGly-α-Spectrin r18r19r20r21 sequence at 

the 3’ end of an 6xHis-α-spectrin r18r19r20r21-6xGly-actinin r1r2r3r4 construct in 

the pCDF Duet plasmid using the sites KpnI and PacI.  

A 6xHis-β-spectrin r1r2r3r4-actinin r1r2r3r4-β-spectrin r1r2r3r4 construct 

was created by first cloning the 6xGly-β-spectrin r1r2r3r4 at the 3’ end of a 6xHis-β-

spectrin r1r2r3r4 construct in the pRSF Duet plasmid using SalI and PacI sites. 

Actinin r1r2r3r4 with 8xGly C-terminal linkers were then cloned in between the two 

β-spectrin r1r2r3r4 regions using SalI and SacI restriction sites. 
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4.3.2 Protein Expression and Purification 

All constructs were transformed into E. coli [DE3] (Novagen, Quintin, 

France). Protein expression were induced at 37 oC by addition of 0.2mM IPTG and 

cells were harvested, through centrifugation, 4 hours post induction.  Cell pellets 

were resuspended in PBS, 0.2% triton, 20mM β-mercaptoethanol and 1mM 

phenylmethylsulfonyl fluoride (PMSF). Cells were lysed by sonication and addition 

of 0.1mg/ml lysozyme for 30min at 4 oC. Lysates were cleared by centrifugation at 

39,000xg for 40min at 4 oC. 

All purifications were based on nickel immobilised metal affinity 

chromatography, as all constructs were designed to have a 6xHis tag on their N-

terminal. Proteins were loaded onto a Ni-column pre-equilibrated with Ni-wash 

buffer (0.5M NaCl, 50Mm KPO4 pH 8.0, 20mM β-mercaptoethanol, 5mM imidazole, 

0.1% triton). Columns were washed three times with 10ml wash buffer. Bound 

proteins were eluted in 200mM imidazole pH7, with 20mM β-mercaptoethanol. 

 

 

4.3.3 Size Exclusion Chromatography 

Size exclusion chromatography was performed on an AKTA FPLC system. A 

Supradex 200 column (GE Healthcare) was used, equilibrated with buffer A (20mM 

Tris pH 7.5, 150mM NaCl and 0.5mM DTT) at a flow rate of 0.2ml/min. Samples 

were injected at a volume of 0.4ml.  

 

 

4.3.4 Native Gel Electrophoresis 

Native protein gel electrophoresis set up was as per the standard 

polyacrylamide gel electrophoresis protocol, with the exception that SDS, β-

mercaptoethanol and boiling steps were omitted.  

Section 4.4.2.2 required the mixing of corresponding heterodimeric to 

homodimeric fusion proteins prior to native gel electrophoresis. 0.5µM of each 

protein in each pair was mixed and left to incubate overnight at 4 oC.  

Gel loading buffer (without β-mercaptoethanol and SDS) was added to all 

proteins and protein mixes on ice. Samples were then loaded onto 5% native gels 
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(prepared without SDS).  Samples were run in native gel running buffer (without 

SDS) at 4 oC. Both the separating gel and gel running buffer were designed to have 

an approx. pH of 8-9, and stacking gel was designed to have a pH of 6.8 as per 

standard denaturing protocol. 

 

 

4.3.5 Transmission Electron Microscopy 

Protein solutions (between 0.1 and 1mg/ml) were deposited onto carbon 

grids. The loaded grids were blotted with filter paper and then negatively stained 

using 2% uranyl acetate or 2% phosphotungstic acid. Grids were then blotted again 

with filter paper, and allowed to air dry. Electron microscopy was carried out with a 

Jeol 2000FXII transmission electron microscope.  
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4.4 Results 

 

 

4.4.1 Evaluation of Fusion-based Assembly Strategy Employing Two 

Homodimeric Oligomerisation Domains 

This first strategy consisted of two components; the protein building blocks, 

i.e. repeated actinin rod domains (r1r2r3r4), and a linker peptide, designed to 

connect the two rod domains to each other, ultimately creating homodimeric 

actinin rod fusion proteins.  

In this section I set out to assess the fusion-based assembly strategy with 

actinin rod domain proteins, and determine which type linker, flexible or 

short/rigid, would best suit this type of protein assembly approach. 

With this strategy, two homodimeric actinin rod domains are genetically 

fused into a single protein chain (Fig. 4.3A). Staggered interaction between the 

actinin rod domains in different proteins chains should produce symmetrical 

bivalent building blocks (Fig. 4.3B). These building blocks are desirable; 

concatenation of many of these building blocks would bring about the assembly of 

higher order oligomers or polymers. However, aligned interactions between the 

actinin rod domains in different proteins chains could also occur. (Fig. 4.3C), or, the 

actinin rod domains in the same protein chain could fold back on each other and 

form a monomeric unit (Fig. 4.3D). These interactions are not desirable as the 

structures formed are not capable of any further self-assembly. Optimisation of 

linker design was necessary to prevent the formation of such structures. 
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Figure 4.3: Fusion-based Strategy Employing Two Homodimeric Actinin Rod Domains. 
(A) In nature, actinin dimerises with itself through its spectrin-like rod domain. Two actinin rod 
domains (r1r2r3r4) would be connected to each other using a designed linker peptide that would 
connect to the C-terminus of one rod domain and to the N-terminus of the next, thereby connecting 
the two actinin rod domains. 
(B) Staggered homodimerisation between actinin rod domains in different protein chains is desirable 
as it would produce symmetrical bivalent building blocks.  
(C) Aligned homodimerisation between two actinin rod domains in two different protein chains 
could also occur. These are not desirable 
(D) Interactions between actinin rod domains in the same protein chain would bring about 
formation of the monomeric unit. This is not desirable. 
 

 

4.4.1.1 Assessment of Fusion-protein Linkers 

Linkers are short peptide sequences that are commonly employed by nature 

to separate the domains in single protein molecules. Generally, these linkers can 

take two forms; flexible or rigid (Reddy Chichili et al. 2013).  

 

4.4.1.1.1 Connection of Two Homodimeric Oligomerisation Domains using Flexible 

Linkers 

Five flexible linkers (Fig.4.4) that were each made up of varying numbers of 

glycine residues were designed. The objective was to see if varying linker length 

could favour staggered homodimers (Fig. 4.3B) over other possibilities, such as 

aligned dimers (Fig. 4.3C).  

The use of a flexible glycine linker might allow the adjacent actinin rod 

domains to be able to move and manoeuvre relative to each other and assemble 

into structures that are compatible with the symmetry that is inherent to its natural 

quaternary structure. Glycine-rich linkers are known to be quite flexible; glycine is 

very small in size as it lacks a bulky R group, as a result, it experiences a large 
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amount of conformational freedom about its backbone. Consequently, glycine 

linkers are known not to interfere with the functional or physical properties of the 

proteins to which they are attached (Reddy Chichili et al. 2013). 

One very short linker was designed to contain no glycine residues, but the 

presence of two serine residues might invoke a certain degree of flexibility due to 

their small size (Chen et al. 2014). 

 

 

 

 
Figure 4.4: Design Strategy for Homodimeric Fusion Proteins with Glycine Flexible Linkers. 
A number of homodimeric fusion proteins were designed. Each consisted of two actinin rod domains 
(r1r2r3r4) separated from each other through one of a number of flexible linkers. These flexible 
linkers were made up of varying amounts of glycine residues, from none at all up to 12. The PDB file 
(1HCl) which was used to study the 3D structure of the actinin-2 rod domain contained two extra 
serine residues in the N-terminus of its spectrin-like repeat 1 and one extra aspartic acid residue in 
the C-terminus of spectrin-like repeat 4, that are not encoded for in the gene sequence. Linkers in 
this section were designed to accommodate these three extra residues.  

 

Constructs were designed to contain a 6xHis-tag, and were created through 

three sequential cloning steps; intermediate plasmid containing one actinin rod 

domain to intermediate plasmid containing two actinin rod domains to, finally, 

plasmid containing two actinin rod domains separated with a flexible glycine linker. 

All homodimeric actinin rod domain fusion proteins were expressed and purified in 

soluble form with a reasonably high yield. Mild degradation was noted (Fig. 4.5A).  

Fusion proteins were analysed using native gel electrophoresis. (Fig. 4.5B). 

