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Abstract

Most classical scheduling formulations assume a fixed and known duration for each ac-
tivity. In this paper, we weaken this assumption, requiring instead that each duration can
be represented by an independent random variable with a known mean and variance. The
best solutions are ones which have a high probability of achieving a good makespan. We
first create a theoretical framework, formally showing how Monte Carlo simulation can be
combined with deterministic scheduling algorithms to solve this problem. We propose an
associated deterministic scheduling problem whose solution is proved, under certain condi-
tions, to be a lower bound for the probabilistic problem. We then propose and investigate
a number of techniques for solving such problems based on combinations of Monte Carlo
simulation, solutions to the associated deterministic problem, and either constraint pro-
gramming or tabu search. Our empirical results demonstrate that a combination of the use
of the associated deterministic problem and Monte Carlo simulation results in algorithms
that scale best both in terms of problem size and uncertainty. Further experiments point
to the correlation between the quality of the deterministic solution and the quality of the
probabilistic solution as a major factor responsible for this success.

1. Introduction

Proactive scheduling techniques seek to produce an off-line schedule that is robust to ex-
ecution time events. In this paper, we assume that we do not have perfect knowledge of
the duration of each activity: the durations are determined at execution time when it is
observed that an activity has finished. However, we do have partial knowledge in the form
of a known probability distribution for each duration. At execution time, the activities will
be dispatched according to the sequences defined by the off-line schedule and our measure of
robustness is the probability with which a given quality will be achieved. More specifically,
in this paper, we address the problem of job shop scheduling (and related generalizations)
when the durations of the activities are random variables and the objective is to find a
solution which has a high probability of having a good (ideally, minimal) makespan. This
is a challenging problem as even evaluating a solution is a hard problem.

To address this problem, we develop a theoretical framework within which we formally
define the problem and (a) construct an approach, based on Monte Carlo simulation, for
evaluating both solutions and partial solutions, and (b) show that solving a carefully defined
deterministic job shop scheduling problem results in a lower bound of the probabilistic
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minimum makespan of the probabilistic job shop scheduling problem. We use this framework
to define a number of algorithms embodying three solution approaches:

1. Branch-and-bound search with Monte Carlo simulation: at each search node, the
search is pruned if we can be almost certain (based on the Monte Carlo simulation)
that the partial solution cannot be extended to a solution better than our current best
solution.

2. Iterative deterministic search with a descending lower bound: the deterministic job
shop problem whose solution is a lower bound on the probabilistic job shop problem
is defined using a parameter, q. The lower bound proof depends on q being less than
or equal to q∗(I), a problem-instance-dependent threshold value for problem instance
I that is difficult to compute. Starting with a high q value, we use tree search and
Monte Carlo simulation to solve a sequence of deterministic problems with decreasing
q values. When q is large, the problems are highly constrained and easy to solve (if
any solutions exist). As q descends, the best probabilistic makespan from previous
iterations is used to restrict the search. If we are able to reach a value of q with
q ≤ q∗(I) within the CPU time limit, then the search is approximately complete
subject to the sampling error.

3. Deterministic filtering search: deterministic scheduling algorithms based on constraint
programming and tabu search are used to define a number of filter-based algorithms.
All these algorithms operate by generating a series of solution candidates that are
evaluated by Monte Carlo simulation.

Our empirical results indicate that the Monte Carlo based branch-and-bound is only
practical for very small problems. The iterative search based on descending q values is as
good as, or better than, the branch-and-bound algorithm on small problems, and performs
significantly better on larger problems. However, even for medium-sized problems, both of
these techniques are inferior to the heuristic approaches based on deterministic filtering.

Contributions. The main contributions of this paper are:

• the introduction of the problem of finding proactive schedules with probabilistic execu-
tion guarantees for a class of problems where the underlying deterministic scheduling
problem is NP-hard;

• the development of a method for generating a lower bound on the probabilistic mini-
mum makespan;

• the development of a particular Monte Carlo approach for evaluating solutions;

• the design and empirical analysis of a number of approximately complete and heuris-
tic solution techniques based on either constraint-based constructive search or tabu
search; and

• the identification of the correlation between deterministic and probabilistic solution
quality as a key factor in the performance of the filter-based algorithms.
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Plan of Paper. In the next section we define the probabilistic job shop scheduling prob-
lem, illustrating it with an example. Section 3 discusses related work. In Section 4, we
present our theoretical framework: we formally define the problem, derive our approach
for generating a lower bound based on an associated deterministic job shop problem, and
show how Monte Carlo simulation can be used to evaluate solutions and partial solutions.
Six search algorithms are defined in Section 5 and our empirical investigations and results
appear in Section 6. In Section 7, it is shown how the results of this paper apply to much
more general classes of scheduling problems. Directions for future work based on theoretical
and algorithmic extensions are also discussed.

2. Probabilistic Job Shop Scheduling Problems

The job shop scheduling problem with probabilistic durations is a natural extension of the
standard (deterministic) job shop scheduling problem (JSP).

2.1 Job Shop Scheduling Problems

A JSP involves a set A of activities, where each Ai ∈ A has a positive duration di. For
each instance of a JSP, it is assumed that either all the durations are positive integers, or
they are all positive real numbers.1 A is partitioned into jobs, and each job is associated
with a total ordering on that set of activities. Each activity must execute on a specified
unary capacity resource. No activities that require the same resource can overlap in their
execution, and once an activity is started it must be executed for its entire duration. We
represent this formally by another partition of A into resource sets: two activities are in
the same resource set if and only if they require the same resource.

A solution consists of a total ordering on each resource set, which does not conflict with
the jobs ordering, i.e., the union of the resource orderings and job orderings is an acyclic
relation on A. Thus, if Ai and Aj are in the same resource set, a solution either orders Ai

before Aj (meaning that Aj starts no sooner than the end of Ai), or Aj before Ai. The set
of solutions of a job shop problem will be labeled S. A partial solution consists of a partial
ordering on each resource set which can be extended to a solution.

Let s be a (partial) solution. A path in s (or an s-path) is a sequence of activities such
that if Ai immediately precedes Aj in the sequence, then either (i) Ai and Aj are in the
same job, and Ai precedes Aj in that job, or (ii) Ai and Aj are in the same resource set
and s orders Ai before Aj . The length, len(π), of a path π (of a solution) is equal to the
sum of the durations of the activities in the path, i.e.,

∑
Ai∈π di. The makespan, make(s),

of a solution s is defined to be the length of a longest s-path. An s-path, π, is said to be a
critical s-path if the length of π is equal to the makespan of the solution s, i.e., it is one of
the longest s-paths. The minimum makespan of a job shop scheduling problem is defined
to be the minimum value of make(s) over all solutions s.

The above definitions focus on solutions rather than on schedules. Here, we briefly indi-
cate how our definitions relate to, perhaps more immediately intuitive, definitions focusing
on schedules. A schedule assigns the start time of each activity, and so can be considered as

1. Our empirical investigations examine the integer case. As shown below, the theoretical results hold also
for the case of positive real number durations.
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a function from the set of activities A to the set of time-points, defining when each activity
starts. The set of time-points is assumed to be either the set of non-negative integers or
the set of non-negative real numbers. Let starti be the start time of activity Ai ∈ A with
respect to a particular schedule, and let endi, its end time, be starti + di. For Ai, Aj ∈ A,
write Ai ≺ Aj for the constraint endi ≤ startj . A schedule is defined to be valid if the
following two conditions hold for any two different activities Ai, Aj ∈ A: (a) if Ai precedes
Aj in the same job, then Ai ≺ Aj ; and (b) if Ai and Aj are in the same resource set, then
either Ai ≺ Aj or Aj ≺ Ai (since Ai and Aj are not allowed to overlap).

Let Z be a valid schedule. Define make(Z), the makespan of Z, to be maxAi∈A endi,
the time at which the last activity has been completed. The minimum makespan is defined
to be the minimum value of make(Z) over all valid schedules.

Each solution s defines a valid schedule sched(s), where each activity is started as soon
as its immediate predecessors (if any) have finished, and activities without predecessors are
started at time-point 0 (so sched(s) is a non-delay schedule given the precedence constraints
expressed by s). An immediate predecessor of activity Aj with respect to a particular
solution is defined to be an activity which is an immediate predecessor of Aj either with
respect to the ordering on the job containing Aj , or with respect to the ordering (associated
with the solution) on the resource set containing Aj . It can be shown that the makespan
of sched(s) is equal to make(s) as defined earlier, hence justifying our definition.

Conversely, given a valid schedule Z, we can define a solution, which we call sol(Z),
by ordering each resource set with the relation ≺ defined above. If Z is a schedule, then
the makespan of sched(sol(Z)), which is equal to make(sol(Z)), is less than or equal to the
makespan of Z. This implies that the minimum makespan over all solutions is equal to the
minimum makespan over all valid schedules. Therefore, if we are interested in schedules
with the best makespans, we need only consider solutions and their associated schedules.

To summarize, when aiming to find the minimum makespan for a JSP, we can focus on
searching over all solutions, rather than over all schedules, because (i) for any schedule Z,
there exists a solution s = sol(Z) such that Z is consistent with s (i.e., satisfies the prece-
dence constraints expressed by s); and (ii) for any solution s, we can efficiently construct
a schedule sched(s) which is optimal among schedules consistent with s (and furthermore,
the makespan of sched(s) is equal to make(s)).

JSP Example. Consider a job shop scheduling problem involving two jobs and five ac-
tivities as shown in Figure 1. The first job consists of the sequence (A1, A2, A3) of activities;
the second job consists of the sequence (A4, A5). There are three resources involved. A1 and
A4 require the first resource; hence activities A1 and A4 cannot overlap, and so either (i)
A1 precedes A4, or (ii) A4 precedes A1. Activities A3 and A5 require the second resource;
A2 requires the third resource. Hence, the resource sets are {A1, A4}, {A2} and {A3, A5}.
There are four solutions:

• sa involves the orderings A1 ≺ A4 and A3 ≺ A5;

• sb is defined by A1 ≺ A4 and A5 ≺ A3;

• sc by A4 ≺ A1 and A3 ≺ A5; and

• sd by A4 ≺ A1 and A5 ≺ A3.
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A5A4

A1 A2 A3

A5A4

A1 A2 A3

A5A4

A1 A2 A3

A5A4

A1 A2 A3

A5A4

A1 A2 A3

Solution Sa Solution Sb

Solution Sc Solution Sd

Figure 1: The example JSP with its four solutions.

The duration of activity Ai is di. The sequence (A1, A4, A5) is an sa-path, whose length
is d1+d4+d5. Also, if π is the sa-path (A1, A2, A3, A5), then len(π) = d1+d2+d3+d5. The
only other sa-paths are subsequences of one of these two. Hence, make(sa), the makespan
of solution sa, is equal to max(d1 + d4 + d5, d1 + d2 + d3 + d5) = d1 + d5 + max(d4, d2 + d3).
In particular, if d1 = 1, d2 = 2, d3 = 3, d4 = 4 and d5 = 5, then make(sa) = 11 time units.
We then also have make(sb) = 13, make(sc) = 15 and make(sd) = 12. Hence, the minimum
makespan is make(sa) = 11.

Let Z = sched(sa) be the schedule associated with solution sa. This is generated as
follows. A1 has no predecessors, so we start A1 at the beginning, setting Z(A1) = 0; hence
activity A1 starts at time-point 0 and ends at time-point d1. The only predecessor of A4

is A1, so we set Z(A4) = d1. Similarly, we set Z(A2) = d1, and so activity A2 ends at
time-point d1 + d2. Continuing, we set Z(A3) = d1 + d2. Activity A5 has two immediate
predecessors (for this solution, sa), A3 and A4, and so A5 is set to start as soon as both
of these activities have been completed, which is at time-point max(d1 + d2 + d3, d1 + d4).
All activities have been completed when A5 has been completed, which is at time-point
max(d1+d2+d3, d1+d4)+d5 = d1+d5+max(d4, d2+d3). This confirms that the makespan
make(sa) of solution sa is equal to the makespan of its associated schedule sched(sa).

2.2 Independent and General Probabilistic Job Shop Scheduling Problems

An independent probabilistic job shop scheduling problem is defined in the same way as a
JSP, except that the duration di associated with an activity Ai ∈ A is a random variable;
we assume that in each instance of a probabilistic JSP, either all the durations are positive
integer-valued random variables, or they are all positive real-valued random variables. di

has (known) distribution Pi, expected value μi = E[di] and variance σ2
i = Var[di]. These
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random variables are fully independent. The length of a path π of a solution s is now
a random variable, which we write as len(π). The makespan make(s) of solution s (the
length of the longest path in s) is therefore also a random variable, which we will sometimes
refer to as the random makespan of s.

We can generalize this to the non-independent case. In the probabilistic job shop schedul-
ing problem we have a joint probability measure P over the durations vectors. (The intention
is that we can efficiently sample with the joint density function. For example, a Bayesian
network might be used to represent P .) Here, for activity Ai, distribution Pi is defined to
be the appropriate marginal distribution, with expected value μi and variance σ2

i .
Loosely speaking, in a probabilistic job shop scheduling problem, we want to find as

small a value of D as possible such that there is a solution whose random makespan is, with
high probability, less than D (the “deadline” for all activities to finish). This time value D
will be called the probabilistic minimum makespan.

Evaluating a solution for a deterministic JSP, i.e., finding the associated makespan given
a duration for each activity, can be achieved in low degree polynomial time using a longest
path algorithm. Without the ordering on each resource set, the disjunctions of resource
constraints that must be satisfied to find a solution turn this very easy problem into the
NP-complete JSP (Garey & Johnson, 1979). PERT networks, on the other hand, generalize
the simple longest-path problem by allowing durations to be independent random variables,
leading to a #P-complete problem (Hagstrom, 1988). The probabilistic JSP makes both
these generalizations. Consequently, finding the optimal solutions of a probabilistic JSP
appears to be very hard, and we focus on methods for finding good solutions instead.

Evaluating (approximately) a solution of a probabilistic JSP can be done relatively
efficiently using Monte Carlo simulation: for each of a large number of trials we randomly
sample the duration of every activity and generate the makespan associated with that
trial. Roughly speaking, we approximately evaluate the solution by evaluating the sampled
distribution of these makespans. This approach is described in detail in Section 4.3.

Almost all of our solution techniques involve associating a deterministic job shop problem
with the given probabilistic job shop problem, by replacing, for some number q, each random
duration by the mean of its distribution plus q times its standard deviation. Hence, we set
the duration di of activity Ai in the associated deterministic problem to be μi+q×σi for the
case of continuous time. For the case when time-points are integers, we set di = �μi+q×σi�.
For certain values of q, this leads to the minimum makespan of the deterministic problem
being a lower bound for the probabilistic minimum makespan, as shown in Section 4.2. This
lower bound can be useful for pruning in a branch-and-bound algorithm. More generally,
we show how solving the associated deterministic problem can be used to help solve the
probabilistic problem.

Our assumptions about the joint probability are somewhat restrictive. For example, the
model does not allow an activity’s duration to depend on its start time; however, it can be
extended to certain situations of this kind.2 Despite these restrictions (which are common in
related literature—see Section 3), our model does apply to an interesting class of problems

2. We could allow the duration of each activity to be probabilistically dependent only on its start time, given
the additional (very natural) coherence condition that for any time-point t′, the conditional probability
that endi ≥ t′, given starti = t, is monotonically increasing in t, i.e., Pr(endi ≥ t′|starti = t1) ≤
Pr(endi ≥ t′|starti = t2) if t1 ≤ t2. This condition ensures that, for any given solution, there is no
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that has not been previously addressed. Extending our model to richer representations by
relaxing our assumptions remains for future work.

Probabilistic JSP Example. We consider an independent probabilistic job shop schedul-
ing problem with the same structure as the JSP example in Figure 1. The durations of
activities A2, A3 and A4 are now independent real-valued random variables (referred to as
d2, d3 and d4, respectively) which are all approximately normally distributed with stan-
dard deviation 0.5 (σ2 = σ3 = σ4 = 0.5) and with means μ2 = 2, μ3 = 3 and μ4 = 4. The
durations of activities A1 and A5 are deterministic, being equal to 1 and 5, respectively.

