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Abstract: Optical transition with changes of frequency and wave vector can be induced by 

optically generated free carrier fronts that move along a slow light photonic crystal waveguide and 

interact with a co-propagating signal wave. With the flexibility in dispersion designs of these 

waveguides, a variety of indirect photonic transitions can be envisaged. The signal wave 

transmitted through the front experience an inter-band transition, while the wave reflected from 

the front – an intra-band transition. Theory and experimental results are presented. 
OCIS codes: (190.0190) Nonlinear optics; (130.0130) Integrated optics. 

1. Introduction 

Dynamic manipulation of light has received considerable attention in recent years [1–4]. The process of an 

optical signal undergoing a transition between two modes of a photonic structure is referred to as a photonic 

transition [5,6]. Photonic transitions can be direct, if the optical signal experiences a shift in frequency but not in 

wave vector, or indirect, if both frequency and wave vector of the signal are changed. While, by only introducing 

spatial perturbations in the structure, the signal wave vector will be altered without frequency shift. In case of direct 

transition, the magnitude of the resulting optical frequency shift is limited to the maximum induced instantaneous 

refractive index change. Direct transitions have been shown for light travelling in a millimeter-long semiconductor 

slab [7] and for light confined in microphotonic resonators [4,8,9] as well as in photonic crystal (PhC) waveguides 

[10,11]. The required fast change of refractive index is achieved by generating free carriers in silicon, which leads to 

a refractive index change via the carrier plasma dispersion effect [12]. 

On the other hand, indirect photonic transitions imply both a change of frequency and wave vector of the optical 

signal [6,13]. The indirect photonic transitions between modes that belong to different photonic bands are called 

indirect inter-band transitions [14,15], while transitions to the same band are called indirect intra-band transitions 

[16]. 

We have shown, that the time and space dependent phase of a signal co- or counter-propagating with a moving 

front is continuous at the position of the front, independently of the reference frame of the observer, e.g., invariant 

with respect to any Lorentz-transformation. This way we could show that the ratio of the frequency change ∆𝜔 and 

wave vector change ∆𝑘 induced by the interaction with the moving front is identical to the velocity at which the 

front propagates, e.g., the group velocity of the pump. Hence, the phase continuity line defines all possible states of 

the signal which satisfy the continuous phase at the moving front; therefore the front can only transform the signal to 

states which lie on that line. As a result, the induced frequency and wave vector changes are determined by the 

dispersion curve of the system, the propagation velocity of the front and the initial position of the signal wave vector 

and frequency in the dispersion band. 

In the next sections we will show, that with the flexibility in dispersion designs of PhC waveguides [17,18], a 

variety of indirect transitions can be envisaged. First we will discuss the situation when a signal wave ahead of a 

faster index front is overtaken by it and its final state after the interaction will lie on the perturbed dispersion curve, 

i.e. inter-band indirect transition. Then we will demonstrate a special situation when the signal wave ahead of a front 

cannot find states on the band of the switched PhC behind the front and hence remains in the initial band, i.e. an 

intra-band transition takes place. 

2. Inter-band indirect photonic transition 

The indirect photonic transitions shown here rely on the interaction of an optical signal with a moving refractive 

index front via the carrier-plasma dispersion effect [14,15]. After injection of a high power pump pulse into a PhC 
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waveguide, the pulse modifies the optical properties of the waveguide by generating free carriers via two photon 

absorption (TPA). In the switched zone, the refractive index of silicon,  𝑛𝑠𝑖, reduces by a quantity ∆𝑛𝐹𝐶  that is 

proportional to the free carrier density 𝑁𝐹𝐶 , which in turn changes and blue shifts the dispersion curve.  

To implement indirect transitions, we employed single line defect PhC waveguide fabricated on a Silicon-on-

Insulator substrate with slab height of 220 nm. The lattice constant of the PhC is 404 nm and the air-hole diameter is 

230 nm [14]. Further, the first row of holes directly adjacent to the waveguide has been shifted 50 nm away from the 

waveguide center [18]. Figure 1(a) shows the measured group index of the TE-mode of the slow light PhC 

waveguide. In order to induce an inter-band indirect transition, we chose the wavelengths and group indices of pump 

pulse and signal wave as indicated by orange and red dots, respectively. This means that the group velocity of pump 

pulse is faster than the velocity of the signal wave, and therefore will overtake it. The basic concept to induce this 

transition is schematically shown in Fig. 1(b). The solid curve represents the dispersion band of waveguide mode in 

the ground state (with refractive index 𝑛si), while the dashed curve indicates the switched state with refractive index 

𝑛si + ∆𝑛FC. The orange line represents the phase continuity line with a slope equal to the group velocity of the pump 

pulse. At the input of the structure, the signal wave travels in a waveguide with silicon refractive index of 𝑛si, and is 

represented by a point (𝜔1,  𝑘1) lying on the corresponding dispersion curve. Hence, the final state of the signal 

(𝜔2,  𝑘2) after interaction with the moving front is determined graphically from the crossing point of the phase 

continuity line and the upper dashed dispersion curve. This means that the signal pulse is overtaken by the front and 

travels in a waveguide with silicon refractive index of 𝑛si + ∆𝑛FC with higher frequency. Figure 1(c) shows a 

schematic illustration of this process at two different times.  

