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TECHNICAL APPENDIX

Inference in the spatial autoregressive efficiency model with an
application to Dutch dairy farms
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1 Spatial autoregressive efficiency model

1.1 Setup
Consider the model:
yi =a+ X0+ v¢ + log(TE;) (1)
st = pWsi_1 +Z6 + &, (2)
so = (I—pW)'Z5 + (I - pW)"'& (3)

% and log(TE;) = s; — log(1 4 €%).
The following assumptions are made for the model’s error components:

o v, ~N(0,7I)

e a~ N(0,wI)

o &~ N(0,61)

o £~ N(0,6(I— pW)?)

where 7, w and ¢ are precision parameters, while I is a N x N identity matrix!.

where s; = log (131]?;*3,5) This relationship implies that TE; =

Let 0 = [w, B, 7, p, 8, ¢]'. Based on this setup, the complete-data likelihood is written as:
p(}’t, {a}¢ {St}|0a X4, Z) = p(yt‘{aL {St}a ﬁ) T, Xt) X p({Sth, 6a b, Z) X p({a}]w)

FNT/2 L1l 2
= W exXpy — 35 Z[yt —a— X3 — log(TE,)]

23
N/2 o
x (27T0)N/2 exp { 70[50 —(I-pW)~ 125]2} (4)
N(T—1)/2 -1
X 2¢ 5 €XP { % (st — pWsy_q — Z6)2}
(27) =

WwN/2
CEE exp{ 3 }
where ¢y = ¢(I — pW)2.

'Note that in contrast to the manuscript where the second moment of the Normal distribution is parameterized in terms
of variance (as this is more familiar to the audience), the current technical appendix uses the precision parameterization
because it is customary in Bayesian analysis to work with prec1510ns instead of variances. In practical terms, the precision

is simply the inverse of the variance. Specifically, 7 = U%, w= and ¢ = —2
v %




1.2 Priors

The following priors are imposed on the model’s parameters:

« p(8) = b exp { — §(B—m)P(B—m)}

1/2 !
p(0) = iz exp{ - 36 - RO -a)}

bT _ar—1

o p(7) = T e T

o ) = gt b

bed
L p(¢) = p(z¢)¢a¢_16_b¢¢

a—1¢1_ ,\b—1
o p(p) = E 5o —

1.3 Posterior
The posterior density of the model’s parameters and the latent data is:

W(Oa {a}? {St}’}’t, Xt Z) X p(yta {3}7 {St}wv X4, Z) X p(e) (5)

where p(y:, {a}, {s:}|0,X:,Z) is the complete-data likelihood defined in subsection 1.1 and p(0) is the
product of all prior densities defined in subsection 1.2.

1.4 Full conditionals

For convenience, the following are defined: y; = y: — a — log(TEy), sf = sy — pWs;_1, df = s; — Z9,
gi =yt —a—X8.

The full conditionals of the structural parameters and the latent states are:

e The full conditional for 3 is a multivariate Normal:

5(1/2 ~
(B1) = o e { - 508 - BB - )

where:

— = (rX;X; +P) ' (+X,y* + Pm)
~-P=7XX;+P

e The full conditional for § is a multivariate Normal:

where:

- 4= (¢Z'Z+R)(¢Z's; + Ra)
~-R=¢ZZ+R



e The full conditional for 7 is a Gamma:

w(t|") = ﬁfi’_le_g"
where:
- ar = % + ar
= by = 5(yf = XeB) (vi — XeBB) + by
e The full conditional for w is a Gamma:
m(w|-) = F(%;)wawleg“’w
where:
— Qy = % + aw
— by, = za2 + by
e The full conditional for ¢ is a Gamma:
g
m(9l) = ppy ™ e

where:

— 4y =" +ag

— by = LW (T — pW)1Z8]2 + L(s, — pWs;_y — Z8)% + b
o= "5 [so— (I—pW) J? + 3(st — pPWsiq )2+ by

e The full conditional for p does not belong to any known family:

m(pl-) = exp { - % 11— pW)126)* — 250(1 - pW) 23] }

¢ T—1
x exp{ =23 [(Wsi1)? - 2di oWy }

t=1

e The full conditional for a is Normal:

7N/2
r(a]) = ———exp{ —

Sl

(2m)N/2

2(3—6)}

e The full conditional for sy does not belong to any known family:

(so|) = exp { — g [[so —log(1 + €*)]2 — 2g%[so — log(1 + eSO)]] }

xexp{—

N |

[S%(qﬁo + ¢p*W?) — 250 |(I— pW) ™' Z8py + ppW (s1 — Z5)]] }

3



e The full conditional for s; does not belong to any known family:

T-1

N

{[St —log(1+ es’f)]2 —2g7[s¢ — log(1 + est)]} }

7(se|-) = exp { -

xexp{—
t

e The full conditional for s;_; does not belong to any known family:

~+
o

S
—

[CIRSS

s;(L+ p°W?) — 28, | (I — pW)Z8 + pW (8141 + St—l)]] }

1

’ﬂ

H»—A

7(si—1]) = exp { — g [ si—1 — log(1 + et~ 1)} —2g7[st—1 — log(1 + est‘l)]} }

T—

X exp { — [stzl — 284126 + (I — ,OW)St—2]] }
t=2
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