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An Efficient Upper Approximation for Conditional
Preference

Nic Wilson1

Abstract. The fundamental operation of dominance testing, i.e.,
determining if one alternative is preferred to another, is in general
very hard for methods of reasoning with qualitative conditional pref-
erences such as CP-nets and conditional preference theories (CP-
theories). It is therefore natural to consider approximations of pref-
erence, and upper approximations are of particular interest, since
they can be used within a constraint optimisation algorithm to find
some of the optimal solutions. Upper approximations for preference
in CP-theories have previously been suggested, but they require con-
sistency, as well as strong acyclicity conditions on the variables. We
define an upper approximation of conditional preference for which
dominance checking is efficient, and which can be applied very gen-
erally for CP-theories.

1 Introduction

A basic operation for a preference formalism is testing dominance,
i.e., checking if one alternative is preferred to another. Unfortunately
this has been shown to be very hard (PSPACE-complete) [7] in
general for CP-nets [1, 2] and conditional preference theories (CP-
theories) [13, 12], two formalisms for reasoning with qualitative and
comparative conditional preferences; the cases where it is known to
be feasible are of a very simple form [6, 2].

Dominance testing has particular importance for constrained op-
timisation; the algorithm for constrained optimisation given in [3]
involves dominance testing if one requires more than one undomi-
nated solution of a set of constraints, and can involve a great many
dominance checks; similar problems apply to the approach in [11].
This problem can be side-stepped by using dominance checking with
respect to an upper approximation of preference (see e.g., [13]). If a
solution is undominated with respect to the upper approximation it
ensures that it will be undominated with respect to the preference re-
lation; the algorithm of [3] amended in this way then generates some
undominated solutions, but usually not all of them. Dominance test-
ing with respect to such an upper approximation needs to be fast,
since many such tests will typically be required. However, it is often
not essential that the upper approximation be a close approximation,
since we can usually afford to lose undominated solutions—in many
situations there will be huge numbers of them, and so we would not
be able to explicitly list them all even if we could find them.

Efficient upper approximations have been defined in [13, 12], but
they require restrictive conditions on the CP-theory: consistency and
strong acyclicity properties on the variables used in the conditional
preference statements. However there are many natural situations
when these conditions are not satisfied, even for simple examples,
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see e.g., [5, 10, 11, 7]. For larger problems, it will be inconvenient
and often impractical to have to restrict a user’s preference state-
ments so that the CP-theory is of such a special form, firstly, because
this may very well mean they cannot express the preferences they
wish to, and, secondly, because checking consistency of a CP-net or
a CP-theory can be very hard [7].

The main contribution of this paper is to define an upper approx-
imation of conditional preference, for which dominance testing is
efficient, and which can be applied very widely for CP-theories; i.e.,
without the strong acyclicity properties on variables, and without as-
suming consistency. The approximation is also a closer one than pre-
vious upper approximations.

Section 2 describes conditional preference theories, as defined in
[13, 12] which is an approach for reasoning with conditional pref-
erences generalising CP-nets and TCP-nets [4]; a new semantics
in terms of total pre-orders is also given. Section 3 describes pre-
ordered search trees with their associated total pre-orders. Our new
upper approximation is defined as the intersection of all those total
pre-orders satisfying the CP-theory which arise from a pre-ordered
search tree. Section 4 presents a number of technical results giving
equivalent forms of these definitions; this leads to a simple and effi-
cient algorithm for testing dominance with respect to the upper ap-
proximation. Section 5 discusses comparisons with other upper ap-
proximations and constrained optimisation.

2 Conditional Preference Theories

Let V be a set of n variables. For each X ∈ V let X be the set
of possible values of X; we assume X has at least two elements.
For subset of variables U ⊆ V let U =

∏
X∈U X be the set of

possible assignments to set of variables U . The assignment to the
empty set of variables is written �. An outcome is an element of V ,
i.e., an assignment to all the variables. For partial tuples a ∈ A and
u ∈ U , we may write a |= u, or say a extends u, if A ⊇ U and
a(U) = u, i.e., a projected to U gives u. More generally, we say that
a is compatible with u if there exists outcome α ∈ V extending both
a and u, i.e., such that α(A) = a and α(U) = u.

