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ABSTRACT

The position of a stationary target can be determined using
triangulation in combination with time of arrival measure-
ments at several sensors. In urban environments, none-line-
of-sight (NLOS) propagation leads to biased time estima-
tion and thus to inaccurate position estimates. Here, a semi-
parametric approach is proposed to mitigate the effects of
NLOS propagation. The degree of contamination by NLOS
components in the observations, which result in asymmetric
noise statistics, is determined and incorporated into the es-
timator. The proposed method is adequate for environments
where the NLOS error plays a dominant role and outperforms
previous approaches that assume a symmetric noise statistic.

1. INTRODUCTION

Several techniques for geolocation finding based on received
signal strength (RSS), angle of arrival (AOA), time differ-
ence of arrival (TDOA) and time of arrival (TOA) exist in the
literature, e.g. [4]. Here, we deal with TOA measurements,
where several TOA estimates are obtained from different sen-
sor positions (Rx) to determine the position of the target (Tx).
If there is a direct line of sight (LOS) path between Tx and
Rx, accurate position estimates can be obtained using trian-
gulation. However, in urban areas or hilly terrain, no direct
LOS pathes may be available due to multiple reflections at
buildings and other obstacles, leading to longer propagation
pathes which result in an overestimated TOA. This bias in the
time estimate leads to a biased position estimate of the target.
For these reasons, robust techniques are needed to cope with
the NLOS impairments.

Various methods exist to mitigate the effects of NLOS com-
ponents. In [1] a parametric approach based on detection of
NLOS components is presented, whereas in [3, 7] the au-
thors consider non-parametric approaches that rely on kernel
density estimates (KDE) of the underlying noise probabil-
ity density function (pdf). Since the NLOS error is always
greater than zero, the overall noise distribution tends to be
asymmetric in case of NLOS propagation. However, in [7]
the assumption of a symmetric pdf has been made in order
to achieve consistency in the symmetric model. Since the
symmetric assumption may not be satisfied in reality due
to NLOS components, one may do better when the knowl-
edge of a skewed distribution is incorporated into the esti-
mator which is considered here. In particular, we propose a
NLOS mitigation method by adapting semi-parametric con-
structions, suggested in previous work [5], to asymmetric
noise densities. The proposed approach can be summarised
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in the following way:

-An estimator determines the level of skewness of the under-
lying distribution and based on this level, the data are trans-
formed into an approximately Gaussian sample.
-Non-parametric KDE is performed in the transformed do-
main and an estimate of the true pdf in the original domain
can be obtained via back-transformation.

-This estimate is used to determine the location of the target
based on the maximum likelihood principle.

The paper is structured as follows: Section 2 introduces the
signal model and Section 3 presents the algorithms based on
transformation density estimation. In Section 4 simulation
results are shown and Section 5 concludes the paper.

2. SIGNAL MODEL

We consider a single moving sensor in a two dimensional
plane where N TOA measurements can be captured between
the moving sensor Rx and the stationary target Tx. The ith
distance measurement is obtained by multiplying the ith time
estimate by the speed of light. The measured distances r; are
of the form

ri =d; + gi+NLOS;, i=1,...,N, (1)
where d; is the true distance, g; is sensor noise having den-
2

sity fg which we assume to be Gaussian with variance 0.
NLOS;, independent of g;, are positive random variables with
density fnpos. In [4] fnLos was assumed to be Gaussian,
whereas in [8] an exponential model was considered.

Here however, we consider the general noise components
gi+NLOS; from (1) as a random variable having a density

fo=(1—¢)fc+e, 2)

where 0 < ¢ <1 is the degree of contamination by NLOS
components and 7 = fg * fNLos, Where * denotes the con-
volution. We assume i.i.d. samples from fj for the pertur-
bations but we do not make any assumption on fnros for
the construction of our algorithms. The position of the target
is denoted as (x,y) and the position of the sensor of the ith
distance measurement is given as (x;,y;). In the absence of
noise, r; can be expressed as

rPo= (—x)?+ (i—y)? 3)
= Ki—2xix—2yy+x+)7,

where K; = xl.2 + yl.2 [7]. For any distance measurement r;, (3)
can be written as

ri —Ki=—2xx—2y;y+R, 4)
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where R? = x2 +y?. Taking 0 = [x,y,R] (4) can be written
in matrix form:

y =S80, )
where
}’Z—Kl
}’Z—Kz
y = .
rIZV—KN
—2x1 —2y1 1
—2x2 —2y2 1
S = )
—2)CN —2yN 1