In native gel electrophoresis, protein samples are prepared in non-denaturing, non-

reducing conditions, allowing the protein retain its folded conformation. Native gel 

electrophoresis was used to determine if new higher order structures were being 
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formed through assembly of the homodimeric actinin rod fusion proteins, and to 

characterise the homogeneity of these possible structures. 

As a type of protein marker (Fig 4.5B; lane 1), a protein mix of His actinin rod 

domain (His r1r2r3r4; ~50kDa) and His MBP actinin rod domain (HIS MBP r1r2r3r4; 

~100kDa) were loaded together. The three bands observed represent the three 

different types of assemblies that can form from this protein mix in non-denaturing 

conditions; homodimers made up of His r1r2r3r4:His r1r2r3r4 (~100kDa) or His MBP 

r1r2r3r4:His MBP r1r2r3r4 (~200kDa) and pseudoheterodimers made up of His 

r1r2r3r4:His MBP r1r2r3r4 (~150kDa).  

In non-reducing, non-denaturing conditions the actinin rod domain retains 

the ability to interact with itself to form a homodimer. These homodimers are 

represented by the single band in (Fig. 4.5B; lane 2). Homodimeric actinin rod 

fusion proteins with long flexible glycine linkers (Fig. 4.5B; lanes 4-7) migrate to this 

same region expected for dimers. This suggests that they are forming the 

monomeric unit, as depicted in Fig. 4.3D.  An alternative migration pattern is 

observed for the homodimeric actinin rod fusion protein containing no glycine 

residues (Fig. 4.5B; lane 3). These proteins migrate at a much slower pace, which is 

suggestive of the formation of higher order protein assemblies. The presence of 

two slowly migrating bands for this sample was indicative that the possible protein 

assembles were not homogenous; at least two different types of protein complex 

were forming. 
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Figure 4.5: PAGE Analysis of Homodimeric Actinin rod Fusion Proteins with Flexible Linkers. 
(A) Ni-column purification of fusion proteins was assessed using SDS protein gel electrophoresis 
followed by Coomassie Brilliant Blue staining. 
Proteins of interest and the sizes (in kDa) of the relevant molecular weight markers are indicated.  
(B) Purified homodimeric fusion proteins were analysed using native gel electrophoresis, followed by 
GelCode™ Blue Staining. A purified mix of His actinin rod domain and His MBP actinin rod domain 
proteins acts as a molecular weight marker (lane 1), and single actinin rod domain protein (lane 2) 
act as a maker of homodimer migration pattern.  
Fusion proteins that contain glycine linkers of various lengths (3-12 residues; lanes 4-7) migrate to 
the same region as single actinin rod domain proteins (lane 2) i.e. migrating to the region expected 
for dimers. An altered migration pattern is observed for the fusion protein with a short linker 
comprised of the residues -DSS- (lane 3).  
    symbol indicates migration of possible higher order structures. 
n=3 (-DSS- proteins)  
n=2 (-D3xGlySS-, -D6xGlySS-, -D9xGlySS-, -D12xGlySS- proteins) 

 

4.4.1.1.2. Connection of two Homodimeric Oligomerisation Domains using Short 

and Rigid Linkers  

Seven more different linkers (Fig. 4.6) were designed, three of which were 

intended to be rigid enough to prevent the actinin rod domains in one protein chain 

folding back to form the monomeric unit. 

Two of these seven linkers made use of amino acids that have a strong 

tendency to form rigid alpha-helical structures, amino acids such as aspartic acid, 

serine, arginine and glutamic acid. These amino acids are also commonly seen in 

nature as separators of domains in multi-domain proteins. Each spectrin repeat is 

comprised of a triple helical coiled-coil bundle (Yan et al. 1993), meaning that in the 

actinin rod domain, repeat 1 begins and repeat 4 ends with a helical structure.  

Designing linkers that also adopt a helical structure would result in a continuous 
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alpha-helix running from one domain to the next, the result of which might mean a 

more stable and rigid conformation.  

One of these linkers incorporated two prolines. Proline is a very unique 

amino acid that is commonly found in many natural linkers where it is known to 

cause the formation of rigid structural linkers, without impinging on the natural 

functions of the proteins. With such a bulky cyclic side chain, the possible number 

of conformations that can form in its presence are limited. Also, it has a reduced 

capacity to form hydrogen bonds with other amino acids, its presence therefore 

reduces the likelihood of an interaction between the linker and the protein 

domains, which, altogether, should increase the stiffness of the linker (Chen et al. 

2014; Reddy Chichili et al. 2013). 

The remaining four, of the seven linkers, were designed to be very short, 

and while two of them contained serine and/or glycine residues, making them 

slightly more flexible than the rest, it was anticipated that their shorter length 

might inhibit interaction between the two actinin rod domains in the same protein 

chain, overall, making the protein more rigid. Results from section 4.4.1.1.1 

indicated that a linker length of between three and six amino acids might be short 

and rigid enough to do so. In fact, in hindsight, the homodimeric actinin rod-DSS-

actinin rod fusion protein described in section 4.4.1.1.1would be better categorised 

here as a short/rigid linker. 
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Figure 4.6: Design Strategy Homodimeric Fusion Proteins with Rigid and Short Linkers.  
A number of homodimeric fusion proteins, each consisting of two actinin rod domains (r1r2r3r4) 
separated from each other through one of a number of rigid or short linkers. Three rigid linkers each 
consisting of a number of amino acids with a high tendency to form alpha-helical or coiled-coil 
structures and four short linkers, one being a direct fusion of one actinin rod domain to the next 
were designed.  
In the set of flexible linkers (section 4.4.1.1.1) the two extra serine residues in the N-terminus of the 
actinin rod domain and the one extra aspartic acid in its C-terminus, that were contained in the PDB 
file (1HCl), were accommodated. For this set of rigid and short linkers, the two serine residues were 
not accommodated in all the linkers; serine is a small amino acid, and therefore exhibits great 
conformational flexibility (Chen et al. 2014). It was thought that the presence of serine in these 
linkers might encourage interaction between the actinin rod domains in a single polypeptide chain.  

 

Constructs were designed to contain a 6xHis-tag, and were created through 

sequential cloning steps. All but one construct, actinin rod-DISRDS-actinin rod, 

expressed well, in soluble form in E. coli cells. All homodimeric actinin rod fusion 

proteins that expressed were purified using nickel column purification with a 

reasonable yield. Mild degradation was noted. (Fig. 4.7A). 

Fusion proteins were subjected to native gel electrophoresis (Fig. 4.7B) to 

assess their assembly state and to characterise their homogeneity. In native gel 

images in Fig. 4.7B, homodimers formed through the interaction of single actinin 

rod domains are represented with the single band in lane 1. Fusion protein samples 

in remaining lanes (lanes 2-4 and 5-7) do not appear as clearly resolved. The 

presence of an increasing smear may be suggestive that the samples are very 

heterogeneous, perhaps an increasing amount of polymerisation is occurring within 

the samples. The presence of a few slowly migrating sharp bands within these 

samples are noted. These bands may be indicative of a more definite structure 

formation. However, the monomeric unit predominates with the majority of the 
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homodimeric fusion proteins within each sample migrating in the region expected 

for homodimer formation.  

 

 

 
Figure 4.7: PAGE Analysis of Homodimeric Fusion Proteins with Rigid/Short linkers.  
(A) Ni-column purification of fusion proteins was assessed using SDS protein gel electrophoresis, 
followed by Coomassie Brilliant Blue staining   
Proteins of interest and the sizes (in kDa) of the relevant molecular weight markers are indicated.  
 (B) Purified fusion proteins were analysed using native gel electrophoresis followed by GelCode™ 
Blue Staining. Single actinin rod domain acts as a molecular weight marker, migrating at ~ 100kDa, 
and also acts as a marker of homodimer migration pattern. 
For all fusion protein samples, sharp bands are noted to be migrating to the region expected for 
dimers. Smearing suggests that these fusion protein samples are not homogenous. Slowly migrating 
sharp bands are highlighted. 
    symbol indicates migration of possible higher order structures. 
A-rod = actinin rod domain (r1r2r3r4) 
n=2 (-DISRD-, -DIPPR-, -no linker- proteins) 
n=1 (-DSSG-, DS-, -D- proteins) 
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4.4.1.2 Analysis of Possible Protein Assemblies using Electron Microscopy 

Native gel electrophoresis and the presence of slowly migrating bands in the 

fusion protein samples was evidence that some of these homodimeric actinin rod 

fusion proteins, particularly those with the shorter linkers, might be assembling into 

some form of higher order complex, and not just folding back on themselves, 

forming a monomeric unit. Fig. 4.8 is a schematic of the possible structures that 

could be forming through assembly of these fusion protein samples, depending on 

the properties of the linker peptide. 
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Figure 4.8: Graphic Representation of Possible Homodimeric Actinin Rod Fusion-Protein 
Assemblies.  
(A) Long, flexible linkers might allow the actinin rod domains in one protein chain to fold back and 
interact with each other, forming a dimer.  
(B) Linkers designed with a bend or kink, such as those containing the proline amino acid, -DIPPR- 
linker, might induce the formation of such trimeric and tetrameric structures.  
(C) Short rigid filaments might allow the homodimeric actinin rod fusion proteins to concatamerise 
into long polymeric filaments.  