The language LV (abbreviated to L) consists of statements of the
form u : x > x′ [W ] where u is an assignment to set of variables
U ⊆ V (i.e., u ∈ U ), x, x′ are different values of variable X , and
{X}, U and W are pairwise disjoint. Let T = V − ({X}∪U ∪W ).
Such a conditional preference statement ϕ is intended to represent
that given u and any assignment to T , x is preferred to x′ irrespective
of the values of W . This informal meaning is captured by the set ϕ∗

of pairs of outcomes {(tuxw, tux′w′) : t ∈ T , w, w′ ∈ W}, (with
(tuxw, tux′w′) meaning that tuxw is preferred to tux′w′) since u
is satisfied in both outcomes tuxw and tux′w′, and variable X has
the value x in the first, and x′ in the second, and they differ at most on
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{X} ∪ W . We also say that tux′w′ is a worsening swap from tuxw
(with respect to ϕ). So, pairs (α, β) in ϕ∗ are intended to represent
a preference for α over β, and statement ϕ is intended as a compact
representation of the preference information ϕ∗.

Subsets Γ of the language L are called conditional preference the-
ories (CP-theories) [13]. For CP-theory Γ, define Γ∗ to be

⋃
ϕ∈Γ ϕ∗,

which represents a set of preferences. We suppose here that prefer-
ences should be transitive, so it is then natural to define the associated
order �Γ, induced on V by Γ, to be the transitive closure of Γ∗. So
α is preferred to β, i.e., α �Γ β, if and only if there is a sequence
of worsening swaps from α to β (each with respect to some element
of Γ; see [13]). Relation �Γ is defined by α�Γβ if and only if either
α = β or α �Γ β. If ϕ is the statement u : x > x′ [W ] and u ∈ U
we may write uϕ = u, Uϕ = U , xϕ = x, x′

ϕ = x′, Wϕ = W . If W
is empty we may omit [W ], writing just u : x > x′.

We say that outcome β dominates α (with respect to �Γ) if
β �Γ α. Outcome α is said to be undominated (w.r.t.�Γ) if there
exists no outcome that dominates it. (Although in this paper we fo-
cus on this strong sense of undominated, of interest also are outcomes
α which are dominated only by outcomes which α dominates.) Find-
ing an undominated outcome of a CP-theory amounts to finding a
solution of a CSP [12] (so checking if there exists an undominated
outcome is an NP-complete problem). Solution α to a set of con-
straints C (involving variables V ) is said to be undominated if it is
not dominated by any other solution of C. Finding undominated so-
lutions seems to be a harder problem.

This is a relatively expressive language of conditional preferences:
CP-nets [1, 2] can be represented by a set of statements of the form
u : x > x′ [W ] with W = ∅ [13], and TCP-nets [4] can be repre-
sented in terms of such statements with W = ∅ or |W | = 1 [12].
Lexicographic orders can also be represented [13]. Other related lan-
guages for conditional preferences include those in [8, 9].

Example. Let V be the set of variables {X, Y, Z} with domains
as follows: X = {x, x̄}, Y = {y, ȳ} and Z = {z, z̄}. Let ϕ1 =
� : x > x̄, let ϕ2 = x : y > ȳ, let ϕ3 = y : z > z̄, and let ϕ4 =
x̄ : z̄ > z. Let CP-theory Γ be {ϕ1, ϕ2, ϕ3, ϕ4}. This gives rise to
the following preferences, where e.g., xyz �3 xyz̄ means that xyz̄
is a worsening swap from xyz with respect to ϕ3 (in other words,
(xyz,xyz̄) ∈ ϕ∗