In case of measurement noise and noise due to NLOS propa-
gations, the terms rl.2 from (1) in the vector y become

ni(d;) = 2d;(gi+NLOS;) + (g;+NLOS;)?
(6)
The additive term n;(d;) corresponds to random non-
linearities unexplained by the model. To model the pdf f of
n;(d;) parametrically would require knowledge of f5, fNLoS
and of the true parameter d;. Here, we prefer to leave f un-
specified in the construction of the estimator (hence taking a
semi-parametric approach).
In the presence of noise, (5) can be expressed as

}’l-2 = di2 —|—I’l,'(d,'),

y=80+n (7

where n is assumed to be a vector of i.i.d. random variables
containing the elements 7;(d;). The maximum likelihood es-
timator (MLE) for 0 is then given by

N 3
Oyre = argmin E —logf (yi - E s,»kek> . (8)
[¥] =1 k=1

Solving the derivative of (8) for zero, we obtain

N 3
Es(ik)cP <yi_ 2 S(ild)@d) =0, k=1,....,3, (9
=l =

where ¢ = —f’/f is the location score function, where f is
df(u)/du. If f is Gaussian, (9) becomes least-squares esti-
mation. However, in practice we can neither assume that f is
Gaussian nor that it is known, and least-squares approaches
may degrade severely due to NLOS components. Moreover,
the minimax approach considered in [6] is robust but sub-
optimal for a particular noise distribution. Instead, we con-
sider semi-parametric estimators which adapt to the underly-
ing noise statistics.

Since the parameters of interest are not independent of each
other, i.e. R> = x? +y2, improvements on the accuracy of the
parameter estimates may be achieved by incorporating this
relationship into the estimator, as in [2]. This step is left out
in what follows.

3. ADAPTIVE ESTIMATION
3.1 General Concept

The general approach we consider to estimate 0 consists in
approximating the MLE as performed in (9), using the resid-

uvals h =y — Sbo. They are obtained from a preliminary

estimate 0 (e.g. least-squares 0y5), and used to estimate f
and its derivative non-parametrically to obtain the estimate
@. This estimate is used to solve Equation (9). Several
methods for estimating ¢ exist in the literature. In [12] a
method based on KDE that uses local smoothing was con-
sidered. It is conceptually and computationally heavy but
achieves good performance with respect to linear or min-
imax [6] approaches. In [5], conceptually simpler semi-
parametric approaches based on transforming the residuals
by a parametric function are considered and can achieve per-
formance similar to the non-parametric one from [12]. In
general terms, the pdf in the original domain, fy, is obtained
by back-transformation, i.e.,

dit(u,A)

Fo ) = fir((u, 1) \—

Ju (10)

where #(u, ) is the transformation function and fi the pdf
of the transformed data. The shape parameter A of the trans-
formation function is chosen such that the data in the trans-
formed domain is approximately Gaussian. Then KDE with
global smoothing is sufficient to obtain an appropriate esti-
mate of the transformed pdf fy and an estimate of the true
pdf can be obtained via (10). Likewise, an estimate of f” is
obtained from differentiating (10) with respect to u.

Even though the above mentioned approaches are designed
for symmetric noise environments, in [7] it is shown that
the non-parametric approach using local smoothing in [12]
leads to significant improvements with respect to conven-
tional techniques in non-symmetric noise. In [7] the geolo-
cation problem is considered, and the underlying distribution
in (1) is asymmetric if a sufficient number of NLOS com-
ponents are taken into account. If the a priori knowledge of
asymmetry is incorporated into the estimator, better perfor-
mance can be expected. Note that in some cases, e.g. when
no NLOS components are contained in the observations, f
may remain symmetric. Hence, an estimator is needed that
takes into account the degree of asymmetry of the underlying
data automatically.