Let π be the sa-path (A1, A2, A3, A5). The length len(π) of π is an approximately
normally distributed random variable with mean 1+2+3+5 = 11 and variance 0.52+0.52 =
0.5 and hence standard deviation 1/

√
2.

The length of sa-path π′ = (A1, A4, A5) is an approximately normal random variable
with mean 10 and standard deviation 0.5. The (random) makespan make(sa) of solution
sa is a random variable equaling the maximum of random variables len(π) and len(π′).
In general, the maximum of two independent normally distributed random variables is not
normally distributed; however, π is, with high probability, longer than π′, so the distribution
of make(sa) is approximately equal to the distribution of len(π).

3. Previous Work

There has been considerable work on scheduling with uncertainty in a variety of fields
including artificial intelligence (AI), operations research (OR), fault-tolerant computing,
and systems. For surveys of the literature, mostly focusing in AI and OR, see the work of
Davenport and Beck (2000), Herroelen and Leus (2005), and Bidot (2005).

At the highest level, there are two approaches to such problems: proactive scheduling,
where some knowledge of the uncertainty is taken into account when generating an off-line
schedule; and reactive scheduling where decisions are made on-line to deal with unexpected
changes. While there is significant work in reactive scheduling and, indeed, on techniques
that combine reactive and proactive scheduling such as least commitment approaches (see
the surveys noted above), here our interest is on pure proactive scheduling. Three categories
of proactive approaches have been identified: redundancy-based techniques, probabilistic
techniques, and contingent/policy-based techniques (Herroelen & Leus, 2005). We briefly
look at each of these in turn.

3.1 Redundancy-based Techniques

Redundancy-based techniques generate a schedule that includes the allocation of extra
resources and/or time in the schedule. The intuition is that these redundant allocations will
help to cushion the impact of unexpected events during execution. For example, extra time
can be “consumed” when an activity takes longer than expected to execute. Because there
is a clear conflict between insertion of redundancy and common measures of schedule quality
(e.g., makespan), the focus of the work tends to be the intelligent insertion of redundancy
in order to achieve a satisfactory trade-off between schedule quality and robustness.

advantage in delaying starting an activity when its predecessors have finished. Allowing such a delay
would break the assumptions underlying our formulation.
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It is common in fault-tolerant scheduling with real-time guarantees to reserve redundant
resources (i.e., processors) or time. In the former case, multiple instantiations of a given
process are executed in parallel and error detection can be done by comparing the results
of the different instantiations. In contrast, in time redundancy, some time is reserved for
re-execution of a process that fails. Given a fault model, either technique can be used to
provide real-time guarantees (Ghosh, Melhem, & Mossé, 1995; Ghosh, 1996).

A similar approach is used in the work of Gao (1995) and Davenport, Gefflot and Beck
(2001) in the context of job shop scheduling. Statistical information about the mean time
between failure and the mean repair time of machines is used to either extend the duration
of critical activities in the former work or to require that any solution produced must respect
constraints on the slack of each activity. Given a solution, the slack is the room that an
activity has to “move” without breaking a constraint or increasing the cost. Typically, it is
formalized as the difference between an activity’s possible time window in a solution (i.e., its
latest possible end time less its earliest possible start time) and the duration of the activity.
The advantage of Gao’s approach is that it is purely a modeling approach: the problem is
changed to incorporate extended durations and any scheduling techniques can be used to
solve the problem. However, Davenport et al. show that reasoning about the slack shared
amongst a set of activities can lead to better solutions at the cost of specialized solving
approaches.

Leon, Wu and Storer (1994) present an approach to job shop scheduling where the
objective function is modified to be a linear combination of the expected makespan and
expected delay assuming that machines can break down and that, at execution time, dis-
ruptions are dealt with by shifting activities later in time while maintaining the sequence
in the original schedule. While this basic technique is more properly seen as a probabilistic
approach, the authors show that an exact calculation of this measure is intractable unless a
single disruption is assumed. When there are likely to be multiple disruptions, the authors
present a number of surrogate measures. Empirically, the best surrogate measure is the
deterministic makespan minus the mean activity slack. Unlike, Gao and Davenport et al.,
Leon et al. provide a more formal probabilistic foundation, but temporal redundancy plays
a central role in the practical application of their approach.

3.2 Probabilistic Techniques

Probabilistic techniques use representations of uncertainty to reason about likely outcomes
when the schedule is executed.3 Rather than explicitly inserting redundancy in an attempt
to create a robust schedule, probabilistic techniques build a schedule that optimizes some
measure of probabilistic performance. Performance measures typically come in two forms:
an expected value such as expected makespan or expected weighted tardiness, and a proba-
bilistic guarantee with respect to a threshold value of a deterministic optimization measure.
An example of the latter measure, as discussed below, is the probability that the flow time
of a schedule will be less than a particular value.

Optimal expected value scheduling problems have been widely studied in OR (Pinedo,
2003). In many cases, the approach takes the form of dispatch rules or slightly more
complicated polynomial time algorithms that will find the optimal schedule for tractable

3. Alternative representations of uncertainty such as fuzzy sets can also be used (Herroelen & Leus, 2005).
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problems (e.g., 1 and 2 machine problems) and which serve as heuristics for more difficult
problems. One example of such work in the AI literature is that of Wurman and Wellman
(1996) which extends decision theoretic planning concepts to scheduling. The problem
studied assumes a single machine, stochastic processing time and stochastic set-up time,
and has as its objective the minimization of the expected weighted number of tardy jobs.
The authors propose a state-space search and solve the problem of multi-objective stochastic
dominance A*. Critical aspects of this work are the use of a number of sophisticated path
pruning rules and relaxation-based heuristics for the evaluation of promising nodes.

A threshold measure is used by Burns, Punnekkat, Littlewood and Wright (1997) in a
fault-tolerant, single processor, pre-emptive scheduling application. The objective is to find
the minimum fault arrival rate such that all tasks can be scheduled to meet their deadlines.
Based on a fault-model, the probability of observing that fault arrival rate is calculated
and used as a measure of schedule quality. The optimization problem, then, is to find the
schedule that maximizes the probability of all tasks meeting their deadlines under the fault
arrival process.

In a one-machine manufacturing context with independent activities, Daniels and Car-
rillo (1997) define a β-robust schedule as the sequence that maximizes the probability that
the execution will achieve a flow time no greater than a given threshold. While the un-
derlying deterministic scheduling problem is solvable in polynomial time and, indeed, the
minimum expected flow time schedule can be found in polynomial time, it is shown that
finding the β-robust schedule is NP-hard. Daniels and Carrillo present branch-and-bound
and heuristic techniques to solve this problem.

3.3 Contingent and Policy-based Approaches

Unlike the approaches described above, contingent and policy-based approaches do not
generate a single off-line schedule. Rather, what is produced is a branching or contingent
schedule or, in the extreme, a policy, that specifies the actions to be taken when a particular
set of circumstances arises. Given the importance of having an off-line schedule in terms
of coordination with other entities in the context surrounding the scheduling problem, this
difference can have significant practical implications (see Herroelen & Leus, 2005, for a
discussion).

An elegant example of a contingent scheduling approach is the “just-in-case” work of
Drummond, Bresina and Swanson (1994). Given an initial, deterministic schedule for a
single telescope observation problem, the approach identifies the activity most likely to fail
based on the available uncertainty information. At this point, a new schedule is produced
assuming the activity does, indeed, fail. Repeated application of the identification of the
most-likely-to-fail activity and generation of a new schedule results in a branching schedule
where a number of the most likely contingencies are accounted for in alternative schedules.
At execution time, when an activity fails, the execution switches to the alternative schedule
if one exists. If an alternative does not exist, on-line rescheduling is done. Empirical results
demonstrate that a significantly larger portion of an existing (branching) schedule can be
executed without having to revert to rescheduling as compared to the original deterministic
schedule.
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One of the weaknesses of the just-in-case scheduling surrounds the combinatorics of
multiple resources. With multiple inter-dependent telescopes, the problem quickly becomes
intractable. Policy-based approaches such as Markov Decision Processes (MDPs) (Boutilier,
Dean, & Hanks, 1999) have been applied to such problems. Here, the objective is to
produce a policy mapping states to actions that will direct the on-line execution of the
schedule: when a given state is encountered, the corresponding action is taken. Meuleau et
al. (1998) apply MDPs to a stochastic military resource allocation problem where weapons
must be allocated to targets. Given a limited number of weapons and uncertainty about the
effectiveness of a given allocation, an MDP is used to derive an optimal policy where the
states are represented by the number of remaining weapons and targets, and the actions are
the weapon allocation decisions. The goal is to minimize the expected number of surviving
targets. Empirical results demonstrated the computational challenges of such an approach
as a 6 target, 60 weapon problem required approximately 6 hours of CPU time (albeit on
now-outdated hardware).

In the OR literature, there has been substantial work (cited in Brucker, Drexl, Möhring,
Neumann and Pesch, 1999, and Herroelen and Leus, 2005) on stochastic resource-constraint
project scheduling, a generalization of job shop scheduling. The general form of these
approaches is a multi-stage stochastic programming problem, with the objective of finding a
scheduling policy which will minimize the expected makespan. In this context, a scheduling
policy makes decisions on-line about what activities to execute. Decisions need to be made at
the beginning of the schedule and at the end time of each activity, and the information used
for such decisions must be only that which has become known before the time of decision
making. A number of different classes of policy have been investigated. For example, a
minimal forbidden subset of activities, F , is a set such that the activities in F cannot
be executed simultaneously due to resource constraints, but that any subset of F can be
so executed. A pre-selective policy identifies such a set F and a waiting activity, j ∈ F ,
such that j cannot be started until at least one activity i ∈ F − {j} has been executed.
During execution, j can be started only when at least one other activity in F has finished.
The proactive problem, then, is to identify the waiting activity for each minimal forbidden
subset such that the expected makespan is minimized. The computational challenges of
pre-selective policies (in particular, due to the number of minimal forbidden subsets) have
led to work on different classes of policy as well as heuristic approaches.

3.4 Discussion

The work in this paper falls within the probabilistic scheduling approaches and is most
closely inspired by the β-robustness work of Daniels and Carrillo (1997). However, unlike
Daniels and Carrillo, we address a scheduling model where the deterministic problem that
underlies the probabilistic job shop scheduling problem is, itself, NP-hard. This is the
first work of which we are aware that seeks to provide probabilistic guarantees where the
underlying deterministic problem is computationally difficult.

4. Theoretical Framework

In this section, we develop our theoretical framework for probabilistic job shop problems.
In Section 4.1, we define how we compare solutions, using what we call α-makespans. If the
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α-makespan of solution s is less than time value D, then there is at least chance 1−α that
the (random) makespan of s is less than D. As it can be useful to have an idea about how far
a solution’s α-makespan is from the optimum α-makespan (i.e., the minimum α-makespan
over all solutions), in Section 4.2, we describe an approach for finding a lower bound for the
optimum α-makespan. Section 4.3 considers the problem of evaluating a given solution, s,
by using Monte Carlo simulation to estimate the α-makespan of s.

In order to separate our theoretical contributions from our empirical analysis, we sum-
marize the notation introduced in this section in Section 5.1. Readers interested primarily
in the algorithms and empirical results can therefore move directly to Section 5.

This section makes use of notation introduced in Section 2: the definitions in Section
2.1 of a JSP, a solution, paths in a solution, the makespan of a solution, and the minimum
makespan; and the definitions in Section 2.2 of a probabilistic JSP and the random makespan
of a solution.

4.1 Comparing Solutions and Probabilistic Makespan

In a standard job shop problem, solutions can be compared by considering the associated
makespans. In the probabilistic case, the makespan of a solution is a random variable, so
comparing solutions is less straight-forward. We map the random makespan to a scalar
quantity, called the α-makespan, which sums up how good it is; solutions are compared by
comparing their associated α-makespans. A simple idea is to prefer solutions with smaller
expected makespan. However, there may be a substantial probability that the makespan
of the solution will be much higher than its expected value. Instead, we take the following
approach: if we can be confident that the random makespan for solution s is at most D,
but we cannot be confident that the makespan for solution s′ is at most D, then we prefer
solution s to solution s′.

We fix a value α, which is used to bound probabilities. Although we imagine that in
most natural applications of this work, α would be quite small (e.g., less than 0.1) we
assume only that α is in the range (0, 0.5]. If the probability of an event is at least 1− α,
then we say that the event is sufficiently certain. The experiments described in Section 6
use a value of α = 0.05, so that “sufficiently certain” then means “occurs with at least 95%
chance”.

Let D be a time value, and let s be a solution. D is said to be α-achievable using
s if it is sufficiently certain that all jobs finish by D when we use solution s; that is, if
Pr(make(s) ≤ D) ≥ 1− α, where make(s) is the random makespan of s.

D is said to be α-achievable if there is some solution s such that D is α-achievable using
s, i.e., if there exists some solution s making it sufficiently certain that all jobs finish by D.
Time value D is α-achievable if and only if maxs∈S Pr(make(s) ≤ D)) ≥ 1− α, where the
max is over all solutions s.

Define Achα(s) to be the set of all D which are α-achievable using s. We define Dα(s),
the α-makespan of s, to be the infimum4 of Achα(s). Then Dα, the α-minimum makespan,
is defined to be the infimum of Achα, which is the set of all D which are α-achievable, so

4. That is, the greatest lower bound of Achα(s); in fact, as shown by Proposition 1(i), Dα(s) is the smallest
element of Achα(s). Hence, Achα(s) is equal to the closed interval [Dα(s),∞), i.e., the set of time-points
D such that D ≥ Dα(s).
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Dα = inf {D : (maxs∈S Pr(make(s) ≤ D)) ≥ 1− α}. We will also sometimes refer toDα(s)
as the probabilistic makespan of s, and refer to Dα as the probabilistic minimum makespan.5

We prefer solutions which have better (i.e., smaller) α-makespans. Equivalently, solution
s is considered better than s′ if there is a time value D which is α-achievable using s but
not α-achievable using s′. Optimal solutions are ones whose α-makespan is equal to the
α-minimum makespan.

We prove some technical properties of α-makespans and α-achievability relevant for
mathematical results in later sections. In particular, Proposition 1(ii) states that the α-
minimum makespan Dα is α-achievable: i.e., there exists some solution which makes it
sufficiently certain that all jobs finish by Dα. Dα is the smallest value satisfying this
property.

Lemma 1 With the above notation:

(i) Achα =
⋃

s∈S Achα(s);

(ii) there exists a solution s such that Achα = Achα(s) and Dα = Dα(s);

(iii) Dα = mins∈S Dα(s), the minimum of Dα(s) over all solutions s.

Proof:
(i) D is α-achievable if and only if for some solution s, D ∈ Achα(s), which is true if and
only if D ∈ ⋃

s∈S Achα(s).
(ii) Consider the following property (∗) on set of time values A: if D ∈ A and D′ is a time
value greater than D (i.e., D′ > D), then D′ ∈ A; that is, A is an interval with no upper
bound. Let A and B be two sets with property (∗); then either A ⊆ B or B ⊆ A. (To show
this, suppose otherwise, that neither A ⊆ B nor B ⊆ A; then there exists some x ∈ A−B
and some y ∈ B − A; x and y must be different, and so we can assume, without loss of
generality, that x < y; then by property (∗), y ∈ A which is the contradiction required.)
Hence, A ∪ B is either equal to A or equal to B. By using induction, it follows that the
union of a finite number of sets with property (∗) is one of the sets. Each set Achα(s)
satisfies property (∗); therefore,

⋃
s∈S Achα(s) = Achs0

α for some solution s0, so, by (i),
Achα = Achs0

α . This implies also Dα = Dα(s0).
(iii) Let s be any solution and let D be any time value. Clearly, if D is α-achievable using
s, then D is α-achievable. This implies that Dα ≤ Dα(s). Hence, Dα ≤ mins∈S Dα(s). By
(ii), Dα = Dα(s) for some solution s, so Dα = mins∈S Dα(s), as required. �

Proposition 1

(i) Let s be any solution. Dα(s) is α-achievable using s, i.e., Pr(make(s) ≤ Dα(s)) ≥
1− α.