3): xyz �3 xyz̄ �2 xȳz̄ �1 x̄ȳz̄ �4 x̄ȳz. We also
have xyz �2 xȳz �1 x̄ȳz; and xyz �1 x̄yz, and xyz̄ �1 x̄yz̄. In
addition there is the cycle x̄yz̄ �4 x̄yz �3 x̄yz̄. The relation �Γ is
the transitive closure of these orderings. The cycle shows that Γ is
inconsistent (see below). But, despite this “localised” inconsistency
(which only involves two outcomes), useful things can be said. In
particular, there is a single undominated outcome: xyz. Furthermore,
if we add the constraint (Y = ȳ) ∨ (Z = z̄) then there are two
undominated solutions: xyz̄ and xȳz. In this case the constraint also
“removes the inconsistency” in the following sense: �Γ restricted to
solutions is acyclic.

Some general properties of relations

A relation � on a set A is formally defined to be a set of pairs, i.e.,
a subset of A × A. We will often write a � b to mean (a, b) ∈ �.
Relation � on set A is irreflexive if and only if for all a ∈ A, it is not
the case that a � a. A pre-order � on A is a reflexive and transitive
relation, i.e., such that a � a for all a ∈ A, and such that a � b and
b � c implies a � c. Elements a and b are said to be �-equivalent
if a � b and b � a. We may write � for the strict part of �, i.e.,
the relation given by a � b if and only if a � b and b �� a. (Note,

however, that �Γ is not necessarily the strict part of �Γ.) A relation
� is complete if for all a �= b, either a � b or b � a. Relation
� is anti-symmetric if a � b and b � a implies a = b (i.e., iff
�-equivalence is no more than equality). A partial order is an anti-
symmetric pre-order. A total pre-order is a complete pre-order. If �
is a total pre-order then a � b if and only if b �� a. A total order is a
complete partial order. We say that a relation is acyclic if its transitive
closure is anti-symmetric, i.e., there are no cycles a � a′ · · · � a for
different a, a′, . . .. A relation �′ extends (or, alternatively, contains)
relation � if �′ ⊇ �, i.e., if a �′ b holds whenever a � b holds.

Semantics

Sequences of worsening swaps can be considered as a proof theory
for this system of conditional preference. In [13] a semantics is given
in terms of total orders (based on the semantics for CP-nets [2]); in
the case of an inconsistent CP-theory, the semantic entailment re-
lation becomes degenerate. To deal with this problem, [5] defines an
extended semantics for CP-nets in terms of total pre-orders. We show
how this semantics can be generalised to CP-theories, extending also
the semantics in [13].

Let � be a total pre-order on V . We say that � satisfies conditional
preference statement ϕ if α � β holds whenever β is a worsening
swap from α w.r.t. ϕ; this is if and only if � extends the relation ϕ∗.
We say that � satisfies a CP-theory Γ if it satisfies each element ϕ
of Γ, i.e., if � extends the relation Γ∗. Because � is transitive, this
holds if and only if � extends �Γ.

For different outcomes α and β we say that Γ |=′ (α, β) if α � β
holds for all total pre-orders � satisfying Γ. We also say, as in [13],
that Γ |= (α, β) if α � β holds for all total orders � satisfying Γ.
We say that Γ is consistent if there exists some total order satisfying
Γ.

The following theorem2 shows that swapping sequences are com-
plete with respect to the semantics based on total pre-orders. Also,
in the case of consistent CP-theories, the two semantic consequence
relations are equivalent.

Theorem 1 Let Γ ⊆ LV be a CP-theory and let α, β ∈ V be differ-
ent outcomes. Then (i) the relation �Γ is the intersection of all total
pre-orders satisfying Γ; (ii) Γ |=′ (α, β) if and only if α �Γ β; (iii)
Γ is consistent if and only if �Γ is irreflexive if and only if �Γ is a
partial order; (iv) if Γ is consistent then Γ |= (α, β) if and only if
Γ |=′ (α, β).