 

In order to assess the shape or pattern of possible protein complexes, three 

of the 12 different homodimeric actinin rod fusion proteins, actinin rod-DSS-actinin 

rod, actinin rod-DIPPR-actinin rod and actinin rod-actinin rod, were chosen to be 

further analysed using negative-stain electron microscopy.  

 

Prior to staining, a sample of each protein preparation was subjected to SDS 

and native gel electrophoresis to verify their behaviour, i.e. the presence of slowly 
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migrating bands on native gels confirmed that they were still forming higher order 

structures (Fig. 4.9) 

 

 
Figure 4.9: PAGE Analysis of Homodimeric Actinin Rod Fusion Proteins. 
Prior to negative staining all proteins were assessed using protein gel electrophoresis. 
(A) SDS protein gel electrophoresis followed by Coomassie Brilliant Blue staining. 
 Mild degradation is noted for all fusion protein samples. 
 Proteins of interest and the sizes (in kDa) of the relevant marker bands are indicated.  
(B) Native gel electrophoresis followed by GelCode™ Blue Staining. Single actinin rod domain acts as 
a molecular weight marker, migrating at ~ 100kDa, and also acts as a marker of homodimer 
migration pattern. 
For all fusion-protein samples, sharp bands are noted to be migrating to the region expected for 
dimers. Slowly migrating sharp bands are highlighted. 
    symbol indicates migration of possible higher order structures. 
A-rod = actinin rod domain (r1r2r3r4). 
 

Previous studies had documented the staining of the Actinin rod domain 

with the uranyl acetate (UA) negative stain (Winkler et al. 1997). 

In UA samples the protein appears light against a dark background of stain. 

(Fig. 4.10). Negatively stained His tagged actinin rod domain and negatively stained 

MBP tagged actinin rod domain acted as the controls.  

Long filamentous-type structures are noted for the actinin rod domain 

controls. Homodimeric actinin rod fusion protein with short linker, comprised of 

amino acid residues -DSS-, also appears to be forming these structures, however 

they are not as widespread. Remaining two homodimeric actinin rod fusion protein 

samples, fusion protein with long linker comprised of amino acid residues -DIPPR- 

and fusion protein with no linker, appear to be very heterogeneous. Proteins are 

collected in small aggregates and structures do not appear to be as distinct as those 

seen for control samples.  
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Figure 4.10: Representative Electron Micrographs from Analysis of UA Negatively Stained 
Homodimeric Fusion Protein Assemblies.  
Distinct filamentous structures are observed in actinin rod control samples. Similar type structures 
are observed in homodimeric fusion protein sample with short linker comprised of amino acid 
residues -DSS-. Homodimeric fusion protein sample with long linker comprised of amino acids 
residues -DIPPR- and homodimeric fusion protein sample with no linker both appear to be very 
heterogeneous, with small collections of protein aggregates.  
Arrows point to a few observable filamentous-type structures. 
Low magnification: 100-150k 
High Magnification: 200-250k 
n=3 

 

To investigate the contribution of the UA stain to the heterogeneity 

observed, another round of EM was undertaken, this time using the negative stain 

phosphotungstic acid (PTA). Previous studies had also documented the staining of 

the actinin rod domain with the PTA negative stain (Suzuki et al. 1976).  

Negatively stained His tagged actinin rod domain and negatively stained 

MBP tagged actinin rod domain acted as the controls. In PTA stained samples 

proteins appear light against a dark background of stain (Fig. 4.11). Images obtained 

with PTA staining were quite similar to those obtained with UA staining. Long 

filamentous type structures are again noted for the actinin rod control. 

Homodimeric fusion protein samples appear to be heterogeneous, but it is possible 

to discern a few filamentous-type structures in these samples too.  
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Figure 4.11: Representative Electron Micrographs from Analysis of PTA Negatively Stained 
Homodimeric Fusion Proteins Assemblies. 
Distinct filamentous structures are observed in actinin rod control samples. Homodimeric fusion 
protein sample with short linker comprised of amino acids residues -DSS- and homodimeric fusion 
protein sample with no linker both appear to be very heterogeneous, with small collections of 
protein aggregates and a limited number of filamentous type structures. 
Arrows point to a few filamentous-type structures. 
Low magnification: 100-150k 
High Magnification: 200-250k 
n=2 
 

Both the length and the diameter of the actinin rod domain have already 

been determined as being 25nm and 4nm respectively (Imamura et al. 1988). The 

filamentous structures observed in this study, especially those in the actinin rod 

domain controls, are both wider and longer than these reported molecular 

measurements.  

 

4.4.1.3. Generation of Orthogonal Homodimeric Actinin Rod Fusion Proteins 

Up to this point, the homodimeric fusion proteins, two actinin rod domains 

separated with a series of different linkers, all had a very high tendency to fold back 

and form a monomeric unit, making them unavailable to interact with copies of 

themselves. The formation of this monomeric unit greatly limited the number and 

type of other protein complexes that could assemble.  

In this section, I aimed to create a series of actinin rod fusion proteins that 

could not form this monomeric unit (i.e. the actinin rod domains within the same 

protein chain would be orthogonal to each other in terms of their ability to 

dimerise) and therefore, would be forced to interact with copies of themselves in a 

staggered arrangement to produce a long concatemer (Fig. 4.13B), rather the 

monomeric unit (Fig. 4.13A).  

The helical linker region connecting repeat 2 to repeat 3 (Fig. 4.12) in the 

centre region of the actinin rod domain is known to be its centre of symmetry and it 

defines the orientation of these two repeats (Djinović-Carugo et al. 1999). I sought 

to alter the orientation of these repeats, and in doing so alter the orientation of the 

entire rod domain, in such a way that these mutant actinin rod domains could no 

longer interact with WT actinin rod domains, but could interact with copies of 

themselves. The actinin rod domain exhibits a twist of ~ 90°. I anticipated that by 

inserting extra amino acids into this helical linker region I would alter the twist of 
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the rod. The presence of an altered twist, and the fact that repeats two and three 

would now be separated from each other by a greater distance, should change the 

orientation of the repeats within the actinin rod domain in such a way that the 

mutated rod domains would dimerise with themselves but not with the WT actinin 

rod domain.  

The insertional amino acids were chosen to be lysine (K) and leucine (L) 

residues.  A portion of the natural helical linker between repeats 2 and 3 is made up 

of one K residue and two L residues. These two L residues make up a hydrophobic 

bundle. Interactions between this hydrophobic bundle and repeats 2 and 3 are 

known to have a stabilising effect on the actinin homodimer (Djinović-Carugo et al. 

1999). By choosing these same amino acids to insert into the linker the stabilising 

interactions should be maintained, and the ability of the mutant rod domains to 

interact with themselves should also be maintained. 

 

 

 

Figure 4.12: Helical Linker Region Between Spectrin-like Repeats Two and Three. 
In respect to this image, amino acid insertions of L, LL, or KLL were between residues L124 and E125. 
Stabilising Interactions between the linker and repeats two and three are centred at the 
hydrophobic cluster consisting of leucine residues 123 and 124.  
Amino acids are drawn in a ball and stick representation. Protein backbone is drawn in a ribbon 
formation of which the helical linker is coloured red, while repeats two and three are coloured blue 
and green respectively.  