Once the score function is estimated, a solution step can
be constructed in two different ways to solve for (7) [6].
The first approach (A) is based on iterative Newton-Raphson
steps, as in [12], using modified residuals, the second ap-
proach (B) uses iterative weighted least-squares (modified
weights). In B, the weights w; are determined as the abso-
lute value of the ratio between the estimated score function
at the residual A; and the residual itself, i.e., w; = |@(A;) /A
The flowchart in Figure (1) illustrates the steps for each of
the two approaches. From an initial estimate fo the residu-
als are determined and an estimate of the score function is
obtained. This estimate is used to update an estimate of the
parameter of interest O using either approach A or approach
B. The algorithm stops when the previous and actual esti-
mates are close enough together. In [7] it has been shown
that the weighting leads to improvements on the parameter
estimate.
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1. Initialisation R
set /[ = 0, obtain initial estimate 6

{

Determine Residuals
=y—S6,
|

3. Estimate ¢(u) = —f'(u)/ f(u)

2.
n

A 4. AorB B

A: modified residuals B: modified weights
Ori1 =01+ w(STS) 1STe(R),| |w =|¢p(R)/A; W = diag(w)
u=1/(1.25max(|¢'(0)[)) = (STWS)~!IsTwy

{ {

5. Check for convergence

If |%\ < 8, stop, where 6 € R is a small number,
1+1

otherwise / — [+ 1 and go to step 2.

Figure 1: Adaptive algorithm

3.2 Semi-parametric method for non-symmetric noise

The approach we consider here is based on a modification of
a method suggested in [5] where the symmetry assumption
was met, leading to an anti-symmetric score function esti-
mate. In this section, we relax the symmetry constraint and
propose a different construction of the score function used in
Step 3 of the adaptive algorithm (Figure 1).

Since the residuals are supposed to be asymmetric, we trans-
form them into 7(f1,A) using a transformation given in [11]
that suits asymmetric data such that the data after the trans-
formation are approximately Gaussian. The function and a
selection scheme for its parameter are described in the fol-
lowing subsection. Since we have almost normal data af-
ter transformation, we symmetrise the transformed residu-
als into Ayys = [—#(A,A) ,+7(@i,A)] in the transformed do-
main. This allows us to double the sample size which im-
proves small sample performance. The KDE of fiyy is com-
puted in order to obtain fW. An estimate of the original pdfis
obtained by back-transformation using (10) where fiy is re-
placed by its estimate. The global bandwidth used for KDE
is constructed using the plug-in rule 2 = 1.066wN /> [9],
where Gy = 1.483mad[f(f, A)] and mad[-] is the median ab-
solute deviation. Furthermore, as in [5], if f is to be assumed
unimodal, a constraint of a unimodal density can be met for
f in order to improve small sample performance. This can
be achieved by increasing the global bandwidth iteratively
by 11 = 1.05 until a unimodal pdf is obtained [9]. Note that
it may be unnecessary and even inadequate to make this as-
sumption in some environments. In what follows, we do not
consider the unimodal constraint.

3.3 Transformation function and shape control

The shape of the transformation function 7(u, 1) given by

[(Ju| + 1)* = 1]/4, A#0,u>0
(1) = log(u+1), A=0,u>0
Y —l(mu D)2 =1)/(2-1), A#£2,u<0
—log(—u+1), A=2,u<0,
(11)

depends on the parameter A that must be selected [11]. Un-
like [5] where the modulus transformation is used to correct
for symmetric heavy-tailed distributions, #(u, 1) is appropri-
ate for reducing kurtosis and skewness of a given data set.
For A <1, t(u,A) is concave, for A > 1 it is convex and
linear for A = 1. This means that, if A < 1, the function de-
creases the right tail of a distribution and increases the left
tail whereas for A > 1 the right tail is increased and the left
tail is decreased. Figure 2 illustrates the shape of #(u,A) for
different values of A. Since one can assume that the NLOS
error is always positive, which corresponds to a right skewed
noise statistic, we constrain the parameter A to be always
smaller than one so that positive outlying values are trans-
formed closer to the core of the data. This facilitates the use
of KDE with a global bandwidth. An MLE for the parameter
A under the assumption that the data after transformation is
Gaussian is

A = argmax {—Elog(}vzv()»)
2 2
N
+ (A —1) Y sign(ay) log(|A] +1) p,  (12)
=1
2

where Gy, (A ) is the sample variance of the transformed data
[11].