The semantics suggests a general approach to finding an upper ap-
proximation of �Γ: we consider a subset M of the set of all total pre-
orders (which might be thought of as a set of “preferred” models) and
define that α is preferred to β (with respect to this approximation) if
α � β for all � in M which satisfy Γ. (It is an “upper approxima-
tion” in the sense that the approximation contains the relation �Γ.)
We use this kind of approach in the next section.

3 Pre-ordered Search Trees

A pre-ordered search tree is a rooted directed tree (which we imag-
ine being drawn with the root at the top, and children below parents).
Associated with each node r in the tree is a variable Yr , which is
instantiated with a different value in each of the node’s children (if it

2 The proof of this result, and proofs of other results in the paper are
included in a longer version of the paper available at the 4C website:
http://www.4c.ucc.ie/.
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has any), and also a pre-ordering �r of the values of Yr . A directed
edge in the tree therefore corresponds to an instantiation of one of the
variables to a particular value. Paths in the tree from the root down to
a leaf node correspond to sequential instantiations of different vari-
ables. We also associate with each node r a set of variables Ar which
is the set of all variables Yr′ associated to nodes r′ above r in the tree
(i.e., on the path from the root to r), and an assignment ar to Ar cor-
responding to the assignments made to these variables in the edges
between the root and r. The root node r∗ has Ar∗ = ∅ and ar∗ = �,
the assignment to the empty set of variables. Hence r′ is a child of r
if and only if Ar′ = Ar ∪ {Yr} (where Ar �� Yr) and ar′ extends
ar (with an assignment to Yr).

More formally, define a node r to be a tuple 〈Ar, ar, Yr, �r〉,
where Ar ⊆ V is a set of variables, ar ∈ Ar is an assignment to
those variables, Yr ∈ V − Ar is another variable, and �r is a total
pre-order on the set Yr of values of Yr . We make two restrictions on
the choice of this total pre-order: firstly, it is assumed not to be the
trivial complete relation on Y ; so there exists some y, y′ ∈ Y with
y ��r y′. We also assume that total pre-order �r satisfies the fol-
lowing condition (which we require so that the associated ordering
on outcomes is transitive): if there exists a child of node r associated
with instantiation Yr = y, then y is not �r-equivalent to any other
value of Y , so that y �r y′ �r y only if y′ = y. In particular, �r

totally orders the values (of Yr) associated with the children of r.
For outcome α, define the path to α to be the path from the root

which includes all nodes r such that α extends ar . To generate this,
for each node r, starting from the root, we choose the child associated
with the instantiation Yr = α(Yr) (there is at most one such child);
the path finishes when there exists no such child.

Node r is said to decide outcomes α and β if it is the deepest node
(i.e., furthest from the root) which is both on the path to α and on
the path to β. Hence α and β both extend the tuple ar (but they may
differ on variable Yr). We compare α and β by using �r , where r is
the unique node which decides α and β.

Each pre-ordered search tree σ has an associated ordering relation
�σ on outcomes which is defined as follows. Let α, β ∈ V be out-
comes. We define α �σ β to hold if and only if α(Yr) �r β(Yr),
where r is the node which decides α and β. We therefore then have
that α and β are �σ-equivalent if and only if α(Yr) and β(Yr) are
�r-equivalent; also: α �σ β holds if and only if α(Yr) >r β(Yr).
This ordering is similar to a lexicographic ordering in that two out-
comes are compared on the first variable on which they differ.

The definition implies immediately that �σ is reflexive and com-
plete; it can be shown easily that it is also transitive. Hence it is a total
pre-order. We say that pre-ordered search tree σ satisfies conditional
preference theory Γ iff �σ satisfies Γ.