(ii) Dα is α-achievable, i.e., there exists some solution s with Pr(make(s) ≤ Dα) ≥ 1−α.

5. Note that the probabilistic makespan is a number (a time value), as opposed to the random makespan
of a solution, which is a random variable.
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Proof:
In the discrete case, when the set of time values is the set of non-negative integers, then

the infimum in the definitions of Dα(s) and Dα is the same as minimum. (i) and (ii) then
follow immediately from the definitions.

We now consider the case when the set of time values is the set of non-negative real
numbers.

(i): For m,n ∈ {1, 2, . . . , }, let Gm = Pr(0 < make(s)−Dα(s) ≤ 1
m), and let gn = Pr( 1

n+1 <

make(s)−Dα(s) ≤ 1
n). By the countable additivity axiom of probability measures, Gm =∑∞

n=m gn. This means that
∑l−1

n=m gn tends to Gm as l tends to infinity, and hence Gl =∑∞
l gn = Gm −

∑l−1
n=m gn tends to 0. So, we have limm→∞Gm = 0. For all m > 0, we

have Pr(make(s) ≤ Dα(s) + 1
m) ≥ 1 − α, by definition of Dα(s). Also Pr(make(s) ≤

Dα(s)) + Gm = Pr(make(s) ≤ Dα(s) + 1
m). So, for all m = 1, 2, . . ., Pr(make(s) ≤

Dα(s)) ≥ 1− α−Gm, which implies Pr(make(s) ≤ Dα(s)) ≥ 1− α, because Gm tends to
0 as m tends to infinity.

(ii): By part (ii) of Lemma 1, for some solution s, Dα = Dα(s). Part (i) then implies that
Pr(make(s) ≤ Dα) ≥ 1− α. �

Probabilistic JSP Example continued. We continue the example from Section 2.1
and Section 2.2. Set α to 0.05, corresponding to 95% confidence. A value of D = 12.5 is
α-achievable using solution sa, since there is more than 95% chance that both paths π and
π′ are (simultaneously) shorter than length 12.5, and so the probability that the random
makespan make(sa) is less than 12.5 is more than 0.95.

Now consider a value of D = 12.0. Since len(π) (the random length of π) has mean 11
and standard deviation 1/

√
2, the chance that len(π) ≤ 12.0 is approximately the chance

that a normal distribution is no more than
√

2 standard deviations above its mean; this
probability is about 0.92. Therefore, D = 12.0 is not α-achievable using solution sa, since
there is less than 0.95 chance that the random makespan make(sa) is no more than D.

The α-makespan (also referred to as the “probabilistic makespan”) of solution sa is
therefore between 12.0 and 12.5. In fact, the α-makespan Dα(sa) is approximately equal
to 12.16, since there is approximately 95% chance that the (random) makespan make(sa)
is at most 12.16. It is easy to show that D = 12.16 is not α-achievable using any other
solution, so Dα, the α-minimum makespan, is equal to Dα(sa), and hence about 12.16.

4.2 A Lower Bound For α-Minimum Makespan

In this section we show that a lower bound for the α-minimum makespan Dα can be found
by solving a particular deterministic JSP.

A common approach is to generate a deterministic problem by replacing each random
duration by the mean of the distribution. As we show, under certain conditions, the min-
imum makespan of this deterministic JSP is a lower bound for the probabilistic minimum
makespan. For instance, in the example, the minimum makespan of such a deterministic
JSP is 11, and the probabilistic minimum makespan is about 12.16. However, an obvious
weakness with this approach is that it does not take into account the spreads of the distri-
butions. This is especially important since we are typically considering a small value of α,
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such as 0.05. We can generate a stronger lower bound by taking into account the variances
of the distributions when generating the associated deterministic job shop problem.

Generating a Deterministic JSP from a Probabilistic JSP and a Value q. From
a probabilistic job shop problem, we will generate a particular deterministic job shop prob-
lem, depending on a parameter q ≥ 0. We will use this transformation for almost all the
algorithms in Section 5. The deterministic JSP is the same as the probabilistic JSP except
with each random duration replaced by a particular time value. Solving the corresponding
deterministic problem will give us information about the probabilistic problem. The deter-
ministic JSP consists of the same set A of activities, partitioned into the same resource sets
and the same jobs, with the same total order on each job. The duration of activity Ai in the
deterministic problem is defined to be μi + qσi, where μi and σi are respectively the mean
and standard deviation of the duration of activity Ai in the probabilistic job shop problem.
Hence, if q = 0, the associated deterministic problem corresponds to replacing each random
duration by its mean. Let makeq(s) be the deterministic makespan of solution s, i.e., the
makespan of s for the associated deterministic problem (which is defined to be the length of
the longest s-path—see Section 2.1). Let makeq be the minimum deterministic makespan
over all solutions.

Let s be a solution. We say that s is probabilistically optimal if Dα(s) = Dα. Let π
be an s-path. (π is a path in both the probabilistic and deterministic problems.) π is said
to be a (deterministically) critical path if it is a critical path in the deterministic problem.
The length of π in the deterministic problem, lenq(π), is equal to the sum of the durations
of activities in the path:

∑
Ai∈π(μi + qσi), which equals

∑
Ai∈π μi + q

∑
Ai∈π σi.

We introduce the following rather technical definition whose significance is made clear
by Proposition 2: q is α-sufficient if there exists a (deterministically) critical path π in
some probabilistically optimal solution s with Pr(len(π) > lenq(π)) > α, i.e., there is more
than α chance that the random path length is greater than the deterministic length.

The following result shows that an α-sufficient value of q leads to the deterministic
minimum makespan makeq being a lower bound for the probabilistic minimum makespan
Dα. Therefore, a lower bound for the deterministic minimum makespan is also a lower
bound for the probabilistic minimum makespan.

Proposition 2 For a probabilistic JSP, suppose q is α-sufficient. Then, for any solution
s, Pr(make(s) ≤ makeq) < 1 − α. Therefore, makeq is not α-achievable, and is a strict
lower bound for the α-minimum makespan Dα, i.e., Dα > makeq.

Proof: Since q is α-sufficient, there exists a (deterministically) critical path π in some (prob-
abilistically) optimal solution so with Pr(len(π) > lenq(π)) > α. We have lenq(π) =
makeq(so), because π is a critical path, and, by definition of makeq, we have makeq(so) ≥
makeq. So, Pr(len(π) > makeq) > α. By the definition of makespan, for any sample
of the random durations vector, make(so) is at least as a large as len(π). So, we have
Pr(make(so) > makeq) > α. Hence, Pr(make(so) ≤ makeq) = 1 − Pr(make(so) >
makeq) < 1 − α. This implies Dα(so) > makeq since Pr(make(so) ≤ Dα(so)) ≥ 1 − α,
by Proposition 1(i). Since so is a probabilistically optimal solution, Dα = Dα(so), and so
Dα > makeq. Also, for any solution s, we have Dα(s) ≥ Dα > makeq, so Dα(s) > makeq,
which implies that makeq is not α-achievable using s, i.e., Pr(make(s) ≤ makeq) < 1−α. �
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4.2.1 Finding α-Sufficient q-Values

Proposition 2 shows that we can find a lower bound for the probabilistic minimum makespan
if we can find an α-sufficient value of q, and if we can solve (or find a lower bound for) the
associated deterministic problem. This section looks at the problem of finding α-sufficient
values of q, by breaking down the condition into simpler conditions.

In the remainder of Section 4.2, we assume an independent probabilistic JSP.
Let π be some path of some solution. Define μπ to be E[len(π)], the expected value

of the length of π (in the probabilistic JSP), which is equal to
∑

Ai∈π μi. Define σ2
π to

be Var[len(π)], the variance of the length of π, which is equal to
∑

Ai∈π σ
2
i , since we are

assuming that the durations are independent.

Defining α-adequate B. For B ≥ 0, write θB(π) for μπ +Bσπ, which equals
∑

Ai∈π μi +

B
√∑

Ai∈π σ
2
i . We say that B is α-adequate if for any (deterministically) critical path π of

any (probabilistically) optimal solution, Pr(len(π) > θB(π)) > α, i.e., there is more than α
chance that π is more than B standard deviations longer than its expected length.

If each duration is normally distributed, then len(π) will be normally distributed, since
it is the sum of independent normal distributions. Even if the durations are not normally
distributed, len(π) will often be close to being normally distributed (cf. the central limit
theorem and its extensions). So, Pr(len(π) > θB(π)) will then be approximately 1−Φ(B),
where Φ is the unit normal distribution. A B value of slightly less than Φ−1(1− α) will be
α-adequate, given approximate normality.

Defining B-adequate Values of q. We say that q is B-adequate if there exists a
(deterministically) critical path π in some (probabilistically) optimal solution such that
lenq(π) ≤ θB(π).

The following proposition shows that the task of finding α-sufficient values of q can be
broken down. It follows almost immediately from the definitions.

Proposition 3 If q is B-adequate for some B which is α-adequate, then q is α-sufficient.

Proof: Since q is B-adequate, there exists a (deterministically) critical path π in some
(probabilistically) optimal solution s such that lenq(π) ≤ θB(π). Since B is α-adequate,
Pr(len(π) > θB(π)) > α, and hence Pr(len(π) > lenq(π)) > α, as required. �

Establishing B-adequate Values of q. A value q is B-adequate if and only if there
exists a (deterministically) critical path π in some (probabilistically) optimal solution such

that lenq(π) ≤ θB(π), equivalently:
∑

Ai∈π μi + q
∑

Ai∈π σi ≤
∑

Ai∈π μi + B
√∑

Ai∈π σ
2
i ,

that is, q ≤ B

qP
Ai∈π σ2

iP
Ai∈π σi

. This can be written as: q ≤ B√
Mπ

q
Mean{σ2

i : Ai∈π}
Mean{σi : Ai∈π} , where Mπ is

the number of activities in path π, and Mean{σi : Ai ∈ π} = 1
Mπ

∑
Ai∈π σi.

If any activity Ai is not uncertain (i.e., its standard deviation σi equals 0), then it can
be omitted from the summations and means. Mπ then becomes the number of uncertain
activities in path π.
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As is well known (and quite easily shown), the root mean square of a collection of

numbers is always at least as large as the mean. Hence,

q
Mean{σ2

i : Ai∈π}
Mean{σi : Ai∈π} is greater than

or equal to 1. Therefore, a crude sufficient condition for q to be B-adequate is: q ≤ B√
M

,
where M is an upper bound for the number of uncertain activities in any path π for any
probabilistically optimal solution (or we could take M to be an upper bound for the number
of uncertain activities in any path π for any solution). In particular, we could generate B-
adequate q by choosing q = B√

M
.

An α-sufficient Value of q. Putting the two conditions together and using Proposition
3, we have that a q-value of a little less than Φ−1(1−α)√

M
will be α-sufficient, given that the

lengths of the paths are approximately normally distributed, where M is an upper bound
for the number of uncertain activities in any path π for any optimal solution. Hence, by
Proposition 2, the minimum makespan makeq of the associated deterministic problem is
then a strict lower bound for the α-minimum makespan Dα. For example, with α = 0.05,
we have Φ−1(1− α) ≈ 1.645 (since there is about 0.05 chance that a normal distribution is
more than 1.645 standard deviations above its mean), and so we can set q to be a little less
than 1.645√

M
.

One can sometimes generate a larger α-sufficient value of q, and hence a stronger lower
bound makeq, by focusing only on the significantly uncertain activities. Choose value ε
between 0 and 1. For any path π, say that that activity Aj is ε-uncertain (with respect to
π) if

∑ {σi : Ai ∈ π, σi ≤ σj} > ε
∑ {σi : Ai ∈ π}; then the sum of the durations of the

activities which are not ε-uncertain is at most a fraction ε of the sum of all the durations in
the path. Hence, the activities in π which are not ε-uncertain have relatively small standard
deviations. If we define Mε to be an upper bound on the number of ε-uncertain activities
involved in any path of any (probabilistically) optimal solution, then it can be shown, by
a slight modification of the earlier argument, that a q-value of (1−ε)B√

Mε
will be B-adequate,

and hence a q-value of a little less than (1−ε)Φ−1(1−α)√
Mε

will be α-sufficient.

The experiments described in Section 6 use, for varying n, problems with n jobs and n
activities per job). Solutions which have paths involving very large numbers of activities
are unlikely to be good solutions. In particular, one might assume that, for such problems,
there will be an optimal solution s and a (deterministically) critical s-path π involving no
more than 2n activities. Given this assumption, the following value of q is α-sufficient,
making makeq a lower bound for the probabilistic minimum makespan: q = Φ−1(1−α)√

2n
, e.g.,

q = 1.645√
2n

when α = 0.05. This motivates the choice of q1 in Table 2 in Section 6.1.

Probabilistic JSP Example continued. The number of uncertain activities in our
running example (see Section 2.2, Figure 1 and Section 4.1) is 3, so one can set M = 3.
Using α = 0.05, this leads to a choice of q slightly less than 1.645/

√
3 ≈ 0.950. By

Proposition 3 and the above discussion, such a value of q is α-sufficient. The durations of
the associated deterministic problem are given by setting di = μi + qσi, and so are d1 = 1,
d2 = 2 + q/2, d3 = 3 + q/2, d4 = 4 + q/2 and d5 = 5. Solution sa is the best solution
with makespan makeq(sa) = 1 + 5 + (2 + q/2) + (3 + q/2) = 11 + q. Hence, the minimum
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deterministic makespan makeq equals approximately 11.95, which is a lower bound for the
probabilistic minimum makespan Dα ≈ 12.16, illustrating Proposition 2.

However, sc is clearly a poor solution, so we could just consider the other solutions:
{sa, sb, sd}. No (deterministically) critical path of these solutions involves more than two
uncertain activities (within the range of interest of q-values), so we can then set M = 2,
and q = 1.16 ≈ 1.645/

√
2. This leads to the stronger lower bound of 11 + 1.16 = 12.16,

which is a very tight lower bound for the α-minimum makespan Dα.

4.2.2 Discussion of lower bound

In our example, we were able to use our approach to construct a very tight lower bound
for the probabilistic minimum makespan. However, this situation is rather exceptional.
Two features of the example which enable this to be a tight lower bound are (a) the best
solution has a path which is almost always the longest path; and (b) the standard deviations
of the uncertain durations are all equal. In the above analysis, the root mean square is
approximated (from below) by the mean. This is a good approximation when the standard
deviations are fairly similar, and in an extreme case when the (non-zero) standard deviations
of durations are all the same (as in the example), the root mean square is actually equal to
the mean.

More generally, there are a number of ways in which our lower bound will tend to be
conservative. In particular,

• the choice of M will often have to be conservative for us to be confident that it is
a genuine upper bound for the number of uncertain activities in any path for any
optimal solution;

• we are approximating a root mean square of standard deviations by the average of the
standard deviations: this can be a very crude approximation if the standard deviations
of the durations vary considerably between activities;

• we are approximating the random variable make(s) by the random length of a par-
ticular path.

The strength of our lower bound method, however, is that it is computationally feasible for
reasonably large problems as it uses existing well-developed JSP methods.

4.3 Evaluating a Solution Using Monte Carlo Simulation

For a given time value, D, we want to assess if there exists a solution for which there is
a chance of at most α that its random makespan is greater than D. Our methods will all
involve generating solutions (or partial solutions), and testing this condition.