 

Using site directed mutagenesis, three modified actinin rod domain proteins 

were created, each differing from each other with the insertion of one, two or three 

amino acids, lysine (K), lysine and leucine (KL) or lysine, leucine and leucine (KLL), 
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p.L238_E239insL, p.L238_E239insLL and p.L238_E239insKLL.  Each of the mutant 

actinin rod domains were fused to the WT actinin rod domain by means of either 

the short -DSS- linker or the flexible -D9xGlySS- linker (from section 4.4.1.1.1). The 

short -DSS linker had proven itself to already be conducive to the possible 

formation of higher order assembles involving homodimeric actinin rod fusion 

proteins (Fig. 4.5B) and the -D9xGlySS- linker might be flexible enough to allow for 

the formation of higher order assembles.  

 

 

 

Figure 4.13: Schematic of Possible Outcome with Orthogonal Homodimeric Actinin Rod Fusion 
Proteins. 
(A) Fusion-proteins created up to this point had a high tendency to fold back on themselves. 
(B) Through fusing two orthogonal homodimeric actinin rod domains together with a previously 
designed linker (section 4.4.1.1) it was hoped that the actinin rod domains in one protein chain 
would be unable to interact with themselves, being orthogonal to each other, and be forced to 
interact with other fusion proteins in the sample.  

 

All unfused single mutant actinin rod domains were expressed and purified 

(Fig. 4.14A) to high yields in soluble form. Analysis through native gel 

electrophoresis suggested that they still retained the ability to form dimers with 

themselves (Fig. 4.14B; lanes 2-4) they migrated to the same region as that for 

unfused WT single actinin rod domain (Fig. 4.14B; lane 1). The slightly slower 

migrating band for p.L238_E239insKLL actinin rod domain (lane 2) may be due to 

the presence of the extra charged lysine residue. 
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Figure 4.14: PAGE-Analysis of Unfused Single WT and Unfused Single Mutant Actinin Rod Domains. 
(A) Ni-column purification of unfused single WT or mutant actinin rod domains were assessed used 
SDS protein gel electrophoresis, followed by Coomassie Brilliant Blue staining. 
Sizes (in kDa) of the relevant molecular weight markers are indicated.  
(B) Purified unfused single WT or unfused single mutant actinin rod domains were analysed using 
native gel electrophoresis followed by GelCode™ Blue Staining. Unfused single WT actinin rod 
domain acts as a molecular weight marker, migrating at ~ 100kDa, and also acts as a marker of dimer 
migration pattern. 
Each of the unfused single mutant actinin rod domain proteins migrate to the region expected for 
dimers. Slightly altered migration pattern for p.L238_E239insKLL actinin rod, lane 2, but this may be 
due to the presence of an extra charged lysine residue.  
A-rod = actinin rod domain (r1r2r3r4). 
n=1 
 

Through several cloning steps each of these mutated actinin rod domains, 

p.L238_E239insL, p.L238_E239insLL and p.L238_E239insKLL,  were fused to the WT 

actinin rod domain by way of a linker that was previously designed and used in 

section 4.4.1.1.1, the -DSS- linker and the -D9xGlySS- linker.  

All orthogonal homodimeric actinin rod fusion proteins were expressed in 

soluble form in E. coli cells and were purified with a high yield using nickel column 

purification. Mild degradation was noted (Fig. 4.15A).  

Fusion proteins were subjected to native gel electrophoresis (Fig. 4.15B) to 

assess their assembly state and to characterise their homogeneity. In native gel 

images, dimers formed from the interaction of single WT actinin rod domains are 

represented with the single band in lane 1. The presence of slowly migrating bands 

for orthogonal homodimeric actinin rod fusion proteins with -DSS- linker (Fig. 

4.15B; lanes 2-5) is evidence of higher order protein assembly formation.  No higher 
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order protein assembly is noted for orthogonal homodimeric actinin rod fusion 

proteins with longer, more flexible -D9xGlySS- linker. The monomeric unit 

predominates as these orthogonal homodimeric fusion proteins migrate to the 

region expected for dimers. This suggests that the mutant actinin rod domains still 

retain the capacity to interact with the WT actinin rod domain, and this long flexible 

linker allows then to do so. Thus the goal of generating rod domains that have 

orthogonal dimerisation capacity seems not to have been achieved. Nevertheless, 

these mutant rod domains may be useful based on their putative altered degree of 

twist. 

 
Figure 4.15: PAGE Analysis of Orthogonal Homodimeric Actinin rod Fusion Proteins:  
(A) Ni-column purification of fusion proteins was assessed using SDS protein gel electrophoresis, 
followed by Coomassie Brilliant Blue staining. 
The sizes (in kDa) of the relevant molecular weight markers are indicated. 
(B) Purified fusion proteins were analysed using native gel electrophoresis, followed by GelCode™ 
Blue staining. Single actinin rod domain acts as a molecular weight marker, migrating at ~ 100kDa, 
and also as a maker of dimer migration pattern. 
Orthogonal homodimeric actinin rod fusion proteins with a short linker comprised of the residues 
 -DSS- migrate at a slower pace than the actinin rod domain sample. This bands are highlighted. 
Orthogonal homodimeric fusion proteins with a longer linker comprising -D9xGlySS- migrate at the 
same pace as those proteins known to be forming dimers. 
    symbol indicates migration of possible higher order structures. 
A-rod = actinin rod domain (r1r2r3r4). 

n=1 

 

 

 

 

 



Page | 223  
 

4.4.2 Evaluation of Fusion-based Strategy Employing Heterodimeric and 

Homodimeric Oligomerisation Domains 

This second strategy consisted of two components; the protein building 

blocks, i.e. actinin rod domain (r1r2r3r4), truncated α- and β-spectrin proteins, each 

consisting of four spectrin repeats, and a linker peptide, designed to connect the 

truncated α- or β-spectrins to the actinin rod domain. 

In this section I set out to assess the fusion-based assembly strategy with 

both heterodimeric and homodimeric oligomerisation domains through 

determination of the type of linker, flexible or short and rigid, that would best suit 

this type of protein assembly approach. 

Two different oligomeric protein domains are genetically fused together; 

either a truncated α-spectrin protein, i.e. spectrin repeats 18-22, or a truncated β-

spectrin protein, i.e. spectrin repeats 1-4 (hereafter referred to as spectrin 

heterodimerisation domains) are fused to the actinin rod domain (r1r2r3r4) 

(hereafter referred to as homodimerisation domain) in a single protein chain to 

create heterodimeric-to-homodimeric fusion proteins. 

Ultimately, two different heterodimeric-to-homodimeric fusion-proteins are 

created; α-spectrin r18r19r20r21-linker-actinin r1r2r3r4, and β-spectrin r1r2r3r4-

linker- actinin r1r2r3r4 (Fig. 4.16B). Each of these heterodimeric-to-homodimeric 

fusion proteins should be unable to fold back and interact with themselves through 

their actinin homodimeric and spectrin heterodimeric domains, but 

homodimerisation between the actinin dimerisation domains on separate protein 

chains should produce two symmetrical and bivalent building blocks (Fig. 4.16C). 

Upon mixing, these building blocks should be able to interact with each other, 

through heterodimerisation between the α- and β-spectrin heterodimerisation 

domains (Fig. 4.16D), to possibly form larger, more complex protein assemblies. 
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Figure 4.16: Fusion Based Strategy Employing Heterodimeric Truncated Spectrins and 
Homodimeric Actinin Proteins with Schematic of Possible Outcomes. 
(A) Heterodimerisation between spectrin heterodimerisation domains and homodimerisation 
between actinin homodimerisation domains.  
(B) Two heterodimeric-to-homodimeric fusion proteins were designed, one consisting four spectrin 
repeats from α-spectrin, r18r19r20r21, fused to the four actinin spectrin-like repeats (r1r2r3r4), and 
the other consisting of four spectrin repeats from β-spectrin, r1r2r3r4, fused to the four actinin 
spectrin-like repeats (r1r2r3r4).  
(C) Homodimerisation between the actinin homodimerisation domains to create two bivalent 
building blocks. 
(D) Heterodimerisation between spectrin heterodimerisation domains upon mixing of these building 
blocks to bring about the formation of large protein assembles such as a 2D square, or a long 
filamentous type structure.  