Definition of Upper Approximation. For a given CP-theory Γ we
define the relation �Γ (abbreviated to �) as follows: α � β holds
if and only if α �σ β holds for all σ satisfying Γ (i.e, all σ such
that �σ satisfies Γ). Relation � is then the intersection of all pre-
ordered search tree orders which satisfy Γ. The intersection of a set
of reflexive and transitive relations containing �Γ is clearly reflexive
and transitive, and contains �Γ:

Proposition 1 For any CP-theory Γ, the relation �Γ is a pre-order
which is an upper approximation of �Γ, i.e., if α �Γ β then α �Γ β.

This implies, in particular, that if outcomes α and β are incompa-
rable with respect to �Γ then they are incomparable with respect to
�Γ.

Example continued. Consider the pre-ordered search tree σ1 with
just one node, the root node r = 〈∅,�, Y,y > ȳ〉. Let α and β
be any outcomes with α(Y ) = y and β(Y ) = ȳ. We then have
α �σ1 β since the node r decides α and β, and α(Y ) >r β(Y ).
In particular, this implies that σ1 satisfies ϕ2. If outcomes γ and δ
agree on variable Y , then γ and δ are �σ1 -equivalent because γ(Y )
and δ(Y ) are �r-equivalent since γ(Y ) = δ(Y ). Hence σ1 satisfies
ϕ1, ϕ3 and ϕ4 and so satisfies Γ. This implies that β ��Γ α, so, in
particular, xȳz �� xyz̄.

Now consider the pre-ordered search tree σ2 which has root node
〈∅,�, X,x > x̄〉 with a single child node 〈{X},x, Z,z > z̄〉. This
also satisfies Γ. For example, to check that σ2 satisfies ϕ4 we can
reason as follows: let α and β be any outcomes such that (α, β) ∈
ϕ∗

4, so that α(X) = β(X) = x̄, α(Y ) = β(Y ), α(Z) = z̄ and
β(Z) = z. Then the root node r′ = 〈∅,�, X,x > x̄〉 decides α
and β because its single child is associated with X = x, which is
incompatible with α and β. Now, Yr′ = X and α and β agree on
X so α(X) and β(X) are �r′ -equivalent; in particular, α(X) �r′

β(X). Hence α �σ2 β. Pre-ordered search tree σ2 strictly prefers
xȳz to xyz̄, which shows that xyz̄ �� xȳz. We’ve shown that both
�Γ-undominated solutions are also �-undominated. In fact, in this
case, �Γ is actually equal to �Γ.

4 Computation of Upper Bound on Preference

Outcome α is �-preferred to β if and only if α is preferred to β in
all pre-ordered search trees satisfying Γ. At first sight this definition
looks computationally very unpromising for two reasons: (i) direct
testing of whether a pre-ordered search tree satisfies Γ is not feasible,
as Γ∗ will typically contain exponentially many pairs; (ii) there will
very often be a huge number of pre-ordered search trees satisfying Γ.

In this section we find ways of getting round these two problems.
We first (Section 4.1) find simpler equivalent conditions for a pre-
ordered search tree σ to satisfy Γ; then, in 4.2, we use the results of
4.1 to recast the problem of testing dominance with respect to the
upper approximation, allowing a simple and efficient algorithm.

4.1 Equivalent conditions for σ to satisfy Γ

Consider a pre-ordered search tree σ, and let α be any outcome. As-
sociated with the path to α is the sequence of variables Y1, . . . , Yk

which are instantiated along that path (i.e., associated with the nodes
on the path), starting with the root node. If W is a set of variables and
X is a variable not in W , we say that “on the path to α, X appears
before any of W ” if the following condition holds: Yj ∈ W implies
that Yi = X for some i < j, i.e., if some element of W occurs on
the path then X occurs earlier on the path.