As noted earlier, evaluating a solution amounts to solving a PERT problem with un-
certain durations, a #P-complete problem (Hagstrom, 1988). As in other #P-complete
problems such as the computation of Dempster-Shafer Belief (Wilson, 2000), a natural ap-
proach to take is Monte Carlo simulation (Burt & Garman, 1970); we do not try to perform
an exact computation but instead choose an accuracy level δ and require that with a high
chance our random estimate is within δ of the true value. The evaluation algorithm then
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has optimal complexity (low-degree polynomial) but with a potentially high constant factor
corresponding to the number of trials required for the given accuracy.

To evaluate a solution (or partial solution) s using Monte Carlo simulation we perform
a (large) number, N , of independent trials assigning values to each random variable. Each
trial generates a deterministic problem, and we can check very efficiently if the corresponding
makespan is greater than D; if so, we say that the trial succeeds. The proportion of trials
that succeed is then an estimate of Pr(make(s) > D), the chance that the random makespan
of s is more than D. For the case of independent probabilistic JSPs, we can generate the
random durations vector by picking, using distribution Pi, a value for the random duration
di for each activity Ai. For the general case, picking a random durations vector will still
be efficient in many situations; for example, if the distribution is represented by a Bayesian
network.

4.3.1 Estimating the Chance that the Random Makespan is Greater than D

Perform N trials: l = 1, . . . , N .
For each (trial) l:

— Pick a random durations vector using the joint density function.

— Let Tl = 1 (the trial succeeds) if the corresponding (deterministic) makespan is greater
than D. Otherwise, set Tl = 0.

Let T = 1
N

∑N
l=1 Tl be the proportion of trials that succeed. T is then an estimate of p,

where p = Pr(make(s) > D), the chance that a randomly generated durations vector leads
to a makespan (for solution s) greater than D. The expected value of T is equal to p, since

E[Tl] = p and so E[T ] = 1
N

∑N
l=1E[Tl] = p. The standard deviation of T is

√
p(1−p)

N , which
can be shown as follows: V ar[Tl] = E[(Tl)2]− (E[Tl])2 = p− p2 = p(1− p). The variables
Tl are independent so V ar[T ] = 1

N2

∑N
i=1 V ar[Tl] = p(1−p)

N ≤ 1
4N . The random variable NT

is binomially distributed, and so (because of the deMoivre-Laplace limit theorem (Feller,
1968)) we can use a normal distribution to approximate T .

This means that, for large N , generating a value of T with the above algorithm will, with
high probability, give a value close to Pr(make(s) > D). We can choose any accuracy level
δ > 0 and confidence level r (e.g., r = 0.95), and choose N such that Pr(|T − p| < δ) > r;
in particular, if r = 0.95 and using a normal approximation, choosing a number N of trials
more than 1

δ2 is sufficient. For fixed accuracy level δ and confidence level r, the number
of trials N is a constant: it does not depend on the size of the problem. The algorithm
therefore has excellent complexity: the same as the complexity (low-order polynomial) of a
single deterministic propagation, and so must be optimal as we clearly cannot hope to beat
the complexity of deterministic propagation. However, the constant factor 1

δ2 can be large
when we require high accuracy.

4.3.2 When is the Solution Good Enough?

Let D be a time value and let s be a solution. Suppose, based on the above Monte-Carlo
algorithm using N trials, we want to be confident that D is α-achievable using s (i.e., that
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Pr(make(s) > D) ≤ α). We therefore need the observed T to be at least a little smaller
than α, since T is (only) an estimate of Pr(make(s) > D).

To formalize this, we shall use a confidence interval-style approach. Let K ≥ 0. Recall
that p = Pr(make(s) > D) is an unknown quantity that we want to find information
about. We say that “p ≥ α is K-implausible given the result T” if the following condition
holds: p ≥ α implies that T is at least K standard deviations below the expected value, i.e.,
T ≤ p− K√

N

√
p(1− p).

If it were the case that p ≥ α, and “p ≥ α is K-implausible given T”, then an unlikely
event would have happened. For example, with K = 2, (given the normal approximation),
such an event will only happen about once every 45 experiments; if K = 4 such an event
will only happen about once every 32,000 experiments.

If Pr(make(s) > D) ≥ α is K-implausible given the result T , then we can be confident
that Pr(make(s) > D) < α: D is α-achievable using s, so that D is an upper bound
of Dα(s) and hence of the α-minimum makespan Dα. The confidence level, based on a
normal approximation of the binomial distribution, is Φ(K), where Φ is the unit normal
distribution. For example, K = 2 gives a confidence of around 97.7%.

Similarly, for any α between 0 and 0.5, we say that p ≤ α is K-implausible given the
result T if the following condition holds: p ≤ α implies that T is at least K standard
deviations above the expected value, i.e., T ≥ p+ K√

N

√
p(1− p).

The above definitions of K-implausibility are slightly informal. The formal definitions
are as follows. Suppose α ∈ (0, 0.5], K ≥ 0, T ∈ [0, 1] and N ∈ {1, 2, . . . , }. We define:
p ≥ α is K-implausible given T if and only if for all p such that α ≤ p ≤ 1, the following
condition holds: T ≤ p − K√

N

√
p(1− p). Similarly, p ≤ α is K-implausible given T if and

only if for all p such that 0 ≤ p ≤ α, the following condition holds: T ≥ p+ K√
N

√
p(1− p).

These K-implausibility conditions cannot be tested directly using the definition since
p is unknown. Fortunately, we have the following result, which gives equivalent conditions
that can be easily checked.

Proposition 4 With the above definitions:

(i) p ≥ α is K-implausible given T if and only if T ≤ α− K√
N

√
α(1− α).

(ii) p ≤ α is K-implausible given T if and only if T ≥ α+ K√
N

√
α(1− α).

Proof: (i): If p ≥ α isK-implausible given T , then setting p to α gives T ≤ α− K√
N

√
α(1− α)

as required. Conversely, suppose T ≤ α − K√
N

√
α(1− α). The result follows if K = 0,

so we can assume that K > 0. Write f(x) = (x − T )2 − K2x(1−x)
N . Now, since T ≤

α− K√
N

√
α(1− α), we have α > T and (α− T )2 ≥ K2α(1−α)

N so, f(α) ≥ 0. Also, f(T ) ≤ 0.
Since f(x) is a quadratic polynomial with a positive coefficient of x2, this implies that T is
either a solution of the equation f(x) = 0, or is between the two solutions. Since f(α) ≥ 0
and α > T , it follows that α must either be a solution of f(x) = 0, or be greater than the
solution(s). This implies, for all p > α, f(p) > 0, and so (p− T )2 > K2p(1−p)

N . Since p > T ,

we have for all p ≥ α that T ≤ p − K
√

p(1−p)
N , that is, p ≥ α is K-implausible given T ,

proving (i).
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(ii) If p ≤ α is K-implausible given T , then setting p to α gives T ≥ α+K

√
α(1−α)

N . Con-

versely, if T ≥ α+K

√
α(1−α)

N , then (since α ≤ 0.5) p ≤ α implies T ≥ p+K

√
p(1−p)

N since
the right-hand-side is a strictly increasing function of p, so p ≤ α is K-implausible given T ,
as required. �

Part (i) of this result shows us how to evaluate a solution s with respect to a bound
D: if we generate T (using a Monte Carlo simulation) which is at least K√

N

√
α(1− α) less

than α, then we can have confidence that p < α, i.e., Pr(make(s) > D) < α, and so we
can have confidence that D is α-achievable using solution s, i.e., that D is an upper bound
for the probabilistic makespan Dα(s). Part (ii) is used in the branch-and-bound algorithm
described in Section 5.2.1, for determining if we can backtrack at a node.

4.3.3 Generating an upper approximation of the probabilistic makespan of a

solution

Suppose that, given a solution s, we wish to find a time value D which is just large enough
such that we can be confident that the probabilistic makespan of s is at most D, i.e., that
D is an upper bound for the α-makespan Dα(s). The Monte Carlo simulation can be
adapted for this purpose. We simulate the values of the random makespan make(s) and
record the distribution of these. We decide on a value of K, corresponding to the desired
degree of confidence (e.g., K = 2 corresponds to about 97.7% confidence) and choose D
minimal such that the associated T value (generated from the simulation results) satisfies
T ≤ α− K√

N

√
α(1− α). Then by Proposition 4(i), Pr(make(s) > D) ≥ α is K-implausible

given T . We can therefore be confident that Pr(make(s) > D) < α, so we can have
confidence that D is an upper bound for the α-makespan Dα(s) of s. In the balance of this
paper, we will use the notation D(s) to represent our (upper) estimate of Dα(s) found in
this way.

5. Searching for Solutions

The theoretical framework provides two key tools that we use in building search algorithms.
First, we can use Monte Carlo simulation to evaluate a solution or a partial solution (see
Section 4.3). Second, with the appropriate choice of a q value, we can solve an associated
deterministic problem to find a lower bound on the α-minimum makespan for a problem
instance (see Section 4.2). In this section, we make use of both these tools (and some
variations) to define a number of constructive and local search algorithms. Before describing
the algorithms, we recall some of the most important concepts and notation introduced in
these earlier sections.

For all of our algorithms, we explicitly deal only with the case of independent proba-
bilistic JSPs where durations are positive integer random variables. Given our approach,
however, these algorithms are all valid:

• for the generalized probabilistic case, with the assumptions noted in Section 4, pro-
vided we have an efficient way to sample the activity durations;
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• for continuous random variables, provided we have a deterministic solver that can
handle continuous time values.

5.1 Summary of Notation

The remainder of the paper makes use of notation and concepts from earlier sections, which
we briefly summarize below.

For a JSP or probabilistic JSP: a solution s totally orders activities requiring the same
resource (i.e., activities in the same resource set), so that if activity Ai and Aj require the
same resource, then s either determines that Ai must have been completed by the time
Aj starts, or vice versa (see Section 2.1). A partial solution partially orders the set of
activities in each resource set. Associated with a solution is a non-delay schedule (relative
to the solution), where activities without predecessors are started at time 0, and other
activities are started as soon as all their predecessors have been completed. The makespan
of a solution is the time when all jobs have been completed in this associated non-delay
schedule. For a probabilistic JSP (see Section 2.2), the makespan make(s) of a solution s
is a random variable, since it depends on the random durations.

The quantity we use to evaluate a solution s isDα(s), the α-makespan of s (also known as
the probabilistic makespan of s), defined in Section 4.1. The probability that the (random)
makespan of s is more than Dα(s) is at most α, and approximately equal to α. (More
precisely, Dα(s) is the smallest time value D such that Pr(make(s) > D) is at most α.)
Value α therefore represents a degree of confidence required. The α-minimum makespan
Dα (also known as the probabilistic minimum makespan) is the minimum of Dα(s) over all
solutions s.

A time value D is α-achievable using solution s if and only if there is at most α chance
that the random makespan is more than D. D is α-achievable using s if and only if
D ≥ Dα(s) (see Section 4.1).

Solutions of probabilistic JSPs are evaluated by Monte Carlo simulation (see Section
4.3). A method is derived for generating an “upper approximation” of Dα. We use the
notation D(s) to represent this upper approximation, which is constructed so that D(s)
is approximately equal to Dα(s), and there is a high chance that Dα(s) will be less than
D(s)—see Section 4.3.3. D(s) thus represents a probable upper bound for the probabilistic
minimum makespan.

With a probabilistic job shop problem we often associate a deterministic JSP (see Section
4.2). This mapping is parameterized by a (non-negative real) number q. The associated
deterministic JSP has the same structure as the probabilistic JSP; the only difference is
that the duration of an activity Ai is equal to μi + qσi, where μi and σi are the mean and
standard deviation (respectively) of the duration of Ai in the probabilistic problem. We
write makeq(s) for the makespan of a solution s with respect to this associated deterministic
JSP, and makeq for the minimum makespan: the minimum of makeq(s) over all solutions s.
In Section 4.2, it is shown, using Propositions 2 and 3 and the further analysis in Section
4.2.1, that for certain values of q, the time value makeq is a lower bound for Dα.
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5.2 Constructive Search Algorithms

Four constructive-search based algorithms are introduced here. Each of them uses constraint-
based tree search as a core search technique, incorporating simulation and q values in differ-
ent ways. In this section, we define each constructive algorithm in detail and then provide
a description of the heuristics and constraint propagation building blocks used by each of
them.

5.2.1 B&B-N: An Approximately Complete Branch-and-Bound Algorithm

Given the ability to estimate the probabilistic makespan of a solution, and the ability to
test a condition that implies that a partial solution cannot be extended to a solution with
a better probabilistic makespan, an obviously applicable search technique is branch-and-
bound (B&B) where we use Monte Carlo simulation to derive both upper- and lower-bounds
on the solution quality. If we are able to cover the entire search space, such an approach is
approximately complete (only “approximately” because there is always a small probability
that we miss an optimal solution due to sampling error).

The B&B tree is a (rooted) binary tree. Associated with each node e in the tree is a
partial solution se, which is a solution if the node is a leaf node. The empty partial solution
is associated with the root node. Also associated with each non-leaf node e is a pair of
activities, Ai, Aj , j = i, in the same resource set, whose sequence has not been determined
in partial solution se. The two nodes below e extend se: one sequences Ai before Aj , the
other adds the opposite sequence. The heuristic used to choose which sequence to try first
is described in Section 5.2.5.

The value of global variable D∗ is always such that we have confidence (corresponding to
the choice of K—see Section 4.3.2) that there exists a solution s whose α-makespan, Dα(s),
is at most D∗. Whenever we reach a leaf node, e, we find the upper estimate D′ = D(se)
of the probabilistic makespan Dα(s), by Monte Carlo simulation based on the method of
Section 4.3.3. We set D∗ := min(D∗, D′). Variable D∗ is initialized to some high value.

At non-leaf nodes, e, we check to see if it is worth exploring the subtree below e. We
perform a Monte Carlo simulation for partial solution, se, using the current value of D∗;
this generates a result T . We use Proposition 4(ii) to determine if Pr(make(se) > D∗) ≤ α
is K-implausible given T ; if it is, then we backtrack, since we can be confident that there
exists no solution extending the partial solution se that improves our current best solution.
If K is chosen sufficiently large, we can be confident that we will not miss a good solution.6

We refer to this algorithm as B&B-N as it performs Branch-and-Bound with simulation
at each N ode.

5.2.2 B&B-DQ-L: An Approximately Complete Iterative Tree Search

For an internal node, e, of the tree, the previous algorithm used Monte Carlo simulation
(but without strong propagation within each trial) to find a lower bound for the probabilistic
makespans of all solutions extending partial solution se. An alternative idea for generating

6. Because we are doing a very large number of tests, we need much higher confidence than for a usual
confidence interval; fortunately, the confidence associated with K is (based on the normal approximation

of a binomial, and the approximation of a tail of a normal distribution) approximately 1− 1

K
√

2π
e−

1
2 K2

,

and so tends to 1 extremely fast as K increases.
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B&B-DQ-L():
Returns the solution with lowest probabilistic makespan

1 (s∗, D∗)← findFirstB&BSimLeaves(∞, 0)
2 q ← qinit

3 while q ≥ 0 AND not timed-out do
4 (s, D) ← findOptB&BSimLeaves(D∗, q)
5 if s = NIL then
6 s∗ ← s; D∗ ← D

end
7 q ← q − qdec

end
8 return s∗

Algorithm 1: B&B-DQ-L: An Approximately Complete Iterative Tree Search

such a lower bound is to use the approach of Section 4.2: we find the minimum makespan,
over all solutions extending se, of the associated deterministic problem based on a q value
that is α-sufficient. This minimum makespan is then (see Proposition 2) a lower bound for
the probabilistic makespan. Standard constraint propagation on the deterministic durations
enables this lower bound to be computed much faster than the simulation of the previous
algorithm. At each leaf node, simulation is used as in B&B-N to find the estimate of the
probabilistic makespan of the solution.

This basic idea requires the selection of a q value. However, rather than parameterize
this algorithm (as we do with some others below), we choose to perform repeated tree
searches with a descending q value.