 

 

4.4.2.1 Connection of Heterodimeric and Homodimeric Oligomerisation Domains 

with Flexible Linkers 

It was anticipated that a flexible linker would be best suited to separate the 

α-/β-spectrin heterodimerisation domains from the actinin homodimerisation 

domain. A flexible linker would offer great freedom of movement and should 

therefore not constrain the ability of the heterodimeric-to-homodimeric fusion 

proteins to assemble, providing the most potential for the formation of higher 

order structures. It was thought that the -D12xGlySS- linker would provide the 

greatest conformational flexibility. 

 Both constructs were designed to contain a 6xHis-tag, and were created 

through sequential cloning steps. Both were expressed in soluble form in E. coli 

cells and purified with reasonable yield (Fig. 4.17A).  High levels of degradation 

were noted. 

Prior to native gel electrophoresis equal amounts of both purified 

heterodimeric-to-homodimeric fusion proteins were incubated together overnight 

to allow possible interactions to occur. Native gel electrophoresis analysis of the 

mixed heterodimeric-to-homodimeric fusion protein samples revealed the 

migration of a slowly migrating band (Fig. 4.17B; lanes 2 and 4), that is not observed 

in the independent (unmixed) heterodimeric-to-homodimeric fusion protein 

samples (Fig. 4.17B; lanes 1 and 3). These slowly migrating bands indicate that 

higher order structures might be forming. 
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Figure 4.17: PAGE Analysis of Heterodimeric-to-Homodimeric Fusion-proteins with Flexible Linker. 
(A) Ni-column purification of fusion proteins was assessed using SDS protein gel electrophoresis, 
followed by Coomassie Brilliant Blue staining. 
Both proteins exhibited high amounts degradation.  
The sizes (kDa) of the relevant molecular weight markers are indicated. 
(B) Purified heterodimeric-to-homodimeric fusion proteins were analysed using native gel 
electrophoresis, followed by GelCode™ Blue Staining. 
Slowly migrating bands in mixed fusion-protein samples (lanes 2 and 4) that are not present in 
individual fusion protein samples (lanes 1 and 3) are highlighted. 
    symbol indicates migration of possible higher order structures. 
n=3 
 

4.4.2.2 Connection of Heterodimeric and Homodimeric Oligomerisation Domains 

with Rigid Helical Linkers 

The heterodimeric-to-homodimeric spectrin heterodimerisation domain-

D12xGlySS-actinin homodimerisation domain fusion proteins demonstrated great 

potential as nanostructure building blocks, however their high tendency to degrade 

upon purification was unfavourable. To overcome this, alternative linkers known to 

have a high propensity to form alpha helical secondary structures (Arai et al. 2001) 

were used. These linkers were each of different lengths, from one amino acid 

residue to ten and were comprised of amino acids glutamic acid, alanine and lysine, 

all of which have been noted to have a high helical propensity, with alanine having 

the highest propensity out of all 20 amino acids (Pace & Scholtz 1998). The exact 

composition of each linker is outlined in table 4.1. These helical linkers were used in 

a previous study (Arai et al., 2001). 



Page | 227  
 

Actinin and spectrin spectrin-like and spectrin repeats are each made up of a 

triple helical coiled-coil bundle (Yan et al. 1993) meaning that (in relation to the 

fusion proteins generated for this study), for α- and β-spectrin, repeat 21 and 

repeat 4 respectively both end with a helical structure and, for actinin, repeat 1 

begins a helical structure. Linkers known to adopt a helical structure would result in 

a continuous alpha-helix running from one domain, i.e. the α- or β-spectrin 

heterodimerisation domain, to the next, i.e. the actinin homodimerisation domain, 

the result of which might mean a more stable and rigid conformation.  

While 10 helical linkers were designed, 11 fusion proteins were created. The 

0HelLinker construct (Fig. 4.18) represents a direct fusion of the actinin 

homodimerisation domain to the α-/β-spectrin heterodimerisation domain. All 

constructs were designed to contain a 6xHis-tag, and were created through 

sequential cloning steps. All fusion-proteins were expressed as soluble products 

with a high yield.  

 

Rigid Helical Linker Amino Acid Composition 

1HelLinker E 

2HelLinker EA 

3HelLinker EAA 

4HelLinker EAAA 

5HelLinker EAAAK 

6HelLinker EAAAKE 

7HelLinker EAAAKEA 

8HelLinker EAAAKEAA 

9HelLinker EAAAKEAAA 

10HelLinker EAAAKEAAAK 
Table 4.1: Linker Design to Join Spectrin Heterodimerisation Domain to Actinin Rod Domain. Listed 
are the amino acid residues that make up each of the Helical Linkers. 

 

All heterodimeric-to-homodimeric fusion proteins were purified using nickel 

column chromatography. Both heterodimeric-to-homodimeric fusion proteins were 

prone to degradation, but more so the β-spectrin heterodimerisation domain-

helical linker-actinin homodimerisation fusion proteins, especially around the linker 

region. (Fig. 4.18). 
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Figure 4.18: Purification of Heterodimeric-to-Homodimer Fusion proteins with Helical Linker 
Ni-column purification of fusion proteins was assessed using SDS protein gel electrophoresis, 
followed by Coomassie Brilliant Blue staining. 
All proteins exhibited varying degrees of protein degradation.  
Proteins of interest and the sizes (in kDa) of the relevant molecular weight markers are indicated. 
Spectrin refers to spectrin (α-r18r19r20r21/β-r1r2r3r4) heterodimerisation domain. Actinin refers to 
actinin dimerisation domain (r1r2r3r4). 

 

Prior to native gel electrophoresis equal amounts of both heterodimeric-to 

homodimeric-fusion proteins; α-spectrin heterodimerisation domain-helical linker-

actinin homodimerisation domain with corresponding β-spectrin 

heterodimerisation domain-helical linker-actinin homodimerisation domain, in 

which both proteins contained a helical linker of the same length, were incubated 

together overnight, to allow possible interactions to occur. Native gel analysis of 

these mixed heterodimeric-to-homodimeric fusion protein samples (Fig. 4.19B) 

revealed a protein smear effect that was not present in the individual protein 

samples. A more discernible slowly migrating band can be seen in some of these 

mixed protein samples, indicated in Figure. 
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Figure 4.19: PAGE Analysis of Both Individual and Mixed Heterodimeric-to-Homodimeric Spectrin 
Heterodimerisation Domain-Helical Linker-Actinin Homodimerisation Domain Fusion Proteins. 
Corresponding heterodimeric-to-homodimeric fusion proteins, with helical linker of the same length 
were mixed and incubated together to allow possible interactions to occur. 
Individual and mixed samples were analysed through  
(A) SDS, and.  
(B) native gel electrophoresis, followed by GelCode™ Blue Staining. 
Native gels displayed a protein smear effect for mixed protein samples. Slowly migrating bands are 
also observed, and are highlighted. Individual protein samples displayed no protein smear.  
    symbol indicates migration of possible higher order structures. 
Spectrin refers to spectrin (α-r18r19r20r21/β-r1r2r3r4) heterodimerisation domain. Actinin refers to 
actinin dimerisation domain (r1r2r3r4). 
n=2 
 

For all combinations; the mixing of corresponding heterodimeric-to-

homodimeric fusion proteins with equivalent helical linker lengths gave a strong 

indication that higher order protein assemblies were forming. To assess if protein 

assemblies could form between corresponding heterodimeric-to-homodimeric 

fusion proteins with different length helical linkers the heterodimeric-to-

homodimeric β-spectrin heterodimerisation domain-9 residue helical linker-actinin 

homodimerisation domain was mixed and incubated with all heterodimeric-to-

homodimeric α-spectrin heterodimerisation domain-helical linker-actinin 

homodimerisation domain proteins. The outcome of all mixes was assessed through 

native gel electrophoresis.  
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All mixed protein samples in Fig. 4.20 exhibited the protein smear effect, 

suggestive of heterogeneous higher order protein assembly.  