Figure 2: Transformation function [11] for different values of

4. SIMULATIONS

We consider a single sensor Rx that is moving around a
fixed target Tx collecting TOA estimates at different posi-
tions based on the signal model which has been introduced in
Section 2. The initial position (x1,y;) of Rx is (10km,10km)
and the position of the target (x,y) is (S5km,5km). Rx is mov-
ing on a trajectory around Tx and measures N = 50 TOA es-
timates. Simulations are performed over MC = 10000 Monte
Carlo runs.

We compare the performance of eight different estimators:
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the least-squares (LS), an iterative re-weighted least squares
(IRWLS), the non-parametric estimator suggested in [12]
which uses symmetrised residuals (non-param. sym.) and
the same one without symmetrisation (non-param.). These
estimators proceed as indicated by path A in the algorithm in
Figure 1. Furthermore, we consider using the non-parametric
construction of [12] with path B in Figure 1, i.e. by us-
ing the score function estimate to compute the weights of a
weighted least squares approach. Estimation of these weights
is performed both with symmetrised residuals (IRWLS non-
param. sym.) and without symmetrisation (IRWLS non-
param.). These methods are compared with the proposed
transformation-based estimator using path A (Semi-param.),
i.e. modifying the residuals, and path B (IRWLS-semi-
param.), i.e. computing weights from this score estimate for
weighted least squares.

Since we fix a certain number of NLOS components, some
observations are distorted by thermal noise only and others
are affected by both thermal noise and the NLOS compo-
nents. The positions of the NLOS components in the ob-
servations are set randomly (uniformly). As a performance
metric, we use the mean error distance (MED)

1 N () ()
— —fUN24 (y— )2
MED MC,-Zl\/(x FN)2+ (y—3) (13)

where £), $() are the jth geolocation estimates. Figure
3 illustrates the impact of the number of NLOS compo-
nents on the MED for noise generated as in (2), with Gaus-
sian measurement noise with standard deviation o, = 150m
and NLOS components that are exponentially distributed.
Here the standard deviation of the NLOS components is
set to onLos = 409m; this is a typical order of magnitude
in many applicative examples, see e.g. [10]. The case
where only LOS components are observed (LOS-only) is
used as a benchmark for comparison of the different esti-
mators. We observe that the least-squares estimators LS
and IRWLS suffer from a performance loss when the num-
ber of NLOS components increases. Both non-parametric
methods using symmetrisation, i.e. ’non-param sym.” and
"IRWLS non-param sym.’, show to be more robust, as was
shown in [7]. We can observe that non-symmetrisation of
the residuals leads to improvement of the non-parametric ap-
proach (non-param), using path A. This method also com-
pares with the transformation-based semi-parametric method
using path A (semi-param). Finally, Figure 3 illustrates that
the weighted least-squares using this semi-parametric con-
struction for computing the weights (IRWLS semi-param.)
leads to the best estimation in this comparison, and sig-
nificantly outperforms the other methods when more than
22 NLOS components are present. However, the proposed
methods using both A and B suffer from a small performance
loss in environments where a small amount of NLOS com-
ponents are observed. The fact that 'IRWLS non-param.’
fails compared to all other methods, and in particular with
"IRWLS semi-param.’, may be explained by the effect of
a small sample size on the estimation of the weights. Al-
though not shown here, a significant increase in variance of
the estimated weights obtained from 'IRWLS non-param.’
can be observed, and is notably higher than that observed
from "IRWLS semi-param’. Only N = 50 samples are used
to perform KDE for 'IRWLS non-param.’, whereas the semi-
parametric counterpart 'IRWLS semi-param.” uses N = 100

samples since symmetrising the residuals in the transformed
domain. The transformation function also yields a KDE with
smooth tails which facilitates estimation of the weights.