The algorithm finds an initial solution (line 1 in Algorithm 1) and therefore an initial
upper bound, D∗, on the probabilistic makespan with q = 0. Subsequently, starting with
a high q value (one that does not result in a deterministic lower bound), we perform a
tree search. When a leaf, e, is reached, simulation is used to find D(se). With such a
high q value, it is likely that the deterministic makespan makeq(se) is much greater than
D(se). Since we enforce the constraint that makeq(se) ≤ D(se), finding D(se) through
simulation causes the search to return to an interior node, i, very high in the tree such that
makeq(Si) ≤ D(se) where Si represents the set of solutions in the subtree below node i, and
makeq(Si) is the deterministic lower bound on the makespan of those solutions. With high
q values, we commonly observed in our experiments that there are only a very few nodes
that meet this criterion and, therefore, search is able to very quickly exhaust the search
space. When this happens, we reduce the q value by a small amount, qdec (e.g., 0.05), and
restart the tree search. Eventually, and often very quickly, we reach a q value such that
there exists a full solution, se, such that makeq(se) ≤ D(se). That solution is stored as the
current best and we set D∗ = D(se). As in B&B-N, D∗ is used as an upper bound on all
subsequent search.

Algorithm 1 presents pseudocode for the basic algorithm. We make use of two functions
not defined using pseudocode:

• findFirstB&BSimLeaves(c, q): creates a JSP with activity durations defined based on
the q value passed in and conducts a branch-and-bound search where Monte Carlo
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simulation is used for each leaf node and standard constraint propagation is used at
interior nodes. The first solution that is found whose probabilistic makespan is less
than c is returned with the value of its probabilistic makespan. When c is set very
high as in line 1, no backtracking is needed to find a solution and therefore only one
leaf node is visited and only one simulation is performed.

• findOptB&BSimLeaves(c, q): the same as findFirstB&BSimLeaves(c, q) except the
solution with lowest probabilistic makespan is returned rather than the first one found.
If no solution is found, a NIL value is returned. Unless the q value is low enough
that the deterministic makespan is a lower bound on the probabilistic makespan, this
function does not necessarily return the globally optimal solution.

We find a starting solution with q = 0 to serve as an initial upper bound on the optimal
probabilistic makespan. In practice, B&B-DQ-L is run with a limit on the CPU time. If
q = 0 is reached within the time limit, this algorithm is approximately complete.

As noted above, it is possible, especially with a high q value, that for a solution, se,
makeq(se) is much larger than D(se), and therefore the search will backtrack to the deepest
interior node such that makeq(Si) ≤ D(se). In fact, the assignment of the D(se) value is a
“global cut” as it is an upper bound on the probabilistic makespan. For technical reasons
beyond the scope of this paper, standard constraint-based tree search implementations do
not automatically handle such global cuts. We therefore modified the standard behavior to
repeatedly post the upper bound constraint on makeq(Si) causing a series of backtracks up
to the correct interior node.

We refer to this algorithm as B&B-DQ-L as it does a series of Branch-and-Bound
searches with Descending q values and where simulation is used at the Leaves of the tree.

B&B-DQ-L is an example of a novel constraint-based search technique that might be
useful in a wider context. When a problem has a cost function that is expensive to evaluate
but has an inexpensive, parameterizable lower bound calculation, a search based on over-
constraining the problem (i.e., by choosing a parameter value that will not lead to a lower
bound) and then iteratively relaxing the bounding function, may be worth investigating.
We discuss such an approach in Section 7.

5.2.3 B&B-TBS: A Heuristic Tree Search Algorithm

Previous results with an algorithm similar to B&B-N (Beck & Wilson, 2004) indicated that
simulation was responsible for a large percentage (e.g., over 95%) of the run-time. We can
reduce the number of times we require simulation by only simulating solutions that have
a very good deterministic makespan. This deterministic filtering search is the central idea
for the rest of the algorithms investigated in this paper.

A simple method of filtering solutions is to first spend some fixed amount of CPU time
to find a solution, s0, with a low deterministic makespan, makeq(s0), using a fixed q value
and standard constructive tree search. Then, search can be restarted using the same q value
and whenever a solution, si, is found such that makeq(si) ≤ makeq(s0), a simulation is run
to evaluate D(si), our estimate of the probabilistic makespan, Dα(si). If the probabilistic
makespan found is better than the lowest probabilistic makespan so far, the solution is
stored. Search is continued until the entire tree has been explored or the maximum allowed
CPU time has expired. Algorithm 2 contains the pseudocode.
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B&B-TBS(q):
Returns the solution with lowest probabilistic makespan found

1 (s∗, Dinitial)← findOptB&B(∞, q, tinitial)
2 D∗ ←∞
3 while solutions exist AND not timed-out do
4 (s,D)← findNextB&B(Dinitial + 1, q, time-remaining)
5 D′ ← simulate(s)
6 if D′ < D∗ then
7 s∗ ← s; D∗ ← D′

end
end

8 return s∗

Algorithm 2: B&B-TBS: A Heuristic Tree Search Algorithm

As with Algorithm 1, we make use of a number of functions not defined with pseudocode:

• findOptB&B(c, q, t): creates a JSP with activity durations defined based on the q
value passed in and conducts a deterministic branch-and-bound search for up to t CPU
seconds using c as an upper bound on the deterministic makespan. When the search
tree is exhausted or the time-limit is reached, the best deterministic solution found
(i.e., the one with minimum makespan), together with its deterministic makespan are
returned. No Monte Carlo simulation is done.

• findNextB&B(c, q, t): this function produces a sequence of solutions (one solution
each time it is called) whose deterministic makespan is less than c. The problem is
defined using the q value and t is the CPU time limit. The solutions produced are the
leaves of the B&B search tree in the order encountered by the algorithm. Note that in
Algorithm 2, the c value does not change. Given enough CPU time, the algorithm will
evaluate the probabilistic makespan of all solutions whose deterministic makespan is
less than or equal to Dinitial.

• simulate(s): our standard Monte Carlo simulation is run on solution s and D(s), the
estimate of its probabilistic makespan, Dα(s), is returned.

The algorithm is not complete, even if the choice of q value results in deterministic
makespans that are lower bounds on the probabilistic makespan. This is because there is
no guarantee that the optimal probabilistic solution will have a deterministic makespan less
than Dinitial and therefore, even with infinite CPU time, it may not be evaluated.

The algorithm is called B&B-TBS for Branch-and-Bound-T imed Better Solution: a
fixed CPU time is spent to find a good deterministic solution, and then any deterministic
solution found that is as good as or better than the initial solution is simulated.

5.2.4 B&B-I-BS: An Iterative Heuristic Tree Search Algorithm

A more extreme filtering algorithm first finds an optimal deterministic solution and uses
the deterministic makespan as a filter for choosing the solutions to simulate. Using a fixed

207



Beck & Wilson

B&B-I-BS(q):
Returns the solution with smallest probabilistic makespan found

1 (s∗, Dinitial)← findOptB&B(∞, q, t0 − 1)
2 D∗ ← simulate(s∗)
3 i← 0
4 while not timed-out do
5 while search is not complete do
6 (s,makeq)← findNextB&B(Dinitial × (1 + i/100) + 1, q, time-remaining)
7 D ← simulate(s)
8 if D < D∗ then
9 s∗ ← s; D∗ ← D

end
end

10 i← i+ 1
end

11 return s∗

Algorithm 3: B&B-I-BS: An Iterative Heuristic Tree Search Algorithm

q value, an optimal solution is found and then simulated. If there is CPU time remaining,
the search does a series of iterations starting by using the optimal deterministic makespan
as the bound. All solutions with a deterministic makespan as good as (or, in general, better
than) the current bound are found and simulated. In subsequent iterations, the bound
on the deterministic makespan is increased, resulting in a larger set of solutions being
simulated. The solution with the lowest estimated probabilistic makespan is returned. On
larger problems, an optimal deterministic makespan may not be found within the CPU
limit. In such a case, the best deterministic solution that is found is simulated and returned
(i.e., only one simulation is done).

More formally, after finding an optimal deterministic solution with makespan, makeq
∗,

a series of iterations beginning with i = 0 is executed. For each iteration, the bound on
deterministic makespans is set to makeq

∗×(1+i/100). All solutions, se, whose deterministic
makespans, makeq(se) ≤ makeq

∗ × (1 + i/100), are simulated and the one with the lowest
probabilistic makespan is returned. Algorithm 3 presents pseudocode which depends on
functions defined above.

The algorithm is complete. When i is large enough so that the cost bound is greater
than the deterministic makespan of all activity permutations, they will all be simulated.
However, i may have to grow unreasonably large and therefore we treat this algorithm as,
practically, incomplete.

We refer to this algorithm as B&B-I-BS for Branch-and-Bound-I terative-Best Solution.

5.2.5 Heuristic and Constraint Propagation Details

The algorithms described above use texture-based heuristics to decide on the pair of activ-
ities to sequence and which sequence to try first. The heuristic builds resource profiles that
combine probabilistic estimates of the contention that each activity has for each resource
and time-point. The maximum point in the resource profiles is selected and an activity
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pair that contends for the resource at the selected time-point is heuristically chosen. The
sequence chosen is the one that maximizes the remaining slack. The intuition is that a
pair of activities that is contending for a highly contended-for resource and time-point is
a critical pair of activities that should be sequenced early in the search. Otherwise, via
constraint propagation from other decisions, the time windows of these activities may be
pruned to the point that neither sequence is possible. The texture-based heuristics have a
complexity at each search node of O(mn2) where m is the number of resources and n is the
number of activities on each resource.

For a detailed description and analysis of the texture-based heuristic see the work of
Beck and Fox (2000) and Beck (1999).

When constraint propagation is used (i.e., all algorithms above except B&B-N), we
use the strong constraint propagation techniques in constraint-based scheduling: temporal
propagation, timetables (Le Pape, Couronné, Vergamini, & Gosselin, 1994), edge-finder
(Nuijten, 1994), and the balance constraint (Laborie, 2003).

5.3 Local Search Algorithms

There is no reason why a deterministic filtering search algorithm needs to be based on
branch-and-bound. Indeed, given our approach of finding and simulating only solutions
with low deterministic makespans, algorithms based on local search may perform better
than constructive search algorithms.

In this section, we present two deterministic filtering algorithms based on tabu search.7

We define each algorithm and then discuss the details of the tabu search procedure itself.

5.3.1 Tabu-TBS: A Tabu Search Analog of B&B-TBS

The central idea behind using tabu search for deterministic filtering search is to generate a
sequence of promising deterministic solutions which are then simulated. It seems reasonable
to create an analog of B&B-TBS using tabu search. For a fixed q and for a fixed amount
tinitial of CPU time, at the beginning of a run, a solution with the lowest possible deter-
ministic makespan, Dinitial, is sought. Search is then restarted and whenever a solution, s,
is found that has a deterministic makespan makeq(s) ≤ Dinitial, Monte Carlo simulation is
used to approximate the probabilistic makespan. The solution with the lowest estimated
probabilistic makespan is returned.

Algorithm 4 presents the pseudocode for this simple approach. We use the following
functions (pseudo-code not given):

• findBestTabu(c, q, t): this function is analogous to findOptB&B(c, q, t). Tabu search is
run for up to t CPU seconds and the solution with the lowest deterministic makespan
(based on the q value) that is less than c is returned.

• findNextTabu(c, q, t): this function is analogous to findNextB&B(c, q, t). A sequence
of solutions (one solution each time it is called) whose deterministic makespan is less

7. Early experiments explored an even simpler way of using tabu search to solve the probabilistic JSP by
incorporating simulation into the neighborhood evaluation. Given a search state, the move operator (see
Section 5.3.3 for details) defines the set of neighboring states. For each neighbor, we can run a Monte
Carlo simulation and choose the neighbor with the lowest probabilistic makespan. This technique, not
surprisingly, proved impractical as considerable CPU time was spent to determine a single move.
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Tabu-TBS(q):
Returns the solution with lowest probabilistic makespan found

1 (s∗, Dinitial)← findBestTabu(∞, q, tinitial)
2 D∗ ←∞
3 while termination criteria unmet do
4 (s,D)← findNextTabu(Dinitial + 1, q, time-remaining)
5 D′ ← simulate(s)
6 if D′ < D∗ then
7 s∗ ← s; D∗ ← D′

end
end

8 return s∗

Algorithm 4: Tabu-TBS: A Local Search Filtering Algorithm

than c is returned. The problem is defined using the q value and t is the CPU time
limit. The solution produced is the next solution found by the tabu search that meets
the makespan requirement.

We call this algorithm Tabu-TBS for Tabu-T imed Better Solution.
As with B&B-TBS, the c value is not updated in each iteration. The initial search (line

1) is used to find a good deterministic solution and simulation is done on solutions whose
deterministic makespan is better than that of the solution found by the initial search.

5.3.2 Tabu-I-BS: An Iterative Tabu Search Algorithm

The core tabu search implementation for fixed durations does not necessarily use the entire
CPU time (see Section 5.3.3) and, in fact, especially on small instances often terminates
very quickly. We can therefore create an iterative tabu-based solver for the probabilistic
JSP similar to B&B-I-BS.

In the first phase, using a time limit that is one second less than the overall time limit,
tabu search is used to find a very good deterministic solution, based on a fixed q value.
That solution is then simulated. Because the tabu search may terminate before the time
limit has expired, any remaining time is spent generating solutions with a deterministic
makespan within a fixed percentage of the initial solution’s deterministic makespan. As
with B&B-I-BS, iterations are run with increasing i value starting with i = 0. In each
iteration, we simulate solutions found by the tabu search whose deterministic makespan is
at most (1 + i/100)Dinitial, where Dinitial is the value of the deterministic makespan found
in phase 1. The solution with the lowest probabilistic makespan is returned.8

The algorithm is termed Tabu-I-BS for Tabu-I terative-Best Search. The pseudocode
for this algorithm is presented in Algorithm 5.

5.3.3 Tabu Search Details

The tabu search used to find solutions to problems with deterministic durations is the TSAB
algorithm due to Nowicki and Smutnicki (1996). A very restricted move operator (termed

8. The Tabuf algorithm proposed in Beck and Wilson (2004) corresponds to the first iteration of Tabu-I-BS.
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Tabu-I-BS(q):
Returns the solution with smallest probabilistic makespan found

1 (s∗, Dinitial)← findBestTabu(∞, q, t0 − 1)
2 D∗ ← simulate(s∗)
3 i← 0
4 while not timed-out do
5 while termination criteria unmet do
6 (s,makeq)← findNextTabu(Dinitial × (1 + i/100) + 1, q, time-remaining)
7 D ← simulate(s)
8 if D < D∗ then
9 s∗ ← s; D∗ ← D

end
end

10 i← i+ 1
end

11 return s∗

Algorithm 5: Tabu-I-BS: An Iterative Tabu-based Filtering Algorithm

N5 by Blazewicz, Domschke and Pesch, 1996) produces a neighborhood by swapping a
subset of the pairs of adjacent activities in the same resource of a given solution. A standard
tabu list of ten moves done in the immediate past is kept so as to escape local minima. We
use the standard aspiration criteria of accepting move on the tabu list only if the resulting
solution is better than any solution found so far.

One of the important additions to the basic tabu search mechanism in TSAB is the
maintenance of an elite pool of solutions. These are a small set (i.e., 8) of the best solu-
tions that have been encountered so far that is updated whenever a new best solution is
encountered. When the standard tabu search stagnates (i.e., it has made a large number of
moves without finding a new best solution), search returns to one of the elite solutions and
continues search from it. That solution is removed from the set of elite solutions. Search is
terminated when either the maximum CPU time is reached or when the elite solution pool
is empty.

5.4 Summary of Algorithms

Table 1 summarizes the algorithms introduced above.