 

 

 
Figure 4.20: Native Gel Electrophoresis Analysis of Both Individual and Mixed Corresponding 
Heterodimeric-to-Homodimeric Fusion Proteins with Different Length Helical Linkers. 
β-spectrin heterodimerisation domain-9 residue helical linker-actinin homodimerisation domain was 
mixed and incubated with all α-spectrin heterodimerisation domain-helical linker-actinin 
dimerisation domain proteins.  
A protein smear effect is observed for all protein mixes. No protein smear is observed for individual 
proteins. 
Proteins were stained with GelCode™ Blue Stain Reagent. 
Representative image, all combinations not shown, but all gave similar result. 
Spectrin refers to spectrin (α-r18r19r20r21/β-r1r2r3r4) heterodimerisation domain. Actinin refers to 
actinin dimerisation domain (r1r2r3r4). 
n=1 
 

4.4.2.2.1 Analysis of Possible Protein Assemblies from Helical Linker Based 

Heterodimeric Fusion Strategy using Electron Microscopy 

In order to assess the shape or pattern of these complexes, I chose one 

heterodimeric-to-homodimeric fusion protein mix; the heterodimeric-to-

homodimeric α-spectrin heterodimerisation domain-7 residue helical linker-actinin 

homodimerisation domain and the heterodimeric-to-homodimeric β-spectrin 

heterodimerisation domain-7 residue helical linker-actinin homodimerisation 

domain, to be further analysed through negative-stain electron microscopy.  



Page | 231  
 

These proteins, as already shown (Fig.4.18), were very prone to 

degradation, leading to a very heterogeneous protein sample. In order to ensure a 

clean, homogenous sample for EM analysis, after nickel column chromatography, 

they were further purified to homogeneity with size exclusion chromatography.  

Prior to UA negative staining, heterodimeric-to-homodimeric fusion proteins 

were mixed and incubated overnight before being subjected to SDS (Fig. 4.21A) and 

native (Fig. 4.21B) gel electrophoresis to verify their behaviour, i.e. the presence of 

slowly migrating bands on native gels confirmed that they were still forming higher 

order structures. 

 

 
Figure 4.21: PAGE Analysis of Heterodimeric-to Homodimeric Fusion Proteins. 
Prior to negative staining all proteins were assessed using protein gel electrophoresis. 
(A) SDS protein gel electrophoresis, followed by Coomassie Brilliant Blue staining. 
Size exclusion chromatography was successful in removing all degradation products. 
The sizes (in kDa) of the relevant molecular weight markers are indicated.  
(B) Native gel electrophoresis, followed by GelCode™ Blue staining. 
The usual protein smear effect is observed for the protein mix sample, with slowly migrating band. 
Both are absent from individual protein samples. 
 

 

Electron micrographs (Fig. 4.22) display a dense collection of proteins 

staining light against a dark background. Large heterogeneous protein aggregates 

were consistently observed for the heterodimeric-to-homodimeric α-spectrin 

heterodimerisation domain-7 residue helical linker-actinin homodimerisation 

domain with the heterodimeric-to-homodimeric β-spectrin heterodimerisation 

domain-7 residue helical linker-actinin homodimerisation domain protein mix. 
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While protein aggregates were observed in the heterodimeric-to-homodimeric α-

spectrin heterodimerisation domain-7 residue helical linker-actinin 

homodimerisation domain only samples, they were not as frequent, and no protein 

aggregates were observed for heterodimeric-to-homodimeric β-spectrin 

heterodimerisation domain-7 residue helical linker-actinin homodimerisation 

domain only sample. The high quantity of protein loaded onto the grids makes it 

difficult to identify independent isolated structures. 
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Figure 4.22: Representative Electron Micrographs from Analysis of UA Negatively Stained 
Heterodimeric-to-Homodimeric Fusion Protein Assemblies. 
Protein aggregates were consistently observed in the heterodimeric-to-homodimeric fusion protein 
mix; heterodimeric to homodimeric α-spectrin heterodimerisation domain-7 residue helical linker-
actinin homodimerisation domain mixed with heterodimeric-to-homodimeric β-spectrin 
heterodimerisation domain-7 residue helical linker-actinin homodimerisation domain (one 
micrograph, centre, represents these aggregates). Aggregates were less frequently observed in the 
heterodimeric-to-homodimeric α-spectrin heterodimerisation domain-7 residue helical linker-actinin 
homodimerisation domain only sample (top two micrographs displaying frequently observed dense 
collection of proteins with no aggregates, and less frequently observed protein aggregates). No 
protein aggregates were observed in the heterodimeric-to-homodimeric β-spectrin 
heterodimerisation domain-7 residue helical linker- actinin homodimerisation domains only sample 
(one micrograph, bottom, displaying consistently observed dense collection of proteins with no 
protein aggregates). 
Magnification range: 200-300k. 
n=1 
 

 

4.4.3 Evaluation of Fusion-based Strategy Employing Three Protein 

Oligomerisation Domains 

Building upon the last two sections (section 4.4.1 and section 4.4.2), this 

third and final section involves the creation of two fusion proteins containing three 

protein oligomerisation domains; two α-spectrin or β-spectrin heterodimerisation 

domains (r18r19r20r21 or r1r2r3r4 respectively) and one actinin homodimerisation 

domain. It was anticipated that these could be used as tetravalent building blocks 

(Fig.4.23A), that could self-assemble into complicated structures (Fig. 4.23B). 
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Figure 4.23: Schematic of Possible Outcome with Fusion Proteins made up of Two Spectrin 
Heterodimerisation Domains and One Actinin Rod Domain. 
(A) Homodimerisation between the actinin homodimerisation domains to create two tetravalent 
building blocks.  
(B) Mixing of these building blocks to bring about the formation of complex protein assemblies. 
 

Fusion proteins consisting of: two α-spectrin proteins, each made up of four 

spectrin repeats, with an intervening actinin homodimerisation domain, or two β-

spectrin proteins, each made up of four spectrin repeats, with an intervening 

actinin homodimerisation domain (Fig. 4.23A) were designed. For both types of 

fusion protein in this section, each domain was separated by use of a flexible linker 

consisting of six or eight glycine residues (see Materials and Methods section 

4.3.1.4). These glycine-based linkers were expected to yield the flexibility required 

to produce complex protein assembles, such as those in Fig. 4.23B. Constructs were 

designed to contain a 6xHis-tag and were expressed in soluble form in E. coli cells 
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(Fig. 4.24A). These proteins proved themselves to be very unstable and rapidly 

degraded throughout the purification process (Fig. 4.24B). Due to their instability, 

no further study was undertaken with these particular fusion proteins. 

 

 

Figure 4.24: Expression and Purification of Spectrin Heterodimerisation Domain - linker- Actinin 
Homodimerisation Domain-linker-Spectrin Heterodimerisation Domain Fusion Proteins.  
(A) Total cell protein lysates, both pre- and post- induction of protein expression with 0.2mM IPTG, 
were analysed using SDS protein gel electrophoresis, followed by Coomassie Brilliant Blue Staining. 
(B) Ni-column purification of fusion proteins was assessed using SDS protein gel electrophoresis, 
followed by Coomassie Brilliant Blue Staining. 
Proteins experienced rapid degradation 
Proteins of interest and the sizes (in kDa) of the relevant molecular weight markers are indicated.  
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4.5 Discussion 

Of all the different approaches that can be used to direct the formation of 

higher order protein assemblies and protein nanostructures, I decided to adopt the 

fusion-based assembly approach, an approach which involves the introduction of 

two or more oligomerisation protein domains into one protein chain, with each 

domain separated by way of a rationally designed linker (King & Lai 2013; Padilla et 

al. 2001). This approach appealed to me because it allowed for exploitation of the 

symmetry that arises in the quaternary structure of dimeric actinin. Taking 

advantage of this symmetry would provide an additional level of geometrical 

control that the other two aforementioned approaches, ligand-mediated and 

metal-directed protein assembly (see section 1.2.5), did not offer without 

additional modification. The fusion-based assembly strategy therefore consisted of 

fewer design steps. Also, I knew that I had the knowledge and ability to be able to 

connect each protein domain with a linker of a desired composition, and that 

careful design of this linker would inhibit it from interfering with the folding and 

activity of the protein domains it was separating.  

 

 

4.5.1 Homodimeric Actinin Rod Fusion Proteins 

As a starting point in the design of large protein assemblies, focus was 

initially placed on fusion proteins consisting of two homodimeric oligomerisation 

domains; the actinin rod domain-r1r2r3r4 (section 4.4.1). The aim of these early 

experiments was twofold; to demonstrate proof of principle; that Spectrin Family 

protein members could be manipulated to form higher order protein assemblies, 

and to determine which type of linker would best suit the formation of these higher 

order structures. Initially, therefore, rather than rigorously trying to influence the 

formation of a particular shape or structure with these Spectrin Family proteins, I 

was asking the question:  given the ability of these proteins to self-assemble, what 

structures will form when I link them together with a series of different linkers? 