Proposition 2 The following pair of conditions are necessary and
sufficient for a pre-ordered search tree σ to satisfy the CP-theory Γ:

(1) For any ϕ ∈ Γ and outcome α extending uϕ: on the path to α,
Xϕ appears before Wϕ;

(2) for any node r and any ϕ ∈ Γ with Xϕ = Yr we have xϕ �r x′
ϕ

if uϕ is compatible with ar .

Relation �X
a . Because �r is transitive, condition (2) can be writ-

ten equivalently as: for all nodes r in σ, �r ⊇ �Yr
ar

, where �X
a is

defined to be the transitive closure of the set of pairs (x, x′) of val-
ues of X over all statements u : x > x′ [W ] in Γ such that u is
compatible with a. Note that relation �X

a is monotonic decreasing
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with respect to a: if b extends a (to variables not including X) then
�X

a contains �X
b ; this is because if uϕ is compatible with b then uϕ

is compatible with a.
Let A ⊆ V be a set of variables, let a ∈ A be an assignment to A

and let Y ∈ V − A be some variable not in A. We say that Y is a-
choosable if Xϕ ∈ A for all ϕ ∈ Γ satisfying (a) uϕ compatible with
a and (b) Wϕ � Y . Note that if Wϕ = ∅ for all ϕ ∈ Γ, as in CP-nets,
then, for all a, every variable is a-choosable. If we are attempting to
construct a node r of a pre-ordered search tree satisfying Γ, where
ar is the associated assignment, then we need to pick a variable Yr

which is ar-choosable, because of Proposition 2(1). This condition
has the following monotonicity property: suppose A ⊆ B ⊆ V , and
Y /∈ B; suppose also that b is an assignment to B extending assign-
ment a to variables A. Then Y is b-choosable if Y is a-choosable.

Define pre-ordered search tree node r to satisfy Γ if Yr is ar-
choosable and �r satisfies condition (2) above, i.e., �r ⊇ �Yr

ar
. It

can be seen that Yr is ar-choosable for each node r in pre-ordered
search tree σ if and only if condition (1) of Proposition 2 is satisfied.
This leads to the following result.

Proposition 3 A pre-ordered search tree σ satisfies Γ if and only if
each node of σ satisfies Γ.

4.2 Computation of upper bound on preference
relation

In this section we consider a fixed conditional preference theory Γ.
Suppose we are given outcomes α and β, and we wish to determine
if β � α or not. By definition, β � α if and only if there exists
a pre-ordered search tree σ satisfying Γ with β ��σ α, i.e., with
α �σ β. Therefore, an approach to showing β � α is to construct a
pre-ordered search tree σ with α �σ β. The key is to construct the
path from the root which will form the intersection of the path to α
and the path to β; for each node r on this path we need to choose a
variable Yr with certain properties. If α and β differ on Yr it needs to
be possible to choose the local relation �r so that α(Yr) >r β(Yr).
If α and β agree on Yr then we need to ensure that the local relation
is such that this node can have a child. With this in mind we make
the following definitions.

Suppose α and β are both outcomes which extend partial tuple
a ∈ A. Define variable Y to be pickable given a with respect to
(α, β) if Y /∈ A and (i) Y is a-choosable; (iia) if α(Y ) = β(Y )
then α(Y ) is not �Y

a -equivalent to any other value in Y ; (iib) if
α(Y ) �= β(Y ) then β(Y ) ��Y

a α(Y ). If Y is pickable given a with
respect to (α, β), and α(Y ) �= β(Y ) then we say that Y is decisive
given a (with respect to (α, β)).

The following lemma describes a key monotonicity property. It
follows immediately from the previously observed monotonicity
properties of being a-choosable, and of �Y

a .

Lemma 1 Let α and β be two outcomes which both extend tuples a
and b, where a ∈ A and b ∈ B and A ⊆ B ⊆ V (so b extends a).
Let Y be a variable not in B. If Y is pickable given a with respect to
(α, β) then Y is pickable given b with respect to (α, β).