6. Empirical Investigations

Our empirical investigations address two main issues: the scaling behavior of both the
approximately complete and heuristic methods as problem size and uncertainty increase
and whether using deterministic methods, which represent the uncertainty through duration
extensions, is a useful approach. With respect to scaling, there are two interesting sub-
questions: first, how do the approximately complete techniques compare with each other
and, second, is there a cross-over point in terms of problem size above which the heuristic
techniques out-perform the approximately complete techniques.
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Deterministic
Name Algorithm Complete Description
B&B-N B&B Yes B&B with simulation at each node to find upper

and lower bounds
B&B-DQ-L B&B Yes B&B with deterministic durations used for lower

bounds and simulation is done at each leaf node.
The durations decrease in each iteration.

B&B-TBS B&B No Find a good deterministic solution, s, and
restart search, simulating whenever a
deterministic solution as good as s is found.

B&B-I-BS B&B Yes Find an optimal deterministic solution, s.
Restart search simulating whenever a
deterministic solution within i% of s is found
Repeat with increasing i.

Tabu-TBS Tabu No Find a good deterministic solution, s, and
restart search simulating whenever a
deterministic solution as good as s is found.

Tabu-I-BS Tabu No Find as good a deterministic solution, s, as
possible. Restart search simulating whenever a
deterministic solution within i% of s is
found. Repeat with increasing i.

Table 1: A summary of the algorithms introduced to find the probabilistic makespan for an
instance of the job shop scheduling problem with probabilistic durations.

For the heuristic techniques it is necessary to assign fixed durations to each activity.
A standard approach is to use the mean duration. However, in such cases there is no
representation of the uncertainty surrounding that duration, and this does not take into
account that we want a high probability (1−α) of execution. A more general approach is to
heuristically use the formulation for the lower bound on α-minimum makespans presented
in Section 4.2: the duration of activity Ai is defined to be μi + qσi, where q is a fixed
non-negative value, and μi and σi are (respectively) the mean and standard deviation of
the duration of Ai. Since we are no longer limited to producing a lower bound, we have
flexibility in selecting q. Intuitively, we want a q-value that leads to a situation where
good deterministic solutions also have low values of the probabilistic makespan Dα(s). We
experiment with a number of q-values based on the analysis in Section 4.2 as shown in Table
2. In all cases, we set B = 1.645 (see Section 4.2) corresponding to α = 0.05. Value q3 was
generated for each problem instance by Monte Carlo simulation: simulating 100000 paths
of n activities.

6.1 Experimental Details

Our empirical investigations examine four sets of probabilistic JSPs of size {4×4, 6×6, 10×
10, 20× 20} (where a 10× 10 problem has 10 jobs each consisting of 10 activities), and for
each set, three uncertainty levels uj ∈ {0.1, 0.5, 1} were considered. A deterministic problem
is generated using an existing generator (Watson, Barbulescu, Whitley, & Howe, 2002) with

212



Proactive Algorithms for JSP

q0 q1 q2 q3

0 1.645√
2n

q1+q3
2

1.645√
n

q
MeanAi∈πσ2

i

MeanAi∈πσi

Table 2: The q-values used in the experiments. The choices of q1 and q3 are motivated by
the analysis in Section 4.2.1.

integer durations drawn uniformly from the interval [1, 99]. Three probabilistic instances
at different levels of uncertainty are then produced by setting each mean duration μi to
be the deterministic duration of activity Ai, and by randomly drawing (using a uniform
distribution) the standard deviation σi of the duration of activity Ai from the interval [0,
ujμi]. The distribution of each duration is approximately normal. For each problem size, we
generate 10 deterministic problems which are transformed into 30 probabilistic instances.

The problem sizes were chosen to elicit a range of behavior, from the small problems,
where the approximately complete algorithms were expected to be able to find and prove
(approximate) optimality, to the larger problems, where even the underlying deterministic
problems could not be solved to optimality within the time limit used. We chose to use
an existing generator rather than, for example, modifying existing benchmark problems,
because it allowed us to have full control over the problem structure. The three levels of
uncertainty are simply chosen to have low, medium, and high uncertainty conditions under
which to compare our algorithms.

Given the stochastic nature of the simulation and the tabu search algorithm, each algo-
rithm is run 10 times on each problem instance with different random seeds. Each run has
a time limit of 600 CPU seconds. Each Monte Carlo simulation uses N = 1000 independent
trials.

The hardware used for the experiments is a 1.8GHz Pentium 4 with 512 MB of main
memory running Linux RedHat 9. All algorithms were implemented using ILOG Scheduler
5.3.

Recall that for the B&B-DQ-L algorithm, we employ a descending sequence of q values.
For all problems except the 20× 20 problems, the initial q value, qinit, was set to 1.25, and
the decrement, qdec, to 0.05. For the 20 × 20 problems, a qinit value of 0.9 was used. This
change was made after observing that with qinit = 1.25, the initial tree search for the 20×20
problems would often fail to find a solution or prove that none existed within a reasonable
amount of time. We believe this is due to problem instances of that size not having any
solution with q = 1.25 that satisfied the constraint that the simulated makespan must be
less than or equal to the deterministic approximation (i.e., that makeq(se) ≤ D(se)—see
Section 5.2.2), but yet having a search space that is sufficiently large to require a significant
amount of search to prove it. Reducing qinit to 0.9 results in an initial solution being found
quickly for all instances.

Our primary evaluation criterion is the mean normalized probabilistic makespan (MNPM )
that each algorithm achieved on the relevant subset of problem instances (we display the
data for different subsets to examine algorithm performance for different problem sizes and
uncertainty levels). The mean normalized probabilistic makespan is defined as follows:
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MNPM (a, L) =
1
|L|

∑
l∈L

D(a, l)
Dlb(l)

(1)

where L is a set of problem instances, D(a, l) is our mean estimate of the probabilistic
makespan found by algorithm a on l over 10 runs, Dlb(l) is the lower bound on the prob-
abilistic makespan for l. For all problems except 20 × 20, the Dlb is found by solving the
deterministic problems using q1, a simple, very plausibly α-sufficient q-value (see Section
4.2 and Table 2). Each instance was solved using constraint-based tree search incorporating
the texture-based heuristics and the global constraint propagation used above. A maximum
time of 600 CPU seconds was given. All (deterministic) problems smaller than 20×20 were
easily solved to optimality. However, none of the 20×20 problems were solved to optimality.
Because of this, the Dlb values were chosen to represent the best solutions found, and so
are not true lower bounds.

6.2 Results and Analysis

Table 3 presents an overview of the results of our experiments for each problem size and
uncertainty level. The results for q = q2 are shown for each heuristic algorithm. There was
not a large performance difference among the non-zero q-values (q1, q2 and q3). We return
to this issue in Section 6.2.2. Each cell in Table 3 is the mean value over 10 independent
runs of each of 10 problems. Aside from the 4× 4 instances, all runs reached the 600 CPU
second time limit. Therefore, we do not report CPU times.

Algorithms
Problem Unc. B&B Complete B&B Heuristic Tabu

Size Level N DQ-L TBS I-BS TBS I-BS
0.1 1.027* 1.023* 1.026 1.026 1.027 1.023

4× 4 0.5 1.060* 1.049* 1.064 1.059 1.063 1.046
1 1.151* 1.129 1.154 1.149 1.153 1.128

0.1 1.034 1.021 1.022 1.022 1.027 1.023
6× 6 0.5 1.113 1.073 1.083 1.077 1.074 1.074

1 1.226 1.170 1.178 1.174 1.185 1.168
0.1 1.185 1.028 1.024 1.024 1.035 1.028

10× 10 0.5 1.241 1.115 1.101 1.101 1.121 1.112
1 1.346 1.234 1.215 1.215 1.244 1.223

0.1 1.256 1.142 1.077 1.071 1.029 1.027
20× 20† 0.5 1.326 1.233 1.177 1.181 1.136 1.137

1 1.482 1.388 1.334 1.338 1.297 1.307

Table 3: The mean normalized probabilistic makespans for each algorithm. ‘*’ indicates a
set of runs for which we have, with high confidence, found approximately optimal
makespans. ‘†’ indicates problem sets for which normalization was done with
approximate lower bounds. The lowest MNPM found for each problem set are
shown in bold.
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An impression of the results can be gained by looking at the bold entries that indicate the
lowest mean normalized probabilistic makespan (MNPM) that was found for each problem
set. B&B-N and B&B-DQ-L find approximately optimal solutions only for the smallest
problem set, while the B&B-DQ-L and Tabu-I-BS find the lowest probabilistic makespans
for both the 4 × 4 and 6 × 6 problems. Performance of the complete B&B techniques,
especially B&B-N, degrade on the 10 × 10 problems where the heuristic B&B algorithms
find the lowest probabilistic makespans. Finally, on the largest problems, the tabu-based
techniques are clearly superior.

One anomaly in the overall results in Table 3 can be seen in the B&B-N and B&B-DQ-L
entries for the 4×4 problems. On two of the three uncertainty levels both algorithms termi-
nate before the limit on CPU time resulting in approximately optimal solutions. However,
the mean normalized probabilistic makespans are lower for the B&B-DQ-L algorithm. We
conjecture that this is an artifact of the B&B-DQ-L algorithm that biases the simulation
toward lower probabilistic makespan values. In B&B-N, a particular solution, s, is only
simulated once to find D(s). In B&B-DQ-L, the same solution may be simulated multiple
times leading to the bias. As an illustration, assume B&B-DQ-L finds an approximately
optimal solution s∗ while searching the tree corresponding to q = q′ > 0. On a subsequent
iteration with q = q′′ < q′, provided that the deterministic makespan is less than the previ-
ously identified probabilistic makespan (i.e., makeq(s∗) < D(s∗)), solution s∗ will be found
again and simulated again. The actual identity of the current best solution is not used to
determine which solutions to simulate. At each subsequent simulation, if a lower value for
D(s∗) is generated, it will replace the previous lowest probabilistic makespan value. This
leads to a situation where we may re-simulate the same solution multiple times, keeping the
lowest probabilistic makespan that is found in any of the simulations. Similar re-simulation
is possible with the Tabu-I-BS algorithm.

To test the statistical significance of the results in Table 3, we ran a series of randomized
paired-t tests (Cohen, 1995) with p ≤ 0.005. The results of these statistical tests are
displayed in Table 4 for the different problem sizes. The different uncertainty levels have
been collapsed so that, for example, the 4 × 4 statistics are based on all of the 4 × 4
instances. The informal impression discussed above is reflected in these tests with B&B-
DQ-L and Tabu-I-BS dominating for the two smallest problem sizes, the branch-and-bound
heuristic approaches performing best for the 10×10 problems, and the tabu-based techniques
delivering the best results for the 20× 20 problems.

Overview. Our primary interpretation of the performance of the algorithms in these
experiments is as follows. For the smaller problems (4×4 and 6×6), the complete techniques
are able to cover the entire search space or at least a significant portion of it. Though in the
case of B&B-DQ-L, the solutions which are chosen for simulation are heuristically driven
by deterministic makespan values, the lower bound results of Section 4.2 ensure that very
good solutions will be found provided that iterations with small q values can be run within
the CPU time limit. On the 10 × 10 problems, the complete techniques are not able to
simulate a sufficient variety of solutions as, especially for B&B-N, the heuristic guidance
is poor. Note, however, that B&B-DQ-L is competitive with, and, for many problems
sets, better than the tabu-based algorithms on the 10 × 10 problems. We believe that
the 10 × 10 results stem from the ability of the B&B heuristic algorithms to quickly find
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Problem Statistical Significance
Size (p ≤ 0.005)
4× 4 {B&B-DQ-L, Tabu-I-BS} < {B&B-TBS, B&B-I-BS, Tabu-TBS, B&B-N}
6× 6 {B&B-DQ-L, Tabu-I-BS} < {B&B-I-BS} < {B&B-TBS} < {Tabu-TBS} < {B&B-N}

10× 10 {B&B-TBS, B&B-I-BS} < {Tabu-I-BS, B&B-DQ-L, Tabu-TBS}∗ < {B&B-N}
20× 20 {Tabu-TBS, Tabu-I-BS} < {B&B-TBS, B&B-I-BS} < {B&B-DQ-L} < {B&B-N}

Table 4: The statistically significant relationships among the algorithms for the results
shown in Table 3. Algorithms within a set show no significant difference. The
‘<’ relation indicates that the algorithms in the left-hand set have a significantly
lower MNPM than the algorithms in the right-hand set. The set indicated by ∗

represents a more complicated relationship amongst the algorithms: Tabu-I-BS <
Tabu-TBS but all other pairs in the set show no significant performance differences.

the optimal deterministic solution and then to systematically simulate all solutions with
deterministic makespans that are close to optimal. In contrast, the tabu-based algorithms
do not systematically enumerate these solutions. Finally, for the largest problems, we
hypothesize that tabu search techniques result in the best performance as they are able to
find better deterministic solutions to simulate.

Problem Size. As the size of the problems increase, we see the not-unexpected decrease
in the quality of the probabilistic makespans found. A simple and reasonable explanation
for this trend is that less of the search space can be explored within the given CPU time for
the larger problems. There are likely to be other factors that contribute to this trend (e.g.,
the quality of the lower bound may well systematically decrease as problem size increases).

Uncertainty Level. The normalized makespan values also increase within a problem size
as the uncertainty level rises. As these results are calculated by normalization against a
lower bound, it is possible that the observed decrease in solution quality is actually due to
a decrease in the quality of the lower bound rather than a reduction in the quality of the
solutions found by the algorithms as uncertainty increases. To test this idea, in Table 5 we
normalized the 4 × 4 results using the optimal probabilistic makespans found by B&B-N
rather than the deterministic lower bound. The table shows that for the algorithms apart
from B&B-DQ-L and Tabu-I-BS, the trend of increasing mean normalized probabilistic
makespan is still evident. For these algorithms, at least, the putative decreasing quality
of the lower bound cannot be the entire explanation for the trend of worse performance
results for higher levels of uncertainty. In Section 6.2.2, we revisit this question and provide
evidence that could explain why the algorithms perform worse when uncertainty is increased.

These results also lend credibility to the conjecture that the observed “super-optimal”
performance of B&B-DQ-L and Tabu-I-BS on the small problems is due to repeatedly
simulating the same solution. At low levels of uncertainty, repeated simulations of the truly
best solution will not vary greatly, resulting in a MNPM value of about 1. With higher levels
of uncertainty, the distribution of simulated makespans is wider and, therefore, repeated
simulation of the same solution biases results toward smaller probabilistic makespan values.
This is what we observe in the results of B&B-DQ-L and Tabu-I-BS in Table 5.
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Algorithms
Unc. B&B Complete B&B Heuristic Tabu
Level N DQ-L TBS I-BS TBS I-BS
0.1 1.004 1.000 1.003 1.002 1.003 0.999
0.5 1.008 0.998 1.012 1.008 1.011 0.995
1 1.015 0.996 1.018 1.013 1.017 0.996

Table 5: The mean normalized probabilistic makespans for each algorithm on the 4 × 4
problem set normalized by the optimal probabilistic makespans found by B&B-N.

In the balance of this section, we turn to more detailed analysis of the algorithms.

6.2.1 Analysis: B&B Complete Algorithms

The performance of B&B-N is poor when it is unable to exhaustively search the branch-
and-bound tree. The high computational cost of running simulation at every node and the
relatively weak lower bound that partial solutions provide9 conspire to result in a technique
that does not scale beyond very small problems.