Despite the potential flexibility of the glycine linkers, native gel analysis 

revealed that the homodimeric actinin rod fusion proteins containing them self-
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assembled in a very limited number of conformations, most frequently the 

monomeric unit (section 4.4.1.1.1).  

Analysis of the homodimeric actinin rod fusion proteins with linkers 

designed to have a more helical and, therefore, rigid disposition also exposed that 

they also had a strong tendency to fold into the monomeric unit. However, the 

slower migration of protein bands for the homodimeric actinin rod fusion proteins 

containing short linkers of four amino acid residues or less, or containing the 

proline amino acid, known to bring about the formation of rigid structures, was 

evidence of the formation of higher order assemblies (section 4.4.1.1.2) 

 

 

4.5.2 Orthogonal Actinin Rod Fusion Proteins 

Attempts to inhibit the formation of the monomeric unit were made with 

the creation of orthogonal homodimeric actinin rod domain fusion proteins (section 

4.4.1.3). These consisted of a natural WT actinin rod domain fused to an actinin rod 

domain that had been altered in such a way so that it would no longer dimerise 

with the WT actinin rod domain. 

Considering alpha helices only have 3.6 amino acid residues per helical turn, 

it was anticipated that the insertion of extra amino acids (1-3 amino acid residues) 

into the helical linker region between repeats 2 and 3 would introduce an 

additional twist, or at least alter the twist in this helical linker, and, as a result, force 

the actinin rod domain to acquire a different orientation to that of the natural WT 

actinin rod domain. With this new orientation, it was hoped that these actinin rod 

domains would be able to interact with themselves, but not with the WT actinin rod 

domain.  

While p.L238_E239insL, p.L238_E239insLL and p.L238_E239insKLL actinin 

rod domains were shown to be able to interact with themselves, they also retained 

the capacity to interact with the WT actinin rod domain. It has been suggested that 

repeats 2 and 3 underpin the structural architecture of the entire actinin molecule 

(Djinović-Carugo et al. 1999). Also, results from Chapter 3 of this study suggests 

that the presence of repeats 2 and 3 are required to induce dimerisation, and that 

they allow for the co-operative binding of repeats 1 and 4. Therefore, considering 
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the structural importance of repeats 2 and 3, it seems plausible that three 

insertional mutations were not enough to alter its ability to dimerise. Perhaps a 

more stringent strategy would be necessary to alter actinin rod dimerisation. Such a 

strategy might involve creating two different actinin rod domain proteins, each 

consisting of several mutations across the entire length of the dimerisation 

interface. These mutations would be designed to be accommodating, meaning that 

mutant actinin rod domains would be able to accommodate dimerisation between 

themselves, but not with the WT actinin rod domain. A simple example of such an 

accommodating mutation might be replacing a positively charged amino acid 

residue with a negatively charged amino acid residue on one mutant actinin rod 

domain, and vice versa for its complementary amino acid partner on the other 

mutant actinin rod domain. These mutated rod domains could then be fused to the 

WT actinin rod domain to achieve the same goal that was attempted in section 

4.4.1.3. 

In order to identify those amino acids contributing to dimerisation, and to 

identify those amino acids that, when mutated might lead to loss of protein 

structure and function, 3D modelling of the actinin rod protein structure would be 

required. However, results obtained using this process should be more desirable. 

  

 

4.5.3 Major Findings from Fusion-Protein Strategy: Using Homodimeric 

Protein Oligomerisation Domains 

These preliminary studies were beneficial in the amount of information 

gathered from them; not only was linker composition an important factor to 

consider, but so too was linker length, after all, linker length would play a role in 

controlling the spatial organisation or alignment of the actinin rod domains. The 

presence of slowly migrating bands on native gels for both homodimeric- and 

orthogonal homodimeric-actinin rod domain fusion proteins containing the short -

DSS- linker, and for homodimeric-actinin rod domain fusion proteins containing the 

rigid linker with proline residues, -DIPPR-, was evidence that actinin proteins could 

be manipulated to form protein assembles and that possibly short and slightly rigid 
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linkers might be best suited to the formation of these protein assemblies.  The fact 

that the actinin rod domains, despite them being tethered together in a single 

protein molecule, still retained the ability to dimerise and form the monomeric 

unit, was a very important observation. The presence of the linker was not 

disturbing their functional and physical properties such as their ability to dimerise 

and self-assemble. These properties underpinned the design of the whole project. 

 

 

4.5.4 Heterodimeric to Homodimeric Fusion Proteins and Their Major 

Findings 

Next I wanted to take a more direct approach towards the assembly of 

higher order protein structures using the Spectrin Family proteins. The creation of 

two heterodimeric-to-homodimeric fusion proteins would allow for greater control 

over the assembly process because, ultimately, no structure should form until both 

heterodimeric-to-homodimeric proteins are present. Although the approach was 

first adopted with the creation of the orthogonal homodimeric-actinin rod domain 

fusion proteins, and was proven unsuccessful, these new heterodimeric-to-

homodimeric  fusion proteins had much greater potential because each fusion 

protein was made up of protein domains not known to interact; heterodimeric-to-

homodimeric fusion proteins were made up of either a truncated α-spectrin or β-

spectrin, each containing 4 spectrin repeats, α-r18r19r20r21 and β-r1r2r3r4 

(referred to as heterodimerisation domains in this section), and the entire actinin 

rod domain-r1r2r3r4 (referred to as homodimerisation domain in this section). This 

strategy involved the exploitation of the symmetry that arises in the quaternary 

structure of the actinin dimerisation domain. This symmetry, i.e. the 

homodimerisation between the actinin rod domains, should align the spectrin 

heterodimerisation domains along the same axis of symmetry, thereby providing 

restraint on the orientation of these spectrin heterodimerisation domains. This 

would create two bivalent building blocks, that, following mixing and 

heterodimerisation between the aligned spectrin heterodimerisation domains 

would bring about higher order assembly.  
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Initially, flexible linkers were used with this strategy (section 4.4.2.1). I 

thought that actinin homodimerisation alone would provide enough control to 

maintain the orientation of both spectrin heterodimerisation domains and actinin 

homodimerisation domains along the same axis, despite the flexibility of the linker 

region. However, heterodimeric- to-homodimeric fusion proteins containing flexible 

linkers were very prone to degradation.  

Those designed to have a rigid helical linker were found to be a slightly 

better choice appearing to be more stable (section 4.4.2.2). This may be because 

the inclusion of a helical linker in between the spectrin heterodimerisation domains 

and actinin homodimerisation domain results in a continuous alpha helix extending 

from the coiled coil from either repeat 22 or repeat 4 from α- or β- spectrin 

respectively, to the coiled coil from repeat 1 of actinin. Another reason as to why 

different levels of degradation were observed for the heterodimeric-to-

homodimeric fusion proteins with flexible linkers and heterodimeric-to-

homodimeric fusion proteins with rigid linkers may be because protein regions of 

high flexibility are normally more prone to proteolysis.  With the ability to adopt a 

wide range of conformations there is a great possibility that one of these 

conformations will fit the active site of a proteolytic enzyme. Rigid regions of a 

protein however normally show great resistance to proteolysis. Having only one 

definite conformation, the likelihood of it being complementary to the active site of 

the proteolytic enzyme is very low (Tsai et al. 2002). Results observed therefore 

suggest that the alpha helical linkers designed were near fit for purpose; to be rigid. 