A decisive sequence (w.r.t. (α, β)) is defined to be a sequence
Y1, . . . , Yk of variables satisfying the following three conditions:

— for j = 1, . . . , k − 1, α(Yj) = β(Yj),
— α(Yk) �= β(Yk)
— for j = 1, . . . , k, Yj is pickable given aj (with respect to (α, β)),

where aj is α restricted to {Y1, . . . , Yj−1}; in particular, Yk is
decisive given ak.

Proposition 4 There exists a decisive sequence w.r.t. (α, β) if and
only if there exists a pre-ordered search tree σ satisfying Γ with
α �σ β.

Since β � α holds if and only if there exists no pre-ordered search
tree σ satisfying Γ with α �σ β, Proposition 4 implies the following
result.

Proposition 5 For outcomes α and β, β � α holds if and only if
there exists no decisive sequence with respect to (α, β).

Therefore to determine if β � α or not, we just need to check
if there exists a decisive sequence Y1, . . . , Yk. The monotonicity
lemma implies that we do not have to be careful about the variable
ordering: a variable which is pickable at one point in the sequence is
still pickable at a later point; this means that we can choose, for each
j, Yj to be any pickable variable, knowing that we will not have to
backtrack, as any previously available choices remain available later.

The following algorithm takes as input outcomes α and β and de-
termines if β � α or not.

procedure Is β � α?

if α = β then return true and stop;
for j := 1, . . . , n

let aj be α restricted to {Y1, . . . , Yj−1};
if there exists a variable which is decisive given aj w.r.t. (α, β)

then return false and stop;
if there exists a variable which is pickable given aj w.r.t. (α, β)

then let Yj be any such variable;
else return true and stop.

The correctness of the algorithm follows easily from Proposition 5
and the monotonicity lemma.

Theorem 2 Let Γ be a CP-theory, and let α and β be outcomes. The
above procedure is correct, i.e., it returns true if β �Γ α, and it
returns false if β ��Γ α.

Example continued. Now let α = xȳz and β = xȳz̄. Since for
all ϕ ∈ Γ, Wϕ = ∅, each variable is a-choosable for any a. The re-
lation �Z

� contains pair (z, z̄) because of ϕ3 = y : z > z̄ (anything
is compatible with a = �). It also contains pair (z̄,z) because of
ϕ4 = x̄ : z̄ > z and so β(Z) �Z

� α(Z) which implies that Z is not
pickable given � with respect to (α, β) since α(Z) �= β(Z). On the
other hand, X and Y are both pickable given � (but not decisive).
Suppose we select Y1 = Y , and so a2 = ȳ. Variable Z is still not
pickable, but X is still pickable given a2 (by Lemma 1) so we get
Y2 = X and a3 = xȳ. Relation �Z

a3 is empty so Z is now pickable
and hence decisive (giving decisive sequence Y, X, Z) proving that
β � α. A shorter decisive sequence is X, Z which corresponds to
pre-ordered search tree σ2 which strictly prefers α to β.

Complexity of approximate dominance checking We assume
that the size |X| of the domain of each variable X is bounded by
a constant; we will consider the complexity in terms of n, the num-
ber of variables, and of m = |Γ|, where we assume that m is at
least O(n). This algorithm can be implemented to have complexity
at worst O(mn2), or, more precisely, O(mn(w + 1)) where w is
the average of |Wϕ| over ϕ ∈ Γ. Clearly w < n. For some special
classes such as CP-theories representing CP-nets or TCP-nets, w is
bounded by a constant, and so the complexity is then O(mn).
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5 Comparison and Discussion

An upper approximation �p(Γ) for �Γ was defined in [13], which
was refined to upper approximation �Γ in [12]. It follows easily
from their construction that �Γ ⊆ �p(Γ) when the latter is defined.

