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ADDITIONAL FILES 

Introduction to PLS 

The fundamental problem with APC analysis is perfect collinearity amongst the variables age, 

period and cohort. The direct consequence of this is that the data matrix is not of full rank, i.e. it is 

singular and therefore not invertible. This means that more commonly used regression models such 

as ordinary least squares regression, does not work. Partial least squares (PLS) regression is not 

affected by the singularity of the data matrix hence it can be applied to APC analysis.  

PLS attempts to extract weighted components t of the explanatory variables, maximising the 

covariance between the response variable and t. For example, for the variables Age, Period and 

Cohort: ti = wi1Age + wi2Period + wi3Cohort, where the weights wij are subject to the constraints 

that  


3

1

2 1
j ijw    and the components are mutually orthogonal (i.e. the pair-wise correlations are 

zero).  

This differs from principal components analysis (PCA), which extracts components based on the 

amount of variance each component explains within the data matrix. Therefore, given a set of 

explanatory variables, principle components analysis will always extract the same components 

regardless of the response variable.  

The maximum number of PLS (and PCA) components that can be extracted is equal to the rank of 

the data matrix. In our case, although we have three variables (age, period and cohort), we only 

have two degrees of freedom; hence our data matrix is rank two. This is a direct result of perfect 

collinearity amongst the variables. Therefore, only two components can be extracted.  

Having obtained the coefficients for the PLS components, it is necessary to recover the coefficients 

for the original predictor variables. For example, suppose we take the full 2-component model in 

our analysis of BMI, we would obtain the following:  
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with 1  and 2  being the estimated coefficients for the 1st and 2nd PLS components respectively. 

We can therefore, extract the separate regression coefficients for Age, for instance, to be 

212111 ww    via simple algebraic manipulation.  

Further Properties 

Since we have three variables but only two degrees of freedom, the two extracted components for 

both principal components analysis and PLS span the same space which is why the 2-component 

model for PLS gives the same output as that for principal components analysis. Although the 

extracted components from both methods are not the same, since they span the same space, the 

resulting coefficients for the original covariates will be identical.  

Given we are trying to estimate three separate coefficients but we only have two degrees of 

freedom, a constraint is necessary. PCA (and PLS) implicitly applies the constraint that the sum of 

two coefficient estimates is equal to the third.  

Theorem 1: In a classic APC model where the only covariates are age, cohort and period, PCA will 

obtain parameter estimates 21 ,  and 3  for age, cohort and period respectively such that 

321   . 



Proof: Let the PCA algorithm produce two components 
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 with coefficients 1  and 

2  respectively. Then we have 
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 hence it is sufficient to prove 321 xxx    and  

321 yyy  . 

Let A be the variance in Age, C be the variance in Cohort and B be the covariance between Age and 

Cohort, the covariance matrix for our data will be 
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extracted by PCA are the eigenvectors ordered in order of size of their corresponding eigenvalues. 

Consider arbitrary eigenvector  
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 with corresponding eigenvalue   
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Summing the first two equations will give you the left hand side of the third, hence we have  

321 )( zzz    

Therefore �

321 zzz   or 0  



Since PCA will not extract the component with the zero eigenvalue, all extracted components have 

the property that 321 zzz   hence we have 321 xxx    and  321 yyy  . [QED] 

PLS is similar to PCA, only that it considers the covariance between the covariates and the 

outcome. As a result, it inherits the same constraint on the coefficients as does PCA. This constraint 

is directly inherited from the mathematical relationship amongst the variables; hence it is a 

reasonable constraint to impose.  

 