—-— LOS-only
---Ls
—— IRWLS -7
—&— Non-param. sym. -
—=— Non-param. -
—<+— IRWLS-non-param. sym. -7
2000~ IRWLS-non-param. -

&—— Semi-param. ~
—+— IRWLS-semi-param.

250

0 5 10 15 20 25 30 35 40 45 50

Number of NLOS components

Figure 3: MED versus number of NLOS components. fg
is a zero-mean Gaussian with og = 150m and fnros is an
exponential pdf with onLos = 409m.

Figure 4 illustrates the cumulative distribution function
of the geolocation estimates for the different algorithms
when 38 NLOS components are present in each observation
sample. We observe that the proposed construction using
modified weights IRWLS semi-param), i.e. path B, stands
as more accurate than the other methods in terms of MED.
The non-symmetrising 'non-param.” and the ’semi-param.’
schemes seem to behave almost identically, and, although
they are outperformed by 'IRWLS semi-param’, they also
improve the techniques already available in the literature (i.e.
the least-squares procedures, 'non-param. sym.” and ’IR-
WLS non-param. sym.”).

Let us now consider a noise model that consists of two
Gaussian distributions, i.e. in model (2) the sensor noise
remains Gaussian f; with standard deviation o, = 150m,
and the NLOS components are generated according to a
shifted Gaussian density fnLos with mean u = 763m and
OoNLos = 453m. The order of magnitude of these settings
is standard in many measurements, see e.g. [10]. Simulation
results in terms of MED vs number of NLOS components are
shown in Figure 5. Here again, we can observe distinct im-
provement obtained from the path-B-scheme "IRWLS semi-
param.’, and then also path-A-methods ’semi-param.” and
(non-symmetrising) 'non-param.’, over all other competing
methods. Also, the weighted least-squares approach ’IR-
WLS non-param.” (i.e. the path-B-method without sym-
metrising the residuals in the non-parametric construction)
leads again to higher MED in the example. These results sug-
gest that the proposed methods ’semi-param.” and 'IRWLS
semi-param.’, and also the suggestion of not symmetrising
the non-parametric path-A-type construction, provide geolo-
cation that is both more accurate and more robust than previ-
ous methods. Scheme 'IRWLS semi-param.” always seems
to yield the best perfomance in our simulations.
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Figure 4: Cumulative distribution functions of the location
estimates for 38 NLOS components. f¢ is a zero-mean Gaus-
sian with o, = 150m and fxLos is an exponential pdf with
onLos = 409m.

400

350 -

—— LOS-only
-—--Ls
—*— IRWLS
—&— Non-param. sym.
—=— Non-param.
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IRWLS-non-param.
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50

I I I I I I I I I )
0 5 10 15 20 25 30 35 40 45 50
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Figure 5: MED versus number of NLOS components. fg is
a zero-mean Gaussian pdf with o, = 150m and fxios is a
shifted Gaussian with u = 763m and onLos = 453m.

5. CONCLUSION

Transformation-based semi-parametric estimators have been
considered for mitigation of the effects of NLOS propagation
in order to perform accurate geolocation of a target. Since the
underlying noise pdf is affected by NLOS errors, it tends to
be asymmetric. The proposed estimators proceed to estimate
the underlying nuisance pdf using some density transforma-
tion that suits asymmetric samples. In particular, the shape
of the transformation is controlled and adapts to the level of
asymmetry of the data. Using this density estimate, two ap-
proaches have been considered, performing either by repro-
ducing the maximum likelihood principle from the density
estimate directly, or by computing the weights of a weighted
least-squares approach.

It is shown that the proposed methods outperform their

competitors in environments where the NLOS error signif-
icantly affects the observations. Improvement on a previous
non-parametric construction which involves KDE with local
smoothing was also suggested here and seems to compete
well, although not as robustly as the new semi-parametric
weighted least squares scheme. Summarising the results, it
seems that robustness of the latter becomes more and more
obvious w.r.t. its competitors as the level of skewness of the
underlying noise distribution (i.e. the more NLOS errors are
observed) increases.

More realistic noise parameters and correlation structures of
the overall noise, e.g. using Markov chains, are currently
under investigation. The impact of A on the MED is under
study. In case there is a significant impact on the MED, an-
other estimator for A may be selected in order to improve
performance.
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