 
Figure 1: (a) Measured group index of the engineered and fabricated slow light silicon PhC waveguide. Dots indicate the locations of 

the input wavelengths of signal wave (red dot) and pump pulse (orange dot). (b) Schematic representation of an inter-band indirect 

photonic transition. The solid curve represents the dispersion band of waveguide mode in the ground state (with refractive index nsi), 

while the dashed curve indicates the switched state with refractive index 𝑛si + ∆𝑛FC. The orange line represents the phase continuity 
line with a slope equal to the group velocity of the pump pulse. Blue dot indicates the expected output wavelength of the shifted signal 

wave after inter-band transition took place. (c) Schematic of the experiment. A pump pulse generates free carriers in the silicon by 
TPA and, consequently, induces a change of refractive index which propagates with the velocity of the pump pulse. The region with 

the orange color gradient corresponds to the rising edge of the front. The orange arrow indicates the velocity of the pump pulse, while 

red and blue arrows indicate the velocities of the signal at different times. 

3. Intra-band indirect photonic transition 

Now, we are interested in the particular situation where the signal wave ahead of a front cannot find states on the 

band of the switched PhC behind the front. This can happen when the phase continuity line does not cut through the 

band of the perturbed PhC. Thus, the state of the signal wave, after interacting with the moving front, must remain in 

the initial band which means that an intra-band transition takes place. This intra-band transition manifests itself as a 

forward reflection from the front. This transition can be achieved by setting the pump pulses at the knee of the solid 

band in Fig. 2(b) at the frequency where group velocity corresponds to the slope of the phase continuity line. 

However, by choosing the pump pulse to lie at the knee of the dispersion band, has some experimental drawbacks. 

Firstly, due to the high intensity of the pump pulse and its center frequency close to that of the signal wave, it is 

difficult to detect the shifted signal after interaction. Secondly, it is also challenging to distinguish the intra-band 

transition from third order nonlinear processes such as four wave mixing (FWM) which would cause spectrally 

similar signals. Thus, the pump should be positioned at some other frequency where the group velocity is the same 

as at the knee of the dispersion band.  

However, PhC waveguides overcome these problems due to their inherent flexibility in dispersion design 

[17,18]. Slow light PhC waveguides can also be engineered to obtain a dispersion relation with equal group 

velocities at three different frequencies [18]. Therefore, it can be used to excite pump pulses with the required group 

velocity at a frequency distant from the initial and final frequencies of the signal. Thus to implement intra-band 

transitions, we used a single line defect PhC waveguide consisting of a hexagonal lattice of air holes in silicon. The 
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lattice constant of the PhC is 404 nm and the air-holes diameter is 240 nm. The first row of holes directly adjacent to 

the waveguide has been shifted 50 nm away from the waveguide center as well [18]. Figure 2(a) shows the 

measured group index of the TE-mode of the over-engineered PhC waveguide. Equal group velocities at three 

different frequencies are illustrated by A, B, and C points. Figure 2(b) presents a schematic representation of the 

intra-band indirect photonic transition, which can be obtained by setting the signal wave at a frequency close to the 

knee of the solid line. The knee of the solid line represents point A in Fig. 2(a), while the orange dot represents point 

C. In such configuration, the signal wave is initially propagating slower than the approaching pump pulse. The final 

state of the signal (𝜔2,  𝑘2) after interaction with the front is determined graphically from the crossing point of the 

phase continuity line and the solid band. Dashed blue dot corresponds to inter-band transition at insufficient band 

shift. Fig. 2(c) shows a schematic illustration of intra-band transition process. The fascinating fact is that a signal 

wave initially propagating slower than the approaching pump pulse, upon interaction with the moving front, which 

is dragged by the faster pump pulse, is accelerated and finally escapes from the moving front in the forward 

direction. 

 
Figure 2: (a) Measured group index of the over-engineered slow light silicon PhC waveguide. Here, the dispersion relation shows 

equal group velocities at three different frequencies A, B and C. (b) Schematic representation of an intra-band indirect photonic 

transition, obtained by setting the signal wave at a frequency close to the knee of the solid line and the pump pulses corresponding to 

point C in (a). The inter-band and intra-band photonic transitions of the input signal caused by insufficient (dashed blue dot) and by 

sufficient (solid blue dots) values of  ∆𝑛, respectively. (c) Schematic of the experiment. The orange arrow indicates the velocity of the 
pump pulse, while red, green, and blue arrows indicate the velocities of the signal at different times, respectively. 
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