Nevertheless, evidence for the formation of higher order structures 

between complementary heterodimeric-to-homodimeric fusion proteins with 

flexible or helical linkers is provided with the migration of slowly migrating bands 

during native gel analysis. While these slowly migrating bands are discernible, the 

protein lanes themselves consist largely of a protein smeared effect. This may be an 

indication that a number of different higher order structures are forming, 

suggesting that the protein samples themselves were very heterogeneous. This 

heterogeneity could be occurring because the orientation of the fused protein 

domains was not always correct, hence definite structures could not form, or at 

least large amount of these definite structures could not form.  The protein smear 
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was also observed for protein mixes of heterodimeric-to-homodimeric fusion 

proteins that had been further purified using HPLC. This indicated that the protein 

smearing observed in the native gel images was not due to protein degradation. For 

whatever reason, this observation is common in the first iteration steps of a design 

strategy. The heterogeneous structures that form usually do so due to steric 

conflict between amino acids that would not normally be in such close proximity in 

the natural structure and due to the fact that protein surfaces are very reactive and 

are therefore known to partake in indiscriminate and random interactions and 

associations (Lai et al. 2013; Bruning et al. 2010). However, just as nature, through 

evolution, has created complementary interfaces to bring about protein assembly 

(Goodsell & Olson 2000), a synthetic biologist must also manipulate the protein 

interface to bring about controlled assembly. Indeed, the formation of the protein 

cage generated by Padilla et al. (2001) (discussed above in section 4.2.1), was not 

brought about until two amino acid changes were made to the helical linker region 

of the fusion-proteins  (Lai et al. 2013). Up until these changes were made, the 

protein cages that formed were extremely heterogeneous and could not be 

characterised very well.  

 

 

4.5.5 Negative Stain Electron Microscopy for Homodimeric Actinin Rod 

Fusion-Proteins and Heterodimeric-to-Homodimeric Fusion Proteins  

The most obvious and simplest structure that could be forming with the 

actinin rod domain bivalent building blocks, i.e. the homodimeric actinin rod fusion 

proteins containing a short linker, -DSS-, or rigid linker, -DIPPR-, or no linker at all, is 

that of a filamentous type structure, brought about through polymerisation at both 

ends of these bivalent building blocks. 

Unfortunately, EM analysis (section 4.4.1.2) revealed no satisfactory insight 

into whether this type of structure, or indeed any other type of structure could be 

forming. Previous EM analysis of full length actinin or the isolated rod domain 

carried out by other groups had reported observing discrete rod shaped particles, 

with an approx. length and width of 25nm x 4nm, respectively (Winkler et al. 1997; 

Imamura et al. 1988). Similar results were anticipated, but were not observed. Long 



Page | 243  
 

filamentous type structures were observed for the actinin rod domain controls. To a 

lesser extent, these were also observed in homodimeric actinin rod fusion proteins 

containing the short -DSS-linker. Remaining homodimeric actinin rod fusion 

proteins containing the rigid -DIPPR-linker, or no linker, appeared very 

heterogeneous. Attempts to reduce this heterogeneity by changing the negative 

stain from UA to PTA gave only slight improvement; it was now possible to observe 

these long filamentous type structures in all protein samples. This filamentous 

structure observed is both too long and too wide to suggest that it is a actinin rod 

domain homodimer. 

 As already mentioned, I did not have a particular protein structure in mind 

when designing these fusion proteins. As a result, I did not anticipate the 

observation of a particular structure upon EM analysis. I did, however, expect the 

homodimeric actinin rod fusion proteins to differ in their structural appearance to 

the actinin rod domain control sample.  Ultimately, no dramatic structural 

difference was observed between the two.   

The most obvious structure that could be forming from a mix of the 

heterodimeric-to-homodimeric α-/β-spectrin heterodimerisation domain-helical 

linker-actinin homodimerisation domain fusion proteins is that of another 

filamentous type structure through polymerisation at both ends of the bivalent 

building blocks. The heterogeneity observed in the homodimeric actinin rod domain 

fusion proteins prompted the inclusion of an extra size exclusion chromatography 

step prior to EM analysis of the heterodimeric-to-homodimeric fusion proteins 

(section 4.4.2.2.1).  

Still, all images detailed a very heterogeneous mix of possible protein 

structures. However, control samples, consisting of only one heterodimeric-to-

homodimeric fusion protein, either the heterodimeric α-spectrin 

heterodimerisation domain-7 residue helical linker-actinin homodimerisation 

domain, or the heterodimeric β-spectrin heterodimerisation domain-7 residue 

helical linker-actinin homodimerisation domain, differed from the heterodimeric-

to-homodimeric fusion protein mix, consisting of both of these heterodimeric-to-

homodimeric fusion proteins. Large protein aggregates were consistently observed 

for the heterodimeric-to-homodimeric fusion protein mix. These aggregates were 
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also observed for the heterodimeric-to-homodimeric α-spectrin heterodimerisation 

domain-7 residue helical linker-actinin homodimerisation domain only sample, but 

only one time, and they were not observed at all for the heterodimeric-to-

homodimeric β-spectrin heterodimerisation domain-7 residue-helical linker-actinin 

homodimerisation only sample.  While these protein aggregates give no indication 

of the type of structure that could be forming, their presence suggests that there is 

an interaction between the two complementary heterodimeric-to-homodimeric 

fusion proteins. This is in agreement to results obtained from native gel analysis. 

As previously documented by Winkler et al. (1997) one reason for the 

heterogeneity observed in all EM samples may simply be brought about by the 

many different orientations that the proteins can adopt upon adsorption onto the 

carbon grids. Another reason might be that the technique has not been fully 

optimised for these fusion proteins. Both the pH of the negative stain and salt 

concentration of the protein buffer are known to affect the dimensions of actinin 

(Winkler et al. 1997; Suzuki et al. 1976). Also, staining time can affect actinin 

dimensions (Suzuki et al. 1976).  Additionally, my EM images suggest a dense 

quantity of protein is present on the grids, a more dilute protein concentration, and 

further optimisation of pH and salt concentration might make it easier to recognise 

the formation of possible structures. 

Previous studies have carried out EM and rotary shadowing to further 

characterise the overall arrangement of the actinin structure (Pollard et al. 1986; 

Mabuchi et al. 1985; Winkler et al. 1997). EM in combination with rotary shadowing 

might help in better characterising the sizes of these homodimeric fusion proteins 

and these heterodimeric-to-homodimeric fusion proteins, and the possible protein 

assemblies that might be forming between them.  

 

 

4.5.6 Molecular Modelling 

Despite the recent progress in computational molecular modelling programs 

(Liu & Kuhlman 2006), apart from visual inspection of the molecular structure of the 

actinin-2 using USCF Chimera program, at no other point was molecular modelling 

used to design the linkers or to describe the orientation of the of the actinin rod 
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domains (dimerisation domains) or the spectrin heterodimerisation domains. 

Similar to the study carried out by Grueninger et al. (2008), linkers were designed 

using a few general rules regarding interactions between amino acids, and any 

alterations made to the actinin rod domain were based on observations taken from 

the literature.  

A medium throughput screening approach, involving cloning, protein 

expression, protein purification and native gel analysis, was used to determine 

which linkers or which fusion-based assembly strategy worked best. 

This study represents the first iteration of a complex protein engineering 

bionanotechnology project, and although this approach is simplistic, it was 

necessary as it allowed for the determination of how far the project would progress 

without any molecular modelling.  This approach could be adopted in any lab, and 

through it, I had hoped to make protein engineering more accessible. 
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4.6 Conclusions 

In general, the synthetic creation of large protein assemblies or 

nanostructures is difficult owing to our incomplete understanding of the sequence-

to-structure relationship in proteins and of the rules that proteins follow when 

folding into particular tertiary structures, or assembling into certain quaternary 

structures (Boyle et al. 2012; Bromley et al. 2008). However, this study nicely 

demonstrates the proof of principle of this project, that Spectrin Family protein 

members, particularly their spectrin repeat domains, can be manipulated to form 

protein assemblies. I have shown that the use of de-novo designed short, rigid or 

helical linkers to connect two protein domains result in the creation homodimeric 

and heterodimeric-to-homodimeric fusion proteins, which exhibit great potential as 

bivalent building blocks. These linkers do not appear to affect the quaternary 

structure of the domains that they separate, and could possibly have the potential 

to be used in a wide variety of fusion proteins made up of different protein 

oligomerisation domains. Without the use of molecular modelling I have designed 

and created both homodimeric and heterodimeric building blocks, however, 

molecular modelling may be required to yield a precise structural arrangement 

using these building blocks. 
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6. Appendix 

 

Figure 6.1: Projection confocal z-stack of Hela cells overexpressing GFP-tagged WT or p.Arg46Gln 
actinin-1 proteins. No major disruption of the cytoskeleton was observed in cells overexpressing 
GFP-WT-actinin-1 or GFP-p.Arg46Gln-actinin-1; all cells show similar actinin organisation.  