Problem Uncertainty Level
Size 0.1 0.5 1
4× 4 0 0 0
6× 6 0 0.5 0.75

10× 10 0.95 0.85 0.9
20× 20 0.9 0.9 0.9

Table 6: The lowest q value used for each problem size and uncertainty level for the B&B-
DQ-L. For all problems except 20× 20, the initial q value is 1.25. For the 20× 20
problems, the initial q value is 0.9

B&B-DQ-L is able to perform somewhat better than B&B-N on larger problems even
when it is not able to exhaustively search each tree down to q = 0. Table 6 shows the
minimum q values attained for each problem size and uncertainty level. The deterministic
durations defined by the q value serve to guide and prune the search for each iteration and,
therefore, as with the heuristic algorithms (see below), the search is heuristically guided
to the extent that solutions with low deterministic makespans also have low probabilistic
makespans. However, the characteristics of the solutions found by the search are unclear.
Recall that B&B-DQ-L starts with a high q value that, in combination with the constraint
that the deterministic makespan must be less than or equal to the best simulated probabilis-

9. One idea for improving the lower bound that we did not investigate is to incorporate the resource-
based propagators (e.g., edge-finding) into the evaluation of a partial solution. In a single trial at an
internal node, the deterministic makespan is found by sampling from the distributions and then finding
the longest path in the temporal network. After the sampling, however, it is possible to apply the
standard propagation techniques which might insert additional edges into the precedence graph and
thereby increase the makespan, improving the lower bound.
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tic makespan found so far, significantly prunes the search space. Ideally, we would like the
search with high q to find solutions with very good probabilistic makespans both because
we wish to find good solutions quickly and because the simulated probabilistic makespan
values are used to prune subsequent search with lower q values. Therefore, in an effort
to better understand the B&B-DQ-L search, we examine the characteristics of the initial
solutions it finds.

Some idea of the quality of the solutions produced by high q values can be seen by
comparing the probabilistic makespan found with high q (the first solution found) with
the best solution found in that run. Table 7 presents this comparison in the form of Df ,
the mean normalized makespans for the initial solutions found by B&B-N and B&B-DQ-
L. These data indicate that the first solution found by B&B-DQ-L is much better than
that found by B&B-N. When B&B-N searches for its initial solution, the upper bound
on the deterministic makespan does not constrain the problem: a solution is therefore
very easy to find (i.e., with no backtracking) but there is little constraint propagation or
heuristic information available to guide the search to a solution with a small makespan. In
contrast, when B&B-DQ-L searches for an initial solution, the high q value means that it
is searching in a highly constrained search space because the deterministic makespan must
be less than the probabilistic makespan. Therefore, there is a very tight upper bound on
the deterministic makespan (relative to the durations that incorporate the q values). In
many cases, the initial iterations fail to find any feasible solutions, but do so very quickly.
Eventually, the q value is low enough to allow a feasible solution, however the search for that
solution is strongly guided by propagation from the problem constraints. In summary, the
initial search for B&B-N has no guidance from the constraint propagation toward a good
solution while that of B&-DQ-L is guided by constraint propagation in an overly constrained
problem. Table 7 shows that, in these experiments, such guidance tends to result in better
initial solutions. We believe that this observation may be useful more generally in constraint
solving (see Section 7).

To provide a fuller indication of the performance differences, Table 7 also presents the
improvement over the first solution that is achieved: the difference between the first solution
and the last solution (Dl) found by each algorithm (Dl is the value reported in Table 3).
On the larger problem sets, the improvement made on the first solution by B&B-DQ-L
is greater. For the smaller problem sets, the improvement by B&B-N is greater than for
B&B-DQ-L, however, we suspect a ceiling effect reduces the amount that B&B-DQ-L can
improve (i.e., the initial solutions are already quite close to optimal).

6.2.2 Analysis: Heuristic Algorithms

We now turn to the performance of the heuristic algorithms. We first examine the hypothesis
that their performance is dependent on two factors: the ability of the algorithms to find
solutions with low deterministic makespans and the correlation between good deterministic
and probabilistic makespans. Then we turn to an analysis of the effect of the differing q
values on the heuristic algorithm performance.

Finding Good Deterministic Makespans. It was argued above that the performance
of the heuristic techniques (and B&B-DQ-L) is dependent upon the ability to find solutions
with good deterministic makespans. To provide evidence for this argument, we looked
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Problem Unc. B&B-N B&B-DQ-L
Size Level Df Df −Dl Df Df −Dl

0.1 1.089 0.062 1.028 0.005
4× 4 0.5 1.119 0.059 1.078 0.029

1 1.227 0.076 1.165 0.036
0.1 1.106 0.072 1.067 0.046

6× 6 0.5 1.163 0.050 1.108 0.035
1 1.301 0.075 1.221 0.051

0.1 1.191 0.006 1.069 0.045
10× 10 0.5 1.258 0.017 1.151 0.050

1 1.369 0.005 1.269 0.054
0.1 1.259 0.003 1.168 0.026

20× 20 0.5 1.332 0.004 1.242 0.009
1 1.494 0.008 1.404 0.016

Table 7: The mean normalized makespan for the first solutions found by each algorithm
(Df ) and the difference between the mean normalized makespans of the first and
last solutions (Df −Dl).

at the quality of the best deterministic solutions found by B&B-I-BS and Tabu-I-BS. We
hypothesize that the better performing algorithm will also have found better deterministic
solutions than the worse performer.

Table 8 presents results for each algorithm on the two largest problem sets.10 The mean
normalized deterministic makespan (MNDM ) is calculated as follows:

MNDM (a, L) =
1
|L|

∑
l∈L

makeq(a, l)
makeq,min(l, B&B − I −BS)

(2)

where L is a set of problem instances, makeq(a, l) is the mean deterministic makespan found
by algorithm a on l over 10 runs, makeq,min(l, B&B − I − BS) is the lowest deterministic
makespan found by the B&B-I-BS algorithm over all runs on problem l. MNDM, therefore,
provides a relative measure of the quality of the average deterministic makespans from the
two algorithms: the higher the value, the worse the average makespan found relative to
B&B-I-BS.

Table 8 is consistent with our hypothesis. On the 10 × 10 problems, where B&B-I-BS
outperforms Tabu-I-BS, the former is able to find solutions with a lower mean deterministic
makespan. For the 20× 20 problems the results are reversed with Tabu-I-BS finding both
better mean deterministic makespans and better probabilistic makespans.

This result lends support to the original motivation for the deterministic filtering al-
gorithms: the performance of these algorithms in terms of probabilistic solution quality is
positively related to the quality of the deterministic solutions they are able to find. The
next section addresses the question of why this performance relationship is observed.

10. We show only the 10 × 10 and 20 × 20 problems sets as they are not influenced by the conjectured
repeated simulation behavior of Tabu-I-BS.
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Problem Uncertainty MNDM
Size Level B&B-I-BS Tabu-I-BS

0.1 1.000 1.002
10× 10 0.5 1.000 1.004

1 1.000 1.004
0.1 1.045 1.002

20× 20 0.5 1.041 0.998
1 1.037 1.002

Table 8: The mean normalized deterministic makespan (MNDM) for B&B-I-BS and Tabu-
I-BS.

The Correlation Between Deterministic and Probabilistic Makespan. The abil-
ity of the algorithms to find good deterministic makespans would be irrelevant to their
ability to find good probabilistic makespans without some correlation between the two. It
is reasonable to expect that the level of uncertainty in a problem instance has an impact on
this correlation: at low uncertainty the variations in duration are small, meaning that we
can expect the probabilistic makespan to be relatively close to the deterministic makespan.
When the uncertainty level is high, the distribution of probabilistic makespans for a single
solution will be wider, resulting in less of a correlation. We hypothesize that this impact of
uncertainty level contributes to the observed performance degradation (see Tables 3 and 5)
of the heuristic techniques with higher uncertainty levels as problem size is held constant.

To examine our hypothesis we generated 100 new 10 × 10 deterministic JSP problem
instances with the same generator and parameters used above. The standard deviations
for the duration of each activity in the 100 instances were generated independently for
each of five uncertainty levels uj ∈ {0.1, 0.5, 1, 2, 3} resulting in a total of 500 problem
instances (100 for each uncertainty level). For each instance and for each of the four q
values (as in Table 2), we then randomly generated 100 deterministic solutions which were
then simulated. Using the R statistical package (R Development Core Team, 2004), we
measured the correlation coefficient for each problem set. Each cell in Table 9 is the result
of 10000 pairs of data points: the deterministic and probabilistic makespans for 100 random
deterministic solutions for each of 100 problem instances.

Uncertainty Level q0 q1 q2 q3
0.1 0.9990 0.9996 0.9996 0.9995
0.5 0.9767 0.9912 0.9917 0.9909
1 0.9176 0.9740 0.9751 0.9736
2 0.8240 0.9451 0.9507 0.9517
3 0.7381 0.9362 0.9418 0.9423

Table 9: The correlation coefficient (r) comparing pairs of deterministic and probabilis-
tic makespans for a set of 10 × 10 probabilistic JSPs. Each cell represents the
correlation coefficient for 10000 deterministic, probabilistic pairs.
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Table 9 supports our explanation for the performance of the heuristic techniques. As
the uncertainty level increases, the correlation between the deterministic makespan and
corresponding probabilistic makespan lessens. The strength of the correlation is somewhat
surprising: even for the highest uncertainty level where the standard deviation of the du-
ration of an activity is uniformly drawn from between 0 and 3 times its mean duration,
the correlation is above 0.94 for q2 and q3. This is a positive indication for the heuristic
algorithms as it suggests that they may scale well to higher uncertainty levels provided a
reasonable q value is used. We examine the impact of the q values in the original experi-
ments and the implications of the deterministic/probabilistic makespan correlation in the
next section.

It should be emphasized that these results are based on correlations between determin-
istic and probabilistic makespans for randomly generated solutions. We have not addressed
how these correlations might change for high-quality solutions, which might be considered
as a more appropriate population from which to sample. One technical difficulty for the
design of an experiment to examine this, is to ensure a sufficiently randomized sample from
the population of “good” solutions; also, the result could depend strongly on the (rather
arbitrary) particular choice of quality cutoff for solutions.

The Effect of the q Values. Each of the heuristic algorithms requires a fixed q value.11

We experimented with four different values (see Table 2). Table 10 displays the signifi-
cant pairwise differences among the q values for each heuristic as measured by randomized
paired-t tests (Cohen, 1995) with p ≤ 0.005. As can be observed, there are almost no
significant differences for low levels of uncertainty (0.1 or 0.5) or for the smallest problem
set. For higher levels of uncertainty and larger problems, using q0 is never better than
using one of the higher q values and in many cases, q0 results in the worst mean makespan.
Among the other q-values, for the majority of the problem sets and algorithms there are no
significant differences. For a given algorithm, it is never the case that a lower q value leads
to significantly better results than a higher q value.

The correlation results in Table 9 provide an explanation for these differences. For the
10 × 10 problems, the performance of the q0 algorithms is competitive when there is not
a large difference in the correlations between deterministic and probabilistic solutions (i.e.,
at uncertainty levels 0.1 and 0.5). When the uncertainty level is 1, there is a significant
reduction in the correlation coefficient for q0 and a corresponding reduction in the mean
normalized probabilistic makespans found by the algorithms using q0.

6.3 Summary

The results of our experiments can be summarized as follows:

• The most principled use of simulation (B&B-N) is only useful on small problems.
The simulation time is a major component of the run-time resulting in very little
exploration of the search space.

• Algorithm B&B-DQ-L, based on the idea of iteratively reducing a parameter that de-
termines the validity of the lower bound, results in equal performance on small prob-

11. We are not addressing the behavior of B&B-DQ-L, where the q descends during the run of the algorithm.
We are only examining the algorithms with fixed q values.
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Problem Unc. B&B Tabu
Size Level TBS I-BS TBS I-BS

0.1 - - - q2 < q1
4× 4 0.5 - - - -

1 - - - -
ALL - - - -
0.1 - - - -

6× 6 0.5 - - - -
1 q2 < {q1, q3} < q0 - {q1, q2, q3} < q0 -

ALL q2 < {q0, q1} - {q1, q2, q3} < q0 q1 < q0

0.1 - - - -
10× 10 0.5 - - - -

1 {q1, q2, q3} < q0 {q1, q2, q3} < q0 {q1, q3} < q0 {q2, q3} < q0
ALL {q1, q2, q3} < q0 {q1, q2, q3} < q0 q1 < q0 {q1, q2, q3} < q0

0.1 - - - q2 < q0
0.5 - - - -

20× 20 1 {q1, q2} < q0 {q2, q3} < q0 {q1, q2, q3} < q0 {q1, q2, q3} < q0
q2 < q1

ALL q2 < q1 < q0 {q2, q3} < q0 {q1, q2, q3} < q0 {q1, q2, q3} < q0
q3 < q0

Table 10: The results of pair-wise statistical tests for each algorithm and problem set. The
notation a < b indicates that the algorithm using q = a achieved a significantly
better solution (i.e., lower probabilistic makespan) than when it used q = b. ‘-’
indicates no significant differences. All statistical tests are randomized paired-t
tests (Cohen, 1995) with p ≤ 0.005.

lems and much better performance on larger problems when compared to B&B-N.
More work is needed to understand the behavior of the algorithm, however prelim-
inary evidence indicates that it is able to find good solutions quickly in the current
application domain.

• A series of heuristic algorithms were proposed based on using deterministic makespan
to filter the solutions which would be simulated. It was demonstrated that the per-
formance of these algorithms depends on their ability to find good deterministic
makespans and the correlation between the quality of deterministic and probabilis-
tic solutions. It was shown that even for problems with a quite high uncertainty
level, deterministic problems can be constructed that lead to a strong determinis-
tic/probabilistic makespan correlation.

• Central to the success of the heuristic algorithms was the use of a q value that governed
the extent to which duration uncertainty was represented in the durations of activities
in deterministic problems. It was shown that such an incorporation of uncertainty
data leads to a stronger correlation between deterministic and probabilistic makespans
and the corresponding ability to find better probabilistic makespans.
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7. Extensions and Future Work

In this section, we look at three kinds of extensions of this work. First, we show that our
theoretical framework in fact applies to far more general probabilistic scheduling problems
than just job shop scheduling. In Section 7.2, we discuss ways in which the algorithms
for probabilistic JSP presented in this paper might be improved. Finally, we discuss the
possibility of developing the central idea in the B&B-DQ-L algorithm into a solving approach
for general constraint optimization problems.

7.1 Generalization to Other Scheduling Problems

The results in this paper have been derived for the important case of job shop scheduling
problems. In fact, they are valid for a much broader class of scheduling problems, including
resource-constrained project scheduling problems of a common form (e.g., a probabilistic
version of the deterministic problems studied in the work of Laborie, 2005). In this section,
we describe how to extend our framework and approaches.

Our approach relies on the fact that in the job shop scheduling problem, one can focus
on orderings of activities, rather than directly on assignments of start times for activities;
specifically, the definition of minimum makespan based on orderings is equivalent to the
one based on start time assignments; this equivalence holds much more generally.

First, in 7.1.1, we give some basic definitions and properties which are immediate ex-
tensions of those defined in Section 2. Then, in 7.1.2, we characterize a class of scheduling
problems which have the properties we require, by use of a logical expression to represent
the constraints of the problem. In 7.1.3 we give the key result relating the schedule-based
minimum makespan with the ordering-based minimum makespan. Section 7.1.4 discusses
the extended class of probabilistic scheduling problems, and Section 7.1.5 considers different
optimization functions.

7.1.1 Schedules, Orderings and Makespans

As in Section 2, we are given a set A of activities, where activity Ai ∈ A has an asso-
ciated positive duration di (for the deterministic case). A schedule (for A) is defined to
be a function from the set of activities to the set of time-points (which are non-negative
numbers), defining when each activity starts. Let Z be a schedule. The makespan make(Z)
of schedule Z is defined to be the time at which the last activity has been completed, i.e.,
maxAi∈A(Z(Ai) + di). We say that Z orders Ai before Aj if and only if Aj starts no earlier
than Ai ends, i.e., Z(Ai) + di ≤ Z(Aj).

An essential aspect of job shop problems and our approach is that one can focus on
orderings of the activities rather than on schedules; in Section 2 we use the term solution
for an ordering that satisfies the constraints of a given JSP. Define an ordering (on A) to be
a strict partial order on A, i.e., an irreflexive and transitive relation on the set of activities.
Hence, for ordering s, for all Ai ∈ A, (Ai, Ai) /∈ s, and if (Ai, Aj) ∈ s and (Aj , Ak) ∈ s,
then (Ai, Ak) ∈ s. If (Ai, Aj) ∈ s, then we say that s orders Ai before Aj ; we also say that
Ai is a predecessor of Aj . A path in s (or an s-path) is a sequence of activities such that
if Ai precedes Aj in the sequence, then s orders Ai before Aj . The length len(π) of a path
π (in an ordering) is defined to be the sum of the durations of the activities in the path,
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i.e.,
∑

Ai∈π di. The makespan, make(s), of an ordering s is defined to be the length of a
longest s-path. An s-path π is said to be a critical s-path if the length of π is equal to the
makespan of the ordering s, i.e., it is one of the longest s-paths.