Both these require consistency, and strong acyclicity properties
on the ordering of variables used in statements in Γ. In particular,
in both cases, it must be possible to label the set of variables V as
{X1, . . . , Xn} in such a way that for any ϕ ∈ Γ, if Xi ∈ Uϕ, and
Xj ∈ {Xϕ} ∪ Wϕ then i < j. It can be proved using Proposition 5
that � is never a worse upper approximation than �Γ or �p(Γ).

Proposition 6 Let α and β be two different outcomes such that
α � β. Then α �Γ β if Γ is such that �Γ is defined; hence also
α �p(Γ) β if �p(Γ) is defined.

Example continued. The upper approximations of [13, 12] are not
applicable because Γ is not consistent. If we restore consistency by
removing ϕ4 from Γ then they are applicable but give a poorer upper
approximation; in particular they both have xyz̄ preferred to xȳz
(essentially because they make Y a more important variable than Z,
as Y is a parent of Z), so that they miss undominated solution xȳz.

Application to constrained optimisation

In the constrained optimisation algorithm in [3], and the amendments
in [13, 12], a search tree is used to find solutions, where the search
tree is chosen so that its associated total ordering on outcomes ex-
tends �Γ. Methods for finding such search trees have been developed
in [12]. We can make use of this search tree as follows, amending
the constrained optimisation approach of [12] in the obvious way:
when we find a new solution α we check if it is �-undominated
with respect to each of the current known set K of �-undominated
solutions. If so, then α is an �-undominated solution, since it can-
not be �-dominated by any solution found later. We add α to K,
and continue the search. This is an anytime algorithm, but if we
continue until the end of the search, K will be the complete set
of �-undominated solutions, which is a subset of the set of �Γ-
undominated solutions, since � ⊇ �Γ. For the inconsistent case, by
definition, no such search tree can exist. Instead we could use a pre-
ordered search tree satisfying Γ, and continue generating solutions
with this for as long as it totally orders solutions. This may well be
successful for cases where the inconsistency is relatively localised
and among less preferred outcomes, such as in the example.

Crudeness of the approximation

As illustrated by the example, �Γ can be a close approximation of
�Γ. However, computing dominance with respect to �Γ appears in
general to be extremely hard [7] whereas our approximation �Γ is
of low order polynomial complexity. One would therefore not expect
�Γ always to be a close approximation. To illustrate this, consider
outcomes α and β which differ on all variables (or, more generally
on all variables not in WΓ =

⋃
ϕ∈Γ Wϕ). Then any variable which is

pickable is decisive, so, by Proposition 5, β �Γ α if and only if there
exists no variable which is pickable given � with respect to (α, β).
A variable is �-choosable if and only if it is not in WΓ, so β �Γ α
if and only if for all Y ∈ V − WΓ, β(Y ) �Y

� α(Y ). The relation
�Y

� does not depend at all on uϕ, for ϕ ∈ Γ, so, for such α and
β, whether β �Γ α holds or not does not depend at all on uϕ, for
ϕ ∈ Γ. In particular, if β �Γ∗ α holds, where Γ∗ is Γ in which each

uϕ is changed to �, then, by Proposition 1, β �Γ α holds, since for
such α and β, β �Γ α if and only if β �Γ∗ α. Since �Γ∗ can easily
be a very crude upper approximation of �Γ, this suggests that �Γ

may often not be a close approximation for such pairs of outcomes,
i.e., we may easily have β �Γ α without β �Γ α.

However, this does not necessarily matter for constrained optimi-
sation. There will often be a very large number of optimal solutions,
and we may well only wish to report a small fraction of them; it is
not necessarily important that the upper approximation is a close ap-
proximation, just that � is a sufficiently sparse (i.e., weak) relation,
so that there are still liable to be a good number of solutions which
are �-undominated.

Summary

In this paper we have constructed a new upper approximation of con-
ditional preference in CP-theories, which is very much more widely
applicable than previous approaches, as well as being a better ap-
proximation. Furthermore, an efficient algorithm for dominance test-
ing with respect to approximate preference has been derived.
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