Any schedule has an associated ordering. For schedule Z define the ordering sol(Z) as
follows: sol(Z) orders activity Ai before Aj if and only if Z orders Ai before Aj .

Conversely, from an ordering one can define a non-delay schedule, which is optimal
among schedules compatible with the ordering, by starting each activity as soon as its
predecessors finish. Let s be an ordering. We inductively define schedule Z = sched(s) as
follows: if Ai has no predecessor, then we start Ai at time 0, i.e., Z(Ai) = 0. Otherwise,
we set Z(Ai) = maxAj∈pred(Ai)(Z(Aj) + dj), where pred(Ai) is the set of predecessors of Ai.
The fact that s is acyclic guarantees that this defines a schedule. As in Section 2.1, we have
the following two important properties. The first states that the makespan of an ordering
is equal to the makespan of its associated schedule. The second states that the makespan
of a schedule is no better than the makespan of its associated ordering.

Proposition 5

(i) For any ordering s, make(sched(s)) = make(s).

(ii) For any schedule Z, make(sol(Z)) ≤ make(Z).

The proof of these is straight-forward. It follows easily by induction that if a schedule Z
respects the precedence constraints expressed by an ordering s, then the last activity of any
s-path can end no earlier in Z than the length of the path; applying this to a critical path
implies (ii) make(sol(Z)) ≤ make(Z), and implies half of (i): make(sched(s)) ≥ make(s). By
working backwards from an activity that finishes last in sched(s), and choosing an immediate
predecessor at each stage, one generates (in reverse order) a path in s whose length is equal
to make(sched(s)), hence showing that make(sched(s)) ≤ make(s), and proving (i).

7.1.2 Positive Precedence Expressions

We will define a class of scheduling problems, using what we call positive precedence ex-
pressions (PPEs) to represent the constraints. Each of these scheduling problems assumes
no preemption (so activities cannot be interrupted once started) and we will again use
makespan as the cost function.

For activities Ai and Aj , the expression before(i, j) is interpreted as the constraint (on
possible schedules) that activity Aj starts no earlier than the end of activity Ai. Such
expressions are called primitive precedence expressions. A positive precedence expression is
defined to be a logical formula built from primitive precedence expressions, conjunctions and
disjunctions. (The term “positive” is used since they do not involve negations.) Formally,
the set E of positive precedence expressions (over A) is defined to be the smallest set such
that (a) E contains before(i, j) for each Ai and Aj in A, and (b) if ϕ and ψ are in E , then
(ϕ ∧ ψ) and (ϕ ∨ ψ) are both in E .

Positive precedence expressions over A are interpreted as constraining schedules on A.
Let ϕ ∈ E be a PPE and let Z be a schedule. We define “Z satisfies ϕ” recursively as
follows:
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• Z satisfies primitive precedence expression before(i, j) if and only if Z orders Ai before
Aj , i.e., if Z(Ai) + di ≤ Z(Aj);

• Z satisfies the conjunction of two constraint expressions if and only if it satisfies both
of them;

• Z satisfies the disjunction of two constraint expressions if and only if it satisfies at
least one of them.

Similarly, for ordering s and positive precedence expression ϕ we can recursively define
“s satisfies ϕ” in the obvious way: s satisfies before(i, j) if and only if s orders Ai before
Aj . Ordering s satisfies (ϕ∧ψ) if and only if it satisfies both ϕ and ψ. Ordering s satisfies
(ϕ ∨ ψ) if and only if it satisfies either ϕ or ψ.

Positive precedence expressions are powerful enough to represent the constraints of a
job shop scheduling problem, or of a resource-constrained project scheduling problem.

JSPs as Positive Precedence Expressions. Resource constraints in a job shop schedul-
ing problem give rise to disjunctions of primitive precedence expressions: for each pair of
activities Ai and Aj which require the same resource, the expression before(i, j)∨before(j, i)
which expresses that Ai and Aj do not overlap (one of them precedes the other). The
ordering of activities in a job can be expressed in terms of primitive expressions: before(i, j)
when Ai precedes Aj within some job. Hence, the constraints in a job shop problem can be
expressed as a positive precedence expression in conjunctive normal form, i.e., a conjunction
of disjunctions of primitive precedence expressions.

RCPSPs as PPEs. The constraints in a resource-constrained project scheduling problem
(RCPSP) (Pinedo, 2003; Brucker et al., 1999; Laborie & Ghallab, 1995; Laborie, 2005) can
also be expressed as a positive precedence expression in conjunctive normal form. In an
RCPSP, we have precedence constraints between activities, each of which can be expressed
as a primitive precedence expression; let ϕ be the conjunction of these. In a RCPSP, there
are again a set of resources, each with a positive capacity. Associated with each activity Ai

and resource r is the rate of usage Ai(r) of resource r by activity Ai. We have the following
resource constraints on a schedule: for each resource r, at any time-point t, the sum of
Ai(r) over all activities Ai which are in progress at t (i.e., which have started by t but not
yet ended) must not exceed the capacity of resource r.

Define a forbidden set (or conflict set) to be a set of activities whose total usage of
some resource exceeds the capacity of the resource. Let F be the set of forbidden sets. (If
we wished, we could delete from F any set which is a superset of any other set in F ; we
could also delete any set H which contains elements Ai and Aj such that Ai precedes Aj

according to ϕ.) The resource constraints can be expressed equivalently as: for all H ∈ F ,
there exists no time at which every activity in H is in progress. This holds if and only if
for each H ∈ F , there exist two activities in H which do not overlap (since if all pairs of
activities in H overlap then all activities in H are in progress at the latest start time of
activities in H), i.e., there exists Ai, Aj ∈ H with before(i, j). Hence, a schedule satisfies the
resource constraints if and only if it satisfies the positive precedence expression ψ defined
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to be ∧
H∈F

∨
Ai,Aj∈H

i�=j

before(i, j).

Therefore, expression (ϕ∧ψ) represents the RCPSP, i.e., a schedule satisfies the constraints
of the RCPSP if and only if it satisfies (ϕ ∧ ψ).

Another class of scheduling problems, each of which can be represented by a positive
precedence expression, is the class based on AND/OR precedence constraints (Gillies &
Liu, 1995; Möhring, Skutella, & Stork, 2004).

7.1.3 Solutions and Minimum Makespan

For a fixed positive precedence expression ϕ over A, we say that schedule Z is valid if it
satisfies ϕ. We say that ordering s is a solution if it satisfies ϕ. If ordering s satisfies
before(i, j), then, by construction, sched(s) satisfies before(i, j). It also follows immediately
that schedule Z satisfies before(i, j) if and only if sol(Z) satisfies before(i, j). The following
result can then be proved easily by induction on the number of connectives in ϕ.

Lemma 2 For any PPE ϕ over A, if s is a solution, then sched(s) is a valid schedule. If
Z is a valid schedule, then sol(Z) is a solution.

The minimum makespan (for ϕ) is defined to be the infimum makespan over all valid
schedules, i.e., the infimum of make(Z) over all valid schedules Z. The minimum solution
makespan is defined to be the minimum makespan over all solutions, i.e., the minimum
of make(s) over all solutions s. The following is the key result which links the schedule-
based definition of minimum makespan with the solution-based definition. It follows from
Proposition 5 and Lemma 2, since for any solution s there is a valid schedule (i.e., sched(s))
with the same value of makespan, and for any valid schedule Z there is a solution (i.e.,
sol(Z)) with at least as good a value of makespan.

Proposition 6 Let ϕ be any positive precedence expression over A. Then the minimum
makespan for ϕ is equal to the minimum solution makespan.

7.1.4 Probabilistic Scheduling Problems based on PPEs

The probabilistic versions of the scheduling problems are defined in just the same way as
for JSPs. The duration of each activity Ai is now a random variable. A positive precedence
expression is used to represent the constraints.

The further definitions in Sections 2 and 4 can all be immediately extended to this much
more general setting. All the results of the paper still hold, with exactly the same proofs.
In particular, with a probabilistic problem one associates a corresponding deterministic
problem in just the same way; the lower bound results in Section 4.2 are based on the longest
path characterization of makespan; the Monte Carlo approach (or at least its usefulness)
relies on the fact that the makespan of a solution is equal to the makespan of the associated
schedule. Furthermore, the algorithms in Section 5 extend, given that one has a method of
solving the corresponding deterministic problem.
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The ordering-based policies that we use (based on fixing a partial ordering of activities,
irrespective of the sampled values of the durations) are known as Earliest Start policies
(Radermacher, 1985). These and other policies have been studied for RCPSPs (see e.g.,
Stork, 2000, however the aim in that work is to minimize expected makespan, whereas we
are attempting to minimize α-makespan).

7.1.5 Different Optimization Functions

Because our approach for evaluating and comparing solutions is based on the use of Monte
Carlo simulation to generate a sample distribution, our techniques are quite general.

Much of the work in the paper also generalizes immediately to other regular cost func-
tions, where “regular” means that the function is monotonic in the sense that increasing the
end of any activity in a schedule will not decrease the cost. A regular function based on any
efficiently computable measurement of the sample distributions can be accommodated. For
example, we could easily adapt to situations where the probability of extreme solutions is
important by basing the optimization function on the maximum sampled makespan. Con-
versely, we could use measures of the tightness of the makespan distribution for situations
where minimizing variance as a measure of the accuracy of a schedule is important. Fur-
thermore, weighted combinations of such functions (e.g., the α-makespan plus a measure of
distribution tightness) could be easily incorporated.

We can also modify our approach to account for other ways of comparing solutions
based on the sample distributions. For example, we could perform t-tests using the sample
distributions to determine if one solution has a significantly lower expected makespan.

7.2 Toward Better Algorithms for Probabilistic JSPs

There are two directions for future work on the algorithms presented in this paper. First,
B&B-N could be improved to make more use of deterministic techniques and/or to incorpo-
rate probabilistic reasoning into existing deterministic techniques. For example, a number
of deterministic lower bound formulations for PERT networks exist in the operations re-
search literature (Ludwig, Möhring, & Stork, 2001) that may be used to evaluate partial
solutions. Similarly, perhaps the dominance rules presented by Daniels and Carrillo (1997)
for the one-machine β-robustness problem can be generalized to multiple resources. Another
approach to improving the B&B-N performance is to incorporate explicit reasoning about
probability distributions into standard constraint propagation techniques. Techniques such
as the longest path calculations and edge-finding make inferences based on the propagation
of minimum and maximum values for temporal variables. We believe that many of these
techniques can be adapted to reason about probabilistic intervals; this is related to work
done, for example, on simple temporal networks with uncertainty (Morris, Muscettola, &
Vidal, 2001; Tsamardinos, 2002).

A second direction for future work is the improvement of the heuristic algorithms. The
key advantage of these algorithms is that they make use of deterministic techniques for
scheduling: by transforming probabilistic problems into deterministic problems, we bring a
significant set of existing tools to bear on the problem. Further developments of this ap-
proach include adaptively changing q-values during the search in order to find those that lead
to solutions with better values of probabilistic makespan (Dα(s)). A deeper understanding
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of the relationship between good deterministic solutions and good probabilistic solutions,
building on the work here, is necessary to pursue this work in a principled fashion.

Of course, proactive techniques are not sufficient. In practice, schedules are dynamic
and need to be adapted as new jobs arrive or existing jobs are canceled. At execution time, a
reactive component is necessary to deal with unexpected (or sufficiently unlikely) disruptions
that, nonetheless, can occur. A complete solution to scheduling under uncertainty needs to
incorporate all these elements to reason about uncertainty at different levels of granularity
and under different time pressures. See the work of Bidot, Vidal, Laborie and Beck (2007)
for recent work in this direction.

7.3 Exploiting Unsound Lower Bounds in Constraint Programming

The B&B-DQ-L algorithm may represent a problem-solving approach that can be applied
beyond the current application area. If we abstract away the probabilistic JSP application,
the central idea of B&B-DQ-L is to exploit an unsound lower bound to (over)constrain the
search and then to run subsequent searches with a gradually relaxed unsound lower bound.
Such an approach may play to the strengths of constraint programming: searching within
highly constrained spaces.

For example, the assignment problem (AP) is a well-known lower bound for the traveling
salesman problem (TSP) and has been used as a cost-based constraint in the literature
(Focacci, Lodi, & Milano, 2002; Rousseau, Gendreau, Pesant, & Focacci, 2004). Given a
TSP, P , let AP (P, q) be the corresponding assignment problem with the travel distances
multiplied by q. That is, let dij be the distance between cities i and j in P and let d′ij be
the distance between cities i and j in AP (P, q). Then d′ij = dij × q for q ≥ 1. An approach
similar to that of the B&B-DQ-L algorithm can now be applied to solve the TSP.

It would be interesting to investigate how the approach compares with the traditional
optimization approach in constraint programming. It may be particularly useful in appli-
cations where the evaluation of partial solutions is very expensive but where there exists a
parameterizable, inexpensive lower bound.

8. Conclusion

In this paper, we addressed job shop scheduling when the durations of the activities are
independent random variables. A theoretical framework was created to formally define this
problem and to prove the soundness of two algorithm components: Monte Carlo simulation
to find upper bounds on the probabilistic makespan of a solution and a partial solution;
and a carefully defined deterministic JSP whose optimal makespan is a lower bound on the
probabilistic makespan of the corresponding probabilistic JSP.

We then used these two components together with either constraint programming or
tabu search to define a number of algorithms to solve probabilistic JSPs. We introduced
three solution approaches: a branch-and-bound technique using Monte Carlo simulation to
evaluate partial solutions; an iterative deterministic search using Monte Carlo simulation
to evaluate the solutions from a series of increasingly less constrained problems based on
a parameterizable lower bound; and a number of deterministic filtering algorithms which
generate a sequence of solutions to a deterministic JSP, each of which is then simulated
using Monte Carlo simulation.
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Our empirical evaluation demonstrated that the branch-and-bound technique is only
able to find approximately optimal solutions for very small problem instances. The iterative
deterministic search performs as well as, or better than, the branch-and-bound approach
for all problem sizes. However, for medium and large instances, the deterministic filtering
techniques perform much more strongly while providing no optimality guarantees. Further
experimentation demonstrated that for the techniques using deterministic methods, the
correlation between the deterministic makespan and probabilistic makespan is a key factor
in algorithm performance: taking into account the variance of the duration in a deterministic
problem led to strong correlations and good algorithmic performance.

Proactive scheduling techniques seek to incorporate models of uncertainty into an off-
line, predictive schedule. The goal of such techniques is to increase the robustness of the
schedules produced. This is important because a schedule is not typically generated or
executed in isolation. Other decisions such as when to deliver raw materials and how to
schedule up- and down-stream factories are all affected by an individual schedule. Indeed, a
schedule can be seen as a locus of competing constraints from across a company and supply
chain (Fox, 1983). Differences between a predictive schedule and its execution can be a
significant source of disruption leading to cascading delays across widely separated entities.
The ability, therefore, to develop schedules that are robust to uncertainty is very important.
This paper represents a step in that direction.
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Ludwig, A., Möhring, R., & Stork, F. (2001). A computational study on bounding the
makespan distribution in stochastic project networks. Annals of Operations Research,
102, 49–64.

Meuleau, N., Hauskrecht, M., Kim, K., Peshkin, L., Kaelbling, L., Dean, T., & Boutilier, C.
(1998). Solving very large weakly coupled markov decision processes. In Proceedings
of the Fifteenth National Conference on Artificial Intelligence (AAAI-98